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W e consider a manufacturing facility that produces a single item that is demanded by
several different classes of customers. The inventory-related cost performance of such
a system can be improved by effective allocation of production and inventories. We obtain
the optimal parameters for three easily implementable allocation policies. Our results cover
the case of linear backorder costs as well as fill-rate constraints. We compare the optimal
performance of these control policies to gain insights into the benefits of different production

and stock-allocation rules.

(Inventory/Production: Optimal Policies, Stock Allocation; Queues: Make-to-Stock Systemr)

1. Introduction

In this article, we investigate stock-rationing prob-
lems in a manufacturing environment. Because lim-
ited production capacity is an important characteris-
tic, stock-allocation problems naturally arise in this
setting. Our objective is to investigate the effects of
different stock-rationing policies on inventory-related
costs and service levels, within a framework that ad-
dresses uncertainties in demand and in manufactur-
ing as well as the effects of limited capacity. One ap-
propriate framework is that of queuing-based
inventory models that have led to a unified treatment
of several central issues in production-inventory the-
ory (Buzacott and Shanthikumar 1993). Our investi-
gation of the effects of stock rationing is therefore
based on a model within that framework: the make-
to-stock queue with several classes of clients.

In our model, a production facility produces a sin-
gle item in a make-to-stock mode. The same item is
demanded by several classes of customers that may
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differ in their demand rates, backorder costs, or ser-
vice levels. When a demand arrives, depending on its
class, it may be satisfied immediately from stock
(when available) or may be back-ordered to be satis-
fied later. Because of the differences in backorder
costs to customers, it is possible that a demand is
made to wait, in consideration of future, more expen-
sive arrivals, even though there may be items avail-
able in stock.

To investigate the effects of different production
and stock-allocation policies in a capacitated produc-
tion setting, our analysis focuses on three different
policies. The first policy is a base-stock policy using
a simple FCFS rule for stock allocation. It is simple
to communicate, is frequently used in practice, and is
optimal when different demand classes have identical
backorder costs. The other two policies use priority
allocation and privilege customers with higher wait-
ing costs in allocation decisions. The difference be-
tween these two policies is the additional feature of
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the reservation of inventories for future demand ar-
rivals (with high backorder costs). The third policy is
a generalization of the second policy, which does not
reserve inventories. In fact, it can be shown that this
last policy is optimal under certain technical assump-
tions; see de Véricourt et al. (2000b). This optimality
comes, however, at the expense of additional param-
eters to optimize.

Our initial contribution is to compute the optimal
levels of the parameters that minimize inventory and
backorder costs for two of the heuristic policies con-
sidered. It turns out that the optimal levels are easily
expressed in terms of the system parameters, leading
immediately to simple insights on the relative bene-
fits of each policy. Combining this with the results in
de Véricourt et al. (2000b) pertaining to the parame-
ters of the optimal policy, enables us to compare,
through numerical experiments, the optimal perfor-
mance within each class.

To complement our numerical results, we analyze
the three policies in detail in the case of high utili-
zation, which is the relevant regime in certain man-
ufacturing environments such as the semiconductor
industry. Lastly, we discuss the issues of parameter
optimization and its implications on performance
when backorder costs are replaced by fill-rate con-
straints. Overall, the analysis enables us to present a
rather complete picture of the managerial implica-
tions of stock-rationing issues.

The paper is structured as follows: A review of the
relevant literature is presented in §2. Section 3 gives
the mathematical formulation of the problem and in-
troduces the particular control policies that we inves-
tigate. Section 4 provides a performance comparison.
In §5, we analyze an important special case: a heavily
loaded system. Section 6 extends the formulation and
the results to the case of service-level constraints. Our
conclusions are presented in §7.

2. Literature Review

Besides the earlier-mentioned applications in prod-
uct-variety management that have gained significance
as a result of increasing product proliferation, stock
allocation is a question that naturally arises in several
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models of classical inventory theory. Jackson (1988)
and Mc Gavin et al. (1993) study optimal stock-allo-
cation problems for periodic review systems. Al-
though the literature in this domain is relatively rich
because of the nature of the assumptions of uncapa-
citated production, constant lead times and identical
clients, most of the research in this area does not di-
rectly address the issues of stock rationing.

The inventory models that directly investigate the
issues of stock rationing fall into the single-location
multiple-customer category. In pioneering work, Topkis
(1968) has characterized the structure of optimal or-
dering and rationing policies for such a model. In this
model, the optimal ordering policy is a base-stock
policy and the optimal amounts of stocks reserved
are determined by time-dependent threshold values.

In other related work based on stochastic inventory
models, Nahmias and Demmy (1981) study several
inventory models where rationing is relevant and
compare the inventory-related cost and service-level
performance of systems that employ rationing with
those that do not. Their results indicate that rationing
stocks improves performance significantly. Cohen et
al. (1988) study the performance of a system operat-
ing under a (s, S) policy. There are two classes of cus-
tomers and one class has strict priority over the other.
Finally, Frank et al. (1999) study a problem with two
classes of customers, in which the demands of the
first class have to be satisfied, but the second-class
demands can be rejected. They partially characterize
the optimal policy and propose heuristic control pol-
icies that have close-to-optimal performance. All of
the above articles treat interesting aspects of stock ra-
tioning, but they do not explicitly capture the effects
of limited production capacity, which is central to our
formulation.

More recently, a number of production-inventory
problems for capacitated systems involving multiple
customer classes have been studied in the context of
the make-to-stock queue. The rationing problem in
this setting resembles a closely related category of
multi-item scheduling problems. In this latter cate-
gory of problems, multiple classes of customers de-
mand different products from the manufacturing sys-
tem that has to schedule production by dynamically
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sharing capacity. Wein (1992), Veatch and Wein
(1996), and Pena-Perez and Zipkin (1997) proposed
heuristic solutions to this problem. In subsequent
work, Ha (1997a) partially characterized the structure
of the optimal policy for two classes of customers,
and de Véricourt et al. (2000a) obtained a sharper
characterization of this structure. The model studied
in this paper can be viewed as a standardized version
of the above models where only a single product type
is stored.

The rationing problem for the make-to-stock queue
with multiple demand classes was first studied by Ha
(1997b and 1997c¢). Ha (1997b) formulates and studies
the optimal rationing and production control of a
multiclass system with lost sales. He shows that the
optimal production-control policy is a base-stock pol-
icy, and the optimal rationing policy is described by
threshold levels corresponding to the different de-
mand classes. When the stock on hand is above the
threshold level of a certain class of demand, it is sat-
isfied from on hand stock, and otherwise it is lost. In
addition, this multiple-threshold rationing policy per-
forms significantly better than policies that do not
employ rationing.

