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We consider a capacitated supply system that produces a single item that is demanded
by several classes of customers. Each customer class may have a different backorder

cost, so stock allocation arises as a key decision problem. We model the supply system as a
multicustomer make-to-stock queue. Using dynamic programming, we show that the optimal
allocation policy has a simple and intuitive structure. In addition, we present an efficient
algorithm to compute the parameters of this optimal allocation policy. Finally, for a typical
supply chain design problem, we illustrate that ignoring the stock allocation dimension—a
frequently encountered simplifying assumption—can lead to incorrect managerial decisions.
(Inventory/Production: Stock Allocation; Stochastic: Multi-Class; Queues: Make-to-Stock System)

1. Introduction
Increasing demand variety and product prolifera-
tion at all stages of supply chains result in highly
complicated structures. To deal with this complex-
ity, a number of design strategies have emerged in
recent years. Delayed product differentiation, central-
ization of stocks, or elaborate contracts between sup-
ply chain partners are well-known examples of such
approaches. In many cases, the underlying design
problem involves a stock allocation aspect. This paper
investigates efficient stock allocation strategies and
illustrates their impacts on a representative redesign
decision.
The allocation problem typically appears when a

supplier maintains a common stock in order to sat-
isfy different customers. The stock, as well as the
production capacity, are limited resources, therefore
they must be rationed between the customers, possi-
bly according to their relative economic importance
for the supplier.
Delayed product differentiation is an attractive

strategy in dealing with end-product variety. If dif-
ferentiation can be postponed to a late stage in the

supply process, a common stock of standard items is
held and customer demands are responded through
a rapid differentiation operation. When the customers
have different economic values for the supplier, an
allocation (or rationing) problem arises for the com-
mon stock. Centralization of inventories is another
attractive design strategy to face geographical vari-
ety. In multiretailer systems, items are differentiated
geographically due to multiple locations. Centralizing
the retailer inventories to a common location raises
again a stock allocation problem between the retail
locations.
Both delayed product differentiation and centraliza-

tion of inventories require significant changes in the
structure of supply chain processes. A typical ques-
tion that managers face is whether or not the redesign
effort is compensated by the potential benefits of
these strategies. In terms of inventory centralization,
Eppen (1979) and Schwarz (1989) are examples that
explore the benefits of pooling inventories. Recently,
Alfaro and Corbett (1999) and Benjaafar et al. (2001)
have presented detailed investigations for uncapac-
itated and capacitated systems respectively. As for
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delayed differentiation, recent papers by Lee (1996)
and Lee and Tang (1997) investigate inventory-cost-
related benefits.
Another important class of design problems con-

cerns supply chain contracts and their specifications.
When each customer has a specific contract, delivery
performance requirements may differ from one cus-
tomer to another. This exerts pressure on the supplier
to differentiate stock allocation priorities.
Despite the recent emphasis in analyzing such

design issues, stock allocation strategies are rarely
taken into account in these investigations. There
seem to be two main reasons for this. First, as
explained by Tsay et al. (1999) stock allocation prob-
lems are extremely difficult and generally consid-
ered intractable. Second, the allocation aspect is often
viewed as an operational decision whereas the design
problem is considered as a strategic one. This leads
to the implicit assumption that stock allocation effi-
ciency has little effect on the global outcome and
hence can be disregarded. In this paper, we, not only
show that the optimal allocation policy can be explic-
itly described, but also illustrate that it plays a critical
role in the design decision.
In our model there is a supplier that produces

the standard items and places them in a buffer in a
make-to-stock manner. There are multiple classes of
demand that can either be satisfied from stock (when-
ever available) or can be backordered. Since differ-
ent demand classes have different backorder costs,
some demands can be backordered in consideration
of future (and more expensive) demand arrivals even
though there may be items available in stock. The
supplier has finite capacity and processes items one
by one. The dynamic decision problem of interest is to
find an optimal stock allocation policy that minimizes
average inventory holding and backorder costs.
The basic stock allocation (or stock rationing) prob-

lem has been studied in various contexts in inven-
tory control. Topkis (1968) formulates and solves an
optimal dynamic rationing problem for an uncapac-
itated discrete time system facing random demand
and shows that the optimal policy has a particu-
lar threshold structure that reserves items in stock
for future (uncertain) demands of more valuable cus-
tomers. Nahmias and Demmy (1981) consider a two-
class uncapacitated inventory system and employ

simple ordering and rationing policies to analyze the
cost improvements due to stock rationing. Cohen
et al. (1988) study a two-class inventory system that
employs an �s� S�-type ordering policy and a strict
priority rule for stock rationing. Finally, Frank et al.
(1999) study the rationing problem for two classes
of customers where, due to the supply contract, the
demands of the first class must be completely satisfied
but the demands of the second class can be partially
satisfied. It is shown that the optimal rationing pol-
icy does not have a simple structure but that effective
heuristics can be developed.
All of the above articles raise and analyze interest-

ing issues in the context of inventory control. How-
ever, they do not model an important characteristic
of the problem: the limited production capacity of the
underlying supply system. An alternative modeling
approach in this context is to employ queueing-based
systems to explicitly model the limited production
capacity and the associated randomness in material
processing. We follow this approach and model the
production stage by a single server. Since the sys-
tem operates in a make-to-stock mode, the under-
lying basic model is the make-to-stock queue (see
Buzacott and Shanthikumar (1993)). More precisely,
our model follows the single-server, single-product,
make-to-stock queue with multiple demand classes
introduced in Ha (1997b, c). Ha (1997b) studies the
stock rationing problem in a multiclient system with
lost sales and characterizes the optimal policy. Carr
and Duenyas (2000) investigate the structure of the
optimal policy for a related two-class admission con-
trol/sequencing problem where demands from one of
the classes can be rejected.
In a later article, Ha (1997c) studies a two demand

class rationing problem for the make-to-stock queue
where unsatisfied demands are backordered. In this
case, the analysis is considerably more difficult than
for the lost sales case due to the two-dimensionality
introduced by backordered demands. Nevertheless,
Ha shows that the optimal production policy is of
base-stock type and that the optimal stock alloca-
tion policy has a monotone switching curve struc-
ture. Unfortunately, these properties do not lead to a
complete characterization and, in general, to tractable
policies. In this paper—as a special case of our more
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general result—we completely characterize the opti-
mal stock allocation policy for the two-class problem.
This optimal policy turns out to be very simple to
understand and facilitates the formulation of manage-
rial insights.
Moreover, there was apparently little hope of

obtaining a full characterization for beyond two-
customer classes. In fact, as stated in the conclu-
sion of Ha(1997c), “ � � � as the number of customer
classes increases the optimal policy will be difficult
to compute because of the curse of dimensionality
and will be even more difficult to implement.” We
present in this paper a complete solution of the opti-
mal stock allocation problem for any number of cus-
tomer classes, generalizing the previous simple struc-
ture of the two-customer class cases.
More precisely, we consider the multiple-demand

class extension of the two-demand class make-to-
stock model by Ha (1997c). We investigate the struc-
ture of optimal stock allocation policies through
dynamic programming. By exploiting the nested
structure between an n-class problem and a related
n− 1 class problem, we obtain an exact characteriza-
tion of the optimal stock allocation policy. Moreover,
the characterization of the optimal policy is surpris-
ingly simple: There are thresholds for each product
such that it is optimal to satisfy the arriving demand
from a customer from the on-hand stock if the stock
level is above the threshold for that customer, and
to backorder the demand otherwise. These thresholds
also determine production priorities for backordered
products in a simple way. Finally, we present an effi-
cient algorithm to compute the optimal threshold lev-
els thereby obtaining a complete characterization of
the optimal policy.
We then focus on the investigation of the rela-

tive value of efficient stock allocation with regards
to design decisions concerning delayed product dif-
ferentiation or inventory centralization. In particular,
we compare the potential inventory related benefits
of such design decisions for two cases: when stock
allocation is disregarded (by using a plausible but
suboptimal allocation policy) and when stocks are
allocated efficiently (using the optimal policy). The
analysis shows that disregarding the stock allocation

aspect can easily lead to wrong conclusions on system
design.
In §2, we introduce the model and formulate the

stock allocation problem as a dynamic programming
problem. In §3, we study the structural properties of
the optimal policy. In §4 we present the computa-
tion of the optimal policy for the problem of average
cost minimization. In §5, we investigate the impact
of stock allocation on inventory pooling through a
numerical study. Our conclusions can be found in §6.

