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We consider the problem of dynamically allocating production capacity between two products to minimize the average inventory and
backorder costs per unit time in a make-to-stock single machine system. Using sample path comparisons and dynamic programming, we
give a characterization of the optimal hedging point policy for a certain region of the state space. The characterization is simple enough
to lead to easily implementable heuristics and provides a formal justi)cation of some of the earlier heuristics proposed.

1. INTRODUCTION

A challenging problem in production control is the dynamic
allocation of limited production capacity between di+er-
ent products in a make-to-stock environment. The fact that
demands and even the production times are random makes
this problem even more challenging. In this paper, we pro-
vide new insights for the dynamic scheduling problem of a
stochastic production-inventory system.
The particular model that we consider here is a two-part-

type model where demands of both types arrive in single
units and a single production facility produces units one by
one. The model is, then, the make-to-stock version of the
well-known multiclass single-server queue, i.e., a two-class
make-to-stock-queue. The question is to decide dynamically
when and which part type to produce. For tractability, we
make the usual assumptions that the demands arrive accord-
ing to independent Poisson processes and that the produc-
tion times are exponentially distributed. We also disregard
setup times and allow preemptive scheduling. Under these
assumptions, the dynamic scheduling problem is an optimal
control problem that can be set a Markov decision process
(MDP). This constitutes our starting point. Traditionally,
after setting up the MDP, one tries to obtain structural re-
sults on the optimal policy by using induction on the time
horizon. We choose to proceed in a di+erent direction in-
stead and use coupling and sample path comparison tech-
niques to obtain a partial but exact characterization of the
optimal policy.
The multiclass make-to-stock queueing problem was )rst

considered by Zheng and Zipkin (1990), who showed that
in the case of two symmetric products, the performance of a
policy that always serves the longest queue is always better
than the performance of a )rst-come )rst-served (FCFS) pol-
icy. These results were later generalized to multiple products
by Zipkin (1995). Wein (1992) proposed a Brownian

approximation for the multiclass make-to-stock queueing
control problem. The solution of the approximating stochas-
tic control problem provides interesting insights into the
structure of the optimal policy, suggesting particularly the
optimality of a hedging point policy and a static priority rule
when all products are backlogged.
Ha (1997) provides the theoretical justi)cation of some

of the ideas suggested by the approximating model of Wein
(1992). By considering the in)nite horizon discounted cost
model and using dynamic programming he proves that a
static priority rule is optimal when all products are back-
logged. He also proves that for two-part-types requiring
identical production times, the optimal policy is a hedging
point policy characterized by two switching curves, with one
curve determining the on-o+ region for production and the
other curve determining the dynamic priority between the
part types.
Ha’s results suggest that the optimal policy for the mul-

ticlass make-to-stock queueing problem (in further general-
ity than proven) is a hedging point policy combined with
monotone switching curves that state which of the part types
to produce. On the other hand, even under the restriction of
policies to this particular class, one is left with a challeng-
ing problem of jointly optimizing the selection of a hedging
point and the priority regions for di+erent part types. Veatch
and Wein (1996) and Peña-Perez and Zipkin (1997) study
this problem and provide e+ective heuristics.
It is also interesting to note the similarities between

make-to-stock queues and continuous ?ow models. For
example, in the single product case, the solutions of the
optimal control problems for the make-to-stock queue and
continuous ?ow model of Bielecki and Kumar (1988) are
closely related; in both cases the optimal policy is com-
pletely characterized by a single hedging point. In the
multiproduct case, for the continuous ?ow two-part-type
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problem, Srivatsan and Dallery (1998) have recently pro-
vided a partial (but exact) characterization of the optimal
hedging point policy. This exact characterization prompts
the question of whether similar properties carry over to the
conceptually related but considerably di+erent case of the
discrete part make-to-stock queue.
In this paper, we show the surprising result that the partial

characterization of the optimal policy as provided by Srivat-
san and Dallery (1998) for a continuous ?ow two-part-type
system extends to the two-class make-to-stock queue with
part-type-dependent production times. The extension turns
out to be technically quite involved, partially because of the
passage from the continuous to the discrete case, but mainly
because of the di+erent way the models capture the random-
ness. The end result, however, is very simple and intuitively
appealing. In a certain region of the state space, the mono-
tone switching curve that separates the priority regions of
the two products turns out to be a straight line whose posi-
tion is expressed by a simple equation. This characterization
allows us to generalize the results of Ha (1997) on the struc-
ture of the optimal switching curve. It also helps to recognize
the advantages and disadvantages of the various heuristic
strategies proposed by Veatch and Wein (1996) and Peña-
Perez and Zipkin (1997). In particular, we formally justify
the good performance of some of these policies developed
through intuitive approaches.
We give a formal de)nition of the problem and the model

