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Abstract. We study a stochastic multiperiod production planning and sourcing
problem of a manufacturer with a number of plants and/or subcontractors. Each
source, i.e. each plant and subcontractor, has a different production cost, capacity,
and lead time. The manufacturer has to meet the demand for different products
according to the service level requirements set by its customers. The demand for
each product in each period is random. We present a methodology that a manu-
facturer can utilize to make its production and sourcing decisions, i.e., to decide
how much to produce, when to produce, where to produce, how much inventory to
carry, etc. This methodology is based on a mathematical programming approach.
The randomness in demand and related probabilistic service level constraints are in-
tegrated in a deterministic mathematical program by adding a number of additional
linear constraints. Using a rolling horizon approach that solves the deterministic
equivalent problem based on the available data at each time period yields an ap-
proximate solution to the original dynamic problem. We show that this approach
yields the same result as the base stock policy for a single plant with stationary
demand. For a system with dual sources, we show that the results obtained from
solving the deterministic equivalent model on a rolling horizon gives similar results
to a threshold subcontracting policy.

Keywords: Stochastic production planning – Service level constraints – Subcon-
tracting

� The authors are grateful to Yves Dallery for his ideas, comments and suggestions on the
earlier versions of this paper.
Correspondence to: F. Karaesmen



472 I. Yıldırım et al.

1 Introduction and motivation

In this study, we consider a manufacturer that supplies products to a retailer. The
manufacturer has a number of production sources that are either its own plants or
its subcontractors. Each source has a different production cost, capacity, and lead
time. The demand for each product in each period is random. The manufacturer
has to meet the demand for multiple products taking into account the service level
requirements set by the retailer.

In the production planning and the sourcing problem, the manufacturer’s deci-
sion variables are how much to produce, when to produce, where to produce, and
how much inventory to carry in each period. The objective is to minimize its total
production and inventory carrying costs during the planning horizon subject to the
service level requirements and other possible constraints.

This problem is motivated by the problems faced by suppliers of lean retailers
in the textile-apparel-retail channel (Abernathy et al., 1999). Namely, adoption of
lean retailing practices force suppliers of lean retailers to adopt new strategies to
respond quickly to changing demand effectively. Using subcontractors emerge as
a viable alternative to increase production capacity temporarily when it is needed.
Additional cost of subcontracting can be justified by lowering inventories and im-
proving the service. However, deciding on where to produce and how much to
produce is a challenging task especially when the demand is volatile. A qualitative
discussion of this problem can be found in Abernathy et al. (2000). Figure 1 below
depicts the system which motivates this study.

We propose a solution methodology that is based on solving a deterministic
mathematical problem at each time period on a rolling horizon basis. Randomness
in the problem that comes from uncertain demand and service level constraints
are integrated in a deterministic mathematical program by adding a number of
additional linear constraints similar to the approach proposed by Bitran and Yanasse
(1984). We propose using this approach to address the more relevant but also more
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Fig. 1. A manufacturer with multiple plants that sells multiple products to a retailer
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difficult dynamic problem where decisions can be updated over time. Since the
equivalent deterministic problem is a well-structured mathematical programming
problem, the proposed methodology can easily be integrated with the Advanced
Planning and Optimization tools, such as the products of i2, Manugistics, etc., that
are commonly used in practice.

The organization of the remaining parts of the paper is as follows: In Section 2,
we review the literature on mathematical-programming-based stochastic produc-
tion planning methodologies. The particular stochastic production planning and
sourcing problem we investigate is introduced in Section 3. Section 4 presents the
proposed solution methodology that is based on solving the deterministic equiva-
lent problem at each time step on a rolling horizon basis. The performance of the
rolling horizon approach is evaluated by considering a number of special cases in
Section 5. Finally, conclusions are presented in Section 6.

2 Literature review

The classical deterministic production planning problem, its mathematical pro-
gramming formulations and solution methodologies have received a lot of attention
for many years (see Hax and Candea, 1984 for a number of well-known models).
In this section, we only review the literature directly related to mathematical pro-
gramming based approaches for stochastic production planning problems.

Bitran and Yanasse (1984) deal with a similar stochastic production planning
problem with a service level requirement. They provide non-sequential (static)
and deterministic equivalent formulations of the model and propose error bounds
between the exact solution and the proposed approach. Their main focus is on the
solution of the static problem, i.e., the solution at time zero for the whole planning
horizon.

Bitran, Haas and Matsudo (1986) present a model that is motivated by a case
in the consumer electronics and textile and apparel industry. In this model, the
stochastic problem is transformed into a deterministic one by replacing the random
demand with their average values. Then, the solution of the transformed problem
provides answers to the questions of what to produce and when to produce. The
complete solution is obtained by determining how much to produce from a newsboy-
type formulation based on the solution of the deterministic problem.

Feiring and Sastri (1989) focus on production smoothing plans with rolling
horizon strategies and confidence levels for the demand, which are set by the pro-
duction planners. The probabilistic constraints in the demand-driven scheduling
model are revised by Bayesian procedures and are transformed into deterministic
constraints by inverse transformations of normally distributed demand.

Zäpfel (1996) claims that MRP II systems can be inadequate for the solution of
production planning problems with uncertain demand because of the insufficiently
supported aggregation/disaggregation process. The paper then proposes a procedure
to generate an aggregate plan and a consistent disaggregate plan for the Master
Production Schedule.