2. The Model
Consider a supplier who produces a single item at
a single facility for n different classes of clients. The
finished items are placed in a common inventory.
When this inventory is empty, demands are backo-
rdered. When it is not, an arriving demand can be
either satisfied by the on-hand inventory, or can be
backordered. The items held in stock have unit hold-
ing costs of h (per unit time). Customers of class-i
have unit backorder costs of bi (per unit time). We
denote by b, the n-dimensional vector of backorder
costs whose ith dimension is bi. Suppose without loss
of generality that the backorder costs are ordered such
that b1 > · · · > bn; that is, customer classes are ordered
from the most valuable to the least valuable one. Note
that the strict ordering is without loss of generality;
if two distinct classes have identical backorder costs
then they can be lumped into a single aggregate class.
The demands of class-i customers arrive according
to a Poisson process with rate �i and we note � =
��1� � � � ��n�. The supplier’s facility is modeled by a
single server whose processing time is exponentially
distributed with mean 1/�. Finally, in order to ensure
stability, we assume that

∑n
i=1 �i < �.

At any time, one can decide to produce and allo-
cate the finished product to satisfy the backorders of
a class, to produce and allocate the product to the
stock or not to produce at all. When a demand arrives,
one can decide either to satisfy it from the on-hand
inventory, or to backorder it. With linear backorder
costs, an arriving demand of class 1, which is the most
expensive class, is always satisfied from the inventory
if possible (see Ha 1997c). For class i > 1, backorder-
ing the arriving demand and rationing the inventory
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can be needed to protect the classes 1 � � � i− 1 from
being backordered in the future. We can not have both
inventory and backorders of class 1, but we can have
inventory with class i backorders for i > 1. The state
variable of our system can be described by x�t� =
�x1�t�� � � � � xn�t��, with x1 ∈ Z and xi ∈ Z− for 1< i ≤ n.
x+
1 �t� =max�0�x1�t�� is the on-hand inventory at time

t. x−
1 �t� =−min�0�x1�t�� is the number of backorders

of class 1 at time t. For i > 1, −xi�t� are the number
of backorders of class i at time t.
A control policy states the action to take at any

time given the current state x�t�, and we restrict the
analysis to Markovian policies since the optimal pol-
icy belongs to this class (Bertsekas 1995). Let C��x� =
�C�

0 �x�� � � � �C�
n �x�� the control associated with a pol-

icy �. C�
0 corresponds to the control action pertaining

to the production of items and to their allocation. C�
k

is the control action upon arrival of a class k demand.
More formally, we define:

C�
0 �x� =




0 not to produce
1 to produce and to allocate the

produced item:
to the on-hand inventory when
x1 ≥ 0
or to satisfy a backorder of class 1
when x1 < 0

k 1 < k ≤ n, to produce and to allocate
the item to a backorder of class k�

C�
1 �x� = 1 to satisfy an arriving

class 1 demand from the inventory�

or to backorder it if the inventory
is empty

C�
k �x� =



1 to satisfy an arriving class k

demand from the inventory
k to backorder an arriving class k

demand�

�

k > 1�

C�
1 is constant and is introduced for notational con-

sistency. It states to always satisfy the demands of the
most expensive class, if possible. C�

k for k > 1 corre-
sponds to the rationing of class k.

In state x, the system incurs a cost rate c�x� which
is equal to

c�x� = hx+
1 + b1x

−
1 −

n∑
i=2

bixi�

If we denote by � the discount rate, the objec-
tive is then to find a control policy which mini-
mizes the expected discounted inventory costs over
an infinite horizon. We define the n-class problem
Pn�����h�b��� by:

min
�

E�
x0

[∫ �

0
e−�tc�x�t�� dt

]
(1)

where x0 = x�0�.
In most of the rest of the paper we will concentrate

on this discounted cost optimization. However, we
will also be interested in the closely related average
cost case given by:

min
�

lim
T→�

E�
x0

[∫ T

0 c�x�t�� dt
]

T
� (2)

Let Sn be the state space with Sn = Z× �Z−�n−1 and
x = �x1� � � � � xn� an element of Sn.
Without loss of generality, we can take � +∑n
i=1 �i + � = 1. The optimal value function v∗ for

Pn�����h�b��� can be shown to satisfy the following
optimality equations:

v∗�x� = c�x�+�T0v
∗�x�+

n∑
k=1

�kTkv
∗�x� (3)

where the operators Tk are,

T0v�x� = min
1<i≤n

[
v�x��v�x+e1��v�x+ei I�xi<0��

]
where I is the indicator function

T1v�x� = v�x−e1�

Tkv�x� =
{
min�v�x−ek�� v�x−e1� if x1 > 0
v�x−ek� if x1 ≤ 0

for k such that 1 < k ≤ n

We also define T the operator such that Tv�x�= c�x�+
�T0v�x�+∑n

k=1 �kTkv�x�. T0 is the operator associated
with the optimal control of production C�

0 , and Tk

for 1 ≤ k ≤ n associated with the optimal control of
rationing C�

k . Once again, the operators T and Tk
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depend on n, but we suppress this dependence for
simplicity.
It is convenient to define the operators !ij of the

function v defined over Sn such that: !ijv�x� = v�x+
ei�−v�x+ ej �, with ei the unit vector of dimension i.
We also define the first difference operators !i such
that !iv�x� = v�x+ ei�− v�x�. In the sequel, we will
consider at the same time problems with different
numbers of classes of customers. Note that !ijv, !iv,
as well as the vector ei, should depend on the num-
ber of classes, but for the sake of simplicity, the same
notation will be used for all n. Also, we take !ijv�x�=
!iv�x� if j is strictly larger than the dimension of x (for
instance, with n classes of customers !i�n+1�v = !iv).
Furthermore, for the sake of clarity, we will implic-
itly assume that, for i �= 1 and j �= 1, xi < 0 and xj < 0
when we consider !ijv�x� or !iv�x� (otherwise these
quantities are not defined). Finally, xi = �xi

1� � � � � xi
i�

denotes the i-dimensional vector constructed on a n-
dimensional vector x, such that for 1≤ k ≤ i xi

k = xk. It
follows from the previous definitions that !inv�xn−1�=
!iv�xn−1�.
Finally, in the rest of the paper, we will frequently

refer to the most expensive class of customers which
has backordered demands. This class is given by the
following function m:

∀x ∈ Sn�m�x� =
{
mini$xi<0�i� if ∃i� xi < 0
n+1 otherwise

�

3. Exploration of the Optimal
Policy

3.1. Structural Results
In this subsection, we study the structure of the opti-
mal policy for n classes of customers. Ha (1997c)
presents an investigation of the structure for two
demand classes. Some of the important preliminary
properties therein can be generalized to the multiclass
case. Lemma 1 provides this generalization. It estab-
lishes four properties of the optimal policy (where the
last two are consequences of the first two).
The first two properties are fairly intuitive. Assume

that there are backordered demands of a class. The
first property states that it is better to satisfy these
demands than to do nothing. In other words, the

facility has to produce when there are unsatisfied
demands. The second property states that if there are
backordered demands of two different classes, satis-
fying the more expensive one saves a larger cost than
satisfying the other. This is reminiscent of the c� rule
for the control of multiclass queues, or of the b� rule
of the corresponding two product make-to-stock sys-
tem (Ha 1997a). The first consequence of this result
is that, if the policy states to increase the inventory
when there are backordered demands of class i, it
still states to produce for inventory rather than to sat-
isfy backordered demands of the classes less expen-
sive than i. The second consequence is symmetrical
to the first one. It says that if the policy states to
satisfy an arriving demand of class j with the on-
hand inventory, it also states to satisfy the arriving
demands of the classes more expensive than j. These
results can be obtained directly through induction on
the time horizon by value iteration. Hence, we con-
sider a set of value functions verifying the conditions
which correspond to the four properties described
above. (Remember that we implicitly take x with xi <
0 and xj < 0 when we consider !ijv�x� or !iv�x�.)
We define a set �n of functions on Sn such that if

v ∈�n then,
(1) !iv�x� < 0
(2) !ijv�x� < 0 when 1≤ i < j
(3) !1jv�x� < !1iv�x� when 1 < i < j
(4) !1jv�x−ej � < !1iv�x−ei� when 1 < i < j

The following lemma states that the dynamic pro-
gramming operator T preserves �n. A direct applica-
tion of value iteration implies that the optimal value
function belongs to �n.

Lemma 1. If v ∈�n then Tv ∈�n.

Proof. See Appendix A.
A useful consequence of Lemma 1, is that for v ∈

�n, the operators Tk satisfy,

T0v�x� = v�x+ek�+min�0�!1kv�x��

with k = m�x� (4)

Tkv�x� = v�x−e1�+min�0�!1kv�x−ek −e1��� (5)

with the notation !1�n+1�v = !1v when m�x� = n+ 1.
Note then that from (4) and (5) C� is entirely deter-
mined by the sign of !1iv, for 1≤ i ≤ n+1.
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It is interesting to note that the parallels with the
approach of Ha (1997c) ends with Lemma 1. From
here on, we exploit these basic properties using a dif-
ferent approach.

3.2. Multilevel Rationing Policies
Consider a particular class of policies entirely
described by n+ 1 parameters, one corresponding to
each type of demand, and the last one corresponding
to a base stock level in the following way. If we denote
by z the n+ 1 dimensional vector of these parame-
ters, zk is the rationing level of demand k, that is, all
arriving demands of this type are backordered when
the on-hand inventory is below (or equal to) zk. zn+1
is the base-stock level of the system for production.
Moreover, when a part is produced it is allocated to
a backordered demand of class k, only if the on-hand
inventory is larger than or equal to zk. It is allocated to
the stock otherwise. Note that if some of these param-
eters are equal, the resource is allocated to the most
expensive customer class (that is to the class m�x� in
state x). This class of policies will be referred to as
Multilevel Rationing (ML) policies. These policies are
reminiscent of the multiple threshold policy charac-
terized by Ha (1997c) in the lost sales case.
Definition 1 gives a formal description of ML poli-

cies based on Controls C�
k , which is required by the

technical arguments that follow. An alternative and
somewhat simpler definition can be found in de Véri-
court et al. (2001).
Definition 1. An ML policy �, is a policy charac-

terized by an �n+1� dimensional parameter z where
z1 = 0≤ z2 ≤ · · · ≤ zn+1, such that

C�
0 �x� =



0 if x1 ≥ zn+1 and m�x� = n+1
k if x1 ≥ zk and m�x� = k < n+1
1 if x1 < zk and m�x� = k

C�
k �x� =

{
1 if x1 > zk and m�x� ≥ k

k if x1 ≤ zk

z is called the rationing level vector.
To illustrate the behaviour of an ML policy, con-

sider the following example with 3 classes of cus-
tomers. Let us assume that z4 > z3 = z2 > 0. When the
stock level x1 is between z2 + 1 and z4, all arriving
demands are satisfied. When x1 ≤ z2 = z3, demands

of classes 2 and 3 are backordered such that the on-
hand stock is reserved for class 1. As for the produc-
tion, when x1 < z2 = z3, the policy states to replenish
the stock until x1 = z2 = z3. At this point, backlogged
demands of class 2 are satisfied, followed by those
of class 3. Finally, production takes place to bring the
stock level to the base-stock level z4.
Remarks. Control C�

k is not specified when x1 >

zk and m�x� < k, so that the policy does not neces-
sarily state to satisfy an arriving demand of type k.
But states such that the most expensive backordered
demands are more expensive than k when x1 > zk are
transient for ML policies. Furthermore, the policy can
state to produce even when x1 = zn+1. For recurrent
states, it is only when x1 = zn+1 and m�x� = n+1, that
the policy states not to produce. In this case, we say
that x is at the base-stock level of the system.
We claim that the optimal policy is an ML policy.

We will argue inductively on the number of customer
types. The construction of the proof is based on the
following key property: The optimal value function
of an n-dimensional problem is closely related to the
optimal value function of an n−1 dimensional prob-
lem, in the region of the state space where x1 ≤ zn.
In particular, it will be shown that for this region,
the corresponding controls do not depend on the
nth dimension. The transformation which relates an
n dimensional problem Pn�����h�b��� to an n− 1
dimensional problem is based on a decomposition of
the cost function such that c�x� = c̃�xn−1�− bn

∑n
i=1 xi.

The operator ˜�·� maps the set of linear cost functions
defined on Sn on to the set of linear cost functions
defined on Sn−1 and is such that:

h̃ = h+ bn and b̃ = bn−1− bn1n−1� (6)

where 1n−1 =
∑n−1

i=1 ei.
The cost c̃�xn−1� corresponds to the cost of an n−1

dimensional problem, which does not depend on xn.
More specifically, this subproblem is:

Pn−1
(

�

1−�n

�
�n−1

1−�n

�
h̃

1−�n

�
b̃

1−�n

�
�

1−�n

)
(7)

(where the factor 1−�n is a consequence of the uni-
formization with discounting, which allows to discard
the events due to the arrival process of class n).

