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Abstract

The paper proposes a new integrated approach for supporting "rms in their decisions of dimensioning automated production
systems. The problem is closely related to the performance evaluation of the system since discriminating indicators are necessary to
rank di!erent alternatives. Traditionally, analytical methods and simulation have been used to evaluate the production system
performance, with minor emphasis on the relationships between the tools and their use. Given the complexity of the problem, it is not
possible to use only analytical methods that cannot enter deeply in problem details; at the same time the space of potential system
con"gurations is too large to be evaluated by means of detailed tools such as simulation. In the proposed methodology, the problem is
decomposed hierarchically into di!erent sub-problems; each one has a di!erent level of detail and a speci"c performance evaluation
tool is used. At each level of the analysis, each system con"guration is compared, by means of statistical tests, with the other
alternatives with the purpose of discarding unpro"table solutions. � 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Con"guration of manufacturing systems is a strategic
decision that many "rms have to take every time they
acquire a new system or modify an existing one. Regard-
less of the cause, "rms have to solve the challenging
problem of selecting the resources that "t their needs
better. This is a very critical phase since each decision
taken at this level will directly a!ect the performance of
the new system and therefore its pro"tability over the
following years. In addition, the information available is
not detailed and is often uncertain. In particular,
uncertainty of the market demand must be considered
during the con"guration of the production system since
unexpected variations of the volumes required by the
market, or the introduction of new products, can
make the solution unsuitable to ful"l the market re-
quests. At the same time, the decision must consider
many system variables such as the number of machines,
"xtures, carriers and tools and moreover dependencies
among system variables are often unknown and are not
easy to evaluate. To solve the problem, a methodology

that can deal with all the aspects described above is
necessary.
The con"guration of production systems is a problem

that has been deeply investigated in the last years. An
important line of research is devoted to stochastic models
of #exible manufacturing systems (FMS). There are cer-
tain inherent factors that motivate the use of stochastic
modelling for an FMS. An example is a machine break-
down which is an unforeseen disruption to the behaviour
of the system; this is typically captured by a stochastic
model. Other less important factors with a stochastic
nature are load/unload (if not automated), tool break-
downs etc. The presence of the above factors, which
require modelling the random components of an FMS, is
only a partial justi"cation for the use of stochastic model-
ling techniques. In fact, the key argument for the justi"ca-
tion of a stochastic model seems to be the lack of exact
information on the part mix to be produced on the
system. Buzacott and Yao present a literature review of
the analytical models of FMSs covering the works of
di!erent groups until the mid 1980s [1]. Solot and Van
Vliet provide an updated account of the analytical mod-
elling literature for FMS systems [2]. Solot and Van
Vliet classify the analytical models according to the cor-
responding problems addressed. Five major classes are
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identi"ed: processing capacity, bu!er capacity, facility
layout, pallet quantity and material handling system. It is
recognised that the most frequently studied problem is
that of optimising processing-capacity in terms of ma-
chine allocation and grouping [3,4].
Discrete event simulation tools enable a very detailed

analysis of the underlying system to be analysed. For
FMS systems, a discrete event simulation can almost
mimic the dynamic behaviour of the actual system by
explicitly modelling machine operations, pallet move-
ment, part carrier, tool changing and operations, etc.
This is a major advantage over an analytical model
which is usually a crude approximation that ignores
many important detailed features of the underlying sys-
tem. On the other hand, the main drawback of a simula-
tion model is that the output of a simulation run is the
outcome of a statistical experiment since a simulation
run generates one of the in"nitely many possible realisa-
tions of the system's dynamic behaviour. Therefore,
the outputs of simulation experiments have to be treated
as statistical experiments, which imply running and
analysing the results of a large number of experiments to
obtain statistically reliable estimates of the performance
measures.
An interesting approach is, then, using analytical

methods for an initial selection of good con"guration
candidates and then re"ning the choice among the se-
lected candidates by performing a few simulation experi-
ments. This two-step approach bene"ts from the speed of
analytical methods in the initial phase for eliminating
distinctively poor con"gurations and in the second phase
makes use of the detailed modelling feature of simulation
to search for the best candidate; an application of the
two-step approach is presented by Starr [5], Dekleva and
Gaberc [6]. The authors present the implementation
of the integrated analytical/simulation performance
evaluation tool in a software. In this way, initial design
iterations can be performed rapidly using the analy-
tical module and the simulation module can provide
re"nements.
The paper is organised as follows. Section 2 contains

a general view of the proposed method while Section
3 describes the technique in detail; the methodology is
applied to a real case in Section 4 and conclusions are
"nally reported in Section 5.

