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ADVANCE DEMAND INFORMATION AND A RESTRICTED PRODUCTION 

CAPACITY: ON THE OPTIMALITY OF ORDER BASE-STOCK POLICIES 

 

Abstract 

 

This paper considers the optimality of order aggregation in a single-item production-

inventory problem with advance demand information and a restricted production 

capacity. The advance demand information is modeled by introducing a positive 

customer order lead time. The paper proves, when customer order lead times are less 

than a threshold value, it is allowed to aggregate the orders over time when establishing 

the optimal production decision. This implies the optimality of an order base-stock 

policy. It shows also that in case of linear inventory cost, the positive effect of advance 

demand information is equal to a cost reduction that is proportional to idle time and 

foreknowledge horizon. The results hold for the backlogging case as well as for the lost-

sales case. 

 

Key words: Advance demand information, restricted production capacity, base-stock 

policies, backlogging and lost-sales, sample path equivalence, optimality 

and heuristics  

 

 

1 Introduction 

 

The standard modeling assumption in the analysis of stochastic production/inventory 

systems implies that the random customer demand (whose probability distribution is 

known) has to be satisfied immediately. If that is not possible, the system incurs a penalty 

such as a backordering cost proportional to the delay or the forgone revenue due to the 

lost-sale. In several retail or industrial settings, however, this assumption does not apply, 
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since there may be advance demand information (ADI) on the customer demand such as 

early customer orders with specified due dates. A relatively recent stream of research 

extends the standard modeling framework to cases where there is ADI.  

The main difficulty in the analysis of a stochastic model that encompasses ADI is that the 

state description of the production/inventory system must include the arrival times and 

due dates of each order in addition to the current inventory position. In general, the 

optimal production control (or replenishment) policy is complicated under ADI, simply 

because it depends on the full state information. This is in contrast with 

production/inventory systems without ADI for which base-stock policies are known to be 

optimal under general conditions in the absence of setup costs. The optimality holds for 

the discounted cost/reward case as well as for the average cost/reward case. It results 

from the fact that there is an ideal inventory one wants to start with each period. In case 

of continuous review systems, one wants to go back to this ideal inventory as soon as 

there has been a demand (see Beckman, 1961). If the production lead time is 0, this 

optimality holds for backlogging as well as lost-sales and for a broad range of inventory 

and backlogging costs. It depends only on the assumption of system stationarity (demand 

and cost functions) and on the absence of setup costs. If the production lead time is 

positive, the optimality still holds for the backlogging case; instead of looking at the costs 

from now on, one looks at the costs beyond the production lead time (see Karlin and 

Scarf, 1958). The optimality holds also in case of capacitated models where the processor 

can be turned off or on, for backlogging as well as for lost-sales (see Zipkin, 2000). We 

will use this type of processor control also in this paper.   

In addition to optimality, the base-stock policy is very attractive due to its simplicity:  it 

releases a production order for each demand removal. This simplicity (and optimality) 

suggests using a similar logic for a production inventory system with ADI. Instead of the 

inventory itself, one may use the inventory minus the order book (i.e all future demand 

that is already ordered). This is an order base-stock policy (see Hariharan and Zipkin, 

1995). The order base-stock policy is known to be optimal in a number of special cases 

that comprise ADI. One example is the continuous review inventory system with Poisson 

demand and exogenous replenishments (lead time �) with constant customer lead times 
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(denoted by h), analyzed by Hariharan and Zipkin (1995). This result follows from the 

combination of two other results. In the first place that in case of an un-capacitated 

system, ADI beyond the replenishment lead time is useless. In the second place that ADI 

over a horizon h < � makes the system equivalent to the system without ADI and 

production lead time � – h. In that case the inventory plus work-in-process minus the 

demand as far as it is known responds similarly to production and demand as the 

inventory plus work-in-process does in the system without ADI. For a periodic review 

system with exogenous replenishments and more complex ADI, Gallego and Ozer (2001) 

obtain a similar result. They introduce the term modified inventory for inventory plus 

work-in-process minus demand as far as it is known. They show also that the optimal 

policy is more complicated and is shown to depend on the complete advance demand 

vector if the setup cost is positive.  

For capacitated (endogenous replenishment) systems, the situation is already complicated 

without setup costs. In this case, the replenishment lead time is no longer a constant since 

it depends on the level of congestion at the production facility. Karaesmen, Buzacott and 

Dallery (2002) consider the discrete version of the M/M/1 make-to-stock queue; the 

customer orders are assumed to have the same order lead time. Based on numerical 

observations, they note that an order base-stock policy is optimal if the customer order 

lead time is less than a given threshold. In addition, they propose a reasonable control 

policy in case of long customer order lead times, where future orders beyond the critical 

threshold are not taken into account. The purpose of this paper is to provide a complete 

proof of the result that an order base-stock policy is optimal when the customer order 

lead time is less than a threshold value which can be characterized. The production 

resource is assumed to be reliable and production is continuous (see Wijngaard, 2004). 

The backlogging case and the lost-sales case are combined. If the realized utilization rate 

of the system is denoted by ρ, the customer order lead time is h and P is the production 

speed, the optimality of order base-stock policies implies also that the effect of ADI is a 

reduction of inventory by (1-ρ)�h�P. Combining backlogging and lost-sales leads also to a 

new heuristic in case of a long customer order lead time that is an adapted order base-

stock policy. The approach is based on the construction of equivalence of the system with 

and the system without ADI. The paper of Wijngaard (2004) touches on this issue 
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already. But here the equivalence is worked out more completely and precisely. It 

appears to facilitate a unified proof of the optimality of order base-stock policies for 

backlogging and lost-sales and for combinations.  

