Appendix A: Properties

A.1. Properties on the value function

i) and ii) Direct consequence of the definitions of I_{α} , D_{α} , $S_{\alpha,\beta}$ and $S_{\alpha,\beta}^{ub}$.

iii) We sum the two inequalities $\Delta_{\alpha} \Delta_{\beta} v(\mathbf{x} + \boldsymbol{\gamma}) \ge 0$ and $\Delta_{\gamma} \Delta_{\beta} v \ge 0$ to get $\Delta_{\alpha+\gamma} \Delta_{\beta} v(\mathbf{x}) \ge 0$.

A.2. Properties on the system state space

i) to v) Trivial

vi) $\mathbb{R}_{\mathbf{a}_1,\ldots,\mathbf{a}_l}(\mathbf{b})$ is equivalent to "for all \mathbf{x} such that $\{\mathbf{x}, \mathbf{x} + \mathbf{a}_1, \ldots, \mathbf{x} + \mathbf{a}_l\} \subset \mathcal{X}, \mathbf{x} + \mathbf{b} \in \mathcal{X}$ ". In this assertion we replace \mathbf{x} by $\mathbf{x} + \mathbf{a}_l$ to obtain "for all \mathbf{x} such that $\{\mathbf{x} - \mathbf{a}_l, \mathbf{x} + \mathbf{a}_1 - \mathbf{a}_l, \ldots, \mathbf{x}\} \subset \mathcal{X}, \mathbf{x} + \mathbf{b} \in \mathcal{X}$ ". So $\mathbb{R}_{\mathbf{a}_1,\ldots,\mathbf{a}_l}(\mathbf{b}) = \mathbb{R}_{-\mathbf{a}_l,\mathbf{a}_1-\mathbf{a}_l,\ldots,\mathbf{a}_{l-1}-\mathbf{a}_l,\mathbf{0}}(\mathbf{b} - \mathbf{a}_l)$.

Appendix B: Translation operator

With $\mathbf{y} = \mathbf{x} + \mathbf{b}$ and $\forall \mathbf{x}, \mathbf{x} + \mathbf{b} \in \mathcal{X}$,

$$\mathcal{T}v(\mathbf{x}) = \begin{cases} v(\mathbf{y} + \mathbf{a}) + c_a & \text{if } \mathbf{y} + \mathbf{a} \in \mathcal{X} \\ v(\mathbf{y}) + c_r & \text{otherwise.} \end{cases}$$
(8)

B.1. Propagation of P and N (Cells 1 and 3)

We suppose that v is P (i.e. $v \ge 0$), then we want find conditions to have \mathcal{T} which propagates P (i.e. $\mathcal{T}v \ge 0$). Given equation (8), we need to consider two cases:

- if $\mathbf{y} + \mathbf{a} \in \mathcal{X}$, then $\mathcal{T}v \ge 0$ if $c_a \ge 0$
- if $\mathbf{y} + \mathbf{a} \notin \mathcal{X}$, then $\mathcal{T}v \ge 0$ if $c_r \ge 0$. However this case is unreachable if \mathcal{X} is $\mathbb{R}_{-\mathbf{b}}(\mathbf{a})$.

So $\mathcal{T}v \ge 0$ if $|c_a \ge 0| \land (\mathbb{R}_{-\mathbf{b}}(\mathbf{a}) \lor |c_r \ge 0|)$. In the same way, $\mathcal{T}v \le 0$ if $|c_a \le 0| \land (\mathbb{R}_{-\mathbf{b}}(\mathbf{a}) \lor |c_r \le 0|)$.

B.2. Propagation of I_{ϵ} (Cell 5)

$$\Delta_{\boldsymbol{\epsilon}} \mathcal{T} v(\mathbf{x}) = \begin{cases} \Delta_{\boldsymbol{\epsilon}} v(\mathbf{y} + \mathbf{a}) + \epsilon_{c_a} & \text{if } \mathbf{y} + \mathbf{a} \in \mathcal{X} \\ \Delta_{\boldsymbol{\epsilon}} v(\mathbf{y}) + \epsilon_{c_r} & \text{otherwise} \end{cases}$$

So \mathcal{T} propagates I_{ϵ} if $|\epsilon_{c_a} \geq 0| \wedge (|\epsilon_{c_r} \geq 0| \lor \mathtt{R}_{-\mathbf{b}}(\mathbf{a}))$

B.3. Propagation of $S_{\epsilon,-\epsilon}$ and $S_{\epsilon,\epsilon}$ (Cells 7 and 9)

We make the assumption that $\Delta_{\epsilon} \Delta_{\epsilon} v$ is positive (resp. negative), then we want find conditions to have $\Delta_{\epsilon} \Delta_{\epsilon} \mathcal{T}$ positive (resp. negative).

$$\Delta_{\boldsymbol{\epsilon}} \Delta_{\boldsymbol{\epsilon}} \mathcal{T} v(\mathbf{x}) = \begin{cases} \Delta_{\boldsymbol{\epsilon}} \Delta_{\boldsymbol{\epsilon}} v(\mathbf{y} + \mathbf{a}) & \text{if } \mathbf{y} + \mathbf{a} \in \mathcal{X} \\ \Delta_{\boldsymbol{\epsilon}} \Delta_{\boldsymbol{\epsilon}} v(\mathbf{y}) & \text{otherwise} \end{cases}$$

So \mathcal{T} propagates $S_{\epsilon,\epsilon}$ or $S_{\epsilon,-\epsilon}$ without condition.

B.4. Propagation of $S_{d,\epsilon}$ (Cell 11)

We make the assumption that v is $\mathbf{S}_{\mathbf{d},\epsilon}$ (i.e. $\Delta_{\epsilon}\Delta_{\mathbf{d}}v \ge 0$), then we want find conditions to have \mathcal{T} which propagates $\mathbf{S}_{\mathbf{d},\epsilon}$ (i.e. $\Delta_{\epsilon}\Delta_{\mathbf{d}}\mathcal{T}v \ge 0$).

$$\Delta_{\boldsymbol{\epsilon}} \Delta_{\mathbf{d}} \mathcal{T} v(\mathbf{x}) = \Delta_{\boldsymbol{\epsilon}} \Delta_{\mathbf{d}} \begin{cases} v(\mathbf{y} + \mathbf{a}) + c_a & \text{if } \mathbf{y} + \mathbf{a} \in \mathcal{X} \\ v(\mathbf{y}) + c_r & \text{otherwise} \end{cases}$$

The four possible cases are described in the following table

	$\mathbf{y} + \mathbf{a} \in \mathcal{X}$	$\mathbf{y} + \mathbf{a} \notin \mathcal{X}$
$\mathbf{y} + \mathbf{a} + \mathbf{d} \in \mathcal{X}$	Case 1	Case 3
$\mathbf{y} + \mathbf{a} + \mathbf{d} \notin \mathcal{X}$	Case 2	Case 4

- Case 1 = 0
- Case $2 = \Delta_{\epsilon}[v(\mathbf{y} + \mathbf{d}) + c_r v(\mathbf{y} + \mathbf{a}) c_a]$ $= \Delta_{\epsilon}\Delta_{\mathbf{d}-\mathbf{a}}v(\mathbf{y} + \mathbf{a}) + \epsilon_{c_r} - \epsilon_{c_a}$ -Positive if $\mathbf{S}_{\mathbf{d}-\mathbf{a},\epsilon} \wedge |\epsilon_{c_r} - \epsilon_{c_a} \ge 0|$ -Useless if \mathcal{X} is $\mathbf{R}_{\mathbf{d},\mathbf{a}+\mathbf{b}}(\mathbf{a} + \mathbf{b} + \mathbf{d})$ • Case $3 = \Delta_{\epsilon}[v(\mathbf{y} + \mathbf{d} + \mathbf{a}) + c_a - v(\mathbf{y}) - c_r]$ $= \Delta_{\epsilon}\Delta_{\mathbf{d}+\mathbf{a}}v(\mathbf{y}) - \epsilon_{c_r} + \epsilon_{c_a}$ -Positive if $\mathbf{S}_{\mathbf{d}+\mathbf{a},\epsilon} \wedge |\epsilon_{c_a} - \epsilon_{c_r} \ge 0|$ -Useless if \mathcal{X} is $\mathbf{R}_{\mathbf{d},\mathbf{a}+\mathbf{b}+\mathbf{d}}(\mathbf{a} + \mathbf{b})$ • Case 4 = 0

So \mathcal{T} propagates $S_{\mathbf{d},\boldsymbol{\epsilon}}$ if

$$(\mathtt{S}_{\mathtt{d}-\mathtt{a},\epsilon} \land | \epsilon_{c_r} - \epsilon_{c_a} \ge 0 | \lor \mathtt{R}_{\mathtt{d},\mathtt{a}+\mathtt{b}}(\mathtt{a}+\mathtt{b}+\mathtt{d})) \land (\mathtt{S}_{\mathtt{d}+\mathtt{a},\epsilon} \land | \epsilon_{c_a} - \epsilon_{c_r} \ge 0 | \lor \mathtt{R}_{\mathtt{d},\mathtt{a}+\mathtt{b}+\mathtt{d}}(\mathtt{a}+\mathtt{b}))$$

B.5. $PM(\mathcal{T})$ and $NM(\mathcal{T})$ (Cells 13 and 15)

$$\mathcal{T}v(\mathbf{x}) - v(\mathbf{x}) = \begin{cases} \Delta_{\mathbf{a}+\mathbf{b}}v(\mathbf{x}) + c_a & \text{if } \mathbf{y} + \mathbf{a} \in \mathcal{X} & \text{Case } 1\\ \Delta_{\mathbf{b}}v(\mathbf{x}) + c_r & \text{otherwise} & \text{Case } 2 \end{cases}$$

So v is $PM(\mathcal{T})$ if $|\Delta_{\mathbf{a}+\mathbf{b}}v \ge -c_a| \wedge (|\Delta_{\mathbf{b}}v \ge -c_r| + \mathbf{R}_{-\mathbf{b}}(\mathbf{a}))$ and v is $NM(\mathcal{T})$ if $[|\Delta_{\mathbf{a}+\mathbf{b}}v \le -c_a| \wedge (|\Delta_{\mathbf{b}}v \le -c_r| + \mathbf{R}_{-\mathbf{b}}(\mathbf{a}))$

B.6. $IM_{\epsilon}(\mathcal{T})$ (Cell 17)

$$\Delta_{\boldsymbol{\epsilon}} \Omega_{\mathcal{T}} v(\mathbf{x}) = \begin{cases} \Delta_{\boldsymbol{\epsilon}} \Delta_{\mathbf{a}+\mathbf{b}} v(\mathbf{x}) + \epsilon_{c_a} & \text{if } \mathbf{y} + \mathbf{a} \in \mathcal{X} \\ \Delta_{\boldsymbol{\epsilon}} \Delta_{\mathbf{b}} v(\mathbf{x}) + \epsilon_{c_r} & \text{otherwise} \end{cases}$$

So, v is $IM_{\epsilon}(\mathcal{T})$ if $S_{\epsilon, \mathbf{a}+\mathbf{b}} \land |\epsilon_{c_a} \ge 0| \land (S_{\epsilon, \mathbf{b}} \land |\epsilon_{c_r} \ge 0| \lor R(\mathbf{a}+\mathbf{b}))$

 $\begin{array}{l} \textbf{Vercraene, Gayon, and Karaesmen:} \ \textit{Effects of system parameters in a class of multi-dimensional queueing control problems} \\ \textbf{Article submitted to } \ \textit{Operations Research} \end{array}$

	$\mathbf{y} + \mathbf{a} \in \mathcal{X}$	$\mathbf{y} + \mathbf{a} \notin \mathcal{X}$
$\mathbf{y} + \mathbf{a} + \mathbf{d} \in \mathcal{X}$	Case 1	Case 3
$\mathbf{y} + \mathbf{a} + \mathbf{d} \notin \mathcal{X}$	Case 2	Case 4

B.7. $IM_d(\mathcal{T})$ (Cell 19)

$$\Delta_{\mathbf{d}} \Omega_{\mathcal{T}} v(\mathbf{x}) = \Delta_{\mathbf{d}} \begin{cases} \Delta_{\mathbf{a}+\mathbf{b}} v(\mathbf{x}) + c_a & \text{if } \mathbf{y} + \mathbf{a} \in \mathcal{X} \\ \Delta_{\mathbf{b}} v(\mathbf{x}) + c_r & \text{otherwise} \end{cases}$$

The four possible cases are described in the following table

• Case $1 = \Delta_{\mathbf{d}} \Delta_{\mathbf{a}+\mathbf{b}} v(\mathbf{x})$

—Positive if $S_{d,a+b}$

• Case
$$2 = \Delta_{\mathbf{b}} v(\mathbf{x} + \mathbf{d}) + c_r - \Delta_{\mathbf{b} + \mathbf{a}} v(\mathbf{x}) - c_a = \begin{cases} \Delta_{\mathbf{d}} \Delta_{\mathbf{b}} v(\mathbf{x}) - \Delta_{\mathbf{a}} v(\mathbf{x} + \mathbf{b}) + c_r - c_a \\ \Delta_{\mathbf{d} - \mathbf{a}} \Delta_{\mathbf{b}} v(\mathbf{x} + \mathbf{a}) - \Delta_{\mathbf{a}} v(\mathbf{x}) + c_r - c_a \end{cases}$$

- Positive if $|\Delta_{\mathbf{a}} v \leq c_r - c_a| \wedge (\mathbf{S}_{\mathbf{b}, \mathbf{d}} \vee \mathbf{S}_{\mathbf{b}, \mathbf{d} - \mathbf{a}})$
- Useless if \mathcal{X} is $\mathbb{R}_{\mathbf{d}, \mathbf{a} + \mathbf{b}}(\mathbf{a} + \mathbf{b} + \mathbf{d})$)

• Case
$$3 = \Delta_{\mathbf{b}+\mathbf{a}}v(\mathbf{x}+\mathbf{d}) + c_a - \Delta_{\mathbf{b}}v(\mathbf{x}) - c_r = \begin{cases} \Delta_{\mathbf{d}}\Delta_{\mathbf{b}}v(\mathbf{x}) + \Delta_{\mathbf{a}}v(\mathbf{x}+\mathbf{b}+\mathbf{d}) - c_r + c_a \\ \Delta_{\mathbf{d}+\mathbf{a}}\Delta_{\mathbf{b}}v(\mathbf{x}) + \Delta_{\mathbf{a}}v(\mathbf{x}+\mathbf{d}) - c_r + c_a \end{cases}$$

— Positive if $|\Delta_{\mathbf{a}}v \ge c_r - c_a| \wedge (\mathbf{S}_{\mathbf{b},\mathbf{d}} \vee \mathbf{S}_{\mathbf{b},\mathbf{d}+\mathbf{a}})$
— Useless if \mathcal{X} is $\mathbb{R}_{\mathbf{d},\mathbf{a}+\mathbf{b}+\mathbf{d}}(\mathbf{a}+\mathbf{b})$)

- Case $4 = \Delta_{\mathbf{d}} \Delta_{\mathbf{b}} v(\mathbf{x})$
 - —Positive if $S_{d,b}$

—Useless if
$$\mathcal{X}$$
 is $\mathtt{R}_{d}(\mathbf{a} + \mathbf{b} + \mathbf{d}) \lor \mathtt{R}_{d}(\mathbf{a} + \mathbf{b})$

So, v is $IM_d(\mathcal{T})$ if

$$\begin{split} & \mathbf{S_{d,a+b}} \wedge (\mathbf{S_{d,b}} \vee \mathbf{R_d}(\mathbf{a} + \mathbf{b} + \mathbf{d}) \vee \mathbf{R_d}(\mathbf{a} + \mathbf{b})) \\ \wedge (|\Delta_{\mathbf{a}} v \leq c_r - c_a| \wedge [\mathbf{S_{d,b}} \vee \mathbf{S_{b,d-a}}] \vee \mathbf{R_{d,a+b}}(\mathbf{a} + \mathbf{b} + \mathbf{d})) \\ \wedge (|\Delta_{\mathbf{a}} v \geq c_r - c_a| \wedge [\mathbf{S_{d,b}} \vee \mathbf{S_{b,d+a}}] \vee \mathbf{R_{d,a+b+d}}(\mathbf{a} + \mathbf{b})) \end{split}$$

Appendix C: Choice operator

$$Cv(\mathbf{x}) = \begin{cases} \min\{v(\mathbf{y}) + c_b, v(\mathbf{y} + \mathbf{a}) + c_a\} & \text{if } \mathbf{y} + \mathbf{a} \in \mathcal{X} \\ v(\mathbf{y}) + c_r, & \text{otherwise} \end{cases}$$
(9)

with $\mathbf{y} = \mathbf{x} + \mathbf{b}$ and $\forall \mathbf{x}, \mathbf{x} + \mathbf{b} \in \mathcal{X}$. In this section we may use $c_d = c_a - c_b$.