Kelle, Clendenen and Dardeau (1994) extend the economic lot scheduling prob-
lem for the single-machine, multi-product case with random demands. Their ob-
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jective is to find the optimal length of production cycles that minimizes the sum of
set-up costs and inventory holding costs per unit of time and satisfies the demand
of products at the required service levels.

Clay and Grossman (1997) focus on a two-stage fixed-recourse problem with
stochastic Right-Hand-Side terms and stochastic cost coefficients and propose a
sensitivity-based successive disaggregation algorithm.

Sox and Muckstadt (1996) present a model for the finite-horizon, discrete-time,
capacitated production planning problem with random demand for multiple prod-
ucts. The proposed model includes backorder cost in the objective function rather
than enforcing service level constraints. A subgradient optimization algorithm is
developed for the solution of the proposed model by using Lagrangian relaxation
and some computational results are provided.

Beyer and Ward (2000) report a production and inventory problem of Hewlett-
Packard’s Network Server Division. The authors propose a method to incorporate
the uncertainties in demand in an Advanced Planning System utilized by Hewlett-
Packard.

Albritton, Shapiro and Spearman (2000) study a production planning problem
with random demand and limited information and propose a simulation based op-
timization method. Qui and Burch (1997) study a hierarchical production planning
and scheduling problem motivated by the fibre industry and propose an optimization
model that uses logic of expert systems.

Van Delft and Vial (2003) consider multiperiod supply chain contracts with
options. In order to analyze the contracts, they propose a methodology to formulate
the deterministic equivalent problem from the base deterministic model and from
an event tree representation of the stochastic process and solve the stochastic linear
program by discretizing demand under the backlog assumption.

For the textile-apparel-retail problem discussed in Abernathy et al. (2000), a
simulation model has also been developed (Yang et al., 1997). Then a simulation-
based optimization technique that is referred as ordinal optimization, has been used
to determine the parameters of a production and inventory control policy that gives
a good-enough solution approximately (Yang et al., 1997; Lee, 1997). However,
one needs to set a specific production and inventory control policy in the simulation.
In addition to the difficulty of setting a plausible policy in a complicated case, as the
number of sources and products increase, the number of parameters to be optimized
also increases. As a result, finding an approximate solution requires a considerable
time.

Simplified versions of the sourcing problem studied in this paper have been
investigated in the past by using stochastic optimal control (Bradley, 2002; Tan and
Gershwin, 2004; Tan, 2001). Bradley (2002) considers a system with a producer
and a subcontractor and discrete flow of goods. In an M/M/1 setting without the
service level requirements, he proves that the optimal control policy structure is a
dual-base stock policy. In this policy when the number of customers in the queue
reaches a certain level, then new incoming customers are sent to the subcontractor.
When there are no customers waiting in the queue, then the producer continues
production until a certain threshold is reached.
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In Tan (2001) and Tan and Gershwin (2004), a producer with a single sub-
contractor is formulated with continuous flow of goods without the service level
requirements. They also show that a threshold-type policy is optimal to decide when
and how to use a subcontractor. In the threshold policy, the subcontractor is used
when the inventory or the backlog is below a certain threshold level.

Our paper uses the idea of incorporating randomness in a deterministic math-
ematical program that is used in many of the above studies in different formats.
We utilize the approach proposed by Bitran and Yanasee (1984) that shows the
equivalence for the static problem. In contrast to this study where the main objec-
tive is determining error bounds for the optimal cost in the non-sequential case,
our main focus is generating a production and sourcing plan, i.e. determining the
values of the decision variables in the sequential (dynamic) problem where sourc-
ing decisions are made (or updated) dynamically over time. We also compare the
approximate solution of the dynamic problem with certain benchmark policies.
Since the exact optimal solution of the dynamic problem is not known, we use
two different benchmarks. It is proven that for a single source with lead time, the
proposed approach yields the same production policy as the optimal base stock
policy. For a dual-source, e.g. a producer with a subcontractor, a threshold-type
subcontracting policy suggested by Bradley (2002), Tan (2001), Tan and Gershwin
(2004) is utilized as a benchmark. After adopting the threshold policy to a more
generalized case with lead time and service-level requirements, it is observed that
the proposed approach yields very similar results to the threshold-based benchmark
in the numerical examples considered.

3 Stochastic multiperiod sourcing problem with service level constraints

Assume that there is a single product and N different production sources (plants and
subcontractors). The demand for this specific product at time t, dt is random. The
main decision variables are the production quantities at each production source at
time t, Xi,t, i = 1, . . ., N . The inventory level at the end of time period t is denoted
by It. The number of periods in the planning horizon is T . The inventory holding
cost per unit per unit time is ht and the production cost at production source i at
time t is ci,t.

Constraints on the performance (related to backorders) of the system are im-
posed by requiring service levels. The frequently used Type 1 Service Level is
defined to be the fraction of periods in which there is no stock out. It can be viewed
as the plant’s no-stock-out frequency. This service level measures whether or not a
backorder occurs but is not concerned with the size of the backorder. In this study,
we consider a Modified Type 1 Service Level requirement. The Modified Type 1
Service Level forces the probability of having no stock out to be greater than or
equal to a service level requirement in each period. The service level requirement
in period t is denoted by αt.