Section 2 presents the literature review. Section 3 describes the model. Section 4 gives 

the main results for the case with a customer order lead time that is smaller than a certain 

threshold value. Section 5 gives extensions and limitations of these results. Section 6 

discusses heuristics for the case with a longer customer order lead time. Section 7 

presents conclusions and suggestions for further research.   

 

 

2 Literature Review 

 

The literature on inventory models with ADI is rapidly growing. The literature review 

focuses on papers that are related to the optimality of order base-stock policies. A number 

of papers investigate the uncapacitated replenishment situation (i.e. exogenous 

replenishment lead times) in case of ADI. Since our focus is on the capacitated system, 

we only briefly review two of the main related results for uncapacitated systems. 

Hariharan and Zipkin (1994) analyze the standard continuous review inventory system 

with Poisson demand arrivals, constant replenishment lead times, and constant customer 

lead times. They show that an order base-stock policy is optimal whenever the customer 

lead time is smaller than the replenishment lead time and characterize the reduction in 

inventory related costs as a function of the customer lead time. Gallego and Ozer (2001) 

investigate a periodic review system with exogenous replenishments and a more 

complicated ADI structure where customer lead times are not constant. They also obtain 

a similar result when the customer order information horizon is smaller than the 

replenishment lead time; an order base-stock policy is optimal then.  

There also is another stream of research which at first is not directly related with ADI but 

has certain similarities from a modeling perspective. Simpson (1958) proposes an 

approach to compute the optimal safety stock levels in multi-echelon systems. 
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Interestingly, each echelon in his model has an incoming lead time (corresponding to a 

supply lead time) and an outgoing lead time (corresponding to the customer lead time). 

Inderfurth (1991) extends the analysis of Simpson to more general supply-chain 

structures. Most of these models treat uncapacitated multi-echelon systems and assume 

that demand that cannot be satisfied within the outgoing lead time is sourced from 

alternative sources.  Graves and Willems (2003) provide a review of this literature. 

For capacitated systems under continuous review which is the main focus of this paper, 

Buzacott and Shanthikumar (1994) consider an M/M/1 make-to-stock queue and 

investigate the effects of ADI with constant customer order lead times. They analyze 

order base-stock policies and characterize the inventory cost reduction. The main 

difficulty in addressing optimality issues in continuous time is that the system state 

information must include all future order times in addition to the inventory position. In 

order to investigate optimality issues, Karaesmen, Buzacott, and Dallery (2002) use the 

discrete approximation of the M/M/1 make-to-stock queue by modeling order inter-

arrival times and processing times as geometric distributions. For this model, they show 

that generalized base-stock policies are optimal. These policies are relatively complicated 

since they not only include inventory position but also future order arrival times in the 

replenishment decisions. On the other hand, it is numerically found that order base-stock 

policies (i.e. a subclass of generalized base-stock policies) are optimal when the customer 

lead time is smaller than a threshold value. Moreover, this threshold value is a function of 

the replenishment lead time distribution. Karaesmen, Liberopoulos, and Dallery (2003 

and 2004) investigate further properties of order base-stock policies in M/M/1 and M/G/1 

type make-to-stock queues, using analytical results and approximations. Liberopoulos 

and Koukoumialos (2005) investigate both single-stage and two-stage systems using 

simulation and present additional results. Finally, a paper by Gayon, Benjaafar and de 

Véricourt (2004) considers a multi-class problem and investigates stock rationing issues 

in the context of ADI. This paper addresses optimality issues by using exponentially 

distributed customer lead times which facilitates the state representation significantly.  

A different stream of research considers capacitated production/inventory problems in 

discrete time. Gullu (1995 and 1996) models ADI coming from an external forecasting 
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process using the Martingale Model of Forecast Evolution. The optimal base-stock level 

is shown to depend on the forecast vector. Toktay and Wein (2001) further analyze this 

model using a heavy-traffic approximation and present approximations for the optimal 

base-stock level. Ozer and Wei (2004) use a different representation of ADI that only 

allows additive updates. In general, the optimal base-stock level for this model also 

depends on the future demand information. However, when the information horizon is 

smaller than the production lead time, an order base-stock policy is optimal. 

The contribution of this paper with respect to the above literature is as follows. First, a 

number of the above papers (Toktay and Wein (2001), Karaesmen et al. (2003 and 2004), 

Liberopoulos and Koukoumialos (2005)) use order base-stock policies as effective 

heuristics. Numerical results in Karaesmen et al. (2002) suggest that such policies are 

optimal if the customer order lead time is smaller than a given threshold but a formal 

proof is lacking so far. The proof of this optimality along with a characterization of the 

critical threshold is provided here for the M/D/1 make-to-stock queue. Second, this proof 

holds not only for the backorder case but also for the case of lost-sales (order rejection). 

This combination of lost-sales and backlogging leads also to a new heuristic for the 

backlogging case with long customer order lead time. Third, some of the above papers 

(Toktay and Wein (2001), Karaesmen et al. (2003 and 2004)) provide an approximate 

characterization of the cost reduction as a function of the customer order lead time. An 

exact characterization of this reduction is provided here. This paper builds on partial 

results in Wijngaard (2004). The proofs in this paper are more general and show more 

completely the scope of the approach.  