C.1. Propagation of P and N (Cells 2 and 4)

We suppose that v poisitve (resp. negative). From equation (9) the condition to have Cv positive (resp. negative) is

$$|c_a \ge 0| \land |c_b \ge 0| \land (|c_r \ge 0| \lor \mathbb{R}_{-\mathbf{b}}(\mathbf{a})) \qquad (\text{resp. } |c_a \le 0| \land |c_b \le 0| \land (|c_r \le 0| \lor \mathbb{R}_{-\mathbf{b}}(\mathbf{a})))$$

C.2. Propagation of I_{ϵ} (Cell 6)

$$\Delta_{\boldsymbol{\epsilon}} \mathcal{C} v(\mathbf{x}) = \begin{cases} \Delta_{\boldsymbol{\epsilon}} \min\{v(\mathbf{y}) + c_b, v(\mathbf{y} + \mathbf{a}) + c_a\} \\ \text{if } \mathbf{y} + \mathbf{a} \in \mathcal{X} \\ \Delta_{\boldsymbol{\epsilon}} v(\mathbf{y}) + c_r, \text{ otherwise} \end{cases}$$

The four cases of $\Delta_{\epsilon} \min\{v(\mathbf{y}) + c_b, v(\mathbf{y} + \mathbf{a}) + c_a\}$ are described in the following table.

	$\Delta_{\mathbf{a}} v(\mathbf{y}) \leq -c_d$	$\Delta_{\mathbf{a}} v(\mathbf{y}) \ge -c_d$
$\Delta_{\mathbf{a}} v'(\mathbf{y}) \leq -c_d'$	Case 1	Case 3
$\Delta_{\mathbf{a}} v'(\mathbf{y}) \ge -c_d'$	Case 2	Case 4

- Case $1 = \Delta_{\epsilon} v(\mathbf{y} + \mathbf{a}) + \epsilon_{c_a}$ —Positive if $|\epsilon_{c_a} \ge 0|$
- Case $2 = v'(\mathbf{y}) + c_b' v(\mathbf{y} + \mathbf{a}) c_a \ge \Delta_{\epsilon} v(\mathbf{y}) + \epsilon_{c_b}$ —Positive if $|\epsilon_{c_b} \ge 0|$
- Case $3 = v'(\mathbf{y} + \mathbf{a}) + c_a' v(\mathbf{y}) c_b \ge \Delta_{\epsilon} v(\mathbf{y} + \mathbf{a}) + \epsilon_{c_a}$ —Positive if $|\epsilon_{c_a} \ge 0|$
- Case 4 $Q = \Delta_{\epsilon} v(\mathbf{y}) + \epsilon_{c_b}$
 - Positive if $|\epsilon_{c_b} \ge 0|$

Note that when $\Delta_{\mathbf{a}} v \leq -c_d - \epsilon_{c_d}^+$ (resp. $\Delta_{\mathbf{a}} v \geq -c_d + \epsilon_{c_d}^-$) the cases 2, 3, 4 (resp. 1, 2, 3) are Useless.

So \mathcal{C} propagates I_{ϵ} if

$$\begin{pmatrix} |\epsilon_{c_a} \ge 0| \land |\epsilon_{c_b} \ge 0| \\ \lor |\Delta_{\mathbf{a}} v \le -c_d - \epsilon_{c_d}^+| \land |\epsilon_{c_a} \ge 0| \\ \lor |\Delta_{\mathbf{a}} v \ge -c_d + \epsilon_{c_d}^-| \land |\epsilon_{c_b} \ge 0| \end{pmatrix} \land \begin{pmatrix} \mathsf{R}_{-\mathbf{b}}(\mathbf{a}) \\ \lor |\epsilon_{c_r} \ge 0| \end{pmatrix}$$

C.3. Propagation of $S_{\epsilon,-\epsilon}$ and $S_{\epsilon,\epsilon}$ (Cells 8 and 10)

We make the assumption that $\Delta_{\epsilon} \Delta_{\epsilon} v$ is positive (resp. negative) then we want find conditions on v, and ϵ to have $\Delta_{\epsilon} \Delta_{\epsilon} C$ positive (resp. negative).

$$\Delta_{\epsilon} \Delta_{\epsilon} C v(\mathbf{x}) = \begin{cases} \Delta_{\epsilon} \Delta_{\epsilon} \min\{v(\mathbf{y}) + c_b, v(\mathbf{y} + \mathbf{a}) + c_a\} \\ \text{if } \mathbf{y} + \mathbf{a} \in \mathcal{X} \\ \Delta_{\epsilon} \Delta_{\epsilon} v(\mathbf{y}), \text{ otherwise} \end{cases}$$

We focus on $\Delta_{\epsilon} \Delta_{\epsilon} \min\{v(\mathbf{y}) + c_b, v(\mathbf{y} + \mathbf{a}) + c_a\}$. We use $v''(\mathbf{x})$ (resp. c_b'', c_a'') to denote $v(\mathbf{x} + 2\epsilon)$ (resp. $c_b + 2\epsilon_{c_b}, c_a + 2\epsilon_{c_a}$).

$$\begin{aligned} \Delta_{\epsilon} \Delta_{\epsilon} \min\{v(\mathbf{y}) + c_b, v(\mathbf{y} + \mathbf{a}) + c_a\} &= \min\{v''(\mathbf{y}) + c_b'', v''(\mathbf{y} + \mathbf{a}) + c_a''\} \\ &- 2\min\{v'(\mathbf{y}) + c_b', v'(\mathbf{y} + \mathbf{a}) + c_a'\} \\ &+ \min\{v(\mathbf{y}) + c_b, v(\mathbf{y} + \mathbf{a}) + c_a\} \end{aligned}$$

The 8 possible cases are given in the following table.

- Cases 1 and 8 are positive or negative without condition.
- Case $2 = v''(\mathbf{y} + \mathbf{a}) + c_a'' 2(v'(\mathbf{y} + \mathbf{a}) + c_a') + v(\mathbf{y}) + c_b = \Delta_{\boldsymbol{\epsilon}} \Delta_{\boldsymbol{\epsilon}} v(\mathbf{y} + \mathbf{a}) \Delta_{\mathbf{a}} v(\mathbf{y}) c_d$
 - -Negative without condition
 - —Useless if $\mathbf{S}_{\mathbf{a},\boldsymbol{\epsilon}} \wedge \left| \boldsymbol{\epsilon}_{c_d} \geq 0 \right|$
- Case $3 = v''(\mathbf{y} + \mathbf{a}) + c_a'' 2(v'(\mathbf{y}) + c_b') + v(\mathbf{y} + \mathbf{a}) + c_a = \Delta_{\epsilon} \Delta_{\epsilon} v(\mathbf{y} + \mathbf{a}) + 2\Delta_{\mathbf{a}} v'(\mathbf{y}) + c_d + 2\epsilon_{c_d}$ — Positive without condition

Vercraene, Gayon, and Karaesmen: Effects of system parameters in a class of multi-dimensional queueing control problems Article submitted to Operations Research 27

	$\Delta_{\mathbf{a}} v''(\mathbf{y}) \le -c_d''$	$\Delta_{\mathbf{a}} v''(\mathbf{y}) \ge -c_d '$
$\Delta_{\mathbf{a}} v'(\mathbf{y}) \le -c_d'$ $\Delta_{\mathbf{a}} v(\mathbf{y}) \le -c_d$	Case 1	Case 5
$\Delta_{\mathbf{a}} v'(\mathbf{y}) \le -c_d'$ $\Delta_{\mathbf{a}} v(\mathbf{y}) \ge -c_d$	Case 2	Case 6
$\Delta_{\mathbf{a}} v'(\mathbf{y}) \ge -c_d' \Delta_{\mathbf{a}} v(\mathbf{y}) \le -c_d$	Case 3	Case 7
$\begin{aligned} \Delta_{\mathbf{a}} v'(\mathbf{y}) &\geq -c_d' \\ \Delta_{\mathbf{a}} v(\mathbf{y}) &\geq -c_d \end{aligned}$	Case 4	Case 8

—Useless if $\mathbf{S}_{\mathbf{a},\epsilon} \wedge \left| \epsilon_{c_d} \geq 0 \right| \vee \mathbf{S}_{\mathbf{a},\epsilon}^{ub} \wedge \left| \epsilon_{c_d} \leq 0 \right|$

• Case
$$4 = v''(\mathbf{y} + \mathbf{a}) + c_a'' - 2(v'(\mathbf{y}) + c_b') + v(\mathbf{y}) + c_b = \Delta_{\mathbf{a}}v''(\mathbf{y}) + \Delta_{\boldsymbol{\epsilon}}\Delta_{\boldsymbol{\epsilon}}v(\mathbf{y}) + c_d + 2\epsilon_{c_d}$$

- -Negative without condition
- —Useless if $\mathbf{S}_{\mathbf{a},\boldsymbol{\epsilon}} \wedge \left| \boldsymbol{\epsilon}_{c_d} \geq 0 \right|$
- Case $5 = v''(\mathbf{y}) + c_b'' 2(v'(\mathbf{y} + \mathbf{a}) + c_a') + v(\mathbf{y} + \mathbf{a}) + c_a = \Delta_{\epsilon} \Delta_{\epsilon} v(\mathbf{y} + \mathbf{a}) \Delta_{\mathbf{a}} v''(\mathbf{y}) c_d 2\epsilon_{c_d}$ — Negative without condition
 - —Useless if $\mathbf{S}_{\mathbf{a},\boldsymbol{\epsilon}}^{ub} \wedge \left| \boldsymbol{\epsilon}_{c_d} \leq 0 \right|$

- -Positive without condition
- —Useless if $\mathbf{S}_{\mathbf{a},\epsilon} \wedge \left| \epsilon_{c_d} \geq 0 \right| \vee \mathbf{S}_{\mathbf{a},\epsilon}^{ub} \wedge \left| \epsilon_{c_d} \leq 0 \right|$

• Case 7 =
$$v''(\mathbf{y}) + c_b'' - 2(v'(\mathbf{y}) + c_b') + v(\mathbf{y} + \mathbf{a}) + c_a = \Delta_{\epsilon} \Delta_{\epsilon} v(\mathbf{y}) + \Delta_{\mathbf{a}} v(\mathbf{y}) + c_d$$

- -Negative without condition
- —Useless if $\mathbf{S}_{\mathbf{a},\boldsymbol{\epsilon}}^{ub}\!\wedge\left|\epsilon_{c_{d}}\leq0\right|$

So \mathcal{C} propagates $S_{\epsilon,\epsilon}$ if

$$\mathbf{S}_{\mathbf{a},\boldsymbol{\epsilon}} \wedge \mathbf{S}_{\mathbf{a},\boldsymbol{\epsilon}}^{ub} \wedge \left| \boldsymbol{\epsilon}_{c_d} = 0 \right| \vee \left| \boldsymbol{\Delta}_{\mathbf{a}} \boldsymbol{v} \leq -c_d - \boldsymbol{\epsilon}_{c_d}^+ \right| \vee \left| \boldsymbol{\Delta}_{\mathbf{a}} \boldsymbol{v} \geq -c_d + \boldsymbol{\epsilon}_{c_d}^- \right|$$

and propagate $\mathsf{S}^{ub}_{\boldsymbol{\epsilon},\boldsymbol{\epsilon}}$ if

$$\mathbf{S}_{\mathbf{a},\boldsymbol{\epsilon}} \wedge \left| \boldsymbol{\epsilon}_{c_d} \geq 0 \right| \vee \mathbf{S}_{\mathbf{a},\boldsymbol{\epsilon}}^{ub} \wedge \left| \boldsymbol{\epsilon}_{c_d} \leq 0 \right| \vee \left| \boldsymbol{\Delta}_{\mathbf{a}} v \leq -c_d - \boldsymbol{\epsilon}_{c_d}^+ \right| \vee \left| \boldsymbol{\Delta}_{\mathbf{a}} v \geq -c_d + \boldsymbol{\epsilon}_{c_d}^- \right|$$

C.4. Propagation of $S_{d,\epsilon}$ (Cell 12)

We make the assumption that v is $S_{d,\epsilon}$ then we want find conditions on v, and ϵ to have C which propagates $S_{d,\epsilon}$.

$$\Delta_{\mathbf{d}} \Delta_{\boldsymbol{\epsilon}} \mathcal{C} v(\mathbf{x}) = \Delta_{\mathbf{d}} \begin{cases} \Delta_{\boldsymbol{\epsilon}} \min\{v(\mathbf{y}) + c_b, v(\mathbf{y} + \mathbf{a}) + c_a\} & \text{if } \mathbf{y} + \mathbf{a} \in \mathcal{X} \\ \Delta_{\boldsymbol{\epsilon}} v(\mathbf{y}) + c_r, & \text{otherwise} \end{cases}$$

The 4 possible cases are given in the following table.

Vercraene, Gayon, and Karaesmen: Effects of system parameters in a class of multi-dimensional queueing control problems 28 Article submitted to Operations Research

	$\mathbf{y} + \mathbf{a} \in \mathcal{X}$	$\mathbf{y} + \mathbf{a} \notin \mathcal{X}$
$\mathbf{y} + \mathbf{a} + \mathbf{d} \in \mathcal{X}$	Case A	Case C
$\mathbf{y} + \mathbf{a} + \mathbf{d} \notin \mathcal{X}$	Case B	Case D

C.4.1. Case A.