in §2. In §3 we present some properties of the class of poli-
cies that we study in this paper, namely, the hedging point
class of policies. These properties enable us to obtain the
main result on the characterization of the optimal hedg-
ing point policies presented in §4. In §5 we give numerical
examples as well as discussing and justifying the relative
performance of some of the heuristic policies proposed ear-
lier. Finally, our conclusions and suggestions for future re-
search are presented in §6.

2. THE OPTIMAL CONTROL PROBLEM

2.1. The Model and the Dynamic Scheduling
Problem

Consider a production system with a single, ?exible machine
that produces two-part types (type 1 and type 2) in a make-
to-stock mode. Each )nished item is placed in its respective
inventory. Demands that cannot be met from their respec-
tive on-hand inventories are backordered. It is assumed that
raw parts are always available in front of the machine. The
arrivals of demands to the system occur according to inde-
pendent Poisson processes with rates �i; i=1; 2. The pro-
duction times of product i are independent and exponentially
distributed with rates �i.
At any time, one can choose whether to produce part

type 1 or 2 or to idle the machine. A preemptive discipline
is further assumed: The production of a part can be inter-
rupted and resumed. A control policy states the action to
take at any time. Because the system is memoryless, for
the control of the system we can consider only Markov

policies, which only depend on the current state. Let Xi(t)
denote the inventory level at time t. We call Xi(t) the sur-
plus (or backlog if demands are backordered) of Part type
i. X(t)= (X1(t); X2(t)) is then the state of the system. Let
Ca be the control associated with a Markov policy a. We
have

Ca(t) = Ca(X(t))

=




0 when the action is to idle;
1 when the action is to produce type 1;
2 when the action is to produce type 2:

We consider a unit holding cost hi and a unit backo-
rder cost bi per unit of time for part type i. In the state X,
the system incurs cost rate of c(X)=N2

i=1ci(Xi) where the
individual part type costs ci are

ci(Xi(t))=

{
hiXi(t) Xi(t)¿0;

−biXi(t) Xi(t)60:

The objective is then to )nd the policy that minimizes the
long-run average cost:

min
a

lim sup
t→∞

1
t
Eax

[∫ t
0
c(X(t))dt

]
; (1)

where Eax denotes the conditional expectation given the con-
trol policy a and the initial condition x=X(0).

To solve the optimal control problem (1), a classical
approach is to derive the dynamic programming optimality
equations. Following Veatch and Wein (1996), with g∗ the
optimal average cost rate, V (x) the relative value function,
we have

V (x) + (g∗=P)
=1=P[c(x) + �1V (x1 − 1; x2) + �2V (x1; x2 − 1)

+�V (x) + min(0; �1R1V (x); �2R2V (x))] (2)

where

R1V (x)=V (x1 + 1; x2)− V (x);
R2V (x)=V (x1; x2 + 1)− V (x);

�= max(�1; �2); P= �1 + �2+�:

2.2. Optimal Control and Hedging Point Policies

The optimality equation (2) is useful in determining
certain structural properties of the optimal policy and also
provides the basis for algorithms to compute it numerically.
Ha (1996) has exploited these equations to characterize the
monotone structure of the optimal policy with discounting.
On the other hand, this approach has not given an exact
general characterization of the optimal policy until now.
Although a formal proof does not exist in full generality,
we conjecture that the optimal policy belongs to a speci)c
class: the hedging point (base stock) policies (see Figure 1).
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Figure 1. Hedging point policy.

Previous work on this problem supports this conjecture.
First, Ha (1996) has shown that the optimal policy in the
discounted case is a hedging point policy in the case of
�1 = �2. Hedging point policies are “plausible” according
to Peña-Perez and Zipkin (1997). This issue is also dis-
cussed from the monotonicity point of view in Veatch and
Wein (1996). Finally, our numerical experiments verify
this point. We thereby restrict our attention to this class of
policies hereafter.
To give a more precise de)nition of hedging point

policies for the manufacturing system in §2.1, it will
be useful to de)ne the class of monotone policies as
in Veatch and Wein (1996). Let I be the set of states
in which the control policy idles the machine. Further-
more, to separate resource sharing from idling, let VBi
denote the set of states in which the preferred part type
for production is part i regardless of the idling decision
(i.e., VBi= {x : minj=1;2{�jRjV (x)}= �iRiV (x)}). Then
VBi= {x : x1¡sB(x2)} for an increasing curve sB(x2) where
−∞6sB(x2)6∞ and VI= {x : x1¡sI (x2)} for some de-
creasing curve, sI (x2), where 06sI (x2)6∞.