When backorders are allowed, for a complete state
description it is necessary to keep track of the levels
of the backorder queues of each customer class. The
above problem then becomes significantly more dif-
ficult because the dimension of the corresponding op-
timal control problem increases. This case is studied
in Ha (1997c), who shows that the optimal produc-
tion-control policy is still a base-stock policy and that
the optimal rationing policy has a monotone struc-
ture. In parallel work, we establish a complete char-
acterization of the optimal stock-rationing policy (de
Véricourt et al. 2000b) for this case. The optimal pol-
icy turns out to be surprisingly intuitive: As in the
lost-sales case (Ha 1997a), there are thresholds for
each product such that it is optimal to satisfy the ar-
riving demand from a customer from the on-hand
stock if the stock level is above the threshold for that
customer. Moreover, these thresholds determine pro-
duction priorities for backordered products in a sim-
ple way.

Even though the previous results have shed light
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onto the structure of optimal rationing and produc-
tion-control policies, the potential benefits of stock ra-
tioning cannot be entirely understood without a com-
plete investigation. Earlier works of Nahmias and
Demmy (1981) and Ha (1997b) indicate that stock ra-
tioning may have significant benefits in terms of in-
ventory-related costs, respectively, for uncapacitated
inventory models and for production-inventory sys-
tems with lost sales. However, the comparisons made
in the preceding models have their drawbacks: Nah-
mias and Demmy do not compare optimal rationing
with optimal nonrationing policies because of the dif-
ficulty of optimization. Ha’s comparisons, because of
the lost-sales assumption, overlook the effect of crit-
ical regimes where production capacity is barely
enough to meet the average demand. We complement
and extend the results of both articles here by treating
multiple classes of customers in a rather general set-
ting. In addition, most of our results are expressed in
simple formulas from which several simple insights
into the relative benefits of optimal production and
stock allocation can be drawn.

To summarize and position the contributions of
this paper with respect to closely related existing
work, note that there are several equally important
issues in the analysis of dynamic optimization prob-
lems of production-inventory systems. An important
direction of analysis is the investigation of the struc-
ture of optimal control policies. Ha (1997c) and de
Véricourt et al. (2000a) are examples that analyze the
stock rationing (i.e., single-item/multiclient) and pro-
duction scheduling (i.e., multi-item) problems for the
make-to-stock queue, respectively. This type of inves-
tigation usually gives partial answers about what the
optimal control policy should be but does not provide
a complete explicit solution. Only in certain special
cases is the structural characterization simple and
precise enough to lead to tractable optimal policies.
This is typically the case where the state space of the
inventory-backlog process is one-dimensional as in
the single-class make-to-stock queue or in the inven-
tory-rationing problem with lost sales (Ha 1997b).
When the state space of the inventory-backlog pro-
cesses has to be represented by several variables, the
only explicit characterization seems to be that in de
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Figure 1 The ML Policy for n = 3
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Véricourt et al. (2000b) for the rationing problem with
backorders considered here.

Because the structure of optimal policies in itself
does not provide insights into how optimality reflects
into cost savings with respect to other (suboptimal)
policies, a parallel and complementary direction of
analysis investigates the issues of relative perfor-
mances of heuristic policies. Veatch and Wein (1996),
Pena-Perez and Zipkin (1997), and Ha (1997b) com-
prise contributions in this sense. This paper follows
a similar direction. Given that the optimal inventory-
rationing policy has been characterized (de Véricourt
et al. 2000b), the objective here is to gain insights into
the relative benefits of using the optimal policy over
other policies, which are attractive because of their
simplicity. To achieve this end, we present the opti-
mal parameters of the other two policies, which are
of interest themselves. We then carry out a compar-
ative analytical and numerical investigation that iden-
tifies the conditions under which using the optimal
policy is worthwhile in terms of cost savings. Finally,
all related works cited above favor a backorder or
lost-sales cost formulation. We provide explicit ana-
lytical results for a formulation where backorder costs
are replaced by service-level constraints. This second
formulation seems to be the more relevant one in
many environments.
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3. Stock-Allocation and the Control
Policies

3.1. Formulation of the Model
Consider a production facility that produces a single

product to stock. Each finished item is placed in the
finished-goods inventory. There are n classes of cus-
tomers for this product. When the on-hand inventory
is zero, demands are back-ordered. When it is posi-
tive, an arriving demand can be either satisfied by the
on-hand inventory or can be backordered. We consid-
er a holding cost & (per unit, per time) and backorder
costs b; (per unit, per time) for class i customers.
Without loss of generality we assume that the back-
order costs are ordered such that b, > --- > b, (if b,
= b;, the classes i and j can be considered as a single
class with arrival rate \; + A; and backlog cost b; =
b;). The customers of class i arrive according to a
Poisson process with rate \;. Let A\ = 2, \;. The pro-
duction time is exponentially distributed with mean
1/pn. We also define p = N/, the traffic intensity of
the system and p, = (2£; \;)/p, the traffic intensity
of the subsystem comprising the first k classes (we
have accordingly p, = p, and we take p, = 0). To
ensure the stability of the system, we assume that p
<1

The state of the system can be described by the
vector x(t) = (xo(t), x1(t), - .., x,(t)), withx; ON, 0 =
i = 1. xy(t) is the on-hand inventory at time ¢ and x,(t)
with 1 =i = n is the number of backorders at time ¢
for class i. X(t) = (Xo(t), Xy(t), . . ., X,(t)) denotes the
associated random variables.

The system operates in a make-to-stock-type envi-
ronment where inventories are built in advance in an-
ticipation of future demands. In addition, because
customer classes differ in their backorder costs, a
stock-allocation problem arises. Assume that a class i
demand arrives; should it be immediately satisfied
from the inventory, or should it be back-ordered so
that the inventory is saved for future demands of
classes 1, ..., i — 1? Both production and allocation
decisions obviously depend on the state of the sys-
tem: the current on-hand inventory and the backor-
ders of each class. An appropriate control policy must
then specify the decisions of:
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(1) Production—Whether to produce an item or
not;
(2) Allocation—
® Production—Whenever the production of
an item is completed, whether to use this item
to reduce the number of backorders of a class,
or to increase on-hand inventory,
® Stocks—When a demand occurs, whether
to satisfy it from the on-hand inventory, or to
backorder it.