Case A =
$$\Delta_{\epsilon}\Delta_{\mathbf{d}}\min\{v(\mathbf{y}) + c_b, v(\mathbf{y} + \mathbf{a}) + c_a\}$$

= $\min\{v'(\mathbf{y} + \mathbf{d}) + c_b', v'(\mathbf{y} + \mathbf{a} + \mathbf{d}) + c_a'\} - \min\{v'(\mathbf{y}) + c_b', v'(\mathbf{y} + \mathbf{a}) + c_a'\}$
 $- \min\{v(\mathbf{y} + \mathbf{d}) + c_b(, v(\mathbf{y} + \mathbf{a} + \mathbf{d}) + c_a\} + \min\{v(\mathbf{y}) + c_b', v(\mathbf{y} + \mathbf{a}) + c_a\}$

The 16 possible cases of case A are described in Table 5

Tab	restible cases	for Case $A \equiv \Delta_{\epsilon} \Delta_{d} \min$	$\ln\{v(\mathbf{y})+c_b,v(\mathbf{y}+\mathbf{a})-$	$+ c_a \}.$
Case A	$\Delta_{\mathbf{a}} v'(\mathbf{y} + \mathbf{d}) \le -c_d',$	$\Delta_{\mathbf{a}} v'(\mathbf{y} + \mathbf{d}) \le -c_d',$	$\Delta_{\mathbf{a}} v'(\mathbf{y} + \mathbf{d}) \ge -c_d',$	$\Delta_{\mathbf{a}} v'(\mathbf{y} + \mathbf{d}) \ge -c_d',$
	$\Delta_{\mathbf{a}} v'(\mathbf{y}) \le -c_d'$	$\Delta_{\mathbf{a}} v'(\mathbf{y}) \ge -c_d'$	$\Delta_{\mathbf{a}} v'(\mathbf{y}) \le -c_d'$	$\Delta_{\mathbf{a}} v'(\mathbf{y}) \ge -c_d'$
$\Delta_{\mathbf{a}} v(\mathbf{y} + \mathbf{d}) \le -c_d$ $\Delta_{\mathbf{a}} v(\mathbf{y}) \le -c_d$	Case 1	Case 5	Case 9	Case 13
$\begin{array}{l} \Delta_{\mathbf{a}} v(\mathbf{y} + \mathbf{d}) \leq -c_d \\ \Delta_{\mathbf{a}} v(\mathbf{y}) \geq -c_d \end{array}$	Case 2	Case 6	Case 10	Case 14
$\begin{array}{l} \Delta_{\mathbf{a}} v(\mathbf{y} + \mathbf{d}) \geq -c_d \\ \Delta_{\mathbf{a}} v(\mathbf{y}) \leq -c_d \end{array}$	Case 3	Case 7	Case 11	Case 15
$\Delta_{\mathbf{a}} v(\mathbf{y} + \mathbf{d}) \ge -c_d$ $\Delta_{\mathbf{a}} v(\mathbf{y}) \ge -c_d$	Case 4	Case 8	Case 12	Case 16

Possible cases for Case $\Lambda = \Lambda$ Λ , min $\{v(\mathbf{x}) + c, v(\mathbf{x} + \mathbf{a}) + c\}$ m-1-1- F

- Case $1 = \Delta_{\epsilon} \Delta_{\mathbf{d}} v(\mathbf{y} + \mathbf{a}) \ge 0$
- Case $2 = \Delta_{\mathbf{d}} v'(\mathbf{y} + \mathbf{a}) \Delta_{\mathbf{d} + \mathbf{a}} v(\mathbf{y}) c_d = \Delta_{\mathbf{d} + \mathbf{a}} v'(\mathbf{y}) \Delta_{\mathbf{d} + \mathbf{a}} v(\mathbf{y}) c_d \Delta_{\mathbf{a}} v'(\mathbf{y})$ — Positive if $|\epsilon_{c_d} \ge 0| \wedge \mathbf{S}_{\mathbf{d}+\mathbf{a},\epsilon}$ —Useless if $\mathtt{S}_{\mathbf{a},\mathbf{d}} \! \lor \! \mathtt{S}_{\mathbf{a},\boldsymbol{\epsilon}} \! \land \left| \epsilon_{c_d} \! \ge \! 0 \right|$

• Case
$$3 = -\Delta_{\mathbf{d}-\mathbf{a}}v(\mathbf{y}+\mathbf{a}) + \Delta_{\mathbf{d}}v'(\mathbf{y}+\mathbf{a}) + c_d = -\Delta_{\mathbf{d}}v(\mathbf{y}+\mathbf{a}) + \Delta_{\mathbf{a}}v(\mathbf{y}+\mathbf{d}) + \Delta_{\mathbf{d}}v'(\mathbf{y}+\mathbf{a}) + c_d \ge 0$$

• Case $4 = \Delta_{\mathbf{d}}v'(\mathbf{y}+\mathbf{a}) - \Delta_{\mathbf{d}}v(\mathbf{y}) \ge \begin{cases} \Delta_{\mathbf{d}}v(\mathbf{y}+\mathbf{a}) - \Delta_{\mathbf{d}}v(\mathbf{y}) \\ \Delta_{\mathbf{d}}v'(\mathbf{y}+\mathbf{a}) - \Delta_{\mathbf{d}}v(\mathbf{y}) + \underbrace{\Delta_{\mathbf{a}}v'(\mathbf{y}) - \Delta_{\mathbf{a}}v(\mathbf{y}+\mathbf{d})}_{\ge 0 \text{ if } \epsilon_{c_d} \ge 0} \end{cases} \ge 0 \text{ if } \epsilon_{c_d} \ge 0$

—Positive if $\mathbf{S}_{\mathbf{d},\mathbf{a}} \vee \mathbf{S}_{\mathbf{d}+\mathbf{a},\boldsymbol{\epsilon}} \wedge \left| \epsilon_{c_d} \geq 0 \right|$

—Useless if $\mathbf{S}_{\mathbf{a},\boldsymbol{\epsilon}} \wedge \left| \epsilon_{c_d} \geq 0 \right|$

• Case
$$5 = \Delta_{\mathbf{d}+\mathbf{a}} v'(\mathbf{y}) - \Delta_{\mathbf{d}} v(\mathbf{y}+\mathbf{a}) + c_d' = \Delta_{\mathbf{d}} v'(\mathbf{y}+\mathbf{a}) - \Delta_{\mathbf{d}} v(\mathbf{y}+\mathbf{a}) + c_d' + \Delta_{\mathbf{a}} v'(\mathbf{y}) \ge 0$$

• Case $6 = \Delta_{\mathbf{d}+\mathbf{a}} v'(\mathbf{y}) - \Delta_{\mathbf{d}+\mathbf{a}} v(\mathbf{y}) + c_d' - c_d$ —Positive if $\mathbf{S}_{\mathbf{d}+\mathbf{a},\boldsymbol{\epsilon}} \wedge |\epsilon_{c_d} \geq 0|$

-Useless if S_{d,a}

• Case 7 =
$$\Delta_{\mathbf{d}+\mathbf{a}}v'(\mathbf{y}) - \Delta_{\mathbf{d}-\mathbf{a}}v(\mathbf{y}+\mathbf{a}) + c_d + c_d'$$

—Useless if $\mathbf{S}_{\mathbf{d},\mathbf{a}}^{ub} \lor \mathbf{S}_{\mathbf{a},\epsilon}^{ub} \land \left| \epsilon_{c_d} \leq 0 \right| \lor \mathbf{S}_{\mathbf{d},\mathbf{a}} \lor \mathbf{S}_{\mathbf{a},\epsilon} \land \left| \epsilon_{c_d} \geq 0 \right|$

- Case 8 = $-\Delta_{\mathbf{d}}v(\mathbf{y}) + \Delta_{\mathbf{d}+\mathbf{a}}v'(\mathbf{y}) + c_d' = -\Delta_{\mathbf{d}+\mathbf{a}}v(\mathbf{y}) + \Delta_{\mathbf{d}+\mathbf{a}}v'(\mathbf{y}) + \Delta_{\mathbf{a}}v(\mathbf{y}+\mathbf{d}) + c_d'$
 - Positive if $\left|\epsilon_{c_d} \geq 0\right| \wedge \mathbf{S}_{\mathbf{d}+\mathbf{a},\epsilon}$
 - —Useless if $\mathbf{S}_{\mathbf{d},\mathbf{a}} \vee \mathbf{S}_{\mathbf{a},\epsilon} \wedge \left| \epsilon_{c_d} \geq 0 \right|$
- Case $9 = \Delta_{\mathbf{d}-\mathbf{a}} v'(\mathbf{y}+\mathbf{a}) \Delta_{\mathbf{d}} v(\mathbf{y}+\mathbf{a}) c_d' = \Delta_{\mathbf{d}-\mathbf{a}} v'(\mathbf{y}+\mathbf{a}) \Delta_{\mathbf{d}-\mathbf{a}} v(\mathbf{y}+\mathbf{a}) \Delta_{\mathbf{a}} v(\mathbf{y}) c_d'$
 - Positive if $\mathbf{S}_{\mathbf{d}-\mathbf{a},\epsilon} \wedge \left| \epsilon_{c_d} \leq 0 \right|$
 - —Useless if $\mathbf{S}_{\mathbf{d},\mathbf{a}}^{ub} \lor \mathbf{S}_{\mathbf{a},\epsilon}^{ub} \land \left| \epsilon_{c_d} \leq 0 \right|$
- Case $10 = \Delta_{\mathbf{d}-\mathbf{a}} v'(\mathbf{y}+\mathbf{a}) \Delta_{\mathbf{d}+\mathbf{a}} v(\mathbf{y}) + c_d' + c_d$

—Useless if
$$\mathbf{S}_{\mathbf{d},\mathbf{a}}^{ub} \lor \mathbf{S}_{\mathbf{a},\epsilon}^{ub} \land |\epsilon_{c_d} \leq 0| \lor \mathbf{S}_{\mathbf{d},\mathbf{a}} \lor \mathbf{S}_{\mathbf{a},\epsilon} \land |\epsilon_{c_d} \geq 0|$$

- Case $11 = -\Delta_{\mathbf{d}-\mathbf{a}}v(\mathbf{y}+\mathbf{a}) + \Delta_{\mathbf{d}-\mathbf{a}}v'(\mathbf{y}+\mathbf{a}) + c_d c_d'$
 - Positive if $\mathbf{S}_{\mathbf{d}-\mathbf{a},\boldsymbol{\epsilon}} \wedge \left| \epsilon_{c_d} \leq 0 \right|$
 - —Useless if $S^{ub}_{d,a}$
- Case $12 = -\Delta_{\mathbf{d}} v(\mathbf{y}) + \Delta_{\mathbf{d}-\mathbf{a}} v'(\mathbf{y}+\mathbf{a}) c_d'$

• Case 13 =
$$\Delta_{\mathbf{d}}v'(\mathbf{y}) - \Delta_{\mathbf{a}}v'(\mathbf{y}) + \Delta_{\mathbf{d}}v'(\mathbf{y}) - c_d \ge 0$$

$$= -\Delta_{\mathbf{d}}v(\mathbf{y}) - \Delta_{\mathbf{a}}v'(\mathbf{y}) - \Delta_{\mathbf{d}}v(\mathbf{y} + \mathbf{a}) \ge \begin{cases} \Delta_{\mathbf{d}}v(\mathbf{y}) - \Delta_{\mathbf{d}}v(\mathbf{y} + \mathbf{a}) \\ \Delta_{\mathbf{d}}v'(\mathbf{y}) - \Delta_{\mathbf{d}}v(\mathbf{y} + \mathbf{a}) + \underbrace{\Delta_{\mathbf{a}}v'(\mathbf{y} + \mathbf{d}) - \Delta_{\mathbf{a}}v(\mathbf{y})}_{\ge 0 \text{ if } \epsilon_{c_d} \le 0} \end{cases}$$

- —Positive if $\mathbf{S}_{\mathbf{d},\mathbf{a}}^{ub} \vee \mathbf{S}_{\mathbf{d}-\mathbf{a},\boldsymbol{\epsilon}} \wedge \left| \epsilon_{c_d} \leq 0 \right|$
- —Useless if $\mathbf{S}_{\mathbf{a},\boldsymbol{\epsilon}}^{ub} \wedge \left| \epsilon_{c_d} \leq 0 \right|$
- Case $14 = \Delta_{\mathbf{d}} v'(\mathbf{y}) \Delta_{\mathbf{d}+\mathbf{a}} v(\mathbf{y}) + c_d = \Delta_{\mathbf{d}} v'(\mathbf{y}) \Delta_{\mathbf{d}} v(\mathbf{y}) \Delta_{\mathbf{a}} v(\mathbf{y}+\mathbf{d}) c_d \ge 0$
- Case $15 = \Delta_{\mathbf{d}} v'(\mathbf{y}) \Delta_{\mathbf{d}-\mathbf{a}} v(\mathbf{y}+\mathbf{a}) + c_d = \Delta_{\mathbf{d}-\mathbf{a}} v'(\mathbf{y}) \Delta_{\mathbf{d}-\mathbf{a}} v(\mathbf{y}) + \Delta_{\mathbf{a}} v'(\mathbf{y}) + c_d$
 - Positive if $\left|\epsilon_{c_d} \leq 0\right| \wedge \mathbf{S}_{\mathbf{d}-\mathbf{a},\epsilon}$
 - —Useless if $\mathbf{S}_{\mathbf{d},\mathbf{a}}^{ub} \lor \mathbf{S}_{\mathbf{a},\epsilon}^{ub} \land \left| \epsilon_{c_d} \leq 0 \right|$
- Case $16 = -\Delta_{\mathbf{d}} v(\mathbf{y}) + \Delta_{\mathbf{d}} v'(\mathbf{y}) \ge 0$

Note that if $\Delta_{\mathbf{a}} v \leq -c_d - \epsilon_{c_d}^+$ or $\Delta_{\mathbf{a}} v \geq -c_d + \epsilon_{c_d}^-$ there is no condition because only cases 1 and 16 can be reach.