The Stochastic Production Planning and Sourcing Problem (SP) is defined as:

Z∗(SP ) = MinE

[
T∑

t=1

(
ht(It)+ +

N∑
i=1

ci,tXi,t

)]
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subject to

It = It−1 +
N∑

i=1

Xi,t − dt, t = 1, ..., T ; (1)

P {It ≥ 0} ≥ αt, t = 1, ..., T. (2)

Xi,t ≥ 0, i = 1, ..., N t = 1, ..., T. (3)

where (It)+ = Max {0, It} , t = 1, ..., T .
The objective of the problem is to minimize the total expected cost, which is

the expected value of the sum of the inventory holding and production costs in the
planning horizon. The first constraint set defines the inventory balance equations
for each time period. The next constraint imposes the service level requirement for
each period. Finally, the last constraint states that the production quantities cannot
be negative.

This formulation can easily be extended to multiple products and production
sources with lead times. Moreover different service level definitions can also be
considered by following the same approach.

4 An approximate solution procedure based on a rolling horizon procedure

The solution of the above problem at time 0 for the planning horizon [0, T ] is
referred as the static solution. The static solution is obtained by using the available
information about the distribution of demand in the future periods and the initial
inventory. A policy that sets (or updates) the future production quantities Xi,t at
time t based on the information available at that time, e.g., demand realizations,
demand distributions in the future periods, and current inventory levels, is referred
to as the dynamic solution.

In theory, the optimal policy which determines production quantities based on
actual state information may be obtained by solving the stochastic dynamic pro-
gram associated with this problem. In practice, however, there are several problems
with the stochastic dynamic programming solution. First, the well-known curse
of dimensionality makes numerical solutions challenging even for relatively small
problems. Second, it is difficult to integrate constraints on the trajectory of the
underlying stochastic processes such as service level requirements in inventory
models. Therefore, we propose a rolling-horizon approach that is based on solving
the static problem at each time period based on the available information. This, how-
ever, requires solving the static problem repeatedly which requires a transformation
explained below.

4.1 Deterministic equivalent formulation for the static solution

Although obtaining the optimal dynamic solution is, in general, not tractable, the
static solution can relatively easily be obtained by using deterministic mathematical
programming as suggested by Bitran and Yanasse (1984).
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In particular, Bitran and Yanasse show that the (Modified Type 1) service level
constraint can be transformed into a deterministic equivalent constraint by specify-
ing certain minimum cumulative production quantities that depend on the service
level requirements.

To summarize this approach, let lt denote the (deterministic equivalent) mini-
mum cumulative production quantity in period t which is calculated by solving the
probabilistic inequality:

P

{
t∑

τ=1

dτ ≤ lt

}
= αt, t = 1, ..., T for lt(t = 1, ..., T )

that yields

lt = F−1
t (αt), t = 1, ..., T

where Ft(.) is the cumulative distribution function of the random sum
∑t

τ=1 dτ .
Then the probabilistic constraint P{It ≥ 0} ≥ αt, t = 1, ..., T can be expressed
equivalently by:

t∑
τ=1

N∑
i=1

Xi,τ + I0 ≥ lt, t = 1, ..., T (4)

Now, the deterministic equivalent problem with service level constraints that has
been mentioned in the previous sections can be modeled as below (Bitran and
Yanasse, 1984):

Deterministic Equivalent Problem (DEP):

Z∗(DEP ) = Min
T∑

t=1

(
ht(I0 +

t∑
τ=1

N∑
i=1

Xi,τ ) +
N∑

i=1

ci,tXi,t

)

subject to
t∑

τ=1

N∑
i=1

Xi,τ + I0 ≥ lt, t = 1, ..., T (5)

Xi,t ≥ 0, i = 1, ..., N t = 1, ..., T. (6)

The optimal decision variable values in DEP are the same as the ones in the
solution of SP at time 0.

The static solution is obtained by transforming the stochastic problem into a
deterministic one and then solving the resulting mathematical program. The rolling
horizon approach repeats this procedure by using the available information at each
time period until time T .

5 Performance of the rolling horizon solution

It is known that the rolling-horizon approach yields good results for a number of
dynamic optimization problems. In some special cases, the rolling horizon method
may even yield the optimal solution. In this section, we evaluate the performance
of the proposed method by comparing it to certain benchmark policies in two
commonly encountered special cases in production planning.
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5.1 A single source problem with stationary demand

We start with the special case of a single production source. When there is only one
source, the objective function includes only the holding cost (since the expected
total production costs must equal the total expected demand over the planning
horizon). In this case, we use the base stock policy as the benchmark policy. The
base stock policy is widely known and utilized in many applications. In addition,
it is known to be optimal in a number of related inventory problems. It, therefore,
constitutes a natural benchmark for comparison. The base stock policy has a single
parameter which is a reorder level and a base lot size of one unit. It aims to maintain
a pre-specified target inventory level. Under this policy, the sequence of events is
as follows: the system starts with a pre-specified base stock level in the finished
goods inventory. The arrival of the customer demand triggers the consumption of an
end-item from the inventory and issuing of a replenishment order to the production
facility. Using this policy, an order is placed (or the manufacturing facility operates)
if and only if the inventory level drops below the base stock level. The comparison
of these two models is performed for two cases with and without a lead time.