A hedging point policy is then a monotone policy whose
stationary behavior is entirely characterized by the hedging
point (z1; z2) (the intersection of the curves sB and sI ) and
the portion of the switching curves sB(x2) with x26z2.
In the rest of the paper we concentrate on hedging point

policies with starting points in the region x16z1 and x26z2

because other initial conditions do not a+ect the stationary
behavior of the system.

2.3. An Equivalent Model

We consider now a model which only di+ers from the orig-
inal model in the way the machine produces the parts. This
new model, whose behavior will be shown to be equivalent
to that of the original model will be useful for deriving some
of our results.

DEFINITION 1. The Equivalent model (EQ) is a model similar
to the original model where:

1. The machine performs service activities whose dura-
tions do not depend on the type of the product and are
exponentialy distributed with rates �= �1 + �2,

2. At the end of a service time the “work” done during
the service activity is either allocated to one of the two
parts or not used, according to the control action at that
time. Speci)cally, we have

Ca=




0 Idle : The work is not used;
1 Produce type 1: The work is allocated to

type 1;
2 Produce type 2: The work is allocated to

type 2:

3. When Ca(t) �=0, the allocation of the “work” to a given
part type may result in the “instantaneous production”
of a part of this type, and the outcome is probabilistic.
Speci)cally if the work is allocated to part type i, then
with probability pi= �i=�, a part is instantaneously
delivered to the corresponding output bu+er, while with
probability 1−pi nothing happens, i.e., the “work” is
lost.

REMARK. In the EQ model we talk about “service activi-
ties (times)” instead of “production activities (times).” Note
that not all service activity completions correspond to actual
production completion of a part.
An intuitive interpretation of this model is that the

machine is not perfectly reliable: It can produce parts that
do not satisfy some quality criteria. For instance, with a
probability 1 − pi, a part of type i is “bad” and is rejected
when it is produced.
Note that the EQ Model corresponds to a uniformization

of the service processes in the original model. This simple
transformation facilitates sample path comparisons because
the service times after the transformation become indepen-
dent of the policy. The proof of the above property is given
here for clarity and to introduce some useful notation to be
used in the sequel.

PROPOSITION 1. Under the same control policy; the EQ
model follows the same probability law as the original
model.
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PROOF. Consider )rst the machine and the two production
processes. Suppose then that the common policy a states to
produce part i. Let Ui be the discrete random variable, such
that

Ui=




1 when the work allocated to part type i gene−
rates a real part;

0 when the work does not generate a real part
(the work is lost);

with the probabilities: P({Ui=1})=pi and P({Ui=0})
= 1−pi. Ui corresponds to the probabilistic outcome
mentioned in the third part of the EQ model de)nition.
Consider any state (x1; x2) and the corresponding control
Ca(x1; x2). Let Ca(x1; x2)= 1 (=2) without loss of gen-
erality. In the original model the transition rate to state
(x1 + 1; x2) ((x1; x2 + 1)) is �1 (�2). In the EQ model, the
production transition rate for part type i under the identi-
cal control is given by �pi= �i. Therefore the production
transition rates are equal for both models for the same state
and control. Because the arrival rates in both models are
also identical for all states, the original model and the EQ
model have the same probability law.

3. SOME PROPERTIES OF HEDGING POINT
POLICIES

This section presents some properties of hedging point poli-
cies. They will constitute the basis of the proof for the char-
acterization of optimal hedging point policies. These results,
as others in this paper, are based on sample path compar-
isons. We study di+erent trajectories by coupling them, that
is by considering a common realization of the random vari-
ables which generate them.
More precisely, consider two trajectories Xa and Xb gen-

erated by two policies a and b. Consider the EQ model
and T and Ui as de)ned in the proof of Theorem 1. We
couple the service time T of the machine and the random
variables Ui for the policies a and b as follows: consider a
sequence of realizations of the exponentially distributed ser-
vice times, t1; t2; : : : ; tn; : : : ; and sequences of realizations of
the discrete random variables U1 and U2; u11; u