Management Science/Vol. 48, No. 11, November 2002 1491



DE VÉRICOURT, KARAESMEN, AND DALLERY
Optimal Stock Allocation in Capacitated Supply Systems

To start the induction, assume that the optimal pol-
icy of any n− 1 dimensional problem is an ML pol-
icy. In particular, the optimal policy �∗ of the n− 1
dimensional subproblem (7) is an ML policy. Denote
by z∗ = �z∗1� � � � � z∗n� its rationing level vector. Note also
that the optimality equations associated to �∗ can be
expressed as:

v∗�x� = c̃�x�+
n−1∑
k=1

�kTkv
∗�x�+�nv

∗�x�+�T0v
∗�x� (8)

where v∗ is the optimal value function, c̃ is the linear
cost function of the problem and x ∈ Sn−1.
Based on policy �∗ and its associated value func-

tion v∗, we introduce �n ⊂ �n, a structured set of
value functions. Value iteration will be used to show
that the optimal value function of the n-dimensional
original problem belongs to this particular set. �n

is defined by the following conditions, with �x+ ei 1
equal to x1+1 if i = 1 and to x1 otherwise:
If v ∈ �n ⊂�n, then
Condition C.1. !ijv�x� = !ijv

∗�xn−1�, 1 ≤ i < j ≤ n,
when �x+ei 1 ≤ z∗n;
Condition C.2. !1iv�x� ≥ 0, i = m�x� < n+1, when

x1 ≥ z∗n;
Condition C.3. For x such that m�x� ≥ n and

x1 ≥ z∗n
(a) !1nv�x� is increasing in x1 and decreasing in xn,
(b) !1v�x� is increasing in xn or equivalently !nv�x�

increasing in x1,
(c) !1v�x� is increasing in x1 and !nv�x� increasing

in xn,
Condition C.4. !1v�x� ≤ 0, when x1 < zn+1, where

zn+1 = minx�!1v�x�0� � � � �0� > 0� where zn+1 of Con-
dition C.4 is well defined from Condition C.3.c.
Note that !ijv

∗�xn−1� of Condition C.1 is well defined
when j = n from §2 (!inv

∗�xn−1� = !iv
∗�xn−1�).

�1 is only characterized by Conditions C.3.c where
z∗1 = 0 and C.4. Clearly, the optimal value function is
convex in x1 when n = 1. The optimal policy is then
a base-stock policy. In other words, when the system
consists of a single class of customers, the optimal
value function belongs to �1 and the optimal policy
is an ML policy. The following statement is the gen-
eralization of this result that we are going to show
inductively:

Definition 2. We say that P�n� is true, if for all k
dimensional problems, k ≤ n,
(1) the optimal policy is an ML policy,
(2) the optimal value function belongs to �k.

The previous discussion states that P�1� is true. If we
assume that P�n− 1� is true, then �n is well defined
and not empty since v∗�xn−1� ∈ �n. Moreover, under
this assumption, the next property establishes the first
part of P�n�.
Property 1. If P�n− 1� is true, then policy �, the

associated policy to v ∈ �n, is an ML policy with
the rationing level vector z = �z∗� zn+1 where zn+1 is
defined by Condition C.4.
Proof. See Appendix A.
In order to establish the second part of P�n�, the fol-

lowing lemma states that the operator T preserves �n.

Lemma 2. If P�n − 1� is true and if v ∈ �n then
Tv ∈ �n.

Proof. See Appendix A.
Lemma 2 shows that the ML policies associated

with �n are preserved under the assumption that P�k�
is true for k < n. In other words, the n-dimensional
policy associated to a value function of �n, is not only
constructed on any n− 1-dimensional ML policy but
more precisely, it is constructed on the optimal n− 1-
dimensional ML policy. Theorem 1 states this result
more precisely.

Theorem 1. For all n-dimensional problems, the opti-
mal policy is an ML policy with the rationing level vector
zn. In addition zn is such that for k < n its projection zk

is the optimal rationing level vector of the k dimensional
subproblem:

Pk����k�h+ bk+1�bk − bk+11k���� (9)

Proof. See Appendix A.
For the two-class problem, the optimal policy has a

simple interpretation in terms of the switching curve
separating the state space in two regions (see Ha
1997c for more details). This curve is, in fact, a verti-
cal line defined by x1 = z2. This phenomenon was also
identified in other related two-dimensional problems
involving multiclass resource sharing (see de Véri-
court et al. (2000)).
In order to gain insight into why the optimal con-

trol policy depends only on x1 and m�x�, let us focus
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on the two-class case. The instantaneous cost func-
tion can, in this case, be expressed as follows: c�x� =
�h+ b1�x

+
1 − �b2− b1�x

−
1 − b2�x1+x2�.

The key observation then is that �x1+x2� does not
depend on the allocation policy, while �h+ b1�x

+
1 −

�b2 − b1�x
−
1 is the instantaneous cost of a single-class

system (which corresponds to subproblem (9)). It
should be noted that this type of transformation
exploits the linearity of the cost function, suggesting
that Theorem 1 does not directly extend to other (non-
linear) cost structures.

4. Optimizing the Parameters of
the ML Policy

4.1. Extension to the Average Cost Problem
In the previous sections, we concentrated on the
discounted cost problem where the slightly simpler
structure of the optimality equation facilitates induc-
tion type arguments. Here, we argue that all struc-
tural results that were obtained in the discounted cost
case can be extended to the average cost case denoted
by Pn�����h�b�. In the average cost case, the opti-
mal (relative) value function v∗ and the optimal cost
g per unit time satisfy an optimality equation of the
following form:

v∗�x�+g = c�x�+�T0v
∗�x�+

n∑
i=1

�iTiv
∗�x� (10)

To argue that the structural properties are retained
for the average cost case, we use the conditions of
Weber and Stidham (1987), under which the aver-
age cost problem can be obtained as the limit of dis-
counted cost problems as the discounting factor van-
ishes. Theorem 1 can then be directly adapted to the
average cost problem, as it is stated in the following
corollary:

Corollary 1. For all n-dimensional problems, the
optimal policy of the average cost problem is an ML policy
with the rationing level vector zn. In addition zn is such
that for k < n its projection zk is the optimal rationing level
vector of the k dimensional subproblem:

Pk
(
���k�h+ bk+1�bk − bk+11k

)
� (11)

4.2. An Exact Algorithm to Compute the Optimal
Parameters

Theorem 1 gives a precise characterization of optimal
allocation policies but does not address a significant
issue: how to determine the parameters of the opti-
mal ML policy. For average cost minimization, the
nested structure of ML policies can be exploited in a
systematic manner in order to construct an efficient
algorithm to compute the rationing levels as well as
the cost of the optimal policy. As shown in §3, the suc-
cessive rationing levels of an ML policy are computed
using successive subproblems of the same type. The-
orem 2 presents the resulting optimization algorithm.
Note that even though the algorithm is presented for
the optimal policy below, it can also be applied to
compute the average cost for any ML policy with a
given rationing level vector. (Throughout �y� denotes
the largest integer that is less than or equal to y).

Theorem 2. Consider an n-dimensional average cost
problem. Construct the sequences zk, gk, and )k as follows:
Initialize z1 = g1 = )0 = bn+1 = 0.
For k = 1� � � � �n do,

)k = )k−1+
�k

�
�

zk+1 = zk +
 ln )k�h+bk+1�

)k�h+bk�+�1−)k��gk−�h+bk�zk�

ln)k



gk+1 =
(

zk+1−
)k

1−)k

)
�h+ bk+1�

+
(

gk −
(

zk −
)k

1−)k

)
�h+ bk�

)
)

zk+1−zk

k �

The optimal rationing level vector z and the optimal cost
g∗, are then equal to: z = �z1� � � � � zn+1� and g∗ = gn+1�

Proof. See Appendix A.
Remark that the algorithm provides us closed-form

analytical expressions for the optimal rationing levels
as well as the optimal cost, for instance, in the case of
two customer classes. We exploit these expressions in
the next section for certain special cases. For the gen-
eral case, the algorithm in Theorem 2 has a complex-
ity of O�n�. The computation of the optimal rationing
levels as well as the optimal cost is thus very efficient.
As a final remark, note that the algorithm presented

above can also be directly applied to compute the cost
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of any given ML policy (i.e. where the zk are given). In
this case, the step of the algorithm where the rationing
levels are computed is skipped and the rest of the
computations remains unchanged.