 

 

3 Model 

 

The model is a single-product, make-to-stock model. Demand is compound Poisson, with 

arrival rate λ. The customer order size is integer, with distribution function F(�). The 

required customer order lead time is equal to h. So, the orders are known h time units in 
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advance (the foreknowledge horizon). This is a standard assumption if the orders come 

from a downstream supply chain member using an MRP-type replenishment policy (see 

Buzacott and Shantikumar, (1994) or Karaesmen et al. (2002)). The case h = 0 

corresponds to the system without ADI. There is an order acceptance mechanism that 

determines whether orders are accepted or rejected. Once accepted, orders are placed in 

the order book. On the due date, the customer order is compared with the available stock. 

If there is sufficient stock, the order is delivered. Otherwise, the order backlog is 

increased by the customer order size. The server produces at rate 1 (the production rate P 

may be normalized to 1, without loss of generality, by changing the unit of time). 

Production is reliable and continuous. After a unit of product is completed, the server can 

be turned off or it can continue producing. The starting inventory is assumed to be 

integer. Since production runs are equal to 1 and order sizes are integer, the non integer 

part of the inventory at those points in time where a new production run may be started is 

equal to the non integer part of the starting inventory. This makes the assumption of an 

integer starting inventory natural. The system objective is to maximize the average 

reward per unit of time. The reward function is the difference between net sales revenues 

and cost for keeping inventory plus cost of backlogging. The inventory cost is assumed to 

be linear: c per unit per unit of time. The cost of backlogging, b(�), is assumed to be an 

increasing function of the size of the backlog. The net sales revenue (difference of 

revenue and direct cost per unit) is assumed to be proportional to the order size: r per 

unit. The unit of measure of c, b(�) and r is a cost measure, like � or $. So the objective 

function is:  

�
�

�
�
�

�
+− �

−+
∞→

T

pT
p

dttIbtcITrWE
T 0

))(()()(
1

limmax  

where p denotes the policy, W(t) denotes the number of orders delivered until time t, I+(t) 

= max(I(t), 0) and  I-(t) = max(-I(t), 0). If backlogging is not allowed, then I-(t) = 0. If the 

limit does not exist, the lim inf is taken. 

To model and evaluate the decision making, the system is observed at the following 

points in time: 

- Production run finishes. 
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- Order arrivals (just after arrival, before the acceptance decision). 

When a production run ends on a certain point t, a plan is made on when to start the next 

run (ts ≥ t). It is also allowed to plan not to start a new run (ts = ∞). If no order arrives 

between t and ts, the next run is started indeed at ts. If there is an earlier order arrival, this 

arrival time is the next observation point and the plan for the next production start is 

updated. Orders arrive during production and during idle periods. When an order arrives 

during a production run, the only decision is the order acceptance decision. It is not 

necessary then to make a new plan on the start of the next run. This plan will be updated 

again when the production run finishes. When an order arrives during an idle period, it is 

also necessary to update the planned next production start. The state of the system at an 

observation point in time t can be represented by {X(t), t ≥ 0}, with X(t) = (o(t), q(t), I(t), 

OB(t), l(t)), and: 

o(t)  boolean indicating the type of the observation point (arrival or run finish), 

q(t) size of the arriving customer order, 

I(t) inventory at time t, 

OB(t)  the order book at time t, 

l(t)  the remaining length of the actual production run at time t.  

The variable q(t) is only relevant in case of an order arrival. In case of a production run 

finish, we define q(t) = 0. The remaining length of the actual production run is only 

positive at an observation point, if an order arrives during a production run. It determines 

the first possibility to start a new production run. Orders are numbered in sequence of 

arrival. Each order can be characterized by its due date (ddi) and its size (qi). For the state 

of the system at time t, only the orders in the order book are relevant. These are the orders 

that have been accepted and not delivered yet. To characterize the order book we do not 

use the due dates, but the relative due dates (rdi = ddi – t):  

OB(t) = {(rdi, qi), ii the order numbers of the orders that are available on time t}  

The development of I(t), OB(t) and l(t) until the next observation point follows 

deterministically from the starting observation point. The relative due dates in the order 

book are decreasing constantly, at speed 1. In due time, an order is delivered and 
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removed from the order book and the inventory drops with an amount that equals the 

order size. During production, the inventory is growing at speed 1. The state of the 

system at the next observation point is the result of this deterministic process, possibly 

cut off by an order arrival that comes before the planned next production start.  

The process with these observation points, this state definition and these action 

possibilities is a semi-Markov decision process (Ross, 1970; Puterman, 1994). A policy 

prescribes an allowable action on each of the observation points. The optimal policy 

maximizes the average reward per unit time. This semi-Markov formulation is going to 

be used to explore the equivalence of the system with ADI and the system without ADI. 

This equivalence is going to be the basis for the results.  

The virtual inventory helps to reveal this equivalence. The virtual inventory is defined as: 

 V(t) = I(t) – C(t) + 1�h,   (∗) 

with C(t) being the sum of all customer order sizes in the order book OB(t), and thus the 

time aggregate of the customer orders. That means that the virtual inventory V(t) is the 

inventory that results after h time units (at t + h) if there is no idle time until t + h (recall 

that the production is either on or off and that the speed is equal to 1). The virtual 

inventory determines whether it is feasible to accept a new customer order without a 

stock-out; if V(t) � z, it is possible to accept a customer order of size z. The behavior of 

V(t) in the system with ADI is also comparable to the behavior of I(t) in the system 

without ADI: production leads to a steady increase, acceptance of an order leads to an 

immediate drop. The difference between both systems is that in the system without ADI, 

the inventory cost is based on I(t), while is the system with ADI, the inventory cost is not 

based on V(t), but on I(t). However, since we are interested in the average reward, we 

may just as well look at I(t + h) instead of at I(t). And there is a rather simple relationship 

of V(t) and I(t + h): 