2
1; : : : ; u

n
1; : : : ;

and u12; u
2
2; : : : ; u

n
2; : : : ; where u

n
i =0 or 1. These realizations

are common for both policies. Let Tn be the time instant of
the end of the nth service activity. Tn=Nnk=1 t

k , and Tn is
the same for both policies. At instant Tn, the nature of the
new event is then given by the realization of random vari-
able Ui where i=1 or i=2 depending on the choice stated
by the policy. Let nai (t)=Nk:Tk¡t uki be the number of times
that policy a has chosen i before time t and similarly for
policy b. If policy a chooses part type i; nai is incremented
but naj is not.
For the development in the sequel, it will also be useful to

couple the demand arrival processes as well as the service
activities. In this case, we denote by T̃ n the time instant of
the nth event, which can either be a demand arrival or a ser-
vice activity, and we denote by ñ(t) the associated counting
process. Since T̃ n is constructed by superposing the arrival

time sequences with the sequence Tn, it is independent of
the control policy.
Following this approach, Lemma 1 states that if the same

number of type-1 parts and the same number of type-2 parts
have been completed for two coupled trajectories, then the
completion instants of the batches must be identical. Thus,
under certain conditions the lemma provides us the positions
of coupled trajectories at the same instant which will prove
to be very critical for the sample path comparisons in the
sequel.

LEMMA 1. Consider two hedging point policies a; b and two
coupled trajectories Xa; Xb generated by these policies. If
two time instants Ta and Tb are such that

1: X a1 (Ta)−X a1 (0)=X b1 (Tb)−X b1 (0); and X a2 (Ta)−X a2 (0)
=X b2 (Tb)− X b2 (0);

2: For all t in [0; Ta] (respectively [0; Tb]) with i=1
or i=2; X ai (t)6X

a
i (Ta) (respectivelyX

b
i (t)6X

b
i (Tb))

and Ta (resp. Tb) is the )rst time that Xa (resp. Xb)
reaches Xa(Ta) (resp Xb(Tb));

3: For all t in [0;max(Ta; Tb)]; the machine works at full
capacity under both policies;

then Ta=Tb on the coupled path.

PROOF. We denote by n(t) the total number of service activ-
ities up to (and including) time instant t. From the de)nition
of nai , and because the machine works at full capacity, we
have for all t in [0;max(Ta; Tb)],

n(t)= na1(t) + n
a
2(t)= n

b
1(t) + n

b
2(t): (3)

Let di(t) be the number of demands for part type i, which
have occurred before the instant t. By coupling, these ar-
rivals modify the inventory level at the same instant for both
policies. A demand may then change the choice stated by the
policy, but for all t in [0;max(Ta; Tb)]; di(t) stays the same
for a and b. Each time uki is equal to 1, the corresponding
event is a production of a part. Thus,

X ai (t)− X ai (0)=
nai (t)∑
k=1

uki − di(t): (4)

Suppose now that Ta¡Tb. From the second condition of
Lemma 1, it follows that for i=1 or i=2,

X bi (Tb)− X bi (0)¿X bi (Ta)− X bi (0); (5)

and one of the inequalities is strict. Without loss of generality
suppose that

X b1 (Tb)− X b1 (0)¿Xb1 (Ta)− X b1 (0): (6)

From the )rst condition of the lemma, and from (5) and (6),
we obtain

X a1 (Ta)− X a1 (0)¿Xb1 (Ta)− X b1 (0) and

X a2 (Ta)− X a2 (0)¿X b2 (Ta)− X b2 (0): (7)
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By combining (7) with (4) we obtain that na1(Ta)¿n
b
1(Ta)

and na2(Ta)¿n
b
2(Ta), which from (3) is impossible. Using

similar arguments when Ta¡Tb, we have Ta=Tb.

Lemma 1 gives general conditions for two trajectories to
complete the same amount of work within the same time.
This result will be adapted to the class of hedging point
policies in the following corollaries.

COROLLARY 1. Consider two hedging point policies a; b and
two coupled trajectoriesXa; Xb generated by these policies;
such that

1. the switching curves of the policies have a common
point ẑ;

2. Xa and Xb start at the same initial point; such that
X1(0)6ẑ1 and X2(0)6ẑ2; then the trajectories reach ẑ at
the same time instant.

COROLLARY 2. A hedging point policy a is stable if (�1=�1+
�2=�2)¡1.