2. The approach

The objective of the proposed method is to identify
a set of alternative production systems among which the
decision-maker, the manager of the "rm, can select the
one he considers the best. In order to facilitate the task,
the set should be as limited as possible and some perfor-
mance indicators should be provided. In such a method,
the manager can compare di!erent production systems of

the set on the basis of the performance indicators pro-
vided by the method.
Allocating the system resources is a challenging task

due to di!erent reasons. First of all the number of re-
sources that have to be allocated in the con"guration
problem is high. The manager has to decide the number
of machines, part carriers, "xtures, copies of tools, tool
carriers, load/unload stations, etc., to purchase. It is not
rare to "nd in shop #oor systems with at least four
machines working more than 15 di!erent part types, each
product with a set of dedicated "xtures, with more than
200 copies of tools in the system. The combination of all
the resources that have to be allocated leads to an
explosion of possible alternative production systems.
Second, the interactions among resources are often
unknown and are di$cult to evaluate. For instance, it is
not easy to estimate the e!ect that an increase or a de-
crease of the number of pallets can have on the saturation
of machines. Third, the problem is stochastic in its nature
because of the variability of market demand, machine
failures, processing times, etc., and the solution must take
this aspect into account.
Therefore, given the high complexity of the problem

and the infeasibility of considering all the decision
variables at the same time, we propose a hierarchical
approach in which the problem is decomposed into
di!erent ones. In each sub-problem, the production
system is represented with a speci"ed level of detail that
increases from the top of the hierarchy to the bottom. At
higher levels, the system is modelled taking into account
a limited number of decision variables, in particular,
those that have a major impact on the system behaviour.
On the other hand, at lower levels of the hierarchy, the
system is represented in detail, taking into account other
decision variables that are less important than those of
the higher level; in particular, other decision variables are
considered in addition to those already considered in the
higher levels. For instance, the number of machines,
which has a signi"cant impact on the system behaviour,
must be considered at higher levels while the number of
copies of tools, which has a lesser impact in comparison
with that of machines, can be included at lower levels.
The complexity and the accuracy of the analysis increase
from the higher levels to the lower levels.
Starting from the top of the hierarchy, the method

works in di!erent steps until the lowest level is reached.
At each level l, there is a set of alternative production
systems that must be compared on the basis of the
indicator that the "rm wants to maximise. To achieve
this, it is necessary to have a tool that is able to evaluate,
for each alternative, performance measures such as
production rates, machine saturation, bu!er levels, etc.
Simulation is used when the desired detail level of the
analysis is high; the computational e!ort of the tool is
high but the tool provides accurate results. For instance,
it is necessary to use simulation when we compare two
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similar production systems that di!er only in the number
of copies of tools, since by simulation we can measure
small di!erences in terms of performance between them.
On the contrary, approximate analytical methods are
used when the requested precision is not high; this is the
case of two systems that di!er in the number of machines.
In this case, the di!erence between the systems is so high
that a rough method is su$cient to know which con"g-
uration is better.
After evaluating the indicator that the "rm wants to

maximise, the alternative systems of the set are compared
to each other by means of pairwise statistical tests. Since
performance indicators can be a!ected by variability due
to the uncertainty of demand, processing times, machine
failures, error of the tool used to evaluate the indicator
(e.g., the error of an approximated analytical method),
etc., the comparison must take into account all the di!er-
ent sources of variability. Unpro"table solutions are then
discarded from the analysed set of alternative systems
while the others are assessed better in the following level
l#1 in detail.
It is worth noting that the consistency of the choices

taken at each level is preserved by the hierarchical
decomposition of the problem. Every decision taken at
a level of the hierarchy is consistent with the whole
problem and a!ects the decisions of the lower levels. The
hierarchy preserves from discarding solutions in level
l that can be pro"table if they would be analysed in deep
details at lower levels l#1, l#2, etc.
In summary, the method starts from an initial set of

alternative production systems and continues until the
most detailed level, the lowest one of the hierarchy, is
reached providing a "nal set of system alternatives
among which the manager can take the decision. At each
level of the hierarchy, a di!erent tool is used to evaluate
the performance indicators of the system alternatives of
the set and statistical tests are then used to compare
them. How to compare system con"gurations and move
from one level to the other is described in the following
section.