(A formal definition of a control policy is presented
in Appendix 1).

When in state x, the system incurs a cost rate c(x)
that is equal to

c(x) = hx, + O, bx,.
i=1

Our objective is to find a control policy 7 that mini-
mizes the expected average cost over an infinite ho-
rizon:

T
min lim lE“ f c(X(t)) dt|. @)
m Toe T 0

The optimal allocation of production and invento-
ries is then modeled as a multidimensional stochastic-
control problem. In de Véricourt et al. (2000b), it is
shown that under certain conditions the policy that
minimizes (1) can be characterized. This optimal pol-
icy has a multilevel structure; hence, we refer to it as
the ML policy. The presentation of the ML policy is
deferred to the next section.

Although the ML policy is optimal, there are sev-
eral other plausible allocation policies. To gain an un-
derstanding of the value of optimal inventory allo-
cation, we consider two alternatives. These policies
not only provide a benchmark for the ML policy, but
also have the merit of possessing fewer parameters
to optimize. Furthermore, they have close-to-optimal
performance under certain conditions. The common
point of all three policies is that in terms of the pro-
duction decisions they are members of the base-stock
family, which drives the system to a target base-stock
level. Because the underlying difference between the
policies is the way the system is driven towards its
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base-stock level, we differentiate them by referring to
the respective production and stock-allocation poli-
cies and omit the base-stock term in the description of
the policy for simplicity. As a result of this shortcut,
the First-Come-First-Served (FCFS) Policy, for instance,
refers to a base-stock policy with FCES allocation of
production and stocks.

3.2. The First-Come-First-Served (FCFS) Policy
The FCFS policy takes the allocation decisions with
respect to the order of arrival of demands. It is de-
scribed by a single parameter, a base-stock level z
(=0). At this point, no claims are made for the opti-
mality of a base-stock policy if customers are satisfied
FCFS. Nevertheless, a base-stock policy is simple and
reasonable. Typically, the system starts with an on-
hand inventory level equal to z. The controls of a
FCFS policy are then:

(1) Production—Produce if and only if x, < z or
backlogs exist;
(2) Allocation—

® Production—If there are backordered de-
mands, satisfy them in the order of their arrival
(regardless of their class). If there are no backor-
ders, add produced items to the on-hand inven-
tory.

® Stocks—Satisfy arriving demand regard-
less of its class if the on-hand inventory is not
empty, x, > 0; back-order it otherwise.

There are several reasons for considering this pol-
icy. First, in our experience, it seems to be common
industrial practice. Second, it is the prevailing as-
sumption in the multiretailer-inventory literature. Fi-
nally, it provides a benchmark for the performance of
any policy that does not differentiate customers by
their class. It is also interesting to note that if custom-
ers were identical in their backorder costs, this allo-
cation policy would be optimal (just as any other
“nonidling when backordered”” policy).

The optimal base-stock level Z and the optimal av-
erage cost, g.., of the FCFS policy or an n-class prob-
lem are given by the following property:

Prorerty 1. The optimal FCES policy of an n-class
problem is characterized by the base-stock level equal to
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where b is the aggregate backorder cost
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The optimal cost is then given by
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The proof can be found in Appendix 2.

Remark. The proof of Property 1 uses the fact that
the backorder queues of each class can be viewed as
a single backorder queue with aggregate backorder
cost b. For this equivalent single-class system, a base-
stock policy (with z = 0) is optimal, thereby suggest-
ing the optimality of a base-stock policy for the mul-
ticlass FCFS system.

3.3. The Strict Priority Policy

When there are backorders, a FCFS policy satisfies the
demands in the order of their arrival, which, in gen-
eral, is not optimal. One way to improve the perfor-
mance of the system is to allocate production more
efficiently when satisfying backordered demands. For
a corresponding pure make-to-order system, a cu
rule is optimal (Baras et al. 1985), which in our con-
text implies producing to satisfy the backorders of the
class with the largest b in priority. The policy we will
present exploits this property.

A Strict Priority (SP) policy is characterized by a
base-stock level z. To facilitate the presentation, let us
also define the function m(x) that represents the class
with the highest unit backorder cost among all back-
logged classes. Because b, > --- > b, m(x) =
min;...o(i). The controls of an SP policy are then:

(1) Production—Produce if and only if x, < z or
backlogs exist.
(2) Allocation—
® Production—If there are backlogs, allocate
the item to class m(x). Otherwise, put the item
into on-hand inventory.
® Stocks—Satisfy arriving demand regard-
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less of its class if the on-hand inventory is not
empty (x, > 0); backorder it otherwise.

The recurrent states are the same as those of the
FCFS policy. In fact, as long as the on-hand inventory
is not zero (as long as x, > 0), the SP policy makes
the same decisions as the FCFS policy. On the other
hand, in stockout situations customers of class i are
given allocation priority over customers of classes i +
1,i+2,...,n

As in the FCFS policy, the optimal SP policy seeks
a trade-off between two cost parameters /i, the unit
inventory cost, and ¢, an equivalent (aggregate) back-
order cost. Unlike in the FCFS policy, the equivalent
unit backorder cost depends on the particular pro-
duction-capacity allocation. The key to the property
below, however, is that this cost is independent of the
choice of the base-stock level. The optimal base-stock
level Z, and the optimal average cost g, of the SP
Policy for an n-class problem are given by the follow-
ing property where ¢ is the aggregate backorder cost
mentioned above.

ProperTyY 2. The optimal SP policy of an n-class problem
is characterized by a base-stock level equal to:

where

~ o (N 1-p
= =i b..
‘ §<kﬂ—pﬂl—m1»'

The optimal cost is then given by:

Z+1
p

= +h
80 = =,

Z—T%Gu—&+

The proof can be found in Appendix 3.

3.4. The Multilevel Rationing Policy

Neither the FCFS nor the SP policy exploit the pos-
sibility of rationing the on-hand inventories. The SP
policy should reduce average backorder costs by al-
locating production to the class with the highest
backorder cost. One can intuitively generalize this al-
location rule when there is on-hand inventory. In fact,
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when the on-hand inventory level is low, cost may be
reduced by backlogging classes with low unit back-
order costs to reserve the available stock for future
expensive demands. In that case, production is still
allocated to on-hand inventory even though backor-
ders exist. The Multilevel Rationing (ML) policy can
reserve the inventory for future demands by ration-
ing. We first define the ML policy formally. A more
intuitive presentation follows.