The proofs of these corollaries can be found in
de VXericourt et al. (1998).

4. PARTIAL CHARACTERIZATION OF THE
OPTIMAL HEDGING POINT POLICY

Consider the two-part-type system introduced in §2.1. With-
out loss of generality, let the two-part-types be numbered
such that b1�1¿b2�2. We derive in this section a structural
result for the optimal hedging point policy of the two-part-
type system introduced in §2.1. The main idea is to relate
the optimal control problem of the two-part-type system to
a single-part-type problem. Informally, we will exploit the
fact that the instantaneous cost function can be expressed
as c(x1; x2)= cm(x1)− f(x1; x2) for x260, where cm is the
part of the cost that only depends on x1, and f is a function
of x1 and x2 that captures the remaining part of the cost, cm

is an instantaneous cost function of the form

cm(x1)=
{
hmx1 x1¿0;
−bmx1 x160:

Intuitively, the function f should be proportional to W , the
total amount of work (in units of time) embodied in the
system.

DEFINITION 2. Let the aggregate workload be de)ned as
W (t)=X1(t)=�1 + X2(t)=�2.

We denote by Wa(t), the aggregate workload un-
der policy a. We also use the following notations:
W (X)=W (X(t))=W (t). Under certain conditions, the ex-
pectation of W (t) does not depend on the policy, or di+ers
only by a constant. Thus, the di+erence in average costs
of two given policies can be expressed by the di+erence
in cm(x1), which is the cost of a single-part-type system.
We are then able to give an analytical expression for the
switching curve when x2¡0.

Theorem 1 formalizes this characterization of the optimal
policy. The following lemmas give the properties of the
expected value of the aggregate workload mentioned above.

LEMMA 2. Consider two hedging point policies a and b;
and an interval [0; T ] such that for all t in [0; T ] the ma-
chine works at full capacity; then for all t in [0; T ] we have
RabE[W (t)]=E[Wa(t)]− E[Wb(t)]=Wa(0)−Wb(0).

PROOF. Consider the EQmodel. Let T̃ n be the time of the nth
event and ñ(t) the associated counting process, as de)ned in
§3. T̃ n can be a demand arrival or a service activity (recall
that in the EQ model, a service activity does not necessarily
correspond to a production completion). Consider a time
instant t, we have W (t)=W ( T̃ n) with n= ñ(t).

Suppose then that the instant T̃ n corresponds to a service
activity. It follows for policy a when Ca( T̃ n)= i that

E[Wa( T̃ n)]=E
∣∣∣∣Wa( T̃ n−1) +

Ui
�i

∣∣∣∣ ; (8)

where Ui is the discrete random variable of the EQ model.
From the de)nition of Ui we obtain that E[Ui=�i] =E[Ui]=�i
=1=�. Note that this value does not depend on the part type.
Thus, from (8) we have

E[Wa( T̃ n)]=E[Wa( T̃ n−1)] +
1
�
: (9)

If T̃ n corresponds to an arrival of type i, then

E[Wa( T̃ n)]=E[Wa( T̃ n−1)]− 1
�i
: (10)

Similarly, for policy b,

E[Wb( T̃ n)] = E[Wb( T̃ n−1)]− 1
�

or

E[Wb( T̃ n)] = E[Wb( T̃ n−1)]− 1
�i
: (11)

As presented in §3, because of the coupling, arrival
and service activity instants do not depend on the control
policy. Hence, T̃ i’s are the same under policies a and b.
From Equations (9), (10), and (11), it follows then that
Rab E[W ( T̃ n)]=Rab E[W ( T̃ n−1)] giving us the desired
result.

Based on Lemma 1, we can now formulate the follow-
ing theorem, which gives an analytical expression for the
switching curve in a certain region of the space.

THEOREM 1. Consider a two-part-type system where
b1�1¿b2�2. When x2¡0; the switching curve of the opti-
mal hedging point policy for this system is the straight-line
de)ned by

x1 = zm1 =

 ln
(
h1+b2�2=�1
h1+b1

)
ln �1�1

 ;
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Table 1. Data of the tested cases.

Case �1 �2 �1 �2 h1 h2 b1 b2 Zm

1 0.4 0.4 1 1 1 1 50 25 0
2 0.4 0.4 1 1 1 1 50 5 2
3 0.6 0.1 1 1 10 0.25 200 5 5
4 1.2 0.1 2 1 1 1 50 20 3

and the optimal hedging point policy a is of the form

Ca(x)=

{
1 if x1¡zm1 ; x2¡0;

2 if x1¿zm1 ; x2¡0:

PROOF. A proof of this theorem can be found in the
appendix.