So Case A is positive if

$$\begin{split} & \left| \Delta_{\mathbf{a}} v \leq -c_d - \epsilon_{c_d}^+ \right| \vee \left| \Delta_{\mathbf{a}} v \geq -c_d + \epsilon_{c_d}^- \right| \vee \\ & \left(\left| \epsilon_{c_d} \geq 0 \right| \wedge \mathbf{S}_{\mathbf{d}+\mathbf{a},\epsilon} \vee \mathbf{S}_{\mathbf{d},\mathbf{a}} \vee \mathbf{S}_{\mathbf{a},\epsilon} \wedge \left| \epsilon_{c_d} \geq 0 \right| \right) \quad (\text{Case } 2) \\ & \wedge (\mathbf{S}_{\mathbf{d},\mathbf{a}} \vee \mathbf{S}_{\mathbf{d}+\mathbf{a},\epsilon} \wedge \left| \epsilon_{c_d} \geq 0 \right| \vee \mathbf{S}_{\mathbf{a},\epsilon} \wedge \left| \epsilon_{c_d} \geq 0 \right| \right) \quad (\text{Case } 4) \\ & \wedge (\mathbf{S}_{\mathbf{d},\mathbf{a}} \vee \mathbf{S}_{\mathbf{d},\mathbf{a}} \wedge \mathbf{S}_{\mathbf{a},\epsilon} \wedge \left| \epsilon_{c_d} \geq 0 \right| \vee \mathbf{S}_{\mathbf{d},\mathbf{a}} \right) \quad (\text{Case } 6) \\ & \wedge (\mathbf{S}_{\mathbf{d},\mathbf{a}}^{ub} \vee \mathbf{S}_{\mathbf{d},\mathbf{a}} \vee \mathbf{S}_{\mathbf{a},\epsilon} \wedge \left| \epsilon_{c_d} \leq 0 \right| \vee \mathbf{S}_{\mathbf{a},\epsilon} \wedge \left| \epsilon_{c_d} \geq 0 \right| \right) \quad (\text{Case } 7) \\ & \wedge (\left| \epsilon_{c_d} \geq 0 \right| \wedge \mathbf{S}_{\mathbf{d}+\mathbf{a},\epsilon} \vee \mathbf{S}_{\mathbf{d},\mathbf{a}} \vee \mathbf{S}_{\mathbf{a},\epsilon} \wedge \left| \epsilon_{c_d} \geq 0 \right| \right) \quad (\text{Case } 8) \\ & \wedge (\left| \epsilon_{c_d} \leq 0 \right| \wedge \mathbf{S}_{\mathbf{d}+\mathbf{a},\epsilon} \vee \mathbf{S}_{\mathbf{d},\mathbf{a}} \vee \mathbf{S}_{\mathbf{a},\epsilon} \wedge \left| \epsilon_{c_d} \leq 0 \right| \right) \quad (\text{Case } 10) \\ & \wedge (\mathbf{S}_{\mathbf{d},\mathbf{a}}^{ub} \vee \mathbf{S}_{\mathbf{d},\mathbf{a}} \vee \mathbf{S}_{\mathbf{a},\epsilon}^{ub} \wedge \left| \epsilon_{c_d} \leq 0 \right|) \quad (\text{Case } 10) \\ & \wedge (\mathbf{S}_{\mathbf{d},\mathbf{a}}^{ub} \vee \mathbf{S}_{\mathbf{d}-\mathbf{a},\epsilon} \wedge \left| \epsilon_{c_d} \leq 0 \right| \vee \mathbf{S}_{\mathbf{a},\mathbf{a}}^{ub} \wedge \left| \epsilon_{c_d} \leq 0 \right|) \quad (\text{Case } 13) \\ & \wedge (\left| \epsilon_{c_d} \leq 0 \right| \wedge \mathbf{S}_{\mathbf{d}-\mathbf{a},\epsilon} \vee \mathbf{S}_{\mathbf{d},\mathbf{a}}^{ub} \vee \mathbf{S}_{\mathbf{a},\epsilon} \wedge \left| \epsilon_{c_d} \leq 0 \right| \right) \quad (\text{Case } 15) \\ \text{With simplifications this condition reduces to} \end{split}$$

$$\begin{array}{l} \left| \Delta_{\mathbf{a}} v \leq -c_d - \epsilon_{c_d}^+ \right| \vee \left| \Delta_{\mathbf{a}} v \geq -c_d + \epsilon_{c_d}^- \right| \\ \vee \mathbf{S}_{\mathbf{d}, \mathbf{a}} \wedge \mathbf{S}_{\mathbf{d}-\mathbf{a}, \epsilon} \wedge \left| \epsilon_{c_d} \leq 0 \right| \vee \mathbf{S}_{\mathbf{d}, \mathbf{a}}^{ub} \wedge \mathbf{S}_{\mathbf{d}+\mathbf{a}, \epsilon} \wedge \left| \epsilon_{c_d} \geq 0 \right| \\ \vee \mathbf{S}_{\mathbf{d}+\mathbf{a}, \epsilon} \wedge \mathbf{S}_{\mathbf{d}-\mathbf{a}, \epsilon} \wedge (\mathbf{S}_{\mathbf{a}, \epsilon}^{ub} \vee \mathbf{S}_{\mathbf{a}, \epsilon}) \wedge \left| \epsilon_{c_d} = 0 \right| \end{array}$$

C.4.2. Case B.

Case B =
$$\Delta_{\epsilon} [\mathcal{C}v(\mathbf{x} + \mathbf{d}) - \mathcal{C}v(\mathbf{x})]$$

= $v'(\mathbf{y} + \mathbf{d}) - v(\mathbf{y} + \mathbf{d}) + \epsilon_{cr} - \min\{v'(\mathbf{y}) + c_b', v'(\mathbf{y} + \mathbf{a}) + c_a'\} + \min\{v(\mathbf{y}) + c_b, v(\mathbf{y} + \mathbf{a}) + c_a\}$

$$\begin{array}{c|c} \text{Case B} & \Delta_{\mathbf{a}}v'(\mathbf{y}) \leq -c_d', & \Delta_{\mathbf{a}}v'(\mathbf{y}) \geq -c_d' \\ \hline \Delta_{\mathbf{a}}v(\mathbf{y}) \leq -c_d & \text{Case 1} & \text{Case 3} \\ \Delta_{\mathbf{a}}v(\mathbf{y}) \geq -c_d & \text{Case 2} & \text{Case 4} \\ \end{array}$$

- Case $1 = \Delta_{\epsilon} \Delta_{\mathbf{d}-\mathbf{a}} v(\mathbf{y}+\mathbf{a}) \epsilon_{c_a} + \epsilon_{c_r}$ —Positive if $S_{\mathbf{d}-\mathbf{a},\epsilon} \wedge |\epsilon_{c_r} - \epsilon_{c_a} \ge 0|$
- Case $2 = \Delta_{\mathbf{d}-\mathbf{a}} v'(\mathbf{y}+\mathbf{a}) \Delta_{\mathbf{d}} v(\mathbf{y}) c_a' + c_b + \epsilon_{c_r} = \Delta_{\boldsymbol{\epsilon}} \Delta_{\mathbf{d}} v(\mathbf{y}) \Delta_{\mathbf{a}} v'(\mathbf{y}) c_a' + c_b + \epsilon_{c_r}$ — Positive if $|\epsilon_{c_r} - \epsilon_{c_b} \ge 0|$ — Useless if $\mathbf{S}_{\mathbf{a},\boldsymbol{\epsilon}} \wedge |\epsilon_{c_d} \ge 0|$
- Case $3 = \Delta_{\mathbf{d}} v'(\mathbf{y}) c_b' \Delta_{\mathbf{d}-\mathbf{a}} v(\mathbf{y}+\mathbf{a}) + c_a + \epsilon_{c_r} = \Delta_{\boldsymbol{\epsilon}} \Delta_{\mathbf{d}-\mathbf{a}} v(\mathbf{y}) + \Delta_{\mathbf{a}} v'(\mathbf{y}) + c_a c_b' + \epsilon_{c_r}$ — Positive if $\mathbf{S}_{\mathbf{d}-\mathbf{a},\boldsymbol{\epsilon}} \wedge |\epsilon_{c_r} - \epsilon_{c_a} \ge 0|$ — Useless if $\mathbf{S}_{\mathbf{a},\boldsymbol{\epsilon}}^{ub} \wedge |\epsilon_{c_d} \le 0|$
- Case $4 = \Delta_{\epsilon} \Delta_{\mathbf{d}} v(\mathbf{x}) \epsilon_{c_b} + \epsilon_{c_r}$ —Positive if $|\epsilon_{c_r} - \epsilon_{c_b} \ge 0|$

Note that when $\Delta_{\mathbf{a}} v \leq -c_d - \epsilon_{c_d}^+$ (resp. $\Delta_{\mathbf{a}} v \geq -c_d + \epsilon_{c_d}^-$) the cases 2, 3, 4 (resp. 1, 2, 3) are Useless. So case B is

• Positive if

$$\begin{split} \mathbf{S_{d-a,\epsilon}} &\wedge |\epsilon_{c_r} - \epsilon_{c_a} \geq 0| \wedge \left| \epsilon_{c_r} - \epsilon_{c_b} \geq 0 \right| \\ &\vee \left| \Delta_{\mathbf{a}} v \leq -c_d - \epsilon_{c_d}^+ \right| \wedge \mathbf{S_{\epsilon,d-a}} \wedge \left| \epsilon_{c_r} - \epsilon_{c_a} \geq 0 \right| \\ &\vee \left| \Delta_{\mathbf{a}} v \geq -c_d + \epsilon_{c_d}^- \right| \wedge \left| \epsilon_{c_r} - \epsilon_{c_b} \geq 0 \right| \end{split}$$

• Useless if \mathcal{X} is $R_{d,a+b}(a+b+d)$

C.4.3. Case C.

Case C =
$$\Delta_{\epsilon}[\mathcal{C}v(\mathbf{x} + \mathbf{d}) - \mathcal{C}v(\mathbf{x})]$$

= $\Delta_{\epsilon}[\mathcal{C}v(\mathbf{x} + \mathbf{d}) - v(\mathbf{y})] - \epsilon_{c_r}$
= $\min\{v'(\mathbf{y} + \mathbf{d}) + c_b', v'(\mathbf{y} + \mathbf{d} + \mathbf{a}) + c_a'\}$
 $- \min\{v(\mathbf{y} + \mathbf{d}) + c_b, v(\mathbf{y} + \mathbf{d} + \mathbf{a}) + c_a\}$
 $- v'(\mathbf{y}) + v(\mathbf{y}) - \epsilon_{c_r}$

• Case
$$1 = \Delta_{\epsilon} \Delta_{\mathbf{d}+\mathbf{a}} v(\mathbf{y}) + \epsilon_{c_a} - \epsilon_{c_r}$$

—Positive if $\mathbf{S}_{\epsilon,\mathbf{d}+\mathbf{a}} \wedge |\epsilon_{c_a} - \epsilon_{c_r} \ge 0|$

- Case $2 = \Delta_{\mathbf{d}+\mathbf{a}} v'(\mathbf{y}) \Delta_{\mathbf{d}} v(\mathbf{y}) + c_a' c_b \epsilon_{c_r} = \Delta_{\epsilon} \Delta_{\mathbf{d}+\mathbf{a}} v(\mathbf{y}) + \Delta_{\mathbf{a}} v(\mathbf{y}+\mathbf{d}) + c_a' c_b \epsilon_{c_r}$ — Positive if $\mathbf{S}_{\epsilon,\mathbf{d}+\mathbf{a}} \wedge |\epsilon_{c_a} - \epsilon_{c_r} \ge 0|$ — Useless if $\mathbf{S}_{\epsilon,\mathbf{a}} \wedge |\epsilon_{c_d} \ge 0|$
- Case 3 $\Delta_{\mathbf{d}} v'(\mathbf{y}) \Delta_{\mathbf{d}+\mathbf{a}} v(\mathbf{y}) c_a + c_b' \epsilon_{c_r} = \Delta_{\epsilon} \Delta_{\mathbf{d}} v(\mathbf{y}) \Delta_{\mathbf{a}} v(\mathbf{y}+\mathbf{d}) c_a + c_b' \epsilon_{c_r}$ — Positive if $|\epsilon_{c_b} - \epsilon_{c_r} \ge 0|$
 - —Useless if $\mathbb{S}^{ub}_{\boldsymbol{\epsilon},\mathbf{a}} \wedge \left| \boldsymbol{\epsilon}_{c_d} \leq 0 \right|$
- Case $4 = \Delta_{\epsilon} \Delta_{\mathbf{d}} v(\mathbf{y}) + \epsilon_{c_b} \epsilon_{c_r}$ — Positive if $|\epsilon_{c_b} - \epsilon_{c_r} \ge 0|$

Note that when $\Delta_{\mathbf{a}} v \leq -c_d - \epsilon_{c_d}^+$ (resp. $\Delta_{\mathbf{a}} v \geq -c_d + \epsilon_{c_d}^-$) the cases 2, 3, and 4 (resp. 1, 2, and 3) are Useless. So case C is

• Positive if

$$\begin{split} \mathbf{S}_{\boldsymbol{\epsilon},\mathbf{d}+\mathbf{a}} &\wedge |\boldsymbol{\epsilon}_{c_{a}} - \boldsymbol{\epsilon}_{c_{r}} \geq 0| \wedge |\boldsymbol{\epsilon}_{c_{b}} - \boldsymbol{\epsilon}_{c_{r}} \geq 0| \\ &\vee \left| \Delta_{\mathbf{a}} v \leq -c_{d} - \boldsymbol{\epsilon}_{c_{d}}^{+} \right| \wedge \mathbf{S}_{\boldsymbol{\epsilon},\mathbf{d}+\mathbf{a}} \wedge |\boldsymbol{\epsilon}_{c_{a}} - \boldsymbol{\epsilon}_{c_{r}} \geq 0| \\ &\vee \left| \Delta_{\mathbf{a}} v \geq -c_{d} + \boldsymbol{\epsilon}_{c_{d}}^{-} \right| \wedge \left| \boldsymbol{\epsilon}_{c_{b}} - \boldsymbol{\epsilon}_{c_{r}} \geq 0 \right| \end{split}$$

• Useless if $R_{d,a+b+d}(a+b)$

C.4.4. Case D.

Case D =
$$\Delta_{\epsilon}[\mathcal{C}v(\mathbf{x} + \mathbf{d}) - \mathcal{C}v(\mathbf{x})] = \Delta_{\epsilon}\Delta_{\mathbf{d}}v(\mathbf{x}) \ge 0$$

C.4.5. Conclusion. The operator C propagates $S_{d,\epsilon}$ if,

$$\begin{pmatrix} \left| \Delta_{\mathbf{a}} v \leq -c_{d} - \epsilon_{c_{d}}^{+} \right| \vee \left| \Delta_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \\ \vee \mathbf{S}_{\mathbf{d}, \mathbf{a}} \wedge \mathbf{S}_{\mathbf{d}-\mathbf{a}, \epsilon} \wedge \left| \epsilon_{c_{d}} \leq 0 \right| \vee \mathbf{S}_{\mathbf{d}, \mathbf{a}}^{ub} \wedge \mathbf{S}_{\mathbf{d}+\mathbf{a}, \epsilon} \wedge \left| \epsilon_{c_{d}} \geq 0 \right| \\ \vee \mathbf{S}_{\mathbf{d}+\mathbf{a}, \epsilon} \wedge \mathbf{S}_{\mathbf{d}-\mathbf{a}, \epsilon} \wedge (\mathbf{S}_{\mathbf{a}, \epsilon}^{ub} \vee \mathbf{S}_{\mathbf{a}, \epsilon}) \wedge \left| \epsilon_{c_{d}} = 0 \right| \end{pmatrix} \\ \wedge \begin{pmatrix} \mathbf{S}_{\mathbf{d}-\mathbf{a}, \epsilon} \wedge \left| \epsilon_{c_{r}} - \epsilon_{c_{a}} \geq 0 \right| \wedge \left| \epsilon_{c_{r}} - \epsilon_{c_{b}} \geq 0 \right| \\ \vee \left| \Delta_{\mathbf{a}} v \leq -c_{d} - \epsilon_{c_{d}}^{+} \right| \wedge \mathbf{S}_{\epsilon, \mathbf{d}-\mathbf{a}} \wedge \left| \epsilon_{c_{r}} - \epsilon_{c_{a}} \geq 0 \right| \\ \vee \left| \Delta_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \wedge \left| \epsilon_{c_{r}} - \epsilon_{c_{b}} \geq 0 \right| \\ \vee \mathbf{A}_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \wedge \left| \epsilon_{c_{r}} - \epsilon_{c_{b}} \geq 0 \right| \\ \vee \mathbf{A}_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \wedge \left| \epsilon_{c_{r}} - \epsilon_{c_{r}} \geq 0 \right| \\ \vee \left| \Delta_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \wedge \left| \epsilon_{c_{b}} - \epsilon_{c_{r}} \geq 0 \right| \\ \vee \left| \Delta_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \wedge \left| \epsilon_{c_{b}} - \epsilon_{c_{r}} \geq 0 \right| \\ \vee \mathbf{A}_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \wedge \left| \epsilon_{c_{b}} - \epsilon_{c_{r}} \geq 0 \right| \\ \vee \left| \Delta_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \wedge \left| \epsilon_{c_{b}} - \epsilon_{c_{r}} \geq 0 \right| \\ \vee \left| \Delta_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \wedge \left| \epsilon_{c_{b}} - \epsilon_{c_{r}} \geq 0 \right| \\ \vee \left| \Delta_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \wedge \left| \epsilon_{c_{b}} - \epsilon_{c_{r}} \geq 0 \right| \\ \wedge \left| \Delta_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \wedge \left| \epsilon_{c_{b}} - \epsilon_{c_{r}} \geq 0 \right| \\ \wedge \left| \Delta_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \wedge \left| \epsilon_{c_{b}} - \epsilon_{c_{r}} \geq 0 \right| \\ \wedge \left| \Delta_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \wedge \left| \epsilon_{c_{b}} - \epsilon_{c_{r}} \geq 0 \right| \\ \wedge \left| \Delta_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \wedge \left| \epsilon_{c_{b}} - \epsilon_{c_{r}} \geq 0 \right| \\ \wedge \left| \Delta_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \wedge \left| \epsilon_{c_{b}} - \epsilon_{c_{r}} \geq 0 \right| \\ \wedge \left| \Delta_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \wedge \left| \epsilon_{c_{b}} - \epsilon_{c_{r}} \geq 0 \right| \\ \wedge \left| \epsilon_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \wedge \left| \epsilon_{c_{b}} - \epsilon_{c_{c}} \geq 0 \right| \\ \wedge \left| \epsilon_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \wedge \left| \epsilon_{c_{b}} - \epsilon_{c_{c}} \geq 0 \right| \\ \wedge \left| \epsilon_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \wedge \left| \epsilon_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \wedge \left| \epsilon_{\mathbf{a}} v \geq -c_{d} + \epsilon_{c_{d}}^{-} \right| \wedge \left| \epsilon_{\mathbf{a}} v \geq -$$