5.1.1 Single source without lead time

In this first scenario, there is a single product to be produced by a single production
facility. It is assumed that the demand of this specific product stays stationary over
the planning horizon. We propose that solving the deterministic equivalent model
with modified service level constraints on a rolling horizon basis is equivalent to
operating the system under the base stock policy. The next proposition establishes
this equivalence:

Proposition 1. When the production facility has no lead time and the demand
is stationary, using a base stock policy is equivalent to solving the deterministic
equivalent model with service level constraints on a rolling horizon basis (either
Modified Type 1 or Modified Type 2) in the following way: assume that the base
stock level in the base stock policy equals I0(BS) = S1 and the initial inventory
level in the deterministic equivalent problem equals I0(DEP ) = l1. If S1 = l1,
then the equivalent base stock policy gives the same total expected cost value, yields
the same production plan and results in the same service level with the deterministic
equivalent model with modified service level constraints solved on a rolling horizon
basis.

Since this case is a special case of the next one with lead time, the proof of
Proposition 1 is not given here but reported in (Yıldırım, 2004).

Corollary 1. The optimal base stock level is equal to l1. Equivalently, the base
stock level S1 = l1 ensures that the resulting production plan satisfies the required
service levels.

Proof. If the initial inventory level is set to be S1 = l1, the resulting production plan
is the same with that of the base stock policy which starts with a base stock level
of S1 = l1. Although the base stock policy does not guarantee the assurance of the
service levels, since we know that the deterministic equivalent model satisfies the
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required service levels and the two policies are equivalent, we can say that the base
stock level S1 = l1 ensures that the resulting production plan satisfies the required
service levels. Note that S1 = l1 must be optimal because decreasing the base stock
level from l1 leads to an infeasible solution and increasing it above l1 would lead
to higher average inventory costs and therefore cannot be optimal. ��

Even though a formal proof is lacking, it is highly likely that the base stock
policy (with a stationary base stock level) is optimal for the single-plant single-
product problem in an infinite horizon setting. Theorem 1 and Corollary 1 establish
that for this problem, the rolling horizon approach yields the same solutions as the
optimal base stock policy leading us to conclude that the rolling horizon procedure
performs optimally in this case.

5.1.2 Single source with lead time

The deterministic equivalent model with service level constraints (DEP) can be
extended to a case in which the production facility has a production lead time.
Assume that there is a production lead time of LT periods and the initial scheduled
receipts are denoted by SRt, t = 1, ..., LT. Then, the problem can be modeled in
the following way:

Deterministic Equivalent Production Planning Problem including Lead Time
(DEPLT):

Z∗(DEPLT) = Min
LT∑
t=1

(
ht(I0 +

t∑
τ=1

SRτ )

)

+
T∑

t=LT+1

(
ht(I0 +

LT∑
τ=1

SRτ +
t∑

τ=LT+1

N∑
i=1

Xi,τ−LT )

)

subject to

t∑
τ=LT+1

Xτ−LT +
LT∑
τ=1

SRτ + I0 ≥ lt, t = (LT + 1), ..., T ; (7)

Xt ≥ 0, t = 1, ..., T. (8)

Our main result is as follows:

Proposition 2. When the production facility has a non-negative lead time LT, the
demand is stationary and there are no scheduled receipts initially, using a base stock
policy is equivalent to solving the deterministic equivalent model with service level
constraints on a rolling horizon basis in the following manner: assume that the base
stock level in the base stock policy including lead time equals I0(BSLT) = S2
and the initial inventory level in the deterministic equivalent model including lead
time equals I0(DEPLT) = lLT+1. If S2 = lLT+1, then the equivalent base stock
policy gives the same total expected cost value, yields the same production plan
and results in the same service level with the deterministic equivalent model with
service level constraints solved on a rolling horizon basis.

Proof. The proof of Proposition 2 is given in the Appendix. ��
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5.2 A dual source problem with stationary demand

Since the optimal solution of our dynamic problem is not known, a plausible bench-
mark is used to evaluate the performance of the proposed approach. We propose
a threshold subcontracting model suggested in a number of studies in the litera-
ture (Bradley, 2002; Tan, 2001; Tan and Gershwin, 2004). Although the threshold
policy is only shown to be optimal under specific assumptions including zero lead
time, stationary demand, no service level requirements, etc., we think that it is a
reasonable benchmark policy for our problem.

5.2.1 A threshold subcontracting policy

Now we explain the operation of the threshold policy for our benchmark case. We
consider a dual source system with an in-house production facility and a subcontrac-
tor. We assume that the in-house facility has a capacity of C but the subcontractor
has an infinite capacity. There is a lead time of one period. That is, production
quantities scheduled at time t become available at time t + 1.

The threshold policy is characterized by two threshold levels S and Z. The
in-house production facility operates when the inventory level is below S. That
is, it starts producing when the inventory level drops below the target level S and
stops producing when the inventory level again reaches S. The subcontractor is
used when the inventory level decreases to a threshold level of Z.

When the inventory level is below S, but is still above Z, the in-house facility
produces to cover the shortfall with respect to S. If there is not sufficient production
capacity to cover the whole shortfall, the in-house facility operates at full capacity
and the portion of demand that cannot be satisfied is backlogged for the next period.