 I(t + h) = V(t) – L(t, t + h)�1,   (**) 

with I(t + h) being the inventory at t + h and L(t, t + h) the idle time during the interval         

(t, t + h). So, L(t, t + h)�1 is the lost production. In the sequel (next section) we are going 

to use the fact that under an order base-stock policy this idle time between t and t + h 

depends only on V(t) and the order arrivals beyond t.  
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The relationship of both systems becomes even clearer if we replace the order book OB(t) 

in the state description by the set of drops of V(.) during the interval (t - h, t). The 

positions of the drops are the arrival times of the orders that arrived during (t – h, t), the 

size of the drops refers to the size of the corresponding orders. The set of drops is denoted 

Hv(t).  To realize a state description in V(.), we also replace I(t) by V(t). The relationship 

(∗) allows this. The variables V(.) and Hv(t) are completely equivalent to the variables I(t) 

and OB(t). Through I(t) and OB(t) we observe the inventory at time t and look ahead to 

the due dates of the orders in the order book, through V(.) and Hv(t) we observe the 

virtual inventory and look back at the arrival dates of the orders that have not been 

delivered yet. Let Y(t) be the state formulation using V(.) and Hv(t):  

Y(t) = (o(t), q(t), V(t), Hv(t), l(t)).  

Base-stock policies are of particular importance for this paper. With a base-stock policy 

for the system without ADI, production continues as long as I(t) is less than a target level 

S, which is called the base-stock level; production is shut down if I(t) reaches S.  

Similarly in case of ADI, with an order base-stock policy, production continues as long as 

the virtual inventory V(t) is below the base-stock level.  

Note that the base-stock character is only associated with the production part of the 

policy, not with the acceptance part.  If all customer orders are size 1, it is optimal in case 

of no ADI to accept orders if I(t) ≥ 1. This transfers to V(t) ≥ 1 in case of ADI.  In case of 

unequal order sizes, optimal acceptance may be more complicated.  

The above state representation makes it possible to translate policies for the system with 

ADI into policies for the system without ADI. The corresponding patterns of V(t) and I(t) 

are identical. This result is formulated in Lemma 1. The difference of both systems is 

only in the objective function.  

 

Lemma 1 

An arbitrary policy ph for the system with ADI, with state representation Y(.), can be 

converted to a policy p0 for the system without ADI by replacing the dependence on V(�) 

by the dependence on I(�). Suppose the system with and without ADI start with an empty 
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order book and the same inventory. Then the behavior of the system with ADI, in terms 

of V(�), under policy ph, is the identical to the behavior of the system without ADI, in 

terms of I(�), under policy p0. 

Proof 

An arbitrary policy ph for the system with ADI (state representation Y(.)) is a function of 

the system history in terms of o(.), q(.), V(.) and l(.) to the action space. This policy, with 

V(.) replaced by I(.), can also be applied in the system without ADI. Since V(.) and I(.) 

react in the same way on production and order acceptances, the resulting sample paths of 

V(.) and I(.) are identical if the starting states are identical.  � 

 

It is also possible, of course, to convert an arbitrary policy for the system without ADI to 

a policy for the system with ADI, by replacing the dependence on I(.) by the dependence 

on V(.). Only the total content of the order book is taken into account in this way. A base-

stock policy in case of no ADI leads to an order base-stock policy in case of ADI.  

The result of Lemma 1 couples the behavior of V(t) in case of ADI with the behavior of 

I(t) in case of no ADI. The behavior of I(t + h) in case of ADI (h > 0) is linked to the 

behavior of V(t) through equation (**). Figure 1 gives an illustration of the behavior of 

V(t) and I(t + h) for h = 3 in case of an order base-stock policy with target level 7. The 

order book at t = 0 is empty and I(0) = 1. So, V(0) = 4. New orders arrive on 1.5, 3.8, 6.3, 

7.1, 7.8 and 8.4. So, the due dates are 4.5, 6.8, 9.3, 10.1, 10.8 and 11.4. The first idle 

period starts at t = 5 when V(t) reaches 7. The system is idle on the interval [5, 6.3]. 

Thereafter, there is no idle time any more, until t = 9.3. That implies that I(t + 3) = V(t) 

on the interval [0, 2] and is going to deviate from V(t) between t = 2 and t = 3.3. From t = 

3.3 until t = 5, the difference of V(t) and I(t + 3) is equal to 1.3. Between t = 5 and t = 6.3 

the distance is closed again, because V(t) is not increasing on that interval and I(t + 3) is 

increasing at speed 1. At t = 6.3 the functions V(t) and I(t + 3) are equal again, since there 

is no idle time between t = 6.3 and t = 9.3.  To complete the illustration I(t) is also added. 

A more extensive illustration is presented in the appendix.  
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Figure 1: Patterns of V(t), I(t+h) and I(t) for a base-stock policy with base level 7, h = 3 

 

This result of Lemma 1 is used in the next sections to investigate the effect of ADI. The 

approach is to use the optimal policy for the system without ADI to generate an optimal 

(section 4) or at least a good policy (section 6) for the system with ADI. 

 

 

4 Results if customer order lead times are below a certain threshold value 

 

According to the results of the previous section, the policy for the system with ADI that 

corresponds to a base-stock policy for the system without ADI is an order base-stock 

policy. In a base-stock policy the production is continued or turned on if I(t) < S, with S 

the base-stock level. In an order base-stock policy, the production is continued or turned 

on if V(t) < S. This section shows that the policy for the system with ADI that 

corresponds to the optimal base-stock policy is also optimal, if h is not larger than the 

base-stock level.  