We can simplify this results because if $|\Delta_{\mathbf{a}} \leq -c_d|$ the state $\mathbf{x} + \mathbf{a} + \mathbf{b}$ is always chosen in the minimization, so the operator is equivalent to \mathcal{T} (plus the cost c_a), and if $|\Delta_{\mathbf{a}} \leq -c_d|$ the state $\mathbf{x} + \mathbf{a} + \mathbf{b}$ is never chosen in the minimization, so the operator is equivalent to \mathcal{T} or \mathcal{C} with $\mathbf{a} = \mathbf{0}$. So we can consider that $|\Delta_{\mathbf{a}} \leq -c_d| = |\Delta_{\mathbf{a}} \geq -c_d| = false$. Then the relation reduces to

$$\begin{pmatrix} \mathbf{S}_{\mathbf{d},\mathbf{a}} \wedge \mathbf{S}_{\mathbf{d}-\mathbf{a},\epsilon} \wedge \left| \epsilon_{c_d} \leq 0 \right| \vee \mathbf{S}_{\mathbf{d},\mathbf{a}}^{ub} \wedge \mathbf{S}_{\mathbf{d}+\mathbf{a},\epsilon} \wedge \left| \epsilon_{c_d} \geq 0 \right| \\ \vee \mathbf{S}_{\mathbf{d}+\mathbf{a},\epsilon} \wedge \mathbf{S}_{\mathbf{d}-\mathbf{a},\epsilon} \wedge (\mathbf{S}_{\mathbf{a},\epsilon}^{ub} \vee \mathbf{S}_{\mathbf{a},\epsilon}) \wedge \left| \epsilon_{c_d} = 0 \right| \end{pmatrix} \\ \wedge \begin{pmatrix} \mathbf{S}_{\mathbf{d}-\mathbf{a},\epsilon} \wedge \left| \epsilon_{c_r} - \epsilon_{c_a} \geq 0 \right| \wedge \left| \epsilon_{c_r} - \epsilon_{c_b} \geq 0 \right| \\ \vee \mathbf{R}_{\mathbf{d},\mathbf{a}+\mathbf{b}}(\mathbf{a}+\mathbf{b}+\mathbf{d}) \end{pmatrix} \wedge \begin{pmatrix} \mathbf{S}_{\epsilon,\mathbf{d}+\mathbf{a}} \wedge \left| \epsilon_{c_a} - \epsilon_{c_r} \geq 0 \right| \wedge \left| \epsilon_{c_b} - \epsilon_{c_r} \geq 0 \right| \\ \vee \mathbf{R}_{\mathbf{d},\mathbf{a}+\mathbf{b}}(\mathbf{a}+\mathbf{b}+\mathbf{d}) \end{pmatrix} \end{pmatrix}$$

C.5. PM(\mathcal{T}) and NM(\mathcal{T}) (Cells 14 and 16) $\mathcal{C}v(\mathbf{x}) - v(\mathbf{x}) = \begin{cases} \min\{\Delta_{\mathbf{b}}v(\mathbf{x}) + c_b, \Delta_{\mathbf{a}+\mathbf{b}}v(\mathbf{x}) + c_a\} & \text{if } \mathbf{x} + \mathbf{a} + \mathbf{b} \in \mathcal{X} \\ \Delta_{\mathbf{b}}v(\mathbf{x}) + c_r, & \text{otherwise} \end{cases}$

So v is $PM(\mathcal{C})$ if

$$(|\Delta_{\mathbf{b}}v \ge -c_b| \lor |\Delta_{\mathbf{a}}v \le -c_d|) \land (|\Delta_{\mathbf{a}+\mathbf{b}}v \ge -c_a| \lor |\Delta_{\mathbf{a}}v \ge -c_d|) \land (|\Delta_{\mathbf{b}}v \ge -c_r| \lor \mathbb{R}_{-\mathbf{b}}(\mathbf{a}))$$

and v is $NM(\mathcal{C})$ if

$$\left(\left|\Delta_{\mathbf{b}}v \leq -c_{b}\right| \wedge \overline{\left|\Delta_{\mathbf{a}}v \leq -c_{d}\right|} \vee \left|\Delta_{\mathbf{a}+\mathbf{b}}v \leq -c_{a}\right| \wedge \overline{\left|\Delta_{\mathbf{a}}v \geq -c_{d}\right|}\right) \wedge \left(\left|\Delta_{\mathbf{b}}v \leq -c_{r}\right| \vee \mathbb{R}_{-\mathbf{b}}(\mathbf{a})\right)$$

C.6. $IM_{\epsilon}(\mathcal{T})$ (Cell 18)

$$\Delta_{\boldsymbol{\epsilon}} \Omega_{\mathcal{C}} v(\mathbf{x}) = \begin{cases} \Delta_{\boldsymbol{\epsilon}} \min\{\Delta_{\mathbf{a}+\mathbf{b}} v(\mathbf{x}) + c_a, \Delta_{\mathbf{b}} v(\mathbf{x}) + c_b\} & \text{if } \mathbf{y} + \mathbf{a} \in \mathcal{X} \\ \Delta_{\boldsymbol{\epsilon}} \Delta_{\mathbf{b}} v(\mathbf{x}) + \epsilon_{c_r} & \text{otherwise} \end{cases}$$

The 4 possible cases for $\Delta_{\epsilon} \min\{\Delta_{\mathbf{a}+\mathbf{b}}v(\mathbf{x}) + c_a, \Delta_{\mathbf{b}}v(\mathbf{x}) + c_b\}$ are given in the following table.

$$\begin{array}{c|c} & \Delta_{\mathbf{a}}v'(\mathbf{y}) \leq -c_d & \Delta_{\mathbf{a}}v'(\mathbf{y}) \geq -c_d \\ \hline \Delta_{\mathbf{a}}v(\mathbf{y}) \leq -c_d & \text{Case 1} & \text{Case 3} \\ \Delta_{\mathbf{a}}v(\mathbf{y}) \geq -c_d & \text{Case 2} & \text{Case 4} \end{array}$$

- Case $1 = \Delta_{\epsilon} \Delta_{\mathbf{a}+\mathbf{b}} v(\mathbf{x}) + \epsilon_{c_a}$ — Positive if $\mathbf{S}_{\epsilon,\mathbf{b}+\mathbf{a}} \wedge |\epsilon_{c_a} \ge 0|$
- Case $2 = \Delta_{\mathbf{a}+\mathbf{b}}v'(\mathbf{x}) + c_a' \Delta_{\mathbf{b}}v(\mathbf{x}) + c_b$ — Useless if $S_{\epsilon, \mathbf{a}}$
- Case $3 = \Delta_{\mathbf{b}} v'(\mathbf{x}) + c_b' \Delta_{\mathbf{a}+\mathbf{b}} v(\mathbf{x}) c_a \ge \Delta_{\epsilon} v(\mathbf{x}+\mathbf{b}) \Delta_{\epsilon} v(\mathbf{x}) + \epsilon_{c_b}$ — Positive if $\mathbf{S}_{\epsilon,\mathbf{b}} \land |\epsilon_{c_b} \ge 0|$ — Useless if $\mathbf{S}_{\epsilon,\mathbf{a}}^{ub}$
- Case $4 = \Delta_{\epsilon} \Delta_{\mathbf{b}} v(\mathbf{x}) + \epsilon_{c_b}$ —Positive if $\mathbf{S}_{\epsilon, \mathbf{b}} \wedge |\epsilon_{c_b} \ge 0|$

Note that when $\Delta_{\mathbf{a}} v \leq -c_d$ (resp. $\Delta_{\mathbf{a}} v \geq -c_d$) the cases 2, 3, and 4 (resp. 1, 2, and 3) are Useless. So $\Delta_{\epsilon} \Omega_{\mathcal{C}} v$ is positive if

$$\begin{pmatrix} \mathbf{S}_{\boldsymbol{\epsilon},\mathbf{b}} \wedge \mathbf{S}_{\boldsymbol{\epsilon},\mathbf{a}} \wedge | \boldsymbol{\epsilon}_{c_a} \geq 0 | \wedge | \boldsymbol{\epsilon}_{c_b} \geq 0 | \\ \vee |\Delta_{\mathbf{a}} v \leq -c_d | \wedge \mathbf{S}_{\boldsymbol{\epsilon},\mathbf{b}+\mathbf{a}} \wedge | \boldsymbol{\epsilon}_{c_a} \geq 0 | \\ \vee |\Delta_{\mathbf{a}} v \geq -c_d | \wedge \mathbf{S}_{\boldsymbol{\epsilon},\mathbf{b}} \wedge | \boldsymbol{\epsilon}_{c_b} \geq 0 | \end{pmatrix} \wedge \begin{pmatrix} \mathbf{S}_{\boldsymbol{\epsilon},\mathbf{b}} \wedge | \boldsymbol{\epsilon}_{c_r} \geq 0 | \\ \vee \mathbb{R}(\mathbf{a}+\mathbf{b}) \end{pmatrix}$$

C.7. $IM_d(\mathcal{T})$ (Cell 20)

$$\Delta_{\mathbf{d}}\Omega_{\mathcal{C}}v(\mathbf{x}) = \Delta_{\mathbf{d}}(\mathcal{C}v(\mathbf{x}) - v(\mathbf{x}))$$

The 4 possible cases are given in the following table.

	$\mathbf{y} + \mathbf{a} \in \mathcal{X}$	$\mathbf{y} + \mathbf{a} \notin \mathcal{X}$
$\mathbf{y} + \mathbf{a} + \mathbf{d} \in \mathcal{X}$	Case A	Case C
$\mathbf{y} + \mathbf{a} + \mathbf{d} \notin \mathcal{X}$	Case B	Case D

C.7.1. Case A.

$$\Delta_{\mathbf{d}}\Omega_{\mathcal{C}}v(\mathbf{x}) = \min\{v(\mathbf{y}+\mathbf{d}) + c_b, v(\mathbf{y}+\mathbf{d}+\mathbf{a}) + c_a\} - v(\mathbf{x}+\mathbf{d}) - \min\{v(\mathbf{y}) + c_b, v(\mathbf{y}+\mathbf{a}) + c_a\} + v(\mathbf{x})$$

The 4 possible cases are given in the following table.

 $\begin{array}{c|c} & \Delta_{\mathbf{a}} v(\mathbf{y}) \leq -c_d & \Delta_{\mathbf{a}} v(\mathbf{y}) \geq -c_d \\ \hline \Delta_{\mathbf{a}} v(\mathbf{y} + \mathbf{d}) \leq -c_d & \text{Case 1} & \text{Case 3} \\ \Delta_{\mathbf{a}} v(\mathbf{y} + \mathbf{d}) \geq -c_d & \text{Case 2} & \text{Case 4} \end{array}$

- Case $1 = \Delta_{\mathbf{d}} v(\mathbf{y} + \mathbf{a}) \Delta_{\mathbf{d}} v(\mathbf{x}) = \Delta_{\mathbf{d}} v(\mathbf{x} + \mathbf{b} + \mathbf{a}) \Delta_{\mathbf{d}} v(\mathbf{x})$ — Positive if $S_{\mathbf{d},\mathbf{b}+\mathbf{a}}$
- Case $2 = \Delta_{\mathbf{d}} v(\mathbf{y}) \Delta_{\mathbf{d}} v(\mathbf{x}) \Delta_{\mathbf{a}} v(\mathbf{y}) c_d \ge \Delta_{\mathbf{d}} v(\mathbf{x} + \mathbf{b}) \Delta_{\mathbf{d}} v(\mathbf{x})$
 - —Positive if $S_{d,b}$
 - —Useless if $S^{ub}_{d,a}$
- Case $3 = \Delta_{\mathbf{d}} v(\mathbf{y}) \Delta_{\mathbf{d}} v(\mathbf{x}) + \Delta_{\mathbf{a}} v(\mathbf{y} + \mathbf{d}) + c_d \leq \Delta_{\mathbf{d}} v(\mathbf{x} + \mathbf{b}) \Delta_{\mathbf{d}} v(\mathbf{x})$ ---Useless if $S_{\mathbf{d},\mathbf{a}}$
- Case $4 = \Delta_{\mathbf{d}} v(\mathbf{x} + \mathbf{b}) \Delta_{\mathbf{d}} v(\mathbf{x})$
 - Positive if $S_{d,b}$

Note that when $\Delta_{\mathbf{a}} v \leq -c_d$ (resp. $\Delta_{\mathbf{a}} v \geq -c_d$) the cases 2, 3, and 4 (resp. 1, 2, and 3) are Useless. So Case A is

• Positive if $\mathbf{S}_{\mathbf{d},\mathbf{b}} \wedge \mathbf{S}_{\mathbf{d},\mathbf{a}} \vee |\Delta_{\mathbf{a}} v \leq -c_d| \wedge \mathbf{S}_{\mathbf{d},\mathbf{b}+\mathbf{a}} \vee |\Delta_{\mathbf{a}} v \geq -c_d| \wedge \mathbf{S}_{\mathbf{d},\mathbf{b}}$