An ML policy is characterized by n stock levels z;
= ... = z,. To be consistent with our notations, we
take z, = 0. The controls are then:

(1) Production—Produce if and only if x, < z, or
backlogs exist.
(2) Allocation—
® Production—Allocate the item to class k if
and only if x, = z,_;, and m(x) = k. Otherwise,
put the item into on-hand inventory.
® Stocks—An arriving demand of class i is
satisfied with the stock if the inventory level is
strictly above z; ; (x, > z; ;). It is back-ordered
elsewhere (x, = z,_,).

Note that no class k backorder is present in the sys-
tem if x, > x,_,. Note also that if all the z, are differ-
ent, the production-allocation rule can be restated as:
If x, = z;_; and x, > 0, then allocate to class k; allocate
to on-hand inventory otherwise.

An alternative description of ML policies can be
presented if the inventory is viewed to be composed
of n (conceptual) inventory layers. Each inventory layer
corresponds to a particular interval of on-hand in-
ventory. More specifically, layer L, corresponds to z;_;
< Xy = z,. With this definition, L, is stacked on L,
and each layer can contain a maximum number of
parts equal to z,, z, — zy, ..., 2, — 2z, (so that the
total physical capacity of the stock is equal to z,). The
current layer L(t) then gives the layer corresponding
to the current inventory position, x,(t). For instance,
if z, | < xy(t) = z, then L(t) = L;. Figure 1 depicts
an example of this structure for three classes of cli-
ents. Starting from a system at its base-stock level
(inventory level x, = z,), demands are first satisfied
with parts coming from layer L,. As soon as L, is
empty (L(f) becomes L, ,), they are satisfied with the
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next layer L, , until it empties, and so on. Note, how-
ever, that layer L, , is strictly reserved to classes 1, 2,

.., n — 1, and class n demands cannot be satisfied
from L,_,. When z, > z,_,, if L(t) = L,, demands be-
longing to classes 1, 2, ..., k are satisfied from the
stock and the other classes are back-ordered. As for
production allocation, when a part is added to the
stock, the on-hand inventory level increases so that L
is refilled before L ,. Once again, if L(t) = L, there
may be backorders of classes k + 1,k + 2,...,n. As
production continues and L(t) becomes L,,,, backor-
ders of class k + 1 will be satisfied, while backorders
of classes k + 2, k + 3, ..., n continue to wait.

To give an example of how the ML policy func-
tions, let us consider the three-class example of Fig-
ure 1. In this case the system starts with z; parts in
the inventory (L(0) = L;). As long as L(t) equals L;,
all arriving demands, regardless of their class, are
satisfied with the stock (like the FCFS and SP poli-
cies). When the current inventory level falls to z, (so
that L(t) = L,), the arriving demands of Class 3 are
backordered. If the inventory level continues to de-
crease and reaches z; (L(f) = L,;), the demands of
Class 2 are back-ordered, and so on. Hence, L, can
only be used to satisfy demands of Classes 1 and 2.
When a part is completed, if the stock is empty, it is
assigned to satisfy a waiting demand of Class 1 (like
the SP policy). But when all these demands are sat-
isfied (x; = 0), the system produces to fill the layer
L,. It is only when L, is full (i.e.,, when x, = z;) that
the system produces to satisfy backordered demands
of Class 2, and so on.

If the levels are not distinct, for instance if z,_; =
z., then when L,_; is full, backordered demands of
class k are satisfied before backordered demands of
class k + 1. Then, when x; = x;,; = 0, the system
produces to increase the inventory level. Thus, if z;
=...=12z,, =0, the ML policy is equivalent to the
SP policy with z = z,.

Note also that the recurrent states of the system are
such that the on-hand inventory is less than z, (x, =
z,) and such that if there are backorders (32, x;, > 0),
then the number of the most expensive waiting class
is less than the number of the current layer (m(x) =
k, where k is such that z;_; < x, < z;). It follows that
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the ML policy allows having a nonempty inventory
with backordered demands.

An ML policy allocates both inventory and pro-
duction, taking into account the current inventory
and backorder positions. One would expect, then,
that when its parameters are optimized, it should im-
prove the performance of the system compared to the
optimal FCFS and SP policies. Indeed, under certain
assumptions it can be shown that the optimal ML
policy is also optimal among all policies and solves
the Minimization Problem (1) (de Véricourt et al.
2000b). In the following, the optimal parameters of
the ML policy are presented as well as the optimal
cost.

Prorerty 3. Construct the sequences z, and g, as follows:
zp= 8 = by =0,
5 pr(h + byiy) U

In (h+ b)) + (1 — p) —(h+b)z)D
Zk—qu:E Pk k P\ &k-1 k kE

0 In p; ]

S
8k (Zk 1— Pk)(h + bye1)

st
k

The optimal levels zj and the optimal cost g, of the ML
policy are equal to z, and g,.

The proof can be found in de Véricourt et al.
(2000Db).

3.5. Simple Insights

Based on the descriptions of the policies and the val-
ues of their respective optimal parameters and costs
above, Property 4 summarizes the relationship in
terms of optimal cost between the different policies:

Prorerty 4. Consider the costs sy, &, and g, of the
respective FCFS, SP. and ML optimal policies. We have:

(1) &m = 8sp = 8refer

(2) s = 8 if and only if the demand classes have
identical b,s;

(3) g = &m if and only if z; = =z,,=0;

(4) If the demand classes are identical in by, then g, =
8sp = Emi-
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The proof can be found in Appendix 4.

Property 4 confirms our intuition that optimal cost
performance of the policies improve with the degree
of bias that can be offered to more expensive custom-
ers. It also follows from the property that when cus-
tomers have almost identical backorder costs, the per-
formance of the policies converge. In fact, if these
costs are equal, all policies are identical. Furthermore,
even if the backorder costs are not identical, there are
cases in which the optimal SP policy may perform as
well as the best ML policy. However, it also follows
that if the optimal ML policy rations stocks, its per-
formance must be superior to the other two policies.
A complete investigation of these points will be un-
dertaken in the next section to generalize and clarify
some of these initial insights.

4. The Benefits of Effective Stock
Allocation

In this section, we quantify the benefits of production
and stock allocation by a numerical investigation to
gain insights into the impacts of system parameters.
To quantify these benefits we compare the optimal
performances of the three control policies introduced
earlier. The motivation for this investigation is two-
fold. On one hand, we would like to determine the
benefits obtained by using an allocation policy that
takes decisions based on the actual inventory and
backorder positions. On the other hand, we would
like to identify the situations in which simpler poli-
cies (that are described by less parameters) provide
close-to-optimal performances.