Lemma 2 relates the average inventory for the system with ADI to the average inventory 

for the system without ADI.   
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Lemma 2 

Let p0 be an arbitrary stationary policy for the system without ADI and let ph be the 

corresponding policy for the system with ADI = h. Let ρh and ρ0 be the resulting 

utilization rates. Then ρh = ρ0. Let ρ = ρh = ρ0. The average inventory under policy ph 

(system with h > 0) is (1 - ρ)�h smaller than the average inventory under policy p0 

(system with h = 0). 

Proof 

The behavior of V(.) in the system with ADI is identical to the behavior of I(.) in the 

system without ADI, if a proper starting state is chosen (see Lemma 1). Since the 

utilization rate does not depend on the starting state, the utilization rates in both systems 

are indeed equal. The difference of the average inventories follows from: 

 Ih(t + h) = V(t) – Lh(t, t + h)�1, 

with Ih(t + h) being the inventory at t+h and Lh(t, t + h) the idle time during the interval 

(t,t+h) of the system with h > 0, under policy ph . By definition we have: 

 E(Lh(t, t + h)) = (1 - ρ)�h. 

This completes the proof. � 

 

The lemma says that the average inventory in the corresponding system with ADI is       

(1 - ρ)�h lower than in the system without ADI. This inventory reduction is most 

attractive if it does not lead to higher backorder levels. Compare the example in Figure 1. 

Here I(t + 3) > 0 on the time interval considered, and the inventory reduction (compared 

to V(t)) implies a proportional inventory cost reduction therefore. If it cannot be 

guaranteed that the inventory reduction does not lead to higher backorder levels, it is only 

possible to derive a bound for the inventory cost reduction. This is consolidated in 

Corollary 1.   
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Corollary 1 

Let p0 and ph be defined as in Lemma 2. Let C0 and Ch be the resulting average inventory 

cost. Then Ch ≥ C0 - c�(1 - ρ)�h.  

Proof 

The proof follows right away from the proof of Lemma 2 and the observation that the 

average inventory cost under ph may be based on Ih(t + h) instead of on Ih(t).   � 

 

Lemma 4, Corollary 2 and Lemma 5 consider base-stock policies and (corresponding) 

order base-stock policies. For such policies it is easy to see the consequences of ADI for 

the backorder level. In Lemma 3 it is shown that, in looking for the optimal policy for the 

system without ADI, it is sufficient to restrict attention to base-stock policies.  

 

Lemma 3 

Consider the system without ADI. There is an optimal policy that is base-stock. 

Proof 

For semi-Markov decision processes, under very general conditions there is an optimal 

policy that is stationary. These conditions are certainly met for the system without ADI 

(see Puterman, 1994). Now consider an optimal stationary policy p*. The character of the 

cost function implies that p* does not ask for production if the inventory is very high and 

that it does ask for production if the inventory is very low. That means that there is a 

smallest inventory level Im that does not ask for a production decision under policy p*. 

Starting from an (integer) inventory level � Im, production is continued, until at some 

production finish, level Im appears to be reached. The production is interrupted there and 

the inventory levels > Im will never be reached. That implies that the behaviour under 

policy p* is equal to the behaviour under the base-stock policy with base-stock level Im. 

Starting from an inventory I > Im , the inventory will eventually fall below Im and stay 

there. From then on the behaviour is again identical to the behaviour under the base-stock 
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policy with base-stock level Im. That implies that the average reward under policy p* is 

equal to the average reward under the base-stock policy with base-stock level Im. � 

 

Lemma 4 

Consider a base-stock policy for the system without ADI, with base-stock level S. The 

behavior that results from application of the corresponding order base-stock policy in the 

system with ADI has the following property: 

 Lh(t, t + S) = 0 if V(t) � 0 and Lh(t, t + S) � V(t)/1 if 0 � V(t) � S. 

Proof 

The proof follows immediately from the fact that if V(t) � S at a decision time t, it lasts at 

least (S - V(t))/1 time units before the production is turned off.  � 

 

Corollary 2 

Let S be the base-stock level of the optimal base-stock policy for the system without ADI. 

The order base-stock policy for the system with ADI = h (h � S) that corresponds to this 

optimal policy, has the same utilization rate (and average net revenue), the same average 

stock-out cost, and its inventory cost is c�(1 - ρ)�h lower. 

Proof 

From Lemma 1 it follows that the utilization rate is the same for the system with and the 

system without ADI (see also Lemma 2). Lemma 4 shows V(t) �  0 => Lh(t, t + S)�1 = 0 

and V(t) �  0 => V(t) - Lh(t, t + S)�1 � 0. Because h � S, we have Lh(t, t + h) � Lh(t, t + S). 

Since Ih(t + h) = V(t) - Lh(t, t + h)�1, this means that V(t) � 0 => Ih(t + h) = V(t) and  V(t) �  

0 => Ih(t + h) � 0. This implies that for h � S the inventory reduction shown in Lemma 2 

is purely a reduction of the positive part of the inventory. The non-positive part of the 

inventory is not influenced. So, the inventory cost for the system without ADI is reduced 

by c�(1 - ρ)�h, compared to the system without ADI.  This completes the proof. � 
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The last question is whether this order base-stock policy for the system with ADI that 

corresponds to the optimal base-stock policy for the system without ADI, is optimal. This 

is considered in Lemma 5. 

 

Lemma 5 

Let S be the base-stock level of the optimal base-stock policy for the system without ADI. 

Then the order base-stock policy for the system with ADI = h (h � S) that corresponds to 

this optimal policy, is also optimal. The cost reduction effect of ADI is equal to           

c�(1 - ρ)�h.  