5. Inventory Pooling and Stock
Allocation: A Numerical
Investigation

Both delayed differentiation and centralization of
stocks achieve “statistical economies of scale” through
redesign. The benefits of both approaches are based
on reducing the number of items held in stock. The
resulting reduction in demand variability is, in gen-
eral, beneficial in terms of managing inventories and
most of the existing research focuses on quantifying
these benefits and comparing them with the cost of
the redesign investment.
To illustrate the impact of stock allocation on design

decisions, we consider a basic problem related to
inventory pooling. Let us consider two distinct sup-
ply chains that share a common supplier with limited
production capacity. Initially, the supplier stocks two
components dedicated to each downstream supply
chain. Because of revenue considerations or long-term
strategic reasons, the supply chains are not equally
important for the supplier. We assume that the sup-
plier could redesign its products and production pro-
cess such that a single item can satisfy both sup-
ply chains. One would be inclined to think that the
new structure should lead to a reduction in inventory
related costs (which should then be weighed against
the investment required) for the supplier. Below, we
investigate this design problem in further detail.
To simplify our study, we assume that the orders

sent by the downstream supply chains to the supplier
are two Poisson processes with demand rates �1 and
�2. In the initial situation, the processing times of both
items are identical and are exponentially distributed
with rate �. We assume that the holding costs are
identical and equal to h. We also consider that the
supplier is linked to the two supply chains by con-
tracts specifying backorder costs b1 and b2 (b1 ≥ b2),
which reflect their relative importance.
The above model corresponds to the multiclass

make-to-stock queue investigated in Veatch and Wein

(1996), Ha (1997a), Pena-Perez and Zipkin (1997), and
de Véricourt et al. (2000). The optimal scheduling
policy is rather complicated and even robust heuris-
tic solutions are subject of on-going research. We,
therefore, restrict our attention to a base-stock pol-
icy with FCFS scheduling rule for production orders.
The expected inventory and backorder cost per unit
time of this system, g0, for optimal base-stock levels
is given by (see Buzacott and Shanthikumar 1993):

g0 =
(

z1+z2−
)

1−)

)
h+ )1

1−)
�h+ b1�

(
)1

1−)2

)z1

+ )2

1−)
�h+ b2�

(
)1

1−)2

)z2

where

z1 =
⌊
ln� h

h+b1
�

ln )1
1−)2

⌋
� z2 =

⌊
ln� h

h+b2
�

ln )2
1−)1

⌋
�

)1 =
�1

�
and )2 =

�2

�
�

The redesign of the structure leads to a single-item
system with two classes of customers (a special case
of the model in §2). To simplify the comparison, we
assume that the parameters of the system (h�bi��i��)
stay unchanged after the redesign process. Figure 1
depicts the system before and after the redesign
process.
For this system, we investigate two different cases.

The first case corresponds to the situation where the
allocation issue is not fully taken into account in
the design decision. We model this case by a base-
stock policy using a FCFS stock allocation rule for
demands. This system generates an expected inven-
tory and backorder cost per unit time of g1, for an
optimal base-stock level (de Véricourt et al. 2001):

g1 = b̂
)ẑ+1

1−)
+h

[
ẑ− )

1−)
�1−)ẑ�

]

where

ẑ =
⌊
ln h

b̂+h

ln)

⌋

and b̂ = �1/��1+�2�b1+�2/��1+�2�b2.
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Figure 1 The Initial System and the System After Inventory Pooling
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In the second case, the allocation issue is integrated
in the design decision by using the ML policy. Under
this policy, the average cost, g2, is given by the algo-
rithm of §4.2.
This setting allows us to carry out two comparisons.

The relative difference !1 = �g0−g1�/g0 is the benefit
due to inventory pooling without allocation consid-
erations and the relative difference !2 = �g0 − g2�/g0

is the benefit of inventory pooling when the optimal
stock allocation policy is employed.
We focus on the value of system redesign as a

function of the relative importance of the two prod-
ucts expressed by the ratio of the backorder costs
b1/b2. Figure 2 depicts an example of this compari-
son for parameter values h= 0�5, b2 = 1, �1 = �2 = 0�4,
� = 1. The first striking result is that !1 can be neg-
ative. In other words, if one does not pay attention
to how stocks are allocated, redesigning the system
can increase the costs. This result can appear coun-
terintuitive at first sight and seems to contradict most
of the previous research results on the value inven-
tory pooling. Indeed, most of these previous studies
assume symmetrical demands (in terms of backorder
costs) and it is clear then that inventory-related costs
decrease by pooling. On the other hand, when the
asymmetry between the respective backorder costs
increase and if stock allocation is not carefully taken
into consideration, the benefits of redesign decrease—
and can be negative—as evidenced by the value of !1

Figure 2 The Relative Benefits of Redesign as a Function of b1/b2
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in Figure 2. The second observation that can be made
from the figure is that, if the ML policy is employed,
!2 is always positive regardless of the values of the
parameters.
In managerial terms, efficient stock allocation

among the customers guarantees a reduction in terms
of inventory-related costs. For instance, if in the ini-
tial system b1 is 10 times larger than b2, redesign-
ing the system without a careful stock allocation con-
sideration increases the costs by 10% while an effi-
cient allocation strategy would decrease costs by 35%.
In that sense, redesigning the system brings poten-
tial benefits but these benefits can only be realized
if stocks are allocated in an efficient manner. In fact,
careless stock allocation may result in increased costs
despite the pooling effect. For the initial system, even
when a FCFS policy is employed, some inventory
is reserved for the important demands due to the
physically separated stocks by specifying appropri-
ate base-stock levels. Inventory pooling destroys this
reservation structure. The control policy needs then
to address the issue how the inventory should be
reserved to different classes. A FCFS policy does not
address these requirements, which explains why it
can perform worse after pooling.
An important point about the ML policy is that it

is robust in the sense that it guarantees an inven-
tory cost reduction after inventory pooling. For the
system before pooling, the FCFS policy, which was
used as the first benchmark, is not optimal. Note,
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however, that for any scheduling policy, including the
optimal, the ML policy would enable a cost reduc-
tion after pooling. In fact, this point can be formal-
ized by a straightforward sample-path argument but
an intuitive explanation should suffice. Intuitively, the
pooled system delays allocation decisions and hence
uses more accurate information about demands with
respect to the multiproduct system. Consequently, the
average cost under its optimal policy is inferior to the
average cost of the multiproduct system under the
respective optimal policy. Figure 3 presents the same
comparison as in Figure 2 where the initial system is
controlled using the optimal scheduling policy. Under
the optimal policy, the optimal cost g3 was computed
numerically (see for instance de Véricourt et al. 2000).
This time, the relative differences !3 = �g3−g1�/g3 and
!4 = �g3−g2�/g3 represent the benefits due to inven-
tory pooling without and with allocation considera-
tions, respectively. The benefits of inventory pooling
when the initial system is controlled by the optimal
policy are not as significant. It should be noted how-
ever that, the optimal scheduling policy is extremely
difficult to implement. On the other hand, if the com-
mon stock is not properly allocated, the losses can
easily reach 50%.
A final remark is noteworthy, as the above compar-

ison indicates another, more subtle, benefit of inven-
tory pooling. A capacitated multiproduct system is

Figure 3 The Relative Benefits of Redesign as a Function of b1/b2
when the Optimal Scheduling Policy is Used Before Pooling
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difficult to manage “optimally.” In fact, for the multi-
product case, there seems to be little hope that the
exact optimal policy can be parametrized in a simple
way. The optimal policy for the single-product sys-
tem, on the other hand, can be expressed in a few
parameters. This is clearly an additional advantage of
product standardization.