Because Properties 1 through 3 are not constrained
by the number of classes, the comparisons can, in
principle, be performed for any number of classes of
clients. For the sake of clarity, we first report the re-
sults of comparisons performed for the case of two
classes of customers in §4.1. Later, in §4.2 we present
generalizations and a discussion for multiple custom-
er classes. Note that because ML policies are optimal,
this comparison also provides the relative perfor-
mances of the first two policies with respect to the
optimal policy.
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4.1. Systems with Two Customer Classes
To clarify the impact of different parameters of the
system we study the following relative differences:

A _ sp - gml

sp

_ gfcfs - gml
and AfoS - - .

g sp g fcfs

Ay represents the relative benefit of implementing
the optimal ML policy compared to implementing the
optimal FCFS policy. A,, represents the relative ben-
efit of the optimal ML policy compared to the opti-
mal SP policy. Ay can then be interpreted as the rel-
ative gain when the optimal allocation policy is used
in comparison to an optimal base-stock policy with-
out any effort for rationing or production allocation.
In addition, A, can be interpreted as the relative gain
because of supplementing optimal production allo-
cation by stock rationing.

More precisely, our investigation focuses on three
important parameters: the utilization rate p, the rel-
ative backlog cost b, /b,, and the relative arrival rate
N /\,. We vary one of these quantities while keeping
the others fixed. It is also useful to define h’, the rel-
ative holding cost: i’ = hp/(p,b; + p,b,). This quan-
tity expresses the relative importance of the holding
cost compared to the backlog costs. Unless otherwise
indicated, we set I’ equal to 0.01. Finally, we fix n =
1. All the other parameters of the system (\;, \,, by,
b,, h) can then be derived from the utilization rate,
the relative arrival rate, the relative backlog cost, and
the relative holding cost.

The expressions described in §3 were used to com-
pute A,, and Ay.. The different results obtained are
plotted in Figures 2 through 6. A feature that is com-
mon to all figures is that the relative benefit of the
optimal ML policy increases in b, /b,. This confirms
our intuition because the ML policy reserves on-hand
inventory for future expensive demands. For values
of b; /b, close to one, the optimal ML policy is equiv-
alent to an SP policy. The cost reduction is significant
when the ML policy is compared to the optimal FCFS
policy (for instance, the relative difference is over 10%
and may even reach up to 37% when N\, = \, in Fig-
ure 3).

When A\, /\, is close to zero, demands of Class 1
are rare, so that the system behaves as if it were a
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Figure 2 Effect of A,/\, on A, for Different Values of b,/b,, and with

p=07

single customer-class system with demands of Class
2, regardless of the policy which drives the system.
The consequence is that priority allocation does not
bring significant benefits in that case. The same ar-
gument holds when \;/\, is large so that system is
almost a single customer-class system with demands
of Class 1. Hence, the effect of \; /\, on the benefit of
implementing an ML policy is nonmonotone. In fact,
there exists a value of the ratio such that this benefit
is maximum. This value is close to one (\; = \,) when
the ML policy is compared to the FCFS policy. But
for the SP policy, this value can be larger. Remark that
when b, = b, and \; = \,, the two policies are the
same. N\, must be larger than \,, such that rationing
is required and differences can be observed between
the two policies. Nevertheless, rationing the inventory
can greatly (up to 25%) improve the performance of
the system when the customers do not have identical
backorder costs.

To summarize, stock rationing is especially bene-
ficial for environments where the demand rates of
customers with high backorder costs is of the same
order as the demand rates of customers with low
backorder costs and where the difference in backor-
der costs is significant.

Figures 4 and 5 depict the effects of p on the cost
performance. The global effect of p on the cost per-
formance can be nonmonotone (as seen in Figure 4).
When p is small, the system has enough excess ca-
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Figure 3 Effect of \,/\, on A for Different Values of b,/b, and with

p =07

Afcfs
40%

pacity to satisfy the arriving demands, and no ration-
ing is required (the small variations in cost that ap-
pear in Figures 4 and 5 when p = 0.6 are because of
the discrete nature of the problem). When p is large,
stockouts become more frequent and the policies dif-
fer only when there are significant backorders. Hence,
the ML policy and the SP policy are equivalent so
that their performance is almost identical. Note, how-
ever, that for large p, the benefit of rationing can still
be significant (for example, when p = 0.9, the relative
difference can reach 30% in Figure 4). Furthermore,
as p approaches one, the relative difference A seems
to approach a finite limit (see in Figure 5). This limit
can be interpreted as the maximum benefit that can
be expected by implementing a priority discipline
compared to a FCFS discipline. These limit argu-
ments are difficult to state precisely from the numer-
ical investigation and will be proven in the following
section through a heavy-traffic analysis.

The final experiment investigates the effects of the
relative holding cost, #’, on the performance. This ef-
fect was seen to be nonmonotone in the correspond-
ing lost-sales model (see Ha 1997b). The results sum-
marized in Figure 6 indicate that, in the backorder
case, this effect is monotone. This highlights an im-
portant difference between FCFS and ML policies in
backorder environments. In the lost-sales case, if the
optimal base-stock levels are low, there is little differ-
ence between the two policies. In the backorder-cost
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Figure 4 Effect of p on A, for Different Values of b,/b, and with

N=N

Ay

35%

case, in contrast, even if the optimal base-stock levels
are small, a significant performance difference re-
mains between the two policies because of optimized
allocation of production.

4.2. Generalizations to Systems with Multiple
Customer Classes

The main difficulty in carrying out a numerical study

with more than two customer classes is the number

of parameters which have to be specified. However,

some of the previous insights can be generalized by

focusing on some of the key parameters.

A critical parameter in an n-class system is b, /b,,
the ratio of the highest to the lowest backorder cost.
When b, /b, is close to one, all the backorder costs are
almost equal, so that there is little need for stock ra-
tioning or priority setting between classes. In this
case, the performances of all the three policies are
similar. At the other extreme, when the ratio b, /b,, is
very large, costs can be reduced by rationing and pri-
ority setting, at least between the first and the nth
class.