Let X1,t and X2,t denote the production amounts of the in-house facility and
the subcontractor in period t respectively. Then, the production amounts of each
production facility in each time period can be determined for the threshold subcon-
tracting model in the following way:

X1,t = Min{S − Z, S − It−1, C}, t = 1, ..., T ; (9)

X2,t = Max{0, Z − It−1}, t = 1, ..., T. (10)

The following figure shows the evolution of X1,t , X2,t and It under this policy for
a Poisson arrival of demand with rate 10 and S = 15, Z = 7, and C = 8.

5.2.2 Comparison of the performance of the threshold policy
and the rolling horizon approach

The deterministic equivalent model for this case is solved for a rolling horizon of
10 periods repeatedly throughout a planning horizon of 1000 periods. 5000 sample
demand streams are generated and the realized inventory levels are integrated in
the model accordingly. The production plans and the realized cost values between
periods 451 and 550 are observed. All cost values are calculated on a per period
basis.

The optimal values of the threshold values S and Z are determined by using a
direct simulation-based numerical search. It is assumed that there are 1000 periods
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Fig. 2. Sample realization of dt, X1,t, X2,t and It under the threshold policy S = 15,
Z = 7, C = 8

in the planning horizon and the same 5000 sample demand streams are utilized.
The service level requirement is relaxed with the one-sided 95% confidence interval
of the simulation result. That is whenever upper confidence level of the observed
service level reaches the desired one, this case is accepted as satisfying the service
level requirement. The underlying reasoning behind making this modification in
service levels is that, the sample size we utilize might not be sufficient enough to
make the realized service level equal exactly to the required one. Among the base
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Table 1. The possible scenarios for which comparisons are made

Subcontracting Holding In-house (Subcontracting (Holding (In-house
cost cost production cost)/(in-house cost)/(in-house prod. capacity)/

capacity prod. cost) prod. cost) (mean demand)

4 16 8 1 4 0.8
4 16 12 1 4 1.2
4 16 20 1 4 2

6 1 8 1.5 0.25 0.8
6 1 12 1.5 0.25 1.2
6 1 20 1.5 0.25 2

6 4 8 1.5 1 0.8
6 4 12 1.5 1 1.2
6 4 20 1.5 1 2

stock and threshold levels that satisfy the relevant service level requirements, the
model aims to find the one with minimum total cost. The calculations are performed
for periods between 451 and 550.

For the numerical examples reported below, the order arrivals are governed by a
Poisson process with rate 10 products per period. The production cost is assumed to
be $4 per product for the in-house facility. The initial inventory level of the specific
product is set to be zero. The service level requirement is set to be 95%.

The comparison between the deterministic equivalent model and the threshold
subcontracting model is performed for nine combinations of subcontracting cost
to in-house production cost, holding cost to in-house production cost and capacity
to mean demand ratios. The combinations of subcontracting costs, holding costs
and the in-house production capacities and therefore, the combinations of relevant
subcontracting cost to in-house production cost, holding cost to in-house production
cost and capacity to mean demand ratios for which the comparisons are made can be
observed in Table 1. For each of the problem settings, the base stock and threshold
levels observed in the threshold subcontracting model are reported in Table 2.

Note that, in some of the cases, the base stock and threshold pairs are observed
to be the same. The reasoning behind this is, these pairs lead to the same average
inventory levels and minimum cost values in these settings.

While comparing the two models, total expected cost, average production cost,
average inventory holding cost values and the assignment of production to the
plants (in percentages) are the key elements we focus on. Table 3 summarizes the
total expected cost values of the deterministic equivalent model (DEM) and the
threshold subcontracting model (TSM) for the nine different scenarios for each
modified service level type.

The below tables display that the deterministic equivalent model gives very close
solutions when compared with the threshold subcontracting model for both types
of the modified levels. The deterministic equivalent model results in total expected
cost values equal to or a little bit larger than those of the threshold subcontracting
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Table 2. Base stock and threshold levels observed in each scenario

Subcontracting Holding In-house Critical levels
cost cost production Base stock Threshold

capacity

4 16 8 15 7
4 16 12 15 3
4 16 20 15 −∞
6 1 8 17 7
6 1 12 16 0
6 1 20 15 −∞
6 4 8 15 7
6 4 12 15 3
6 4 20 15 −∞

Table 3. The comparison of total expected cost values observed in each scenario

Subcontracting Holding In-house Total expected cost
cost cost production DEM TSM Percentage

capacity difference

4 16 8 121.66 121.66 0.00
4 16 12 121.66 121.66 0.00
4 16 20 121.66 121.62 0.03

6 1 8 49.97 49.89 0.16
6 1 12 46.16 45.65 1.12
6 1 20 45.10 45.10 0.02

6 4 8 65.33 65.33 0.00
6 4 12 61.47 61.47 0.00
6 4 20 60.42 60.40 0.03

model. For our set of numerical experiments, the deterministic equivalent model
gives close results to the threshold subcontracting model when the service level
requirement is of Modified Type 1.

Tables 4 and 5 display the comparison of average production and holding cost
values. As can be seen, the deterministic equivalent model gives similar results to
the threshold subcontracting model.