6. Conclusions and Future
Research

We have provided a characterization of stock alloca-
tion policies for a multiclient make-to-stock system.
This characterization is one of the few known com-
plete characterizations in dynamic allocation prob-
lems of multiclass make-to-stock queues. In addition,
in this case, the optimal stock allocation is intuitive,
easy to communicate and to implement. The approach
that was employed for the characterization of the
optimal policy exploits a nested structure by relat-
ing an n-class problem to a corresponding �n− 1�-
class problem. A similar approach had enabled a par-
tial characterization of the optimal policy in a related
multiproduct system (see de Véricourt et al. 2000).
An interesting question for future research is inves-
tigating the general class of problems where such an
approach can be used to characterize optimal policies.
A second significant contribution of the paper is an

efficient algorithm to identify the optimal parameters
of a given ML policy. As a consequence, optimal stock
allocation problems with a large number of classes
can be solved instantenously. This makes our methods
very promising as benchmark performance measures.
One related important issue in regards to the

contribution of the paper is the value of “optimal
stock allocation” with respect to other plausible—but
suboptimal—allocation policies. We do not directly
address this point here but it is known that opti-
mal stock allocation results in significant benefits as
demonstrated under a variety of settings by Nahmias
and Demmy (1981), Ha (1997b), and de Véricourt
et al. (2001). While these previous papers shed light
onto the benefits of optimal stock allocation, none of
them investigate these benefits in the framework of
higher-level supply chain design decisions that cre-
ate allocation problems. We add new insights on the
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value of stock allocation by considering its impact in
a supply chain design problem concerning pooling of
inventories. Our results show that ignoring the stock
allocation dimension in a typical example of such a
design problem can lead to severely inaccurate eval-
uations and to incorrect design decisions.
As a final remark, in order to obtain a tractable

formulation, we modeled processing times by an
exponential distribution. While the relaxation of this
assumption leads to less tractable models, there are
reasons to expect that ML-type policies should be
optimal or at least near optimal. In particular, Ha
(2000) has recently shown the optimality of ML-type
policies with Erlang production times for a corre-
sponding lost sales model. This suggests that ML
policies are highly promising under more general
assumptions. Our optimization algorithm should then
provide a natural starting point of investigation for
parameter optimization.
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Appendix

A. Proofs
A.1. Proof of Lemma 1. (a) Let us show that Tv verifies the first
condition of the definition. We take x such that xi < 0. We will
prove that the operators Tk conserve the first condition of �n. For
k > 0, suppose that Tk�x� = v�x−ep� with p = 1 or p = k. From the
definition of Tk and the fact that v ∈�n we have:

!iTkv�x� ≤ v�x+ei −ep�−v�x−ep� = !iv�x−ep� ≤ 0�

For k = 0, note that from the first part of the definition of �n,
v�x+ei� ≤ v�x� and we can assume that T0v�x� = v�x+ep�.

When p = i, !iT0v�x� ≤ v�x+ei�−v�x+ep� = 0.
When p �= i, !iT0v�x� ≤ v�x+ei +ep�−v�x+ep� ≤ 0.
Thus !iTk for k ≥ 0 is negative or null. Furthermore !ic�x� =

−bi < 0, and !iTv�x� < 0.
(b) Let us show that Tv verifies the second condition. We take x

such that xi < 0 and xj < 0 with 1≤ i < j. For k > 1, if Tkv�x+ej � =
v�x+ej −ep� with p = 1 or p = k, then !ijTkv�x� ≤ !ijv�x−ep� ≤ 0.

For k = 0, assume that T0v�x+ej � = v�x+ej +ep� (note that from
the first condition of �n, T0v�x+ej � ≤ v�x+ej �).

When p = i, !ijT0v�x� ≤ v�x+ei +ej �−v�x+ei +ep� = 0.
When p �= i, !ijT0v�x� ≤ !ijv�x+ep� ≤ 0.
Finally !ijc�x� = bj − bi < 0, thus !ijTv�x� < 0.

(c) Conditions 3 and 4 of �n are direct consequences of Condi-
tion 2, applied respectively in x and in x+e1−ei −ej . �

A.2. Proof of Property 1. Take v ∈ �n and consider its asso-
ciated policy �. We first need to check that zn+1 ≥ z∗

n. From the
definition of zn+1, it is sufficient to show that for states x where
m�x� = n+1 and x1 < z∗

n, !1v�x� is strictly negative:

!1v�x� = !nv�x+e1−en�+!1nv�x−en�

= !nv�x+e1−en�+!1v
∗�xn−1�� (12)

(12) comes from Condition C.1. The first term of this expression is
strictly negative from the first condition of �n, while the second
one is negative from Condition C.4 of �n−1.

We derive now the different controls of Policy �. From Condi-
tions C.3.c and C.4, if m�x� = n+1 the production control states to
produce if and only if x1 < zn+1 which is also the case for an ML
policy. Otherwise, these controls are given by the sign of !1iv�x�

where i ≤ n (see (4) and (5)). More precisely, the production control
of � is given by the difference !1iv�x� where i = m�x� < n+1. This
quantity is positive when x1 ≥ z∗

n from Condition C.2 meaning that
C�
0 �x� = m�x�. When x1 < z∗

n, Condition C.1 implies that the sign of
!1iv�x� is given by that of !1iv

∗�xn−1�, which in turns also deter-
mines C�∗

0 �x�. As a result, C�
0 �x� and C�∗

0 �x� are equal when x1 < z∗
n,

and

C�
0 �x� =



0 if x1 ≥ zn+1 and m�x� = n+1
1 if z∗

n ≤ x1 < zn+1 and m�x� = n+1
m�x� if x1 ≥ z∗

n and m�x� ≤ n

C�∗
0 �xn−1� if x1 < z∗

n and m�x� ≤ n�

(13)

The kth rationing control is given by the sign of !1kv�x− e1 − ek�.
This quantity is positive when x1 > z∗

n and m�x�≥ k from Condition
C.2, so that C�

k �x� = 1. When x1 ≤ z∗
n, the same approach we fol-

lowed for the production control leads to C�
k �x�=C�∗

k �x� with k < n.
For k = n, the rationing control is given by the sign of !1v

∗�xn−1�,
which is negative from Condition C.4 of �n−1, leading to C�

n �x�= n.
So we can write

k < n� C�
k �x� =

{
1 if x1 > z∗

n and m�x� ≥ k

C�∗
k �xn−1� if x1 ≤ z∗

n

(14)

k = n� C�
n �x� =

{
1 if x1 > z∗

n and m�x� ≥ n

n if x1 ≤ z∗
n

� (15)

But �∗ is an ML policy from P�n−1�, and C�∗
k can be replaced in

(13) and (15) by ML policy controls with the rationing level vector
z∗. The controls C�

k can hence in turns be rewritten as ML policy
controls with the rationing vector �z∗� zn+1 . �

A.3. Proof of Lemma 2. Consider v ∈ �n and its associated
policy �. Form Property 1, � is an ML policy with the rationing
vector z= �z∗� zn+1 , and whose associated controls are described in
Definition 1.