For instance, Figures 2 through 6 reveal that, in the
two-class system, as b, /b, increases, Ay and A, also
increase. Based on the previous comments, we expect
to see the same qualitative impact of b, /b, on A4 and
A,, when the value of b, is set to b, (of the two-class
system) and the utilization rate of the system is held
constant.
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Figure 5 Effect on p on A, for Different Values of b,/b, and with

N=N

Afcfs
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Furthermore, we can revisit Figures 4 and 5 in the
case of n customer classes for a second observation.
The figures show that A,, approaches zero, while A
attains a positive value, when the utilization rate ap-
proaches one. We can expect that both of these results
will hold for n customer classes for the same reasons
as in the two-class system. In fact, this property will
be formalized in the next section.

Note that introducing a new customer class to the
system increases the costs regardless of the control
policy employed. Let us briefly describe this impact
for the ML policy. We consider a two-class system
with identical arrival rates, and we investigate the
cost increase because of the addition of a third cus-
tomer class with arrival rate A\; = A\, = A, and back-
order cost b.

For instance, consider the following backorder costs
for the two classes of the original system: b, = 10, b,
= 1. Letus assume thath = 1, p = 1,and A, = \, =
0.3 (the corresponding utilization rate is equal to 0.6).
Let g, be the average cost for this system when the
ML policy is used. g; corresponds to the optimal av-
erage cost when the system satisfies a third demand
class with arrival rate 0.3 (the utilization rate is then
equal to 0.9). Remark that, with the introduction of a
third part, the optimal ML policy uses three param-
eters.

Figure 7 depicts the impact of b on the relative cost
increase A3, = (33 — §2)/s (When the other param-
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Effect of h’ on A, for Different Values of b/b, with
p=09 N =1\,

Figure 6

Accts

eters are fixed). As expected, A;,g is a positive in-
creasing function of b. In addition, A;,g has a concave
shape. In particular, when b < b,, the parameters of
the optimal ML policy is such that the third class has
the lowest allocation priority. The relative cost in-
creases, nevertheless, in a sharp manner because ad-
ditional inventory needs to be held for the new class
and more stock reservation is required for the other
two classes. When b, < b < b,, the new class has the
second priority and is protected against Class 2. The
relative cost increase is still significant. Finally, when
b > by, the new class is protected against both Classes
1 and 2. In fact, when b is much larger than the other
backorder costs, its effect completely dominates the
system, and A;,g approaches 100%.

5. Stock Allocation Under High
Capacity Utilization

The results of §4 indicate that when the production
capacity of the system is very close to the total de-
mand rate, the system can exhibit particular proper-
ties. This heavy-traffic regime can be extremely rele-
vant for certain industries such as the semiconductor
industry, which operate very close to a capacity sat-
uration level. Unfortunately, the properties that are
particular to this regime are difficult to extract from
numerical experiments. In this section, we comple-
ment the previous numerical results with an analyt-
ical study of the heavy-traffic regime, wherein the ca-
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Figure 7 Performance of the ML Policy for n = 2 Versus n = 3
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pacity of production becomes barely sufficient to
satisfy arriving demands, that is, when p tends to one.

Tueorem 1. Suppose that A, = ayp, such that 3¢, a, =
1. Then we have

lim A,, = 0 2)
limA,, =1 — RS 3)
o1 P Inr

where v = h/(h + 3p_, a;by) and s = h/(h + b,).
The proof can be found in Appendix 5.

A simplified interpretation of Theorem 1 is that
there is little benefit in optimized stock allocation
when the system is operated at extremely high utili-
zation rates (for instance, at 99% capacity utilization).
For a more complete managerial interpretation, this
interpretation has to be combined with the results
from §4, which demonstrate that the convergence to
the limiting value is rather slow. The final conclusion
then, is the ML policy should be preferred even at
high utilization levels (i.e., 95 to 98%) because it can
result in substantial benefits. Only in very extreme
cases do the relative benefits of dynamic allocation
diminish, but even then consistency and robustness
properties may favor ML policies.

Theorem 1 also implies that the maximum relative
benefit achieved by the ML policy with respect to the
FCFS policy is finite. Note that if b, = 3 a,b, (which
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implies that the b, are close), r = s, and there is no
benefit in implementing an ML policy. This is remi-
niscent of Property 4. On the other hand, if b, is small
compared to the other b;’s, the limit of the relative
difference can go up to 100%.

6. Fill-Rate Constraints

In the preceding sections, the dissatisfaction of a
waiting customer of class kK was modeled by a linear
cost rate b,. An alternative approach that is frequently
used in practice is to express this dissatisfaction
through a service-level measure. One of the most
commonly employed measures is the fill rate (see
Nahmias and Demmy 1981 or Zipkin 2000): the pro-
portion of items directly satisfied from stock. For in-
stance, a fill-rate constraint of 1 — «; specifies that the
fraction of demands of class k satisfied from the stock
(without having to wait) must be higher than or equal
tol — a.

Assume that the required fill-rate level, 1
each demand class is an exogenous parameter speci-
fied by a contractual agreement. We define f7 to be
the effective fill rate, i.e., the fraction of arriving de-
mands of class k not filled from the stock under the
control policy m (we will also use the notation f,
when no confusion is possible). In this case, the oy
are given by the fill-rate requirements, and the man-
ager must control the system to minimize the average
holding cost, while ensuring that the effective fill
rates, (1 — f;), satisfy the requirements.

When the clients have different fill-rate require-
ments, production and stock allocation policies that
give priorities to certain classes should improve per-
formance. Even though it is difficult to precisely char-
acterize optimal policies in this scenario, the three
policies discussed earlier are intuitively plausible and
interesting.

Let us first qualitatively compare the FCFS and SP
policies. Neither of these policies ration the on-hand
stock. Indeed, their only difference is because of the
respective production-allocation rules when demands
are backordered. Note, however, that even though the
allocation of production to backorders affects the av-
erage backorder times, it does not have any effect on

— a4, of
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the respective effective fill rates. Hence, any nonidling
production-allocation policy with the same base-stock
level (in the absence of stock rationing) has equivalent
holding-cost performance. Because of this equiva-
lence, the analysis in this section will be restricted to
the class of FCFS and ML policies.

In the following, we assume that the classes of de-
mands are ordered such that oy < - - - < «,,. The def-
inition of an ML policy is then unchanged.

The optimal Z of the FCFS policies under the fill-
rate constraints is given by the following property:

Prorerty 5. The optimal FCFS policy is characterized
by the base-stock level equal to

In(ey;)

Z7 =
In p

The optimal holding cost is then given by

gchfs = h

~ P N
_—1_ z
z 1_p( p*)

The proof can be found in Appendix 6.