Table 6 summarizes the percentage of production assigned to the in-house pro-
duction facility for both the deterministic equivalent model and the threshold sub-
contracting model. The results suggest that the production assignments of the de-
terministic model follow a similar pattern with the benchmark chosen.

Based on these figures, we can conclude that the proposed deterministic equiv-
alent model solved on a rolling horizon basis performs as well as the threshold
subcontracting model solved on a simulation-based optimization technique for the
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Table 4. The comparison of average production cost values observed in each scenario

Subcontracting Holding In-house Average production cost
cost cost production DEM TSM Percentage

capacity difference

4 16 8 39.99 39.99 0.00
4 16 12 39.99 39.99 0.00
4 16 20 39.99 39.99 0.00

6 1 8 44.06 44.36 −0.68
6 1 12 41.05 40.24 2.03
6 1 20 40.00 39.97 0.06

6 4 8 44.91 44.91 0.00
6 4 12 41.05 41.05 0.00
6 4 20 40.00 39.99 0.01

Table 5. The comparison of average holding cost values observed in each scenario

Subcontracting Holding In-house Average holding cost
cost cost production DEM TSM Percentage

capacity difference

4 16 8 81.67 81.67 0.00
4 16 12 81.67 81.67 0.00
4 16 20 81.67 81.63 0.05

6 1 8 5.92 5.53 6.91
6 1 12 5.10 5.41 −5.67
6 1 20 5.10 5.10 0.05

6 4 8 20.42 20.42 0.00
6 4 12 20.42 20.42 0.00
6 4 20 20.42 20.41 0.05

Modified Type 1 service level. The total expected cost values of deterministic equiv-
alent models for all nine different cases are equal to or a little bit larger than those of
the threshold subcontracting model. However, we cannot reach the same conclusion
for the average production and holding cost values. The deterministic equivalent
model performs either worse for some cases or better for some other cases when
the comparison is based on average production or holding cost values. However,
the sum of these two terms, the total expected cost, is equal to a little bit larger than
that of the threshold subcontracting model. Moreover, the proportion of production
assigned to the in-house facility in the deterministic equivalent model resembles
that in the simulation based threshold subcontracting model.

It is worth mentioning that the sample size utilized in the above numerical
comparisons, 5000, might not be large enough to satisfy the service level require-
ments in each time period that the modified service level definitions necessitate.



A multiperiod stochastic production planning and sourcing problem 485

Table 6. The percentage of production assignments to the in-house production facility ob-
served in each scenario

Subcontracting Holding In-house % In-house production
cost cost production Base stock Threshold

capacity

4 16 8 75.45 75.40
4 16 12 94.73 94.70
4 16 20 99.97 100.00

6 1 8 79.76 78.17
6 1 12 94.73 98.78
6 1 20 99.97 100.00

6 4 8 75.45 75.40
6 4 12 94.73 94.70
6 4 20 99.97 100.00

The coefficient of variation in the realized service level values might be larger than
expected. To handle this problematic issue, we introduced one-sided confidence
intervals. Although the threshold subcontracting model constitutes a lower bound
in terms of total expected cost values for our set of numerical examples, it can not
be generalized from our examples that the deterministic equivalent model always
gives solutions worse than those of the threshold subcontracting model. Never-
theless, the proposed approach seems to give extremely promising results in this
particular case as well.

6 Conclusions

In many practical situations, mathematical models of production plan-
ning/outsourcing problems have to deal with the randomness in demand. We present
a systematic approach that enables the randomness in demand and the desired ser-
vice levels to be incorporated in a mathematical programming framework.

We show that solving the deterministic equivalent problem on a rolling-horizon
basis gives similar results to the performance of the benchmarks. Although the
threshold-type policies are conceptually quite intuitive, it is very challenging to
determine the optimal threshold levels by using simulation. The proposed algorithm
is easier to implement and optimize by using available solvers.

This study can be extended in a number of ways. The same approach can be
used to derive results for different service level definitions. Yıldırım (2004) reports
preliminary results for Type 2 and Modified Type 2 service levels. The formulation
of the multi-product case is also straightforward.

The effects of demand variability, production cost, and the lead time on the
production and sourcing plans need further investigation. Since the optimal solution
to the general problem is not known for the dynamic case, investigation of the static
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case or a stylized model can yield insights regarding the interaction of demand
variability, cost, and the lead time.

Appendix

Proof of Proposition 2

We use induction to show that

i. If the inventory levels at the beginning of the first period are equal,
I0(BSLT) = I0(DEPLT) = lLT+1, then production quantities in the first period
and the inventory at the end of first period for both policies become equal, i.e.
X1(BSLT) = X1(DEPLT) = 0 and I1(BSLT) = I1(DEPLT) = lLT+1 − d1;

ii. If the inventory levels at the end of period t1 such that t1 ≤ LT are equal,
It1(BSLT) = It1(DEPLT) = lLT+1−∑t1

τ=1 dτ , then the production quantities
in period (t1 + 1) and the inventory levels at the end of period (t1 + 1) for
both policies become equal; i.e. Xt1+1(BSLT) = Xt1+1(DEPLT) = dt1 and
It1+1(BSLT) = It1+1(DEPLT) = lLT+1 −∑t1+1