Proof 

Let S be the base-stock level of the optimal base-stock policy for the system without ADI 

and let Ro be the average reward. Corollary 2 shows immediately that application in the 

system with ADI (h ≤ S) of the order base-stock policy that corresponds to this optimal 

policy, leads to a reduction of the cost of c�(1 - ρ)�h per unit of time. So, the average 

reward is equal to Ro + c�(1 - ρ)�h. What is left to prove is that this policy is optimal for 

the system with ADI. Suppose there is a better policy, ph
o , for this system with ADI and 

let Rh
o be its average reward.  So, Rh

o > Ro + c�(1 - ρ)�h. Consider the corresponding 

policy for the system without ADI, p0
o. Let R0

o be its average reward. Corollary 1 implies 

R0
o ≥  Rh

o - c�(1 - ρ)�h. Together with Rh
o > Ro + c�(1 - ρ)�h, this implies R0

o > Ro. This is a 

contradiction and completes the proof. � 

 

Remark 

The optimality of order base-stock policies and the corresponding inventory reduction 

only holds when h ≤ S. This however is not a serious limitation in many cases. For 

instance, if the optimal base-stock level of the system without ADI is large, the critical 

threshold is just as large. This is a case where ADI can help in a significant manner. 

Inversely, if the optimal base-stock level without ADI is small, the critical threshold must 

be small but this may not be disturbing since this case corresponds to a system with low 
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inventory related costs to begin with and the potential savings are limited regardless of 

ADI.   

 

 

5 Extensions and limitations 

 

This section explores whether the model assumptions of the previous section can be 

relaxed.  

 

Extensions 

The lemmas show that the correspondence of the system with ADI and the system 

without ADI holds under a more general set of assumptions. The crucial equality is (see 

lemma 2): 

Ih(t + h) = V(t) – Lh(t,t+h)�1. 

This equality depends only on the way the capacity is modeled. The most important 

extensions are mentioned below. 

It is clear from the analysis that the results also apply to the case with positive production 

throughput time τ, as long as the horizon h > τ. The situation without ADI has to be 

replaced by the situation with ADI equal to τ. The effect of extra ADI is a reduction of 

the inventory cost with c�(1 - ρ)�(h - τ). The case with h ≤ τ  can be reduced to the case 

without ADI by using the modified inventory (= inventory plus work-in-process minus 

demand as far as it is known, Gallego and Ozer, 2001).  

The results hold also for the pure backlogging case (no rejection of customer orders) and 

the pure lost-sales case (no late deliveries because of proper order acceptance). This is 

immediately clear from inspection of the lemmas. Or, consider an alternative formulation 

of the problem in the pure backlogging case where the objective function is to minimize 

the average inventory holding cost subject to a time-average backorder-related service 

level constraint (such as the probability of stock-out or the expected number of 
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backorders less than a specified value). The inventory cost reduction result with ADI 

naturally extends to this case. Note that the backorder levels of the systems with and 

without ADI are identical in distribution; therefore, regarding the service level constraint, 

both systems perform identically. 

Most results hold also if production is not in units, but in larger batches. The difficulty is 

to prove that the production part of the optimal policy is of the base-stock type. That 

proof requires the invariance under the minimization operator of convexity properties of 

the value function. The proof is complicated by the existence of batches > 1, by the 

combination of production and order acceptance decisions and by the necessity to add the 

remaining length of the production run to the state space. Notice that the main result (the 

effect of ADI) holds also if the optimal policy for the system without ADI is not a pure 

base-stock policy but if there is some S > 0, such that production is started or continued if 

the inventory I  �  S. 

The production varies between 0 and 1. The results remain valid if the production varies 

between some level p, 0 < p < 1 and 1. In that case, it may also be expected that under 

general conditions the optimal policy for the system without ADI is of the critical level 

type: switch to the maximal production speed if the inventory is less than a certain critical 

level.  

The Poisson assumption is also not really necessary to establish the relationship between 

corresponding policies for the systems with and without ADI. However, relaxing this 

assumption makes the structure of the optimal policies more complicated. For instance, 

the optimal policy for the system without ADI may not be a base-stock policy.  

 

Limitations of the approach 

The assumptions with respect to the production are essential in the approach. Karaesmen 

et al. (2002) consider the case with a stochastic production time. They assume a 

geometrically distributed production time. Here, it would be more straightforward to 

assume a negative exponentially distributed production time. It is possible of course to 

define corresponding policies in this case as well. And the virtual inventory can be 

defined in the same way as in the continuous production case. But the relationship 



 20 

between the virtual inventory at time t and the actual inventory at time t+S (compare 

lemma 4) is less attractive. The production is only in average equal to the foreknowledge 

horizon and can be larger as well as smaller in this case. This makes it possible that V(t) 

= 0 is followed by I(t+S) > 0 or by I(t+S) < 0. The discontinuity at 0 destroys the clear 

relationship between V(t) and I(t+S).  

The same problems arise with more classes of customer orders, each with their own 

customer order lead time. A specific case deals with one class of orders that require 

immediate delivery and cannot be rejected and another class of orders with a fixed 

positive lead time. This case is equivalent to the case with unreliable production. This 

unreliability destroys the relationship between V(t) and I(t+S).  

 

 

6 Longer demand lead times 

 

For longer horizons (when h > S), the results of section 4 do not hold any more. The 

results of section 4 show straightforwardly that the effect of ADI for a horizon h > S is 

bounded from above by c�(1 - ρ)�h. That is because the inventory reduction is not fully 

concentrated any more on the stretches with positive inventory. But it has to be 

investigated how close we can get to this bound.  