Thus, all the effective fill rates 1 — f, of the de-
mand classes satisfy the constraint 1 — «;, which is
the most restrictive requirement. This is the main
drawback of the FCFS policy: For a fixed «; (and a
fixed base-stock level), regardless of the values of «,
the cost and the effective fill rate stay unchanged. In
other words, the performance of the system is deter-
mined uniquely by the most stringent requirement.

An ML policy, on the other hand, does not suffer
from this drawback. Inventory-level-dependent allo-
cation of the stock allows a flexibility that enables fit-
ting the different effective fill rates to their respective
constraints 1 — a.

ProperTY 6. Construct the sequences z, — z,_q, p, and
fi starting from k = n, with f,,; = 1, as follows:

k 0 o0
2N e
i=1 k+1
Pr = P Zy = Zp1 T fe = P friq.
B oln py "

Then, we obtain

(1) the optimal levels of the ML policy are equal to z,
(with z, = 0);

(2) its optimal cost g%, is equal to
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Effect of T — o, on Ay, with \, = N, 1T — «, = 80%,
and p =09

Figure 8
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where

Iy = zp = Zj_qpp 1 — (I — pgr=1); and

Pk
(1= py)

(3) 1 — f, represents the fill rate of customer k under
the optimal ML policy.

The proof can be found in Appendix 7.

We are now able to evaluate the benefit of imple-
menting the ML policy compared to implementing
the FCFS policy. We consider the relative difference
Ay = (s — )/ Shy, and we take n = 2.

Figure 8 presents the evolution of Ag. for increas-
ing fill-rate constraints for Class 1, with Ay = \,, 1 —
a, = 80%, and p = 0.9. For values of the service levels
commonly used in practice (around 95%, the benefit
of implementing an ML policy compared to the FCFS
policy is very significant (60%). When 1 — «, is close
to 80% (that is, when 1 — o; = 1 — ), both policies
are equivalent (z; = 0), and A%, tends to zero. When
1 — o, increases, the flexibility of the ML policy al-
lows adjustment of the stocks for the respective fill-
rate constraints, while the FCFS policy maintains all
the achieved service levels at 1 — «;. The higher (1 —
a,) is, the more valuable the impact due to this flex-
ibility becomes. The relative cost difference then ap-

117



DE VERICOURT, KARAESMEN, AND DALLERY
Assessing the Benefits of Different Stock-Allocation Policies

proaches to a finite limit, which is the maximum cost
reduction that can be attained by implementing an
ML policy.

Differentiating classes of customers by their relative
backorder costs may be a difficult task. In this sense,
the service-level constraint approach provides an al-
ternative framework for measuring the relative im-
portance of customers. The end result is that inven-
tory-level-dependent allocation policies can improve
performance significantly (by up to 30% in Figure 8)
even for a relatively small (10%) difference in service
levels. To understand how this significant difference
in performance is achieved, let us compare the effec-
tive fill rates and average number of backlogs for op-
timal FCFS and ML policies using the parameters of
Figure 8 (with 1 — a; = 90% and 1 — «, = 80%). The
optimal FCFS policy has effective fill rates of 90.1%
and average backlog levels of 0.44 for both classes.
The optimal ML policy, in contrast, has effective fill
rates of 91.6% and 81.5% for Classes 1 and 2, respec-
tively. The corresponding average backlog levels are
0.068 and 1.52 for Classes 1 and 2, respectively, (the
computation of average backlog levels for the MP pol-
icy is based on the proof of Property 3, see de Véri-
court et al. 2000b). As expected, when inventory-lev-
el-dependent allocation is employed, the bias towards
stringent customers in terms of required fill rates
translates into a bias in terms of average backlog lev-
els (or equivalently, into average waiting times in the
backlog queue).

Two results emerge from the analysis in this sec-
tion. Firstly, when fill rates are the appropriate mea-
sure, service-level differentiation cannot be achieved
without stock rationing. Secondly, when dynamic
stock rationing is performed optimally, important
benefits can be obtained even for small differences in
service levels of customers.

7. Conclusion

We have presented three control policies for a make-
to-stock production system with multiple classes of
customers. Our initial contribution is to obtain the
optimal parameters of ML policies for a fill-rate con-
straint formulation and of FCFS and SP policies for
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Figure 9 When Are Other Policies as Good as ML Policies?
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both fill rate and backorder cost formulations. We
then studied and compared the optimal performanc-
es of the three policies to shed light onto the potential
benefits of stock allocation.

The ML policy always outperforms the other two
policies. This robustness is the first evident advantage
of the ML policy. A second pertinent issue is the fol-
lowing one: Are there systems for which other base-
stock-type policies (which use fewer parameters) are
almost as good as ML policies? Figure 9, which sum-
marizes the numerical investigation, indicates that
there are parameter values for which the performance
of other policies is comparable to the performance of
ML policies. Nevertheless, the figure also indicates
that for an important range of parameters the ML
policy is the best choice. Furthermore, because the op-
timization of an ML policy is fairly easy, once the
inventory-tracking system that enables the implemen-
tation of such a policy is available, it is not too diffi-
cult to readjust the policy parameters to cope with
changing system parameters.

An important last question is how do the qualita-
tive results (such as Figure 9) depend on the model-
ing assumptions? The assumptions of Poisson arriv-
als and exponential service times significantly
facilitate exact computation and precise statements on
optimal control. Incorporation of more general arrival
or service processes in the model can be expected to
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modify the quantitative results. Fortunately, other re-
sults in make-to-stock queues indicate that the qual-
itative insights that are obtained in the simple Mar-
kovian framework are quite robust. In particular, Ha
(2000) provides evidence in this direction for a stock-
rationing problem with nonexponential service times
and lost sales. The actual optimal policy is more com-
plicated than a (lost-sales) ML policy in this case, but
the ML policy results in performances that are re-
markably close to optimal.

Cs(x) = {

Cr(x) = {

Cg corresponds to the control of the production of the facility. When
there are backorders, it also states which class of customers has to
be satisfied. Cf for k = 1 corresponds to the rationing of class k. By
§* we denote the optimal average cost.

Let e, be the unit vector of dimension i. Without loss of gen-
erality, we can uniformize transition rates by taking 3/, \; +
= 1. The value function v* for the corresponding Markov deci-
sion problem can be shown to satisfy the following optimality
equations:

200 + g% = c() + T + 3 AT, (Al

where the operators T, are

Tyo(x) = min[v(x), v(x + ), v(x — e;I;,<)]

1=i=n
where I is the indicator function

T,o(x) = min[o(x + e), v(x — ey)], fork such that1 =k =n.