3. Comparison of alternative production systems

Let us denote by �
�
the set of alternative production

systems that have to be evaluated at level l and let h
�
be

the performance indicator related to system k (with
k"1,2,K) that the "rm desires to maximise. Since the
system performance is a!ected by random events such as
demands and machine failures, h

�
is a random variable

and our goal is to compare alternative con"gurations
based on their expected values (with respect to the ran-
dom events) E[h

�
], or an estimate of the expected value

(variance is not considered). Furthermore, the method
used to evaluate the system performance is typically
approximate and is prone to errors. It is plausible to

think that, this error which is intrinsic to the system is
also a random variable. Let us denote by �

�
this random

variable. �
�
typically consists of two components, a con-

stant c
�
(representing a systematic over/under estimation)

and a random variable �
�
which can be assumed to be

normally distributed with zero mean. In general, this
error can also depend on the value of the performance
index (20% overestimation of capacity for instance) or on
the random events. We suppress this dependence for the
exposition of the approach but the method extends in an
obvious way to more general error terms.
The comparison of two candidate con"gurations then

takes on the following forms depending on the initial
model and the level of analysis:
Case 1: E[h

�
] can be obtained exactly, and the error

�
�
is a constant (�

�
"0). This is obviously the simplest

case that can happen. In this case, the comparison of two
con"gurations j and k reduces to the comparison of the
respective means of h

�
and h

�
.

Case 2: E[h
�
] can be obtained exactly but the error

�
�
is a random variable. In this case, we cannot compare

two con"gurations solely based on the means of the
performance measures. On the other hand, it is assumed
that �(�

�
) is a normally distributed random variable with

mean 0 and variance (��). The comparison of two con"g-
urations j and k is then the comparison of two normally
distributed random variables with respective means
E[h

�
] and E[h

�
] and a common variance (��). Note that

case 1 is a particular case of case 2.
Case 3: E[h

�
] cannot be obtained explicitly and the

error �
�
is a constant. In this case, the mean value of the

performance measure has to be estimated. To this end,
we propose to generate R samples of random events (for
instance, demands) and calculate h

���
, a realisation of the

random variable h
�

for the sample r. We can then
estimate E[h

�
] by the sample mean of individual realisa-

tions. In order to compare two con"gurations in this
case, we use a paired nonparametric test such as the sign
test or the signed rank test on the paired observations
h
���

and h
���
. The test result then enables us to say that

con"guration j is better than con"guration k for a certain
statistical signi"cance level.
Case 4. E[h

�
] cannot be obtained explicitly and the

error �
�
is a random variable. This is clearly the most

challenging case. To estimate E[h
�
], we need to advance

as in Case 3, by generating R samples of random events
and evaluating the realisation h

���
. In order to handle the

error �
�
, we propose generating R samples from �

�
for

each con"guration k (which can be denoted by �
���
). The

paired non parametric test for comparison of con"gura-
tions j and k can then be carried out on the paired
observations h

���
#e

���
and h

���
#e

���
.

The above-described approach for comparing di!erent
con"gurations is fairly general and "ts into several frame-
works. A critical assumption is the knowledge on
the error term of the performance evaluation method
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Fig. 1. Decomposition of the system into 2 mini-lines.

employed at level l. It is envisioned that this error is
assessed by comparing results with simulation, or by
experience or can even be a prior belief on the accuracy of
the method.
A "nal remark is on the "ltering procedure between

di!erent con"gurations. To "lter out unsatisfactory con-
"gurations, we propose the following rule:

� Rule. Con"guration j can be eliminated from further
consideration if there exists a (di!erent) con"guration
k, whose performance is superior (in a statistically
signi"cant way). In particular, the null hypothesis can
be tested `con"guration j dominates all the other sys-
tem alternatives of the set �

�
a against the alternative

hypothesis, `at least one con"guration k of the set
�

�
dominates con"guration ja.