C.7.2. Case B. Case $B = v(y+d) + c_r - v(x+d) - Cv(x) + v(x)$

- If $\Delta_{\mathbf{a}}v(\mathbf{y}) \leq -c_d$ then Case B = $\begin{cases} \Delta_{\mathbf{d}}\Delta_{\mathbf{b}}v(\mathbf{x}) \Delta_{\mathbf{a}}v(\mathbf{y}) + c_r c_a \geq \Delta_{\mathbf{b}}\Delta_{\mathbf{d}}v(\mathbf{x}) + c_r + c_b \\ \Delta_{\mathbf{d}-\mathbf{a}}\Delta_{\mathbf{b}}v(\mathbf{x}+\mathbf{a}) \Delta_{\mathbf{a}}v(\mathbf{x}) + c_r c_a \end{cases}$ - Positive if $(\mathbf{S}_{\mathbf{d},\mathbf{b}} \wedge |c_r + c_b \geq 0| \vee \mathbf{S}_{\mathbf{b},\mathbf{d}-\mathbf{a}} \wedge |\Delta_{\mathbf{a}}v \leq c_r - c_a|)$ - Useless if $\Delta_{\mathbf{a}}v \geq -c_d$
- If $\Delta_{\mathbf{a}} v(\mathbf{y}) \geq -c_d$ then Case B = $\Delta_{\mathbf{b}} \Delta_{\mathbf{d}} v(\mathbf{x}) + c_r c_b$
 - —Positive if $\mathbf{S}_{\mathbf{d},\mathbf{b}} \wedge |c_r c_b \ge 0|$
 - —Useless if $\Delta_{\mathbf{a}} v \leq -c_d$

So Case B is

• Positive if

$$\mathbf{S_{d,b}} \land |c_r + c_b \ge 0| \lor \mathbf{S_{b,d-a}} \land |\Delta_{\mathbf{a}} v \le c_r - c_a| \lor |\Delta_{\mathbf{a}} v \ge -c_d| \land (\mathbf{S_{d,b}} \land |c_r - c_b \ge 0| \lor |\Delta_{\mathbf{a}} v \le -c_d|)$$

• Useless if \mathcal{X} is $R_{\mathbf{d},\mathbf{a}+\mathbf{b}}(\mathbf{a}+\mathbf{b}+\mathbf{d})$

C.7.3. Case C. Case
$$C = Cv(\mathbf{x} + \mathbf{d}) - v(\mathbf{x} + \mathbf{d}) - v(\mathbf{y}) - c_r + v(\mathbf{x})$$

• If $\Delta_{\mathbf{a}}v(\mathbf{y} + \mathbf{d}) \leq -c_d$ then Case $C = \begin{cases} \Delta_{\mathbf{d}}\Delta_{\mathbf{b}}v(\mathbf{x}) + \Delta_{\mathbf{a}}v(\mathbf{y} + \mathbf{d}) - c_r + c_a \\ \Delta_{\mathbf{d}+\mathbf{a}}\Delta_{\mathbf{b}}v(\mathbf{x}) + \Delta_{\mathbf{a}}v(\mathbf{x} + \mathbf{d}) - c_r + c_a \end{cases}$
— Positive if $|\Delta_{\mathbf{a}}v \geq c_r - c_a| \wedge (\mathbf{S}_{\mathbf{b},\mathbf{d}} \vee \mathbf{S}_{\mathbf{b},\mathbf{d}+\mathbf{a}})$
— Useless if $\Delta_{\mathbf{a}}v \geq -c_d$

• If $\Delta_{\mathbf{a}} v(\mathbf{y} + \mathbf{d}) \ge -c_d$ then Case $\mathbf{C} = \Delta_{\mathbf{b}} \Delta_{\mathbf{d}} v(\mathbf{x}) - c_r + c_b$ --Positive if $\mathbf{S}_{\mathbf{d},\mathbf{b}} \land |c_b - c_r \ge 0|$

—Useless if
$$\Delta_{\mathbf{a}} v \leq -c_d$$

So Case C is

- Positive if $(|\Delta_{\mathbf{a}}v \ge c_r c_a| \wedge (\mathbf{S}_{\mathbf{b},\mathbf{d}} \vee \mathbf{S}_{\mathbf{b},\mathbf{d}+\mathbf{a}}) \vee |\Delta_{\mathbf{a}}v \ge -c_d|) \wedge (\mathbf{S}_{\mathbf{d},\mathbf{b}} \wedge |c_b c_r \ge 0| \vee |\Delta_{\mathbf{a}}v \le -c_d|)$
- Useless if \mathcal{X} is $R_{\mathbf{d},\mathbf{a}+\mathbf{b}+\mathbf{d}}(\mathbf{a}+\mathbf{b})$

C.7.4. Case D. Case $D = \Delta_d \Delta_b v(\mathbf{x})$

- \bullet Positive if $\mathtt{S}_{\mathbf{d},\mathbf{b}}$
- Useless if \mathcal{X} is $\mathtt{R}_d(\mathbf{a} + \mathbf{b})) \lor \mathtt{R}_d(\mathbf{a} + \mathbf{b} + \mathbf{d}))$

C.7.5. Conclusion. $\Delta_{\mathbf{d}}\Omega_{\mathcal{C}}v \ge 0$ if,

$$\begin{pmatrix} \mathbf{S}_{\mathbf{d},\mathbf{b}} \wedge \mathbf{S}_{\mathbf{d},\mathbf{a}} \\ \vee |\Delta_{\mathbf{a}} v \leq -c_d| \wedge \mathbf{S}_{\mathbf{d},\mathbf{b}+\mathbf{a}} \\ \vee |\Delta_{\mathbf{a}} v \geq -c_d| \wedge \mathbf{S}_{\mathbf{d},\mathbf{b}+\mathbf{a}} \end{pmatrix} \wedge (\mathbf{S}_{\mathbf{d},\mathbf{b}} \vee \mathbf{R}_{\mathbf{d}}(\mathbf{a}+\mathbf{b}+\mathbf{d}) \vee \mathbf{R}_{\mathbf{d}}(\mathbf{a}+\mathbf{b})) \\ \wedge \begin{pmatrix} \left(\mathbf{S}_{\mathbf{d},\mathbf{b}} \wedge |c_r + c_b \geq 0| \\ \vee \mathbf{S}_{\mathbf{b},\mathbf{d}-\mathbf{a}} \wedge |\Delta_{\mathbf{a}} v \leq c_r - c_a| \\ \vee |\Delta_{\mathbf{a}} v \geq -c_d| \end{pmatrix} \\ \wedge (\mathbf{S}_{\mathbf{d},\mathbf{b}} \wedge |c_r - c_b \geq 0| \vee |\Delta_{\mathbf{a}} v \leq -c_d|) \end{pmatrix} \wedge \begin{pmatrix} \left(\mathbf{S}_{\mathbf{b},\mathbf{d}} \wedge |\Delta_{\mathbf{a}} v \geq c_r - c_a| \\ \vee \mathbf{S}_{\mathbf{b},\mathbf{d}+\mathbf{a}} \wedge |\Delta_{\mathbf{a}} v \geq c_r - c_a| \\ \vee |\Delta_{\mathbf{a}} v \geq -c_d| \end{pmatrix} \\ \wedge (\mathbf{S}_{\mathbf{d},\mathbf{b}} \wedge |c_r - c_b \geq 0| \vee |\Delta_{\mathbf{a}} v \leq -c_d|) \end{pmatrix} \wedge \begin{pmatrix} \left(\mathbf{S}_{\mathbf{d},\mathbf{b}} \wedge |c_b - c_r \geq 0| \vee |\Delta_{\mathbf{a}} v \geq -c_d| \\ \vee \mathbf{S}_{\mathbf{d},\mathbf{a}+\mathbf{b}+\mathbf{d}} (\mathbf{a}+\mathbf{b}) \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{pmatrix}$$

With $|\Delta_{\mathbf{a}} v \leq -c_d| = |\Delta_{\mathbf{a}} v \geq -c_d| = false$ this expression reduces to

$$(|c_r \ge 0| \land |c_b = 0| \lor \mathtt{R}_{\mathbf{d}, \mathbf{a} + \mathbf{b}}(\mathbf{a} + \mathbf{b} + \mathbf{d})) \land \mathtt{S}_{\mathbf{d}, \mathbf{b}} \land \mathtt{S}_{\mathbf{d}, \mathbf{a}} \land \mathtt{R}_{\mathbf{d}, \mathbf{a} + \mathbf{b} + \mathbf{d}}(\mathbf{a} + \mathbf{b})$$

Appendix D: Admission control

$$\begin{split} \mathcal{M}v &= \mathcal{H} + \mu \mathcal{O}_0 v + \sum_{i=1}^n \lambda_i \mathcal{O}_i v + p_0 v, \\ \mathcal{H}(\mathbf{x}) &= hx, \\ \mathcal{O}_0 v(\mathbf{x}) &= \mathcal{T}v(\mathbf{x}) \text{ with } \begin{cases} \mathbf{a} = -\mathbf{e}_1, \mathbf{b} = \mathbf{0}, \\ c_a = c_r = 0, \\ \mathbf{o}_i v(\mathbf{x}) &= \mathcal{C}v(\mathbf{x}) \text{ with } \begin{cases} \mathbf{a} = \mathbf{e}_1, \mathbf{b} = \mathbf{0}, \\ c_b = c_i, c_a = c_r = 0 \end{cases} \end{split}$$

The state space is $\mathcal{S}_1 = \mathbb{Z}^+$.

From Stidham (1985) we know that \mathcal{M} propagates S_{e_1,e_1} and I_{e_1} .

D.1. Proof of Theorem 1

D.1.1. Monotonicity. We look for the condition on v and ϵ to have \mathcal{M} that propagates I_{ϵ} . From Proposition 2 we obtain that \mathcal{M} propagates I_{ϵ} if the following condition is satisfied, knowing that v is I_{ϵ} , S_{e_1,e_1} , and I_{e_1} .

$$\begin{split} |\Delta_{\boldsymbol{\epsilon}}(hx) \geq 0| \\ \wedge \left[\bigwedge_{\substack{|\mathcal{O}_{0} \text{ propagates } \mathbf{I}_{\boldsymbol{\epsilon}}| \\ |\mathcal{O}_{0} \text{ propagates } \mathbf{I}_{\boldsymbol{\epsilon}}| \\ \wedge \left[\bigwedge_{\substack{|\mathcal{O}_{1} \neq 0| \land |\Omega_{\mathcal{O}_{0}}v \leq 0| \\ \vee |\epsilon_{\mu} > 0| \land |\Omega_{\mathcal{O}_{0}}v \geq 0| \\ \vee |\epsilon_{\mu} = 0| \\ \end{pmatrix} \right] \land_{i=1}^{l} \left[\bigwedge_{\substack{|\mathcal{O}_{i} \text{ propagates } \mathbf{I}_{\boldsymbol{\epsilon}}| \\ |\mathcal{O}_{i} \text{ propagates } \mathbf{I}_{\boldsymbol{\epsilon}}| \\ \wedge \left(\begin{smallmatrix} |\mathcal{O}_{i} \text{ propagates } \mathbf{I}_{\boldsymbol{\epsilon}}| \\ |\epsilon_{\lambda_{i}} < 0| \land |\Omega_{\mathcal{O}_{i}}v \leq 0| \\ \vee |\epsilon_{\lambda_{i}} > 0| \land |\Omega_{\mathcal{O}_{i}}v \geq 0| \\ \vee |\epsilon_{\lambda_{i}} = 0| \\ \end{pmatrix} \right] \land \left(\begin{smallmatrix} |\epsilon_{\eta} < 0| \land |v \text{ is } P| \\ \vee |\epsilon_{\eta} > 0| \land |v \text{ is } N| \\ \vee |\epsilon_{\eta} = 0| \\ \end{pmatrix} \right).$$

$$(10)$$

From Table 4 we obtain the following relations.

•
$$|\Delta_{\epsilon}(hx) \ge 0| = |\epsilon_h \ge 0|$$

- $|\mathcal{O}_0 \text{ propagates } \mathbf{I}_{\epsilon}| = true \text{ (see cell 5).}$
- $|\Omega_{\mathcal{O}_0} v \le 0| = |\Delta_{-\mathbf{e}_1} v \le 0| = true$ (see cell 15).
- $|\Omega_{\mathcal{O}_0} v \ge 0| = |\Delta_{-\mathbf{e}_1} v \ge 0| = false$ (see cell 13).
- $|\mathcal{O}_i \text{ propagates } \mathbf{I}_{\epsilon}| = |\epsilon_{c_i} \ge 0| \text{ because } \mathbf{R}(\mathbf{e}_1) = true \text{ (see cell 6)}.$
- $|\Omega_{\mathcal{O}_i} v \leq 0| = |\Delta_{\mathbf{e}_1} v \leq 0| = false \text{ (see cell 16)}.$
- $|\Omega_{\mathcal{O}_i} v \ge 0| = |\Delta_{\mathbf{e}_1} v \ge 0| = true$ (see cell 14).
- $|v \text{ is } \mathsf{P}| = true$ because costs are positive (see cells 1 and 2).
- $|v \text{ is } \mathbb{N}| = false$ because costs are not negative (see cells 3 and 4).

So equation (10) can be reduced to

$$|\epsilon_h \ge 0| \wedge |\epsilon_\mu \le 0| \wedge |\epsilon_\eta \le 0| \bigwedge_{i=1}^l (|\epsilon_{c_i} \ge 0| \wedge |\epsilon_{\lambda_i} \ge 0|)$$

$$\tag{11}$$

Conclusion, the optimal value function is increasing in the arrival rates λ_i , the rejection costs c_i , the holding cost h and decreasing in the service rate μ and the discount rate η .

D.1.2. Convexity/Concavity. First we look for the condition on v and ϵ to have \mathcal{M} that propagates $S_{\epsilon,\epsilon}$. However $|\mathcal{O}_i|$ propagates $S_{\epsilon,\epsilon}| = false$, so \mathcal{M} does not propagate $S_{\epsilon,\epsilon}$ (see Proposition 3 and cell 10 in Table 4).

Now we look for the condition on v and ϵ to have \mathcal{M} that propagates $S_{\epsilon,-\epsilon}$. From Proposition 3 we obtain that \mathcal{M} propagates $S_{\epsilon,-\epsilon}$ if the following condition is satisfied, knowing that v is $S_{\epsilon,-\epsilon}$, S_{e_1,e_1} , and I_{e_1} .

$$\begin{split} &|\Delta_{\epsilon}\Delta_{\epsilon}(hx) \leq 0| \\ & \wedge \begin{bmatrix} |\mathcal{O}_{0} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \wedge \begin{bmatrix} |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \wedge \begin{bmatrix} |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \wedge \begin{bmatrix} |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \wedge \begin{bmatrix} |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \wedge \begin{bmatrix} |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \wedge \begin{bmatrix} |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \wedge \begin{bmatrix} |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \wedge \begin{bmatrix} |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \wedge \begin{bmatrix} |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \wedge \begin{bmatrix} |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \vee |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \vee |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \wedge \begin{bmatrix} |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \vee |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \vee |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \wedge \begin{bmatrix} |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \vee |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \vee |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \wedge \begin{bmatrix} |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \vee |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \vee |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \wedge \begin{bmatrix} |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \vee |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \vee |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \wedge \begin{bmatrix} |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| \\ & \vee |$$

From Table 4 we obtain the following relations.