By standard results in dynamic programming, the optimal policy
can then be obtained through the optimality equation of the above
Markov decision process. This control problem has been previously
described by Ha (1997¢) in the case of two demand classes and has
been generalized to the multicustomer-class case in de Véricourt et
al. (2000b).

Appendix 2.

Proor oF ProperTy 1. Consider a FCFS policy with the base-stock
level z. The recurrent states are such that x, X 2, x; = 0 with x,
= z. For these states, the random variable that equals z — X if X,
> 0, and that equals 2/, X; + z elsewhere, is equivalent to the
length of an M/M/1 queue. It follows that P(X, = i) = (1 — p)p*~/,
i=1,...,z and P(X, = 0) = p*
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Appendix

Appendix 1.

Formuramion oF THE OptivaL ContrOL PrOBLEM. A control policy
states the action to take at any time given the current state x(). The
investigation can be restricted to Markovian policies because the
optimal policy belongs to this class. Let C"(x) = (C§(x), ..., Ci(x))
the control associated with a policy w defined by:

-1 not to produce
k 1 =k =mn, to allocate production to backorders of class k,

0 to satisfy an arriving class k demand from the inventory

k=1

Furthermore, given that the on-hand inventory is empty, the sys-
tem is equivalent to a FCFS multiclass M/M/1 queue. It follows
that for i > 0, E[X;|{X, = 0}] = p,/(1 — p;), where p;, = \;/(n. —
31, 4 \;) (see Buzacott and Shanthikumar 1993). The cost g;.(z) of
the FCES policy with the base stock z is then equal to

o Pebe p
s(2) = —p* + hlz — ——(@1 — p?
8rers(2) zl—pkp 1—p( p?)

Z+1
=) p

p
+ hlz — ——1 — p9)|. A2
R wn () (A2)

Taking the first difference of g;.(z) in z we obtain
Agfcfs(z) = gftfs(z +1) - gfcfs(z) =h- (6 + h)PZH/

which is nondecreasing in z. The minimum is reached at Z =
min_ {Agyx(z) > 0} leading to

P
IRAL:

z= A
Ohe O

and replacing 2 in (5) we obtain gn.. [

Appendix 3.

Proor or Property 2. The proof is very similar to the FCFS case.
Consider an SP with the base stock z. The distribution of X, is (1
— pp> i, i =1,..., z. Given that X, is empty, the system is the
same as a multiclass queue with preemptive priority. The average
number of backordered demands of class i is then equal to (see
Gross and Harris 1985), p; /(1 — p;) — p;-1/(1 — p;_1), and a straight-
forward computation leads to

z+

2o (- )

~ P!
8yp(2) =¢ +h -

1-p
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Taking the first difference of g4(z), which is nondecreasing in z, we
obtain the optimal base-stock level. The optimal average cost fol-
lows by a direct computation. []

Appendix 4.

Proor oF PropPerTY 4. An ML policy is optimal for Problem (1) (see
de Véricourt et al. 2000b) leading to g,, = g4 and g,, = g,- Fur-
thermore, p/(1 — p)b and p/(1 — p)¢ are the average costs of the
corresponding multiclass queue with respectively FCFS and pre-
emptive priority (see the proofs of properties 1 and 2). Because a
cp. rule is optimal for this problem (see Baras et al. 1985), ¢ < b.
Thus, we have 2 = Z and g,, = gnx-

Note then that the optimal costs of the FCFS and SP policies are
equivalent to the optimal cost of the well-known single-part-type,
single-server problem (see, for instance, Veatch and Wein 1996) with
the arrival rate \, the service rate of ., the holding cost /, and a
backlog cost equal to b for the FCFS policy and ¢ for the SP policy.
Hence, ¢ < b leads to 8 = &, Proving the first part of the prop-
osition.

It also follows that g,, = g if and only if ¢ = b, which can be
shown to be equivalent to the equality of all the b, giving us the
second part of the property.

The third part comes directly from the definition of the ML pol-
icies. Furthermore, if all the b, are the same, thenz, = --- =z, ;| =
0. Hence, from the third part of the property the last one is also
true. [

Appendix 5.
Proor or Tueorem 1. Using Property 1 we obtain for the optimal
FCEFS policy,

Inr Invr
b= b — - 1<is=—
Eakk In p z In p
.
rSpZ<_
p
> aby Inr p(1—r) > abyr Inr p-—r
rHhf——1-—"—" =g = -+ h|— - .
1-p Inp 1-p 1-pp Inp 1-p
(A3)
Hence, we have from (A3)
hl )
*ﬂJrCSt}’E’;SJrO(l*p)Sgﬂfs
1-p
S7hln(r)

+ostpf +o(l—p), (A4)

where cstfiff =< cstff; are two constants.
Following the same steps we obtain similar results for the SP and
ML cases,
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_k li(s) + csté’,ﬁf +o(l—-p) =g,
= —};1%(2) +ostw +0(1—p), (A5)
_hin(s) + st +0(1—p) < g
1-p
= _T%(sp) +ost?? +o(1—p), (A6)

where cstif, cstar, cstif, and cst;f are four constants. Equations

(A4), (A5), and (A6) give us the desired result. []

Appendix 6.
Proor oF Property 5. For the optimal FCFS policy, we have f; =
= f, = P(X, = 0). It follows that the optimal base-stock level
is given by 2 = min_{P(X, = 0) = min,e;} with P(X, = 0) = pZ
Hence, we obtain 2 = [n(«;)/In p[J and the optimal average cost
can be derived directly. [

Appendix 7.

Proor oF Property 6. Consider a given ML policy with its 1 stock
levels z,, ..., z, (and taking z, = 0). Under this policy the proba-
bility distribution of the on-hand inventory X, is equal to, for x O
Ly (ze1 < x = zy),

PXo=2) = T1 pir=r1 = popi . (A7)
Furthermore, f, = P(X, = z;) = 1 — P(X, > z;), and using Equation
(A7) a straightforward calculation leads to

ﬂ=gwﬂu (A8)

To compute the optimal ML policy, we minimize the differences z;
— z;_4 such that f, = o,. Hence, for 0 < k = n, Equation (A8) leads
to fr = eppraifi, (with f,,, = 1), and z; — 2z, ; = min, {p*fry
= oy} gives us z; — z,; = On(oy_y/ fr1)/In p 0 The holding cost
can then be obtained using Equation (A7). [
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