REMARK. Note that when x2¡0, the switching curve de-
pends neither on the arrival process of type-2 demands, nor
on the holding cost of part-type-2.
It is interesting to note that the value of zm1 as calculated

above could be zero for certain a range of parameters. A
direct calculation gives then the following property:

COROLLARY 3. zm1 = 0 ⇔ h1�1 − h1�1¿b1�1 − b2�2.

5. NUMERICAL RESULTS AND HEURISTIC
POLICIES

5.1. Numerical Results

To numerically compute optimal policies, we have used the
value iteration algorithm to solve the optimality equation (2)
in a truncated state space. All the numerical examples we
have tested con)rm the optimality of a hedging point policy
(when �1 �= �2) as well as the results in Theorem 1.
We present a small subset of the computational exper-

iments to provide some insights on the behavior of the
optimal policy when x2¡0 varying the parameters of the
system. The data of the di+erent problems we have studied
are displayed in Table 1.
Figure 2 displays the optimal switching curves for the

four cases of Table 1. It can be seen that the position of
the switching curve (when x260) as computed by the value
iteration algorithm is equal to the theoretical value given by
Theorem 1, which is reported as Zm in Table 1.
Theorem 1 enables a quick interpretation of the optimal

policies displayed in Figure 2. Cases 1 and 2 di+er only in
their backlog costs. The respective position of the vertical
line re?ects the di+erences in ratios b1=h1, b2=h1 for these
two cases. Case 3 is an example where part 1 is much more
important with respect to part 2 in holding and backlog costs
and demand rates; the optimal policy is in this case is a
static priority policy. Finally, in case 4, the two parts are
asymmetric with respect to demand and service rates as well
as backlog costs again leading to a vertical line away from
zero.

Figure 2. Numerical results.

As seen in the above examples, the position of the optimal
switching curve when x2¡0 partially re?ects the asymmetry
of costs. Another determining factor for the position of the
line that emerges from Theorem 1 is %1, the traYc load in
isolation of part 1. Zm is increasing in %1 and can take large
values when part 1 dominates part 2 in terms of its traYc
load (even when costs may be almost symmetric).

5.2. Myopic Allocation

In §2, we have seen that no exact solution has been found for
the Dynamic Scheduling Problem (1). Consequently, e+orts
have been devoted to explore heuristic approaches.
For instance, a simple heuristic policy is a static priority

policy with a hedging point z, which switching curve is
de)ned by the straight-line x1 = z1. Computations can then
give an approximation of the optimal hedging point z for
this class of policies. These heuristics have been studied
by Wein (1992) and have been called by Peña-Perez and
Zipkin (1997) the static-priority (r) policy (with ri= zi=�i).
Using Theorem 1, we can see that this kind of policy would
perform eYciently in cases where the hedging point of part-
type-1 is close to the position of the straight-line, as it can
be seen in the third case of our numerical results. However,
in the more general case, the static priority will not perform
well.
Thus, other, more sophisticated yet easily computable

heuristics have been explored. In particular, Peña-Perez
and Zipkin (1997) have developed heuristics (the “myopic
allocation”) that perform substantially better than the static-
priority (r) policy. Veatch and Wein (1996) have also
studied these heuristics coupled with a Brownian approxi-
mation developed by Wein (1992). They show that these
myopic allocation policies give very good results when
applied to approximate the optimal switching curve. How-
ever, myopic allocation is based on intutive but informal
arguments. After its short presentation, we give a partial
justi)cation of myopic allocation using Theorem 1.
The main idea of myopic allocation is to look ahead a