The problem with an order base-stock policy when h > S is that it may lead to a situation 

where the policy does not prescribe production because V(t) > S, while this production 

was presupposed earlier, when the system was confronted with a new order arrival. There 

are two straightforward heuristics for this case. The first is to use order base-stock 

policies, but to introduce a critical limit for h beyond which customer orders are not taken 

into account any more. See Karaesmen et al. (2002) for an application to the backlogging 

case. The other possibility is to use extra production checks. Let S be the base-stock level 

of the optimal (base-stock) policy for the system without ADI. If the order base-stock 

policy that corresponds to this optimal policy is used for the case with h > S, there is a 

certain risk that production is turned off, because the virtual inventory, V(t) > S which 



 21 

still leads to stock-outs. See Figure 2 for an illustration. If the production start is 

postponed beyond time tl, a stock-out results.  

 

 

hddjt tl

Cumulative order book

I(t)

Maximal cumulative availability

 

Figure 2:  Necessity of more detailed production checks 

 

A stock-out is inevitable as soon as I(t) – C(t,ddj) + 1�(ddj – t) < 0, with ddj being the due 

date of order j and C(t,ddj) the sum of the orders on the interval (t,ddj]. Stock-outs can be 

prevented by adding the following checks: 

 I(t) – C(t,ddj) + 1�(ddj – t) � 0,  ∀ orders j in the order book. 

Policies satisfying these conditions are called reliable. They guarantee that if it is 

possible on arrival to deliver an order on time, the order is indeed delivered on time. The 

structure of the checks shows right away that they are not necessary indeed if h ≤ S.  Such 

reliable policies are applicable in a much wider range of h. Wijngaard (2004) shows that 

the reliable policy that results from the optimal base-stock policy gives good results for 

the pure backlogging case as well as the strict order acceptance case. Illustrative 

simulation results for a backlogging case with Poisson arrival, customer order size equal 
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to 1, arrival rate 0.9, and c = 1, b(x) = 4�x are given in Tables 1 and 2. Since c = 1, the 

upper bound for the cost reduction due to ADI is equal to (1 - ρ)�h, with ρ the sample 

path utilization rate. The length of the simulation run is 100,000 time units. The optimal 

base-stock level for the system without ADI is S = 7. Since the customer order sizes are 

all equal to 1, it is optimal to accept maximally in the case without ADI: accept if I(t) ≥ 1. 

The corresponding order base-stock policies in case of ADI accept an order if V(t) ≥ 1. 

Table 1 gives the result for the pure order base-stock policies and Table 2 for the policies 

with the check added (reliable policies).  

 

Table 1: Results for order base-stock policies 

h S Inventory cost Stock-out cost Total cost Total cost reduction (1 - ρ)�h 

0 7 4.289 3.374 7.663 - - 

5 7 3.803 3.374 7.177 0.486 0.486 

10 7 3.320 3.381 6.701 0.962 0.971 

15 7 2.874 3.539 6.413 1.250 1.457 

20 7 2.500 3.986 6.486 1.177 1.942 

20 8 3.263 3.040 6.303 1.360 1.942 

20 9 4.089 2.343 6.432 1.231 1.942 

 

The results show that for a small h (h = 5) the stock-out cost is not influenced by the 

ADI. The inventory cost reduction is equal to the total cost reduction and equal to the 

upper bound (1 - ρ)�h. For larger h, the stock-out cost is increasing because of the above 

mentioned effect. Due to this, the rate at which the total cost reduction grows as function 

of h is decreasing for large h. By increasing the base-stock level it is possible to partly 

neutralize this effect. But the total cost reduction remains rather far from the bound       

((1 - ρ)�h). Table 2 gives the results for the policies with the check added (reliable 

policies).  
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Table 2: Results for reliable policies 

h S Inventory cost Stockout cost Total cost Total cost reduction (1 - ρ)�h 

0 7 4.289 3.374 7.663 - - 

5 7 3.803 3.374 7.177 0.486 0.486 

10 7 3.329 3.362 6.691 0.972 0.971 

15 7 2.989 3.253 6.242 1.420 1.457 

20 7 2.801 3.094 5.894 1.768 1.942 

20 6 2.267 3.607 5.874 1.788 1.942 

20 5 1.839 4.150 5.989 1.774 1.942 

 

Here the total cost reduction remains much closer to its upper bound. Due to the checks 

the inventory in the system becomes larger than in the case without checks. It is possible 

to compensate this by reducing the base-stock level. See the last lines in table 2. This 

leads to even lower total cost.  

 

 

7 Conclusions and suggestions for further research 

 

This paper investigates the effect of ADI in a single item inventory model with 

constrained production capacity. Production is deterministic and continuous. So, the 

uncertainty comes only from the stochastic demand. The model combines the 

backlogging case and the lost-sales case. The decisions regard order acceptance and 

production. The ADI is modeled by assuming that the customer orders are known h time 

units in advance. The paper shows that as long as the foreknowledge horizon is smaller 

than a certain threshold value, the optimal policy is an order base-stock policy. This 

means that the orders in the order book may be aggregated over time. The threshold value 

is equal to the optimal base-stock for the system without ADI. The effect of ADI is equal 

to c�(1 - ρ)�h�P, with P being the production speed. Recall that in the analysis we worked 
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with P = 1, by changing the units of time. Here we go back to arbitrary units of time. The 

combination of backlogging and lost-sales leads directly to a new heuristic for the case 

with a larger h.  