(a) Let us prove that Tv verifies Condition C.1. We consider in
this part states x such that �x+ei 1 ≤ z∗

n. Since the first n−1 rationing
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levels of policies � are equal to those of policy �∗, their first n−
1 rationing controls are equal as well. Taking C�

k �x+ ei� = p and
C�

k �x+ej � = q where p and q are equal to 1 or k for k < n, we have

!ijTkv�x� = v�x+ei −ep�−v�x+ej −eq�

= !ijv�x−ep�+!qpv�x+ej −ep −eq�

= !ijv
∗��x−ep 

n−1�+!qpv
∗��x+ej −ep −eq  

n−1� (16)

= v∗��x+ei −ep 
n−1�−v∗��x+ej −eq  

n−1�

= !ijTkv
∗�xn−1�� (17)

where (16) comes from Condition C.1.
For the nth rationing operator Tn, Policy � states to backorder

arriving demands of class n and applying C.1 once again, we can
derive

!ijTnv�x−en� = !ijv�x−en� = !ijv
∗�xn−1�� (18)

As for the production operator T0, if xn−1 + e1 is not at the base-
stock level of �∗, that is to say if m�x� < n or x1 + 1 < z∗

n, C�
0 is

strictly positive and strictly less than n. A similar approach to the
one that was used previously for C�

k with 1≤ k < n leads to

!ijT0v�x� = !ijT0v
∗�xn−1�� (19)

If xn−1 +e1 is at the base-stock level of policy �∗ then it states not
to produce while policy � indicates to produce to satisfy waiting
demand of class n, and

!1nT0v�x� = 0= !1T0v
∗�xn−1� = !1nT0v

∗�xn−1� (20)

(with �x+en�
n−1 = xn−1).

We are now able to compute the differences in T , noting that
!ijc�x� = !ij c̃�xn−1�:

!ijTv�x� = !ij c̃�x
n−1�+

n−1∑
k=1

�k!ijTkv
∗�xn−1�

+�n!ijv
∗�xn−1�+�!ijT0v

∗�xn−1� (21)

= !ijv
∗�xn−1�� (22)

(21) follows from (17), (18), (19), and (20). (22) is true since v∗ veri-
fies the optimality equations (8).

(b) Let us prove that Tv verifies Condition C.2. We consider in
this part states x such that x1 ≥ z∗

n. We take also m�x� = i < n+ 1.
For this region of the state space, x1 ≥ z∗

n ≥ z∗
k and the production

control of policy � specifies to produce for waiting demands of
class m�x� when there are backorders in the system. When there are
no backorders, the production control is given by the base-stock
level zn+1 or equivalently by the sign of !1v:

!1iT0v�x�

=




!1iv�x+ei� if m�x+ei� = i

!1kv�x+ei� if m�x+ei� = k < n+1
0 if m�x+ei� = n+1� !1v�x+ei� < 0
!1v�x+ei� if m�x+ei� = n+1� !1v�x+ei� ≥ 0

(23)

Using Condition C.2, one can easily check that (23) is positive so
that T0v also verifies Condition C.2.

For the rationing operators, take C�
k �x+e1�= p and C�

k �x+ei�= q

with p and q equal to 1 or k.
For k ≥ i, the rationing control C�

k are then not characterized by
the rationing level vector and we need to study the sign of !1iTkv

for all possible values of p and q:
If p = q = k,

!1iTkv�x� is equal to !1iv�x−ek� which is positive from Con-
dition C.2.

If p = q = 1,

!1iTkv�x� is equal to !1iv�x−e1�. But since q = 1, !1kv�x+ei−
e1−ek� is positive from (5), which also implies that !1iv�x−
e1� is positive from the last condition of �n.

If p = 1 and q = k,

!1iTkv�x� is equal to !kiv�x−ek�, which is positive from the
second condition of �n.

If p = k and q = 1,

it can be easily shown that !1iTkv�x�=!1iv�x−ek�+!1kv�x+
ei −e1−ek�, whose first term is positive from Condition C.2.
Furthermore q = 1 implies from (5) that the second term is
positive as well.

Consider now that k < i. p is then equal to one since m�x+e1� > k

and x1+1> z∗
n ≥ z∗

k . q is also equal to one if x1 ≥ z∗
n when z∗

n > z∗
i , or

if x1 > z∗
n when z∗

n = z∗
i for similar reasons. In these cases, !1iTkv�x�

is equal to !1iv�x−e1�, which is positive for x1 > z∗
n from Condition

C.2, and for x1 = z∗
n from Condition C.1 of �n and Condition C.2

of �n−1. Hence, Tkv verifies Condition C.2 and since !1ic�x� and
!1iT0v�x� are also positive, Tv verifies the condition as well. On the
other hand, q can be equal to k if x1 = z∗

n = z∗
i , which implies that

!1iTkv can then be negative.
So it remains to show that Tv�x� is positive if x1 = z∗

n = z∗
i and

k < i. p is still equal to one and

!1iTkv�x� = !qkv�x−eq�� (24)

Also, since P�n−1� is true with z∗
l = z∗

n for i≤ l < n, we can reiterate
n− i times the application of Condition C.1 to the optimal value
function of the successive rationing subproblems. (24) becomes then

!1iTkv�x� = !qv
∗
i−1�x

i−1−eq� (25)

where v∗
i−1 is the optimal value of the i− 1 dimensional rationing

problem recursively defined from (7). The instantaneous cost c̃i−1
of this problem is defined by the holding cost h̃i−1 = h+ bi and the
backorder cost vector b̃i−1 = bi−1 − bi1i−1. Note also that !1c̃i−1 is
equal to !1ic.

Moreover, the first i−1 rationing controls of the optimal policy
associated to v∗

i−1 are the same as those of policy �. (25) becomes
then

!1iTkv�x� = !1Tkv
∗
i−1�x

i−1−eq�� (26)
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For k = 0 or k ≥ i, we have already proven that !1iTkv�x� is posi-
tive, and using the definition of operator T along with (26) we can
derive the following inequality

!1iTv�x� ≥ !1c̃i−1�x
i−1�+

i−1∑
k=1

�k!1Tkv
∗
i−1�x

i−1�� (27)

But xi−1 is then at the base-stock level of the ML policy associated to
v∗

i−1. As a consequence, !1T0v
∗
i−1�x

i−1� is equal to !1v
∗
i−1�x

i−1� which
is positive from the definition of z∗

n given by Condition C.4 of �n−1.
The optimality equations satisfied by v∗

i−1 can hence be written as:

!1v
∗
i−1�x

i−1� = !1c̃i−1�x
i−1�+

i−1∑
k=1

�k!1Tkv
∗
i−1�x

i−1�

+
n∑

k=i

�k!1v
∗
i−1�x

i−1�+�!1v
∗
i−1�x

i−1�� (28)

Using (28) in (27) we obtain then

!1iTv�x� ≥
(
1−

n∑
k=i

�k −�

)
!1v

∗
i−1�x

i−1�� (29)

but as we discussed it previously, !1v
∗
i−1�x

i−1� is positive and Tv

verifies Condition C.2.
(c) Let us show that Tv verifies Condition C.3. We consider in

this part states x such that x1 ≥ z∗
n and m�x� ≥ n. In this region

of the state space � is fully characterized by z∗ and zn+1. We can
then directly compute !1nTkv�x� and !1Tkv�x�, using Condition C.1
when it applies:

!1nT0v�x� =




!1v�x+en� if m�x+en� = n+1� x1 ≥ zn+1
0 if m�x+ei� = n+1� x1 < zn+1
!1nv�x+en� if m�x+ei� = k < n+1