service time of part-type i, say Si. The policy then allo-
cates the production capacity to the part type that increases
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the expected instantaneous cost (due to part-type i) at the
smaller rate. Let D(Si) be the number of demands of part
type i in the interval [0; Si]. If part-type i is produced and
if the current inventory level is xi, the expected instan-
taneous cost (of part i) after the completion of the ser-
vice time is given by g(xi) = E[c(xi + 1 − D(Si))]. Thus,
�iRg(xi)= g(xi + 1)− g(xi) is the rate at which producing
part-type i increases the instantaneous expected cost due to
part-type i. The myopic heuristic then selects the part-type
i with the minimum �iRg(xi). As an improvement of this
starting idea Peña-Perez and Zipkin (1997) then suggest us-
ing the cost function g(xi)=E[c(xi + 1− D(Ti))] where Ti
is exponentially distributed with rate (1 − %i)�i. The ratio-
nale behind the choice of Ti is that to increase xi by 1, the
machine will not only produce one unit of i but will also re-
spond to the new demands until the inventory level reaches
xi+1. This “replenishment time” has a mean proportional to
(1− %i)−1. The improvement brought by the incorporation
of the replenishment time as the look-ahead period was ver-
i)ed by their numerical examples. Indeed, they remark that
the myopic policy with Ti performs better than the myopic
policy with Si, which is better than the static priority rule.
The following lemma provides a formal justi)cation of the
excellent performance of these myopic approaches.

LEMMA 3. The myopic allocation policy applied with the
sojourn time Ti is an optimal policy when x2¡0.

PROOF. A direct calculation of the allocation index with Ti
yields that the myopic allocation policy states to produce
part-type-1 when x2¡0 if and only if

x1¡min
{
x1 : %

x1+1
1 ¿

�1h1 + �2b2
�1h1 + �1b1

}

⇔ x1¡
 ln

(
h1+b2�2=�1
h1+b1

)
ln �1�1

:
Using Theorem 1, the myopic allocation policy is thus
optimal when x2¡0.

This lemma explains the good performance of the myopic
policy computed with the sojourn time. Another direct cal-
culation shows that, for the myopic policy with the service
time, the switching curve is also a straight line when x2¡0
with

x1 =

 ln
(
h1+b2�2=�1
h1+b1

)
ln �1
�1+�1

:
Thus in light traYc conditions, the myopic policy with Si is
close to the optimal policy when x2¡0. However in heavy
traYc conditions for part-type-1, the straight line is at x1 = 0,
while this line tends to in)nity for the optimal policy. This
explains in part that the myopic policy with the service time
can perform poorly in contrast with the one that uses the
sojourn time.

6. CONCLUSION

Using sample path comparison for hedging point policies,
we have partially characterized the switching curve that
determines the production priorities for the two-class make-
to-stock queue. Our results suggest that in the case where
both products are backlogged, it is optimal to produce the
most expensive item in terms of the backorder cost (the
product with the higher b�) until its stock reaches a prede-
termined (nonnegative) level before switching to save the
less expensive product from backlog. In addition, it is shown
that this safety stock level does not depend on the level of
backlogs of the less expensive product and can, in certain
cases, be signi)cantly large, depending on the cost and traYc
parameters.
Similar results have been shown for an analogous con-

tinuous ?ow model. On one hand, it may be considered
somewhat surprising that the optimal policy should have the
identical structure for the make-to-stock queue as for the
two-part-type continuous model with an unreliable machine.
On the other hand, the fact that the optimal policy has the
same structure for two models that represent randomness in
very di+erent ways indicates the robustness of the structure.
This strongly suggests, for instance, that for the continuous
model with part type dependent breakdown rates the struc-
ture should be retained.
Our results contribute to the understanding of the control

problem of the single-stage multiproduct system. These re-
sults could also be useful for the multiproduct multistage
system, which constitutes a major challenge both from theo-
retical and practical perspectives. Future research will focus
on some of the issues in multiple stage production.

APPENDIX

RESULTS IN THE SINGLE-PART-TYPE SYSTEM

We now derive a result based on comparisons of the cost
function of (1) for trajectories generated by two di+erent
policies over a given interval of time. The system consid-
ered here is a single-part-type system with exponential pro-
duction and demand interarrival times, with rates � and �,
respectively. In this case, the controls associated with the
policies are of the form

Ca=
{
0 the action is to idle;
1 when the action is to produce:

For this system a hedging point policy is optimal. As
noted by Buzacott and Shanthikumar (1993) and Veatch
and Wein (1996), the optimal hedging point z is given by
x1 = zm1 = 	ln(h=(b+ h))= ln(�=�)
.
Theorem 2 shows that if we choose trajectories X a and
X b such that they satisfy speci)c conditions on an interval
[0; T ], have the same initial and )nal conditions, and their
)nal values at T are greater than the optimal hedging point
value, then the cost incurred by X a is no greater than that
incurred by X b.
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Figure 3. Case 1 p1¿zm1 .