τ=1 dτ .
and

iii. If the inventory levels at the end of period (LT+1) are equal,
ILT+1(BSLT)=ILT+1(DEPLT)=lLT+1 −∑LT+1

τ=1 dτ , then production quanti-
ties in period (LT +2) and the inventory levels at the end of period (LT +2) for
both policies become equal, i.e. XLT+2(BSLT) = XLT+2(DEPLT) = dLT+1

and ILT+2(BSLT) = ILT+2(DEPLT) = lLT+1 −∑LT+2
τ=2 dτ ;

iv. If the inventory levels at the end of period t2 such that t2 ≥ LT are equal,
It2(BSLT) = It2(DEPLT) = lLT+1 − ∑t2

τ=t2−LT dτ , then the production
quantities in period (t2 +1) and the inventory levels at the end of period (t2 +1)
for both policies become equal; i.e. Xt2+1(BSLT) = Xt2+1(DEPLT) = dt2

and It2+1(BSLT) = It2+1(DEPLT) = lLT+1 −∑t2+1
τ=t2+1−LT dτ .

Assume that the initial inventory levels are equal such that I0(BSLT) =
S2, I0(DEPLT) = lLT+1 and S2 = lLT+1. In the base stock policy, each de-
mand observed is produced in the next period; therefore there is no production
in the first period, X1(BSLT) = 0. In the deterministic equivalent approach, the
production quantity in the first period is determined according to the constraint
X1(DEPLT)+

∑LT
τ=1 SRτ (DEPLT) + I0(DEPLT) = X1(DEPLT)+0+lLT+1 ≥

lLT+1 and therefore, X1(DEPLT) ≥ 0. Since the problem is of minimization type,
the production quantity in the first period equals zero, i.e. X1(DEPLT) = 0. Next, a
customer demand of d1 arrives. The end of period inventory for the base stock pol-
icy becomes I1(BSLT) = I0(BSLT)+SR1(BSLT)−d1 = S2 +0−d1 = S2 −d1
and the end of period inventory for the deterministic equivalent approach becomes
I1(DEPLT) = I0(DEPLT) +SR1(DEPLT) −d1 = lLT+1 +0−d1 = lLT+1 −d1.
Since we know that S2 = lLT+1, I1(BSLT) = I1(DEPLT).

In the second period, the base stock policy produces the demand of the first
period, i.e. X2(BSLT) = d1. At the beginning of the second period, the deter-
ministic equivalent model is rerun since it is solved on a rolling horizon basis.
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The demand is assumed to be stationary over the planning horizon. Although
solving the model on a rolling horizon basis throughout the planning horizon re-
quires integration of the minimum cumulative production quantites for the num-
ber of periods in the rolling horizon into the model, only the minimum cumula-
tive production quantity of period (LT + 1), lLT+1, is fully utilized. The produc-
tion quantity of the deterministic equivalent model in the second period is deter-
mined by X2(DEPLT) +

∑LT+1
τ=2 SRτ (DEPLT) + I1(DEPLT) = X2(DEPLT) +

X1(DEPLT) + I1(DEPLT) = X2(DEPLT) + 0 + lLT+1 − d1 ≥ lLT+1; therefore,
X2(DEPLT) ≥ d1. In order to minimize the production costs, the production quan-
tity in the second period equals the demand of the first period, i.e.X2(DEPLT) = d1.
After the arrival of a customer demand of d2, the end of period inventory for the base
stock policy becomes I2(BSLT) = I1(BSLT) + SR2(BSLT) − d2 = S2 − d1 − d2
and the end of period inventory for the deterministic equivalent approach be-
comes I2(DEPLT) = I1(DEPLT) + SR2(DEPLT) − d2 = lLT+1 −d1 − d2. Since
S2 = lLT+1, we can say that I2(BSLT) = I2(DEPLT).

Since demand during lead time cannot be satisfied no sooner than (LT +1) peri-
ods of time, the inventory levels at the end of any period t1 such that t1 ≤ (LT −1)
can be written as It1(BSLT) = S2 −∑t1

τ=1 dτ , It1(DEP) = lLT+1 −∑t1
τ=1 dτ and

S2 = lLT+1. In period (t1+1), the base stock policy producesXt1+1(BSLT) = dt1 .
In the deterministic equivalent approach, the production quantity is determined
by the constraint Xt1+1(DEPLT) +

∑t1+LT
τ=t1+1 SRτ (DEPLT) + It1(DEPLT) =

Xt1+1(DEPLT) +
∑t1

τ=1 Xτ (DEPLT) + It1(DEPLT) = Xt1+1(DEPLT) +∑t1−1
τ=1 dτ+lLT+1 −∑t1

τ=1 dτ ≥ lLT+1; therefore, Xt1+1(DEPLT) ≥ dt1 . Since
the problem is of minimization type, Xt1+1(DEPLT) = dt1 . Then, a customer de-
mand of dt1+1 is observed. The end of period inventory for the base stock policy
becomes It1+1(BSLT) = It1(BSLT)+SRt1+1(BSLT)−dt1+1 = S2−

∑t1
τ=1 dτ −

dt1+1 = S2−∑t1+1
τ=1 dτ and the end of period inventory for the deterministic equiv-

alent approach becomes It1+1(DEPLT) = It1(DEPLT) + SRt1+1(DEPLT) −
dt1+1 = lLT+1 −∑t1