Future research has to go in three directions. In the first place it is useful to explore 

whether it is possible to broaden the result that it is allowed to aggregate the orders in the 

order book. The limitations of the approach applied here are indicated in the paper, but 

the result may be more general than the approach. An interesting case is the one with 

variable customer order lead times.  

The second direction is research about the applicability of the heuristic developed here. 

The idea of applying reliable heuristics is inspired by the order acceptance/lost-sales 

case, but turns out to be also useful in the backlogging case.  

The third field for further research is the extension to more products. If the production 

runs may be small, the inventory positions can be kept close to each other and the 

aggregate inventory pattern gives a good indication for the item inventory patterns. This 

suggests that it may be possible to apply the results derived here for the single-item case 

in a multi-item case with small production runs.  
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Appendix: An illustrative example.  
 
In order to clarify certain sample path properties, let us consider the following example 

where we compare the inventory evolutions on a given sample path for two systems. The 

first system uses ADI in the following way. Whenever the virtual inventory (net 

inventory level + the total number of items in the order book) is less than 2, it produces. 

Note that this is of course an order base-stock policy. Each order will cause the start of a 

production run. The second system does not use ADI and has to fulfill demand at the time 

of arrival.  The corresponding policy decides in the same way but uses the inventory level 

as a threshold rather than the virtual inventory. To find the corresponding policy, let us 

assume that let us assume that the customer lead time h=2. If h=2, the policy without ADI 

must produce whenever the inventory level is less than 2+2. Clearly, this is a standard 

base stock policy with a base stock level of 4. 

 

Let us now assume that the two systems face identical demand processes (except that the 

system with ADI has to satisfy orders with an additional lead time of 2. In particular, let 

the demand arrival times be t=1.5, 2.1, 2.4, 3, 3.3, 3.4, 3.6, 3.7, 4.5, 7, 9.3, 12, 15. Let us 

also assume that the system with ADI starts with 2 items in the inventory and no orders 

and that system without ADI starts at its base stock level of 4. 

 

It is then very easy to generate the evolution for the system without ADI. Initially the 

production is off since the system is idle, but will be turned on at time t=1.5 at the first 

demand arrival. The system then produces at a constant rate until reaching its base stock 

level and is turned off once at the base stock level.  The system without ADI uses an 

order base stock policy. It is also off initially, since the inventory level is 2 and the order 

book is empty. At the first demand arrival, this system will also start producing. Even 

though its inventory level does not change, the first demand arrival is included in the 

order book, and the virtual inventory position decreases by one. Table 3 gives all discrete 

event times (demand arrivals and starting and stopping of production), taking place in a 

horizon of 20 time units. The event numbers marked without an asterisk correspond to 

demand arrival events in chronological order, those marked with an asterisk are demand 

fulfillment times for the system with ADI.  
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Event no. t I(t) I(t) with ADI Event no. t I(t) I(t) with ADI 

 0 4 2 7* 5.6 -0.9 0.1 

1 1.5 4 2  5.6+ε -0.9 -0.9 

 1.5+ε 3 2 8* 5.7 -0.8 -0.8 

2 2.1 3.6 2.6  5.7+ε -0.8 -1.8 

 2.1+ε 2.6 2.6 9* 6.5 0 -1 

3 2.4 2.9 2.9  6.5+ε 0 -2 

 2.4+ε 1.9 2.9 10 7 0.5 -1.5 

4 3 2.5 3.5  7+ε -0.5 -1.5 

 3+ε 1.5 3.5 10* 9 1.5 0.5 

5 3.3 1.8 3.8  9+ε 1.5 -0.5 

 3.3+ε 0.8 3.8 11 9.3 1.8 -0.2 

6 3.4 0.9 3.9  9.3+ε 0.8 -0.2 

 3.4+ε -0.1 3.9  10.5 2 1 

1* 3.5 0 4 11* 11.3 2.8 1.8 

 3.5+ε 0 3  11.3+ε 2.8 0.8 

7 3.6 0.1 3.1  11.5 3 1 

 3.6+ε -0.9 3.1 12 12 3.5 1.5 

8 3.7 -0.8 3.2  12+ε 2.5 1.5 

 3.7+ε -1.8 3.2  12.5 3 2 

2* 4.1 -1.4 3.6  13 3.5 2.5 

 4.1+ε -1.4 2.6  13.5 4 3 

3* 4.4 -1.1 2.9 12* 14 4 3 

 4.4+ε -1.1 1.9  14+ε 4 2 

9 4.5 -1 2 13 15 4 2 

 4.5+ε -2 2  15+ε 3 2 

4* 5 -1.5 2.5  16 4 3 

 5+ε -1.5 1.5 13* 17 4 3 

5* 5.3 -1.2 1.8  17+ε 4 2 

 5.3+ε -1.2 0.8  20 4 2 

6* 5.4 -1.1 0.9     

 5.4+ε -1.1 -0.1     

 
Table 3: Event transition times and inventory levels for the illustrative example. 
 

Figure 3 summarizes the two inventory levels. Two important points can be observed in 

this Figure. The first important point is that the backorder cycles for the two systems are 

identical and simply shifted in time by h=2 time units. The two systems then generate the 

same backorder performance on the same sample path. The second important point is that 

the inventory level of the system with ADI is, in general but not always lower than that of 

the system without ADI. This is because the system with ADI starts production earlier 

with the help of the order book.  
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Figure 3: Inventory levels with and without ADI. 
 
 
It is, therefore, not trivial to compare the performance of these two systems unless the 

inventory performance can be compared. This highlights the strength of Lemma 2 which 

states the average inventory in the system without ADI is always lower than that of the 

system with ADI as far as the infinite horizon problem goes.  

 
 
 

 