THEOREM 2. Consider two trajectories X a and X b and an
interval [0; T ] such that X a and X b satisfy the following
conditions:
(1) For all t ∈ [0; T ] such that X a(t)¡z; X a is generated

by the optimal policy;
(2) For all t ∈ [0; T ] such that X a(t)¿z; X a(t)6X b(t);
(3) X a(0)=X b(0) and X b(T )=X a(T )¿z.

Then,E[
∫ T
0 c(x

a(T ))dt |xa(0)=x]6E[∫ T0 c(xb(t))dt |xb(0)
= x].

PROOF. The proof can be found in de VXericourt et al. (1998)
and is an adaptation of a corresponding result by Srivatsan
and Dallery (1998).
Note that the trajectories considered are not generated

by hedging point policies. But they satisfy conditions that
are relevant in the context of the two-part-type system as
presented in the following proof.

Proof of Theorem 1

We prove the theorem by contradiction. Let Policy b be
an optimal hedging point policy with a nonnegative hedging
point, z=(z1; z2), and a switching curve, which di+ers from
the straight line de)ned in Theorem 1. This switching curve
for Policy b has at least one point on the x1 axis. Let p1 be
the minimum of the x1 coordinates of these points. There
are two cases to be considered, depending on whether p1 is
greater than zm1 or not. For each case, we construct a policy
a which is better than b. Here, we give the proof of the )rst
case where we suppose that p1¿zm1 . The reader is referred
to de VXericourt et al. (1998) for a proof of the second case.
Let us construct another hedging point policy, Policy a,

with the same hedging point z as Policy b, and a switch-
ing curve, which is: a vertical line through (zm1 ; 0) for
x2¡0; the x1 axis for x2 = 0; zm16x16p1; the same as the
switching curve of Policy b elsewhere. Policies a and b are
illustrated in Figure 3. Consider two trajectories, Xa and
Xb, that start at the hedging point and evolve under Policies
a and b, respectively. These trajectories can separate only
in the region where the controls of policies a and b are dif-
ferent. Note that this region is included in the region x2¡0
and x1¡p1. Let s− denote the time instant just before the

two trajectories separate. Since X a1 (s)=X
b
1 (s)¡p1, from

Corollary 1, both trajectories reach the point (p1; 0) at the
same time instant T1.
When trajectories Xa and Xb separate again, the above

scenario restarts. Thus, it is suYcient to prove that Policy a
is better than Policy b for every renewal cycle. This is done
in what follows.
Consider the costs of Policies a and b over the interval

[s; T1]. From §2.1, the instantaneous cost function for x2¡0,
can be expressed as: c(x1; x2)= cm(x1)− b2�2W (x1; x2) for
x260, where W is the aggregate workload, and cm is the
instantaneous cost function given by

cm(x1)=
{
hmx1 = (h1 + b2�2=�1)x1 x1¿0;
−bmx1 = − (b1 − b2�2=�1)x1 x160:

Because hedging point policies are stable, it follows that

RabEx

[∫ T1
s
c(X(t))dt

]

=
∫ T1
s
RabEx[c

m(X1(t))]dt − b2�2
∫ T1

s
RabEx[W (t)]dt:

At time s we have Wa(s)=Wb(s), and for all t in [s; T1],
the machine works at full capacity. Thus for t in [s; T1]; Xa

and Xb verify the conditions of Lemma 2, and we obtain
RabEx[W (t)]= 0. So the di+erence in expectations of cost
between the two trajectories in [s; T1] is the same as that
for system where the instantaneous cost function in the
nonpositive x2 region is given by cm. It can be noted that this
cost function depends only on the value of the part-type-1
surplus, x1.
Consider the behavior of X1 over [s; T1] when X2¡0, under

Policies a and b, respectively. Under Policy a, part-type-1
behaves as if it were following the policy given by

a1 =

{
1 xa1¡z

m
1 ;

0 xa1 = z
m
1 :

Thus the surplus trajectory for part-type-1 under Policy a
over the interval [s; t1] when X a2 (t)¡0 is the same as the one
that is generated by an optimal hedging point policy for the
single-part system where the arrival rate, the production rate
and the function of cost are, respectively, �1; �1, and cm.
One can see that the corresponding optimal hedging value
is given by zm1 . Also, by construction, when X a2 (t)= 0 we
have X a1 (t)6X

b
1 (t) for t ∈ [s; T1], such that X a1 (t)¿z

m
1 and

the trajectories Xa and Xb satisfy conditions of Theorem 2,
from which we have RabEx[

∫ T1
s c

m(X1(t))dt]60, giving us
the result.
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