τ=1 dτ − dt1+1 = lLT+1 −∑t1+1
τ=1 dτ . Since S2 = lLT+1,

It1+1(BSLT) = It1+1(DEPLT).
Similarly, dLT+1 is produced by the base stock policy in period

(LT + 1), i.e. XLT+1 = dLT+1. The constraint XLT+1(DEPLT) +∑2LT
τ=LT+1 SRτ (DEPLT) + ILT (DEPLT) = XLT+1(DEPLT)+

∑LT
τ=1 Xτ +

ILT (DEPLT) = XLT+1(DEPLT)+
∑LT−1

τ=1 dτ + lLT+1 − ∑LT
τ=1 dτ ≥ lLT+1;

i.e. XLT+1(DEPLT) ≥ dLT determines the production quantity of the determinis-
tic equivalent model in period (LT + 1). Then, XLT+1(DEPLT) = dLT . Next, a
customer demand of dLT+1 arrives. The end of period inventory for the base stock
policy becomes ILT+1(BSLT) = ILT (BSLT) + SRLT+1(BSLT) − dLT+1 =
S2 − ∑LT

τ=1 dτ + X1(BSLT) − dLT+1 = S2 − ∑LT
τ=1 dτ + 0 − dLT+1 =

S2−∑LT+1
τ=1 dτ and the end of period inventory for the deterministic equivalent ap-

proach becomes ILT+1(DEPLT) = ILT (DEPLT)+SRLT+1(DEPLT)−dLT+1 =
lLT+1 −∑LT

τ=1 dτ + X1(DEPLT) − dLT+1 = lLT+1 −∑LT
τ=1 dτ + 0 − dLT+1 =

lLT+1 −∑LT+1
τ=1 dτ . Since S2 = lLT+1, ILT+1(BSLT) = ILT+1(DEPLT).
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In period (LT + 2), the base stock policy produces XLT+1(BSLT) = dLT+2.
For the deterministic equivalent approach, we know that XLT+2(DEPLT) +∑2LT+1

τ=LT+2 SRτ (DEPLT)ILT+1(DEPLT) = XLT+2(DEPLT)+
∑LT+1

τ=2 Xτ +
ILT+1(DEPLT) = XLT+2(DEPLT)+

∑LT
τ=1 dτ + lLT+1 −∑LT+1

τ=1 dτ ≥ lLT+1;
i.e. XLT+2(DEPLT) ≥ dLT+1 and then, XLT+2(DEPLT) = dLT+1. After
the arrival of dLT+2, the following end of period inventory levels are observed
ILT+2(BSLT) = ILT+1(BSLT)+SRLT+2(BSLT)−dLT+2 = S2−∑LT+1

τ=1 dτ +
X2(BSLT) − dLT+2 = S2 −∑LT+1

τ=1 dτ + d1 − dLT+2 = S2 −∑LT+2
τ=2 dτ and

ILT+2(DEPLT) = ILT+1(DEPLT) + SRLT+2(DEPLT) − dLT+2 = lLT+1 −∑LT+1
τ=1 dτ+X2(DEPLT)−dLT+2 = lLT+1−

∑LT+1
τ=1 dτ+d1−dLT+2 = lLT+1−∑LT+2

τ=2 dτ . Since we know that S2 = lLT+1, ILT+2(BSLT) = ILT+2(DEPLT).
Now assume that at the end of any period t2 such that t2 ≥

(LT + 1), It2(BSLT)=S2 − ∑t2
τ=t2−LT dτ , It2(DEPLT) = lLT+1 −∑t2

τ=t2−LT dτ and S2 = lLT+1. In period (t2 + 1), Xt2+1(BSLT) =
dt2 and Xt2+1(DEPLT) is determined by the constraint Xt2+1(DEPLT) +∑t2+LT

τ=t2+1 SRτ (DEPLT) + It2(DEPLT) = Xt2+1(DEPLT) +
∑t2

τ=1 Xτ +
It2(DEPLT) = Xt2+1(DEPLT) +

∑t2−1
τ=1 dτ+lLT+1 − ∑t2

τ=1 dτ ≥ lLT+1;
Xt2+1(DEPLT) ≥ dt2 and since the model is of minimization type
Xt2+1(DEPLT)=dt2 . Next, a customer demand of dt2+1 arrives. The end of pe-
riod inventory levels for both policies become It2+1(BSLT) = It2(BSLT) +
SRt2+1(BSLT) − dt2+1 = S2 − ∑t2

τ=t2−LT dτ + Xt2+1−LT (BSLT) −
dt2+1 = S2 − ∑t2

τ=t2−LT dτ + dt2−LT − dt2+1 = S2 − ∑t2+1
τ=t2+1−LT dτ

and It2+1(DEPLT) = It2(DEPLT) + SRt2+1(DEPLT) − dt2+1 = S2 −∑t2
τ=t2−LT dτ +Xt2+1−LT (DEPLT)−dt2+1 = S2 −∑t2

τ=t2−LT dτ +dt2−LT −
dt2+1 = S2 −∑t2+1

τ=t2+1−LT dτ . Since we know that S2 = lLT+1, It2+1(BSLT) =
It2+1(DEPLT). This proves our proposition.
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