It is necessary to take into account the fact that the
result of the test depends on the (K!1) applications of
pairwise comparison tests since each con"guration j is
compared with all the other con"gurations of the set �

�
.

In particular, type I and II errors of the test are a!ected
by those of the single tests used in pair wise comparisons.
It is necessary to consider this fact when the number of
samplesR, on the basis of which systems are compared, is
evaluated [7].

4. Application to a real Case

4.1. Description of the system

The production system is an automated manufactur-
ing system similar to FMSs in which parts are machined
by general purpose CNC machining centers. Machines
are identical and one or more carriers move pieces and
tools through the system. Parts are moved between
load/unload station and machines, while tools are moved
between central tool storage and local tool storage of
machines. The main di!erence with traditional parallel-
machines FMS is that parts are not worked by only one
machine, but by several machines following a linear path
as in automated #ow lines. Machines and "xtures are
smaller than traditional ones since the working cube is

400mm; this issue can lead to important savings in the
investment cost incurred by the "rm. In [8,9], a detailed
description of the system is presented and an economical
comparison of the system with competing alternative
ones is carried out.
Only one part is mounted on a pallet, therefore the

number of pallets #owing in the system corresponds to
the number of parts released in the system. Fixtures are
mounted on pallets and are dedicated to products; in the
remainder of the paper the words `palleta and `"xturea
are used interchangeably to mean the same thing. Let us
denote with the term `mini-linea a set of machines that
perform operations on the same parts as in #ow lines;
each mini-line can machine one or more part types. The
system can be logically decomposed into mini-lines and
their con"guration can be modi"ed during the running of
the system with reduced set up times. For instance, the
system in Fig. 1 is divided into 2mini-lines: the "rst one
machines product A while the second one machines
product B. Part carrier moves parts from the input bu!er
to the "rst machine of the mini-line; then each part, after
having been worked by all the machines of the mini-line,
is moved to the output bu!er by the part carrier. The
behaviour of the system is that of di!erent #ow lines that
share common resources such as part carriers, tool
carriers, tools and load/unload station. Unbalancing of
operations in mini-lines must be evaluated in order
to estimate the system performance. Amanagement load-
ing module allocates the products to the machines and
decides the number of mini-lines of the system during the
time [10].

4.2. Assumptions

We assume that the "rm has already selected the mix
of N products. All the technical information necessary to
design the process plan of each part type i of the mix
(with i"1,2, N ) is available. It is reasonable that, if
products and type of machines are known, technicians
are able to de"ne the whole process. Let us denote with
t
���

the deterministic processing time of operation j of
product i, with ¹

�
the total processing time of product

i and w
�
the number of working positions of product i.

Since all the system components such as machines,
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Table 1
Decision variables and performance evalution tools of the decomposed
problem

Sub-problem Decision variables Performance evaluation
tool

Level 1 Machines Static analytical model
Level 2 Machines, part carriers Static analytical model
Level 3 Machines, part carriers,

"xtures
Dynamic analytical
model

Level 4 Machines, part carriers,
"xtures, tool carriers

Simulation

carriers, "xtures, etc., are assumed to be reliable, there is
no variability in the behaviour of the system. Moreover,
we assume that, if new products arrive in the future, they
will be machined by other production systems of the
shop #oor and that the actual products of the mix will be
produced during the whole planned time horizon ¹.
The type of production system has already been

selected and corresponds to the one described above.
Further we assume that the "rm takes its decision of
maximising the expected value of the net present value
(NPV) of the investment de"ned as the actualised sum of
cash #ows related to the investment in the planned time
horizon:

NPV"

�
�
���

CashFlow(t)