(30)

!1nTkv�x� =




!1nv�x−e1� if x1 > z∗
n

!1v
∗�xn−1−e1� if x1 = z∗

n� z∗
k < z∗

n

!kv��x−ek 
n−1� if x1 = z∗

n� z∗
k = z∗

n

(31)

!1T0v�x� =




!1v�x� if m�x+en� = n+1� x1 ≥ zn+1
0 if m�x� = n+1� x1+1= zn+1
!1v�x+e1� if m�x� = n+1� x1+1 < zn+1
!1v�x+en� if m�x� = n

(32)

!1Tkv�x� =




!1v�x−e1� if x1 > z∗
n

!1v�x−e1� if x1 = z∗
n� z∗

k < z∗
n

!kv��x−ek 
n−1� if x1 = z∗

n� z∗
k = z∗

n

(33)

Let us study !1nT0v using (30). !1nT0v increases in x1 from Condi-
tions C.3, and the definition of zn+1. When m�x+en� < n+1, !1nTkv

decreases in xn from Condition C.3.a, and is positive from Condi-
tion C.2, while it is null when m�x+ en� = n+ 1 and x1 < zn + 1.
Finally when m�x+en� = n+1 and x1 ≥ zn+1, we have

!1nTkv�x� = !1v�x+en� (34)

= !nv�x+e1�+!1nv�x� (35)

= !nv�x+e1�+!1nTkv�x−en�� (36)

and, since !nv�x+e1−en� is negative from the first condition of �n,
!1nTkv decreases in xn. It follows that Tkv verifies condition C.3.a.

Let us study !1nTkv using (30). When x1 = z∗
n, !1nTkv�x� is nega-

tive from Condition C.4 of �n−1 and the first condition of �n, and
does not depend on xn. When x1 > z∗

n, !1nTkv�x� is positive from
Condition C.2, increases in x1 and decreases in xn from Condition
C.3.a. As a result Tkv verifies Condition C.3.a as well.

Following a similar approach one can easily show that !1Tkv�x�

increases for 0≤ k ≤ n. (For k > 0 and x1 = z∗
n = z∗

k , !1Tkv�x� can be
written as the sum !nv�x−en�+!1v

∗�xn −e1�, where the first term
decreases in xn from Condition C.3.c, and where the second term
does not depend on n.) As for the last condition, it is well-known
that Conditions C.3.a and C.3.b together imply Condition C.3.c.

(d) Finally, let us show that Tv verifies Condition C.4. Here again
we can directly compute !1T0v for x1 < zn+1:

!1T0v�x� =



0 if m�x� = n+1� x1+1= zn+1
!kv�x+e1� if m�x� = k < n+1� x1+1= zk

!1v�x+e1� if m�x� = k ≤ n+1� x1+1 < zk�

(37)

which can easily be checked to be negative from Condition C.4 and
the first condition of �n.

As for !1Tkv, taking C�
k �x+e1� = p and C�

k �x� = q with p and q

equal to 1 or k, we have:

!1Tkv�x� = !1pv�x−ep�+!qv�x−eq�� (38)

The first term is null if p = 1, and (5) implies that it is negative or
null otherwise. The second term is negative from Condition C.4 if
q = 1 and from the first condition of �n if q = k. �

A.4. Proof of Theorem 1. As we mentioned it earlier, P�1� is
true. Suppose that P�n− 1� is true. Property 1 states the first part
of P�n�. From Lemma 2, using value iteration and the fact that the
optimal infinite-horizon policy can be obtained as the limit of finite-
horizon optimal policies, the second part of P�n� is also true. As a
result, for all n-dimensional problems, the optimal policy is an ML
policy.

To prove the second part of the theorem, we will recursively
apply Lemma 1. However the dynamics of the subproblem (7)
of �n − 1� dimensions is equivalent to that of the original n-
dimensional problem where an arrival of type n does not change
the current state. An alternative interpretation is that the time scale
is changed by the factor 1−�n. More formally, the value function
�1−�n�v

∗ is the solution of the subproblem:

Pn−1����n−1� h̃� b̃���� (39)

The optimal control depends only on the sign of !v∗ (see (4) and
(5)), which is equal to the sign of �1−�n�!v∗. Therefore, if z∗ is the
optimal rationing level vector of Subproblem (39), it is optimal for
Subproblem (7) as well.

To compute zk, we must then consider n−k subproblems of the
type (39). A cost function c�·� defined on Sn is characterized by a
vector �h�b�. We then denote by c̃k�·�, the cost function defined on
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Sk, characterized by the vector ��h+bk+1��bk −bk+11k� with k < n. It
follows that for p < q, c̃p�c̃q�·�� = c̃p�·�.

Now applying Property 1 recursively n−k times, we obtain that
the projection zk is the optimal rationing-level vector of a k dimen-
sional subproblem where the cost is given by c̃k � · · · � c̃n−1 = c̃k. �

A.5. Proof of Theorem 2. We prove, by induction, on the
dimension k, that gk+1 and �z1� � � � � zk+1� are respectively the opti-
mal cost and optimal rationing level vector of the subproblem Pk���

�k� h+ bk+1� bk − bk+11� for 0 ≤ k ≤ n. For k = 0, g1 = z1 = 0 and
the property is trivially true. For k = 1, we recognize g2 and z2 the
optimal cost and the optimal base stock of the well-known single-
part-type problem (see Veatch and Wein 1996). Assume that this
property is true for k− 1. From Theorem 1, the �k+ 1�st optimal
rationing level is the base-stock level of

Pk
(
���k�h+ bk+1�bk − bk+11k

)
� (40)

A direct computation leads to

c̃k�x
k� = c̃k−1�x

k−1�− �bk − bk+1�
k∑

i=1
xi� (41)

Let us compute the optimal rationing-level vector and the cor-
responding average cost. Consider the ML policy whose rationing-
level vector is equal to �zk� z� and let X represent the random vari-
able corresponding to x. The corresponding average cost g�z�, is
equal to:

g�z� = E
[
c̃k−1�X

k−1�
]− �bk − bk+1�E

[ k∑
i=1

Xi

]
(42)

= P�X1 ≤ zk�E�c̃k−1�X
k−1��X1 ≤ zk 

+
z∑

s=zk+1
�h+ bk�sP�X1 = s�− �bk − bk+1�E

[ k∑
i=1

Xi

]

= gk)
z−zk
k + �h+ bk�

×
z∑

s=zk+1
s�1−)k�)

z−s
k + �bk − bk+1�

(
)k

1−)k

−z

)
� (43)

(42) follows from (41). (43) comes from the fact that z−∑k
i=1 Xi is

an M/M/1 queue-length process with an utilization equal to )k

where z−∑k
i=1 Xi = z−X1 for X1 > zk. E�

∑k
i=1 Xi is hence equal to

z−)k/�1−)k�, and P�X1 = s� is equal to �1−)k�)
z−s
k for s > zk.

We can then evaluate the difference !g�z� = g�z+1�−g�z�

!g�z� =−)
z−zk
k ��1−)k��gk − �h+ bk�zk�+)k�h+ bk�+h+ bk+1 (44)

which is nondecreasing in z. g�z� is convex, and its minimum is
attained at minz�!g�z� > 0�, that is at z where,

z = zk +
 ln )k�h̃+b̃k �

)k h̃+�1−)k��gk−1−h̃zk�

ln)k

= zk+1 (45)

Using the value of zk+1 and (43), a direct computation leads to the

expression of gk+1 of the theorem. �
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