- $|\Delta_{\epsilon}\Delta_{\epsilon}(hx) \leq 0| = true.$
- $|\mathcal{O}_0 \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| = true \text{ (see cell 9)}.$
- $|\Delta_{-\epsilon}\Omega_{\mathcal{O}_0}v \ge 0| = \mathbf{S}_{\epsilon,\mathbf{e}_1}$ (see cell 17).
- $|\Delta_{\epsilon}\Omega_{\mathcal{O}_0}v \ge 0| = \mathbf{S}_{-\epsilon,\mathbf{e}_1}$ (see cell 17).
- $|\mathcal{O}_i \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| = \mathbf{S}_{\mathbf{e}_1,\epsilon} \wedge |\epsilon_{c_i} \leq 0| \vee \mathbf{S}_{\mathbf{e}_1,\epsilon}^{ub} \wedge |\epsilon_{c_i} \geq 0| \text{ (see cell 10).}$
- $|\Delta_{-\epsilon}\Omega_{\mathcal{O}_i}v \ge 0| = \mathbf{S}_{-\epsilon,\mathbf{e}_1} \wedge |\epsilon_{c_i} \le 0|$ (see cell 18).
- $|\Delta_{\epsilon}\Omega_{\mathcal{O}_i}v \ge 0| = \mathbf{S}_{\epsilon,\mathbf{e}_1} \wedge |\epsilon_{c_i} \ge 0|$ (see cell 18).
- $|v \text{ is } \mathbf{I}_{\epsilon}|$ if (see equation 11) $|\epsilon_h \ge 0| \wedge |\epsilon_\mu \le 0| \wedge |\epsilon_\eta \le 0| \wedge |\epsilon_{i+1}| |\epsilon_{c_i} \ge 0| \wedge |\epsilon_{\lambda_i} \ge 0|$.
- $|v \text{ is } \mathbb{I}_{-\epsilon}|$ if (see equation 11) $|\epsilon_h \leq 0| \wedge |\epsilon_\mu \geq 0| \wedge |\epsilon_\eta \geq 0| \bigwedge_{i=1}^l |\epsilon_{c_i} \leq 0| \wedge |\epsilon_{\lambda_i} \leq 0|$.

So equation (12) reduces to

$$\begin{pmatrix} |\epsilon_{\mu} > 0| \wedge \mathbf{S}_{\boldsymbol{\epsilon}, \mathbf{e}_{1}} \\ \vee |\epsilon_{\mu} < 0| \wedge \mathbf{S}_{-\boldsymbol{\epsilon}, \mathbf{e}_{1}} \\ \vee |\epsilon_{\mu} = 0| \end{pmatrix} \bigwedge_{i=1}^{l} \begin{bmatrix} \mathbf{S}_{\mathbf{e}_{1}, \boldsymbol{\epsilon}} \wedge |\epsilon_{c_{i}} \leq 0| \vee \mathbf{S}_{\mathbf{e}_{1}, \boldsymbol{\epsilon}}^{ub} \wedge |\epsilon_{c_{i}} \geq 0| \\ \wedge |\epsilon_{\lambda_{i}} > 0| \wedge \mathbf{S}_{-\boldsymbol{\epsilon}, \mathbf{e}_{1}} \wedge |\epsilon_{c_{i}} \leq 0| \\ \vee |\epsilon_{\lambda_{i}} < 0| \wedge \mathbf{S}_{\boldsymbol{\epsilon}, \mathbf{e}_{1}} \wedge |\epsilon_{c_{i}} \geq 0| \\ \vee |\epsilon_{\lambda_{i}} = 0| \end{bmatrix} \wedge |\epsilon_{\eta} = 0| \quad .$$
(13)

In the following section (see equation 15) we will see that \mathcal{M} propagates S_{ϵ,e_1} if

$$\left|\epsilon_{h}\geq0\right|\wedge\left|\epsilon_{c_{i}}\geq0\right|\wedge\left|\epsilon_{\lambda_{i}}\geq0\right|\wedge\left|\epsilon_{\mu}\leq0\right|\wedge\left|\epsilon_{\eta}\leq0\right|,$$

so equation (13) reduces to

$$|\epsilon_{c_i} = 0| \wedge |\epsilon_{\lambda_i} = 0| \wedge |\epsilon_{\mu} = 0| \wedge |\epsilon_{\eta} = 0|$$

Conclusion, the optimal value function is concave in the holding cost h.

D.1.3. Monotonicity of the optimal policy. We look for the condition on v and ϵ to have \mathcal{M} that propagates S_{ϵ,e_1} . From Proposition 3 we obtain that \mathcal{M} propagates S_{ϵ,e_1} if the following condition is satisfied, knowing that v is S_{ϵ,e_1} , S_{e_1,e_1} , and I_{e_1} .

$$\begin{split} |\Delta_{\mathbf{e}_{1}}\Delta_{\boldsymbol{\epsilon}}(hx) \geq 0| \\ \wedge \begin{bmatrix} |\mathcal{O}_{0} \text{ propagates } \mathbf{S}_{\mathbf{e}_{1},\boldsymbol{\epsilon}}| \\ |\mathcal{O}_{0} \text{ propagates } \mathbf{S}_{\mathbf{e}_{1},\boldsymbol{\epsilon}}| \\ \wedge \begin{bmatrix} |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\mathbf{e}_{1},\boldsymbol{\epsilon}}| \\ |\epsilon_{\mu} < 0| \wedge |\Delta_{\mathbf{e}_{1}}\Omega_{\mathcal{O}_{0}}v \leq 0| \\ |\forall |\epsilon_{\mu} > 0| \wedge |\Delta_{\mathbf{e}_{1}}\Omega_{\mathcal{O}_{0}}v \geq 0| \\ |\forall |\epsilon_{\mu} = 0| \end{bmatrix} \\ \wedge \begin{bmatrix} |\mathcal{O}_{i} \text{ propagates } \mathbf{S}_{\mathbf{e}_{1},\boldsymbol{\epsilon}}| \\ |\epsilon_{\lambda_{i}} < 0| \wedge |\Delta_{\mathbf{e}_{1}}\Omega_{\mathcal{O}_{i}}v \leq 0| \\ |\forall |\epsilon_{\lambda_{i}} > 0| \wedge |\Delta_{\mathbf{e}_{1}}\Omega_{\mathcal{O}_{i}}v \geq 0| \\ |\forall |\epsilon_{\lambda_{i}} = 0| \end{bmatrix} \\ \wedge \begin{bmatrix} |\epsilon_{\eta} < 0| \wedge |v \text{ is } \mathbf{I}_{-\mathbf{e}_{1}}| \\ |\forall |\epsilon_{\eta} = 0| \\ |\forall |\epsilon_{\eta} = 0| \end{bmatrix} \\ \end{split}$$

$$(14)$$

From Table 4 we obtain the following relations.

- $|\Delta_{\mathbf{e}_1}\Delta_{\boldsymbol{\epsilon}}(hx) \ge 0| = |\epsilon_h \ge 0|$
- $|\mathcal{O}_0 \text{ propagates } \mathbf{S}_{\mathbf{e}_1, \boldsymbol{\epsilon}}| = true \text{ (see cell 11).}$
- $|\Delta_{-\mathbf{e}_1}\Omega_{\mathcal{O}_0}v \leq 0| = \mathbf{S}_{-\mathbf{e}_1,-\mathbf{e}_1} \wedge |\Delta_{-\mathbf{e}_1}v \leq 0| = true \text{ (see cell 19)}.$
- $|\Delta_{\mathbf{e}_1}\Omega_{\mathcal{O}_0}v \ge 0| = \mathbf{S}_{\mathbf{e}_1,-\mathbf{e}_1} \land \cdots = false \text{ (see cell 19)}.$
- $|\mathcal{O}_i \text{ propagates } \mathbf{S}_{\mathbf{e}_1, \epsilon}| = \mathbf{S}_{\mathbf{e}_1, \mathbf{e}_1} \wedge |\epsilon_{c_i} \geq 0| \text{ (see cell 12).}$
- $|\Delta_{-\mathbf{e}_1}\Omega_{\mathcal{O}_i}v \ge 0| = \mathbf{S}_{-\mathbf{e}_1,\mathbf{e}_1} = false \text{ (see cell 20)}.$
- $\bullet \ |\Delta_{\mathbf{e}_1}\Omega_{\mathcal{O}_i}v \geq 0| = \mathbf{S}_{\mathbf{e}_1,\mathbf{e}_1} = true \ (\text{see cell } 20).$
- $|v \text{ is } \mathbf{I}_{\mathbf{e}_1}| = true \text{ (Stidham 1985)}.$
- $|v \text{ is } \mathbf{I}_{-\mathbf{e}_1}| = false \text{ (Stidham 1985)}.$

So equation (14) can be reduced, and \mathcal{M} propages S_{ϵ,e_1} if

$$|\epsilon_h \ge 0| \wedge |\epsilon_{c_i} \ge 0| \wedge |\epsilon_{\lambda_i} \ge 0| \wedge |\epsilon_\mu \le 0| \wedge |\epsilon_\eta \le 0|.$$
(15)

Given that the optimal thresholds t_i decrease if

$$|\mathcal{M} \text{ propagates } S_{\epsilon, \mathbf{e}}| \wedge |\epsilon_{c_i} \leq 0|,$$

the optimal thresholds t_i are decreasing in the arrival rate λ_i , the holding cost h, and increasing in the service rate μ and the discount rate η .

D.2. Proof of Theorem 2

D.2.1. Effect of λ and μ : Piecewise convexity. Let $[\mu_l, \mu_u]$ (resp. $[\lambda_l, \lambda_u]$) be a set such that for all $\mu \in [\mu_l, \mu_u]$ (resp. $\lambda_i \in [\lambda_l, \lambda_u]$) the optimal thresholds S_i^* do not change. For all $\mu \in [\mu_l, \mu_u]$ (resp. $\lambda_i \in [\lambda_l, \lambda_u]$) the MDP formulation can be rewritten.

Let ϵ_{μ} (resp. ϵ_{λ_i}) be positive such that $\mu + \epsilon_{\mu} \in [\mu_l, \mu_u]$ (resp. $\lambda_i + \epsilon_{\lambda_i} \in [\lambda_l, \lambda_u]$).

- For all state space \mathcal{X} and for all direction \mathbf{a} , \mathcal{T} propagates $S_{\epsilon,\epsilon}$ without conditions.
- $IM_{\epsilon}(\mathcal{O}_0)$ is positive if v is $S_{\epsilon,-e}$ which is true because ϵ_{μ} is positive. (resp. $IM_{\epsilon}(\mathcal{O}_{i>0})$ is positive if v is $S_{\epsilon,e}$ which is true because ϵ_{λ_i} is positive.)

So $v^*(\mathbf{x})$ is convex in $\mu \in [\mu_l, \mu_u]$ resp. $\lambda_i \in [\lambda_l, \lambda_u]$ if the optimal thresholds S_i^* do not change on the set $[\mu_l, \mu_u]$ (resp. $[\lambda_l, \lambda_u]$). **D.2.2.** Effect of h and c_i : concavity and piecewise linearity. With $\epsilon_h \ge 0$ and $\epsilon_{c_i} \le 0, v$ is $S_{\epsilon,e}$ and operators C (with $\mathbf{a} = \mathbf{e}$) and \mathcal{T} (with $\mathbf{a} = -\mathbf{e}$) propagate $S_{\epsilon,-\epsilon}$. So v is concave in ϵ_h and ϵ_c .

We consider a set of parameters $[h_l, h_u]$ (resp. $[c_l, c_u]$) such that the optimal thresholds S_i^* do not change on this set. As previously the MDP formulation can be rewritten on this set with translation operator only.

With $\epsilon_h \geq 0$ (resp. $\epsilon_{c_i} \geq 0$) such that $h + \epsilon_h \in [h_l, h_u]$ (resp. $c_i + \epsilon_{c_i} \in [c_l, c_u]$), then \mathcal{T} propagates $\mathbf{S}^{ub}_{\boldsymbol{\epsilon}, \boldsymbol{\epsilon}}$ and $\mathbf{S}_{\boldsymbol{\epsilon}, \boldsymbol{\epsilon}}$ without conditions $\forall \mathcal{X}$ and $\forall \mathbf{a}$.

Given that $v \ \mathbf{S}_{\epsilon,\epsilon}^{ub}$ and $\mathbf{S}_{\epsilon,\epsilon}$ imply that v is linear in ϵ , the optimal value function $v^*(\mathbf{x})$ is linear in $h \in [h_l, h_u]$ (resp. $c_i \in [c_l, c_u]$) if the optimal thresholds S_i^* do not change on the set $[h_l, h_u]$ (resp. $[c_l, c_u]$).

Appendix E: Tandem queue, proof of Theorem 3

The optimality equations for the tandem queue problem are

$$\begin{split} \boldsymbol{\mathcal{M}} v &= \boldsymbol{\mathcal{H}} + \mu_1 \mathcal{O}_1 v + \mu_2 \mathcal{O}_2 v + \lambda \mathcal{O}_3 v + p_0 v, \\ \boldsymbol{\mathcal{H}}(\mathbf{x}) &= h_1 x_1 + h_2 \max\{x_2, 0\} + b \max\{-x_2, 0\}, \\ \mathcal{O}_1 v(\mathbf{x}) &= \mathcal{C} v(\mathbf{x}) \text{ with } \begin{cases} \mathbf{a} = \mathbf{e}_1, \mathbf{b} = \mathbf{0}, \\ c_a = c_r = 0, \\ c_a = c_r = 0, \end{cases} \\ \mathcal{O}_2 v(\mathbf{x}) &= \mathcal{C} v(\mathbf{x}) \text{ with } \begin{cases} \mathbf{a} = \mathbf{e}_2 - \mathbf{e}_1, \mathbf{b} = \mathbf{0}, \\ c_a = c_b = c_r = 0, \\ c_a = c_b = c_r = 0, \end{cases} \\ \mathcal{O}_3 v(\mathbf{x}) &= \mathcal{T} v(\mathbf{x}) \text{ with } \begin{cases} \mathbf{a} = -\mathbf{e}_2, \mathbf{b} = \mathbf{0}, \\ c_a = c_b = c_r = 0, \end{cases} \end{cases}$$

From Veatch and Wein (1992) we know that \mathcal{M} propagates S_{e_1,e_2} , S_{e_1,e_1-e_2} , and S_{e_2,e_2-e_1} .

E.1. Monotonicity

We look for the condition on v and ϵ to have \mathcal{M} that propagates I_{ϵ} . From Proposition 2 we obtain that \mathcal{M} propagates I_{ϵ} if the following condition is satisfied, knowing that v is I_{ϵ} , S_{e_1,e_2} , S_{e_1,e_1-e_2} , and S_{e_2,e_2-e_1} .

$$\begin{split} \left| \Delta_{\epsilon} (h_{1}x_{1} + h_{2}x_{2}^{+} + b(-x_{2})^{+}) \geq 0 \right|, \\ \wedge \begin{bmatrix} |\mathcal{O}_{1} \text{ propagates } \mathbf{I}_{\epsilon}| \\ \left| \langle |\epsilon_{\mu_{1}} < 0| \land |\Omega_{\mathcal{O}_{1}} v \leq 0| \\ \vee |\epsilon_{\mu_{1}} > 0| \land |\Omega_{\mathcal{O}_{1}} v \geq 0| \\ \vee |\epsilon_{\mu_{1}} = 0| \end{bmatrix} \right| \land \begin{bmatrix} |\mathcal{O}_{2} \text{ propagates } \mathbf{I}_{\epsilon}| \\ \left| \langle |\epsilon_{\mu_{2}} < 0| \land |\Omega_{\mathcal{O}_{2}} v \leq 0| \\ \vee |\epsilon_{\mu_{2}} > 0| \land |\Omega_{\mathcal{O}_{2}} v \geq 0| \\ \vee |\epsilon_{\mu_{2}} = 0| \end{bmatrix} \\ \land \begin{bmatrix} |\mathcal{O}_{3} \text{ propagates } \mathbf{I}_{\epsilon}| \\ \left| \langle |\epsilon_{\lambda} < 0| \land |\Omega_{\mathcal{O}_{3}} v \leq 0| \\ \vee |\epsilon_{\lambda} > 0| \land |\Omega_{\mathcal{O}_{3}} v \geq 0| \\ \vee |\epsilon_{\lambda} = 0| \end{bmatrix} \end{bmatrix} \land \begin{bmatrix} |\epsilon_{\eta} < 0| \land |v \text{ is } \mathsf{P}| \\ \vee |\epsilon_{\eta} = 0| \end{pmatrix}. \end{split}$$
(16)

From Table 4 we obtain the following relations.