(1#r)�
, (1)

where r is the risk rate. Since types of machines, carriers,
"xtures and tools are assumed to be known, the con"g-
uration problem statement is, given the selected mix
of products, allocate the system resources in order to satisfy
the xrm objectives. That is, deciding the number of ma-
chines, part carriers, "xtures and tool carriers that maxi-
mise the expected value of the investment. Other system
variables such as number of load/unload station, oper-
ators, etc are not considered here but the proposed ap-
proach is general enough to be extended to consider
these aspects.
The market is subject to uncertainty: the "rm has to

forecast the market demand of its production mix. Un-
certainty of demand is critical because errors in forecasts
can lead to oversized systems (if future demand has been
overestimated) or undersized systems (if future demand
has been underestimated), strongly a!ecting the pro"tab-
ility of the investment. However, "rms normally have
some information on future demand. For instance, it is
frequent that contract negotiation between supplier and
customer, limits the demand variability de"ning some
threshold values. In the automotive industry customers
must often respect a maximum level of requested volumes
de"ned in the contract [8,9], which becomes an upper
bound on the demand; also the "rm can forecast the
lowest level of demand the market may request in the
worst case. Therefore, demand is a stochastic variable but
the "rm often knows its variability range. If we indicate
with the N-dimensional vector D(t), the market demand
in the period t"1,2,¹ with;

�
the known upper value

with ¸
�
the forecasted lower value, the inequalities

;
�
*D

�
(t)*¸

�
must be satis"ed for each product i dur-

ing the planned time horizon t"1,2,¹. In addition, we
assume that demand is constant for any t"1,2,¹ and
represents the long term average demand of product i;
therefore D

�
(t!1)"D

�
(t)"D

�
for t"2,2,¹ and the

notation D
�
is used in the following sections to indicate

the market demand of product i in the planned horizon.
A very strict constraint for "rms is the infeasibility of

backlogging. It is assumed that, if capacity is not su$-
cient, the "rm buys from other suppliers the parts that it
cannot produce in the system since backlogging penalties
are high.
We can write in detail the expression of the NPV

followed by the notation used in the remainder of the
paper:

NPV"(1!s)
�
�
���

�
�
���

p
�
D

�
!c

	��
X

�
(t)!c


��
>

�
(t)

(1#r)�

!I
�
#

�
�
���

A(t)s

(1#r)�
#

RV(t)

(1#r)�
(1!s), (2)

where t is the time index, t"1,2,¹, t
����

, the processing
time of operation j of product i,¹

�
, the total processing

time of product i, R<(t), the residual value of investment
in period t, I

�
the investment in period 0; A(t), the

depreciation of investment in period t, r, the risk rate, s,
the tax rate, i, the product index, i"1,2,N, D

��
the

demand of product i in period t, X
�
(t), the production

quantity of product i in period t, >
�
(t), the outsourced

quantity of product i in period t, c
	��
, the internal variable

cost of product i, c

��
, the external variable cost of prod-

uct i. p
�
, the revenue per unit part of product i.

4.3. Hierarchical decomposition of the problem

Given the high complexity of the problem and the
infeasibility of considering all the decision variables at
the same time, we apply the proposed methodology de-
composing the main problem into four di!erent sub-
problems or levels. At each level, the production system is
represented with a de"ned degree of detail and the tool
used to evaluate the performance is coherent with the
decision variables selected to describe the system (see
Table 1).
It is assumed that the "rm selects the production

system that maximises the expected value of the NPV of
the investment. Since demand backlogging is not con-
sidered, the expected value of revenues is constant for any
system con"guration that is analysed at the same level of
demand; therefore, we can use the net present cost (NPC)
as the discriminating indicator for selecting the most
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pro"table alternative; NPC is de"ned as [8]:

NPC"(1!s)
�
�
���

�
�
���

c
	��

X
�
(t)#c


��
>

�
(t)

(1#r)�

#I
�
!

�
�
���

A
�
(t)s

(1#r)�
!

RV
�

(1#r)�
(1!s) (3)

which represents the overall cost of the system during its
life cycle. Investment cost I

�
is equal to the total costs of

the resources of the analysed con"guration.
One source of uncertainty of the problem is the market

that requests products in accordance with a general
statistical distribution. We assume that the values D

�
of

product demands, which are assumed to be constant
during the planned horizon, are not correlated and that
each one follows a statistical distribution limited in the
interval [¸

�
,;

�
]. In order to take into account of the

market variability, R di!erent values of demand are ran-
domly generated for each product in accordance with the
estimated distribution and we denote with Dr the N
dimension vector of demands that is generated for each
sample r"1,2,R. In such a method the overall perfor-
mance of the system, that is measured by NPC, has to
be calculated for each sample of the generated demand
Dr , in particular we have R samples of NPC for each
con"guration.
Starting from an initial set �

�
of system alternatives, at

each level the method evaluates with expression (3) the
performance indicator for each alternative. Since the
detail of the analysis increases from the "rst to the fourth
level, we need di!erent methods to evaluate the system
performance. In particular, approximate analytical
methods that describe the production system statically
are used in levels 1 and 2 of the hierarchy to evaluate the
NPCwith low computational e!orts. When the complex-
ity of the problem increases, more precise tools that
model the system dynamically are used in levels 3 and 4,
since we need more accurate results than in the higher
levels.
The system alternatives of the set �

�
are compared at

each level l (with l"1,2,4) on the basis of the R samples
of their NPC. The second source of variability of the
problem, that is the error that each tool can do when
evaluating the NPC of a certain con"guration given the
generated level of demand, is taken into account by the
statistical test described in Section 3. Finally, the set of
alternative systems among which the manager will select
the production system is chosen in level 4. In the remain-
der of the section, the levels of the hierarchy are
described.
Level 1: In the highest level of the hierarchy, each alter-

native system is described by the number of machines M.
Let us denote with M��� the maximum number of ma-
chines that can run in the system at the same time and
with �

�
"�1,2,M����, the set that contains all the

possible system alternatives. Investment cost is equal to

the costs of machines and M��� can be provided by the
system supplier that designed the system architecture or
can be evaluated on the basis of the budget of the "rm.
In order to evaluate the NPC of the con"guration

k (with k3�
�
), it is necessary to know the throughput of

the system and how many parts the "rm buys from
external suppliers. This is equivalent to solving the fol-
lowing linear programming problem that provides the
values of X

�
and >

�
, the quantities of each product to

make or buy:

min z"

�
�
���

c
	��

X
�
#c


��
>

�

subject to:

X
�
#>

�
"D

�
∀i, i"1, ...,N (c1),

�
�
���

X
�
¹

�
)HM (c2),

X
�
,>

�
*0 ∀i, i"1, ...,N (c3),

(4)

where H is the time available for each machine. We
assume that the "rm minimizes, in the make or buy
decision, the sum for each product of the variable costs,
subject to the constraints of demand (c1) and capacity
(c2); X

�
and >

�
have nonnegative values. Firm prefers to

produce those part types that, if they were bought from
external suppliers, would have high penalty. Therefore,
solving the above linear problem corresponds to rank
part types on the basis of the penalty (c


��
!c

	��
)/¹

�
;

products with high penalty are preferably machined in
the shop #oor, while products with low penalty are
outsourced. To compare the alternatives of the set
�

�
and to discard the less pro"table ones, we must use

the tests described in Section 3. For instance if distribu-
tions of NPC are known and the error, committed by the
method when it evaluates NPC, is constant, it is possible
to apply the test of case 1.
Level 2. In the second level of the hierarchy, each

alternative system is described by the vector (M, P),
where M is the number of machines and P is the number
of part carriers. The range of variability of M has been
decided in the "rst level while the variable P can assume
integer value in the interval [1, P���], where P��� is the
maximum number of part carriers that can run in the
system at the same time. Let us denote with �

�
the set of

all the possible con"gurations that are compared in the
level 2 of the hierarchy. In this level, the investment cost
is equal to the sum of the costs of machines and part
carriers and P��� can be provided by the system supplier
or limited by the budget constraint of the "rm.
The quantities X

�
and >

�
of each product are evalu-

ated by solving the linear model described with (4) that
considers the following additional constraint:

t
�

�
�
���

X
�
wi)HP, (5)
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where t
�
is the average time to transport a part from the

load/unload station to the machines and vice versa; w
�
is

the number of times that a piece of product i is moved by
the part carrier to the machines and it is related to the
fact that a product can need more than one working
position to complete all the operations of the part pro-
gram. One of the tests described in Section 3 can be used
to compare the alternatives of the set �

�
and to discard

the less pro"table.
Level 3: In the third level, "xtures are considered

as decision variables in addition to machines and part
carriers. The system is described by the vector (M,P,F),
where F is a N dimension vector containing the
number of "xtures dedicated to each part type. Let us
denote with F���

�
and F���

�
respectively the minimum and

maximum number of "xtures dedicated to part type i.
F���
�

corresponds to the maximum number of pallets that
can #ow in the system at the same time without blocks,
while F���

�
depends on the minimum throughput that the

systemmust have in order to satisfy the demand F���
�

and
F���
�

are equal, respectively 2a
�
#1 and 3b

�
!1, where

a
�
is the minimum number of machines necessary to pro-

duce the peak volume and b
�
is the number of machines of

the mini-line that machines the product i. Let us denote
with �

�
the set of all the possible con"gurations that are

compared in the level 3 of the hierarchy. Investment cost is
equal to the sum of the costs of machines, part carriers and
"xtures.
In the third level of the hierarchy, input data are

more detailed since the processing times of each
operation t

���
are considered for each product instead

of the total time ¹
�
"�

�
t
���
. Moreover the performance

evaluation tool represents the system, taking into
account the possibility of splitting the set of machines
into mini-lines. Therefore mini-line unbalancing is con-
sidered when the throughput of the system is evaluated by
means of state equations that model the behaviour of
pallets #owing in mini-lines. The quantities X

�
and >

�
of

each product are evaluated minimising the function z of
the problem (4) subject to the constraints of limited num-
ber of machines, part carriers and "xtures. After the load-
ing of parts to the machines, the analytical method
described in [11] evaluates the throughput of the system.
Tests described in Section 3 can be used to compare the
alternatives of the set �

�
and to discard the less pro"table

ones.
Level 4: In the last level, tool carriers are included as

decision variables in addition to those considered in the
previous sub-problem. The system is described by the
vector (M,P,F,¹), where T is the number of tool carriers
of the system. Let us denote with �

�
the set of all the

possible con"gurations that are compared in the last level
of the hierarchy. In this level, the investment cost is equal
to the sum of the costs of machines, part carriers, pallets
and tool carriers. The simulation model described in [11]
evaluates the performance of the system for a given

con"guration of the tool storage. In this particular case,
the results provided by simulation are not a!ected by error
since it is assumed that time is deterministic, machines
are reliable, routing of parts is known, etc. Tests in
Section 3 can be used (in particular those described in
cases 3 and 4) depending on the information available on
demand, to compare the alternatives of the set �

�
and to

discard the less pro"table, providing to the decision-maker
the "nal set of production systems.

5. Conclusions

An integrated approach to dimension automated
manufacturing systems has been proposed in the paper.
The method is based on the hierarchical decomposition of
the problem into di!erent sub-problems, each one de"ned
by its level of detail. The accuracy of the analysis increases
from the top of the hierarchy to the lower levels while the
complexity of the problem decreases. Each sub-problem
can be solved with a di!erent technique depending on its
level of detail.
The stochastic nature of the problem is considered

together with its complexity, taking into account of the
di!erent sources of variability such as market demand and
system behaviour. The large set of alternative production
systems is not exhaustively investigated since most of the
con"gurations are discarded by the application of statist-
ical tests. The whole approach is not limited by particular
assumptions, but it is #exible enough to use all the
information that is available on the problem, improving
the level of the analysis. The method has been applied to
a new type of manufacturing system calledMFP but it can
also be used for other production systems such as transfer
lines, #exible manufacturing systems and cellular manu-
facturing.
Future work needs to be done to assess the bene"ts

of the method proposed. In particular, numerical work
on the real case will be carried out as well as applications
to other production systems. Another interesting exten-
sion would be to compare the alternative production
systems on the basis of di!erent indicators. For instance
some measures related to the variance of the selected
performance indicator, in addition to the already con-
sidered expected value, could be used to compare the
systems.
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