- $|\Delta_{\epsilon}(h_1x_1 + h_2x_2^+ + b(-x_2)^+) \ge 0| = |\epsilon_{h_1} \ge 0| \land |\epsilon_{h_2} \ge 0| \land |\epsilon_b \ge 0|,$
- $|\mathcal{O}_1 \text{ propagates } \mathbf{I}_{\epsilon}| = true \text{ (see cell 6)}.$
- $|\Omega_{\mathcal{O}_1} v \leq 0| = true$ (see cell 16).
- $|\Omega_{\mathcal{O}_1} v \ge 0| = |\Delta_{\mathbf{e}_1} v \ge 0| = false \text{ (see cell 14)}.$
- $|\mathcal{O}_2 \text{ propagates } \mathbf{I}_{\epsilon}| = true \text{ (see cell 6).}$
- $|\Omega_{\mathcal{O}_2} v \leq 0| = true$ (see cell 16).
- $|\Omega_{\mathcal{O}_2} v \ge 0| = |\Delta_{\mathbf{e}_2 \mathbf{e}_1} v \ge 0|$ false when $h_1 \le h_2$ (see cell 14).
- $|\mathcal{O}_3 \text{ propagates } I_{\epsilon}| = true \text{ (see cell 5)}.$
- $|\Omega_{\mathcal{O}_3} v \leq 0| = |\Delta_{-\mathbf{e}_2} v \leq 0| = false \text{ (see cell 15)}.$
- $\bullet \ |\Omega_{\mathcal{O}_3} v \geq 0| = |\Delta_{-\mathbf{e}_2} v \geq 0| = false \ (\text{see cell } 13).$
- $|v \text{ is } \mathsf{P}| = true$ because all costs are positive.
- $|v \text{ is } \mathbb{N}| = false$ because all costs are positive.

So equation (16) can be reduced, and ${\mathcal M}$ propagates \mathtt{I}_ϵ if

$$|\epsilon_{h_1} \ge 0| \wedge |\epsilon_{h_2} \ge 0| \wedge |\epsilon_b \ge 0| \wedge |\epsilon_{\mu_1} \le 0| \wedge |\epsilon_{\mu_2} \le 0| \wedge |\epsilon_{\lambda} = 0| \wedge |\epsilon_{\eta} \le 0|.$$

$$(17)$$

Conclusion, the optimal value function is increasing in the costs h_i and b, and decreasing in the service rate μ_i and the discount rate η .

E.2. Convexity/concavity

First we look for the condition on v and ϵ to have \mathcal{M} that propagates $S_{\epsilon,\epsilon}$. However $|\mathcal{O}_1 \text{ propagates } S_{\epsilon,\epsilon}| = false$, so \mathcal{M} does not propagate $S_{\epsilon,\epsilon}$ (see Proposition 3 and cell 10 in Table 4).

Now we look for the condition on v and ϵ to have \mathcal{M} that propagates $\mathbf{S}_{\epsilon,-\epsilon}$. From Proposition 3 we obtain that \mathcal{M} propagates $\mathbf{S}_{\epsilon,-\epsilon}$ if the following condition is satisfied, knowing that v is $\mathbf{S}_{\epsilon,-\epsilon}$, $\mathbf{S}_{\mathbf{e}_1,\mathbf{e}_2}$, $\mathbf{S}_{\mathbf{e}_1,\mathbf{e}_1-\mathbf{e}_2}$, and $\mathbf{S}_{\mathbf{e}_2,\mathbf{e}_2-\mathbf{e}_1}$.

$$\begin{split} \left| \Delta_{\epsilon} \Delta_{\epsilon} (h_{1}x_{1} + h_{2}x_{2}^{+} + b(-x_{2})^{+}) \leq 0 \right| \\ \wedge \begin{bmatrix} |\mathcal{O}_{1} \operatorname{propagates} \mathbf{S}_{\epsilon,-\epsilon}| \\ \left| \langle \mathbf{0}_{1} \operatorname{propagates} \mathbf{S}_{\epsilon,-\epsilon} \right| \\ \left| \langle \mathbf{0}_{2} \operatorname{propagates} \mathbf{S}_{\epsilon,-\epsilon} \right| \\ \left| \langle \mathbf{0}_{2} \operatorname{propagates} \mathbf{S}_{\epsilon,-\epsilon} \right| \\ \wedge \begin{bmatrix} |\mathcal{O}_{2} \operatorname{propagates} \mathbf{S}_{\epsilon,-\epsilon}| \\ \left| \langle \mathbf{0}_{2} \operatorname{propagates} \mathbf{S}_{\epsilon,-\epsilon} \right| \\ \left| \langle \mathbf{0}_{2} \operatorname{propagates} \mathbf{S}_{\epsilon,-\epsilon} \right| \\ \langle \mathbf{0}_{2} \langle \mathbf{0} \rangle | \langle \mathbf{0}_{2} \langle \mathbf{0} \rangle | \langle \mathbf{0}_{2} \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0}_{2} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0}_{2} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0}_{2} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle | \langle \mathbf{0} \rangle | \rangle \\ \langle \mathbf{0} \rangle |$$

From Table 4 we obtain the following relations.

- $\left|\Delta_{\epsilon}\Delta_{\epsilon}(h_1x_1+h_2x_2^++b(-x_2)^+)\leq 0\right|=true,$
- $|\mathcal{O}_1 \text{ propagates } \mathbf{S}_{\boldsymbol{\epsilon},-\boldsymbol{\epsilon}}| = \mathbf{S}_{\mathbf{e}_1,\boldsymbol{\epsilon}} \lor \mathbf{S}_{\mathbf{e}_1,\boldsymbol{\epsilon}}^{ub}$ (see cell 10),

- $|\Delta_{\boldsymbol{\epsilon}}\Omega_{\mathcal{O}_1} v \leq 0| = \mathbf{S}_{-\boldsymbol{\epsilon},\mathbf{e}_1}$ (see cell 18),
- $|\Delta_{\epsilon}\Omega_{\mathcal{O}_1}v \ge 0| = S_{\epsilon,e_1}$ (see cell 18),
- $|\mathcal{O}_2 \text{ propagates } \mathbf{S}_{\epsilon,-\epsilon}| = \mathbf{S}_{\mathbf{e}_2-\mathbf{e}_1,\epsilon} \lor \mathbf{S}_{\mathbf{e}_2-\mathbf{e}_1,\epsilon}^{ub}$ (see cell 10),
- $|\Delta_{\epsilon}\Omega_{\mathcal{O}_2}v \leq 0| = S_{-\epsilon,e_2-e_1}$ (see cell 18),
- $|\Delta_{\epsilon}\Omega_{\mathcal{O}_2}v \ge 0| = \mathbf{S}_{\epsilon,\mathbf{e}_2-\mathbf{e}_1}$ (see cell 18),
- $|\mathcal{O}_3 \text{ propagates } S_{\epsilon,-\epsilon}| = S_{-\mathbf{e}_2,\epsilon} \vee S^{ub}_{-\mathbf{e}_2,\epsilon}$ (see cell 9),
- $|\Delta_{\epsilon}\Omega_{\mathcal{O}_3}v \leq 0| = S_{-\epsilon,-\mathbf{e}_2}$ (see cell 17),
- $|\Delta_{\epsilon}\Omega_{\mathcal{O}_3}v \ge 0| = \mathbf{S}_{\epsilon,-\mathbf{e}_2}$ (see cell 17),
- $|v \text{ is } \mathbb{I}_{\epsilon}|$ (see equation 17). $|\epsilon_{h_1} \ge 0| \land |\epsilon_{h_2} \ge 0| \land |\epsilon_b \ge 0| \land |\epsilon_{\mu_1} \le 0| \land |\epsilon_{\mu_2} < 0| \land |\epsilon_{\lambda} = 0| \land |\epsilon_{\eta} \le 0|$.
- $|v \text{ is } \mathbb{I}_{-\epsilon}|$ if (see equation 17) $|\epsilon_{h_1} \leq 0| \wedge |\epsilon_{h_2} \leq 0| \wedge |\epsilon_b \leq 0| \wedge |\epsilon_{\mu_1} \geq 0| \wedge |\epsilon_{\mu_2} \geq 0| \wedge |\epsilon_{\lambda} = 0| \wedge |\epsilon_{\eta} \geq 0|$.

In the following section (see equation 15) we will see that \mathcal{M} propagates S_{ϵ,e_1} , S_{ϵ,e_2-e_1} , and S_{ϵ,e_2} if

$$|\epsilon_{h_1} = 0| \wedge |\epsilon_{h_2} \ge 0| \wedge |\epsilon_b \ge 0| \wedge |\epsilon_{\mu_1} = 0| \wedge |\epsilon_{\mu_2} = 0| \wedge |\epsilon_\lambda \le 0|.$$

So \mathcal{M} propagates $S_{\epsilon,-\epsilon}$ if

$$|\epsilon_{h_1} = 0| \wedge |\epsilon_{h_2} \ge 0| \wedge |\epsilon_b \ge 0| \wedge |\epsilon_{\mu_1} = 0| \wedge |\epsilon_{\mu_2} = 0| \wedge |\epsilon_{\lambda} = 0|.$$

Conclusion, the optimal value function is concave in the costs h_2 and b.

E.3. Monotonicity of the optimal policy

We look for the condition on v and ϵ to have \mathcal{M} that propagates S_{ϵ,e_1} and S_{ϵ,e_2-e_1} . From Proposition 3 we obtain that \mathcal{M} propagates $S_{\epsilon,d}$ if the conditions (19) and (20) are satisfied, knowing that v is S_{ϵ,e_1} , S_{ϵ,e_2-e_1} , S_{e_1,e_2} , S_{e_1,e_1-e_2} , and S_{e_2,e_2-e_1} .

$$\begin{aligned} \left| \Delta_{\mathbf{e}_{1}} \Delta_{\boldsymbol{\epsilon}} (h_{1}x_{1} + h_{2}x_{2}^{+} + b(-x_{2})^{+}) \leq 0 \right| \\ \wedge \begin{bmatrix} \left| \mathcal{O}_{1} \operatorname{propagates} \mathbf{S}_{\boldsymbol{\epsilon}, \mathbf{e}_{1}} \right| \\ \left| A \begin{bmatrix} \left| \mathcal{O}_{2} \operatorname{propagates} \mathbf{S}_{\boldsymbol{\epsilon}, \mathbf{e}_{1}} \right| \\ \left| \left| A \begin{bmatrix} \left| \mathcal{O}_{2} \operatorname{propagates} \mathbf{S}_{\boldsymbol{\epsilon}, \mathbf{e}_{1}} \right| \\ \left| \left| A \begin{bmatrix} \left| \mathcal{O}_{2} \operatorname{propagates} \mathbf{S}_{\boldsymbol{\epsilon}, \mathbf{e}_{1}} \right| \\ \left| A \begin{bmatrix} \left| \mathcal{O}_{2} \operatorname{propagates} \mathbf{S}_{\boldsymbol{\epsilon}, \mathbf{e}_{1}} \right| \\ \left| A \begin{bmatrix} \left| \mathcal{O}_{2} \operatorname{propagates} \mathbf{S}_{\boldsymbol{\epsilon}, \mathbf{e}_{1}} \right| \\ \left| A \begin{bmatrix} \left| \mathcal{O}_{2} \operatorname{propagates} \mathbf{S}_{\boldsymbol{\epsilon}, \mathbf{e}_{1}} \right| \\ \left| \mathcal{O}_{2} \operatorname{propagates} \mathbf{S}_{\boldsymbol{\epsilon}, \mathbf{e}_{1}} \right| \\ \left| A \begin{bmatrix} \left| \mathcal{O}_{2} \operatorname{propagates} \mathbf{S}_{\boldsymbol{\epsilon}, \mathbf{e}_{1}} \right| \\ \left| A \begin{bmatrix} \left| \mathcal{O}_{2} \operatorname{propagates} \mathbf{S}_{\boldsymbol{\epsilon}, \mathbf{e}_{1}} \right| \\ \left| A \begin{bmatrix} \left| \mathcal{O}_{2} \operatorname{propagates} \mathbf{S}_{\boldsymbol{\epsilon}, \mathbf{e}_{1}} \right| \\ \left| A \left| \mathcal{O}_{2} \operatorname{propagates} \mathbf{S}_{\boldsymbol{\epsilon}, \mathbf{e}_{1}} \right| \\ \left| A \begin{bmatrix} \left| \mathcal{O}_{2} \operatorname{propagates} \mathbf{S}_{\boldsymbol{\epsilon}, \mathbf{e}_{1}} \right| \\ \left| A \left| A \left| A \right| \left| A \right| A \right| \\ \left| A \left| A \right| \left| A \right| A \right| \\ \left| A \right| A \right| \\ \left| A \left| A \right| \left| A \right| A \right| \\ \left| A \right| A \right| \\ \left| A \right| \left| A \right| A \right| \\ \left| A \right| A \right| \\ \left| A \right| A \left| A \right| \\ \left| A \right| \\ \left| A \right| A \right| \\ \left| A \right| A \right| \\ \left| A \right| \\ \left| A \right| A \right| \\ \left| A \right| \\ \left| A \right| A \right| \\ \left| A \right| \\ \left| A \right| \\ \left| A \right| A \right| \\ \left| A \right$$

From Table 4 we obtain the following relations.

- $|\Delta_{\epsilon}\Delta_{\mathbf{e}_{1}}(h_{1}x_{1}+h_{2}x_{2}^{+}+b(-x_{2})^{+}) \leq 0| = |\epsilon_{h_{1}} \geq 0| \wedge |\epsilon_{h_{2}} \geq 0| \wedge |\epsilon_{b} \geq 0|,$
- $|\mathcal{O}_1 \text{ propagates } S_{\epsilon, \mathbf{e}_1}| = true,$
- $|\Delta_{\mathbf{e}_1}\Omega_{\mathcal{O}_1}v \leq 0| = false,$
- $|\Delta_{\mathbf{e}_1}\Omega_{\mathcal{O}_1}v \ge 0| = true$,

- $|\mathcal{O}_2 \text{ propagates } S_{\epsilon, \mathbf{e}_1}| = true,$
- $|\Delta_{\mathbf{e}_1}\Omega_{\mathcal{O}_2}v \leq 0| = true,$
- $|\Delta_{\mathbf{e}_1}\Omega_{\mathcal{O}_2}v \ge 0| = false,$
- $|\mathcal{O}_3 \text{ propagates } S_{\epsilon, \mathbf{e}_1}| = true,$
- $|\Delta_{\mathbf{e}_1}\Omega_{\mathcal{O}_3}v \leq 0| = true,$
- $|\Delta_{\mathbf{e}_1}\Omega_{\mathcal{O}_3}v \ge 0| = false,$
- $|v \text{ is } \mathbf{I}_{\mathbf{e}_1}| = false,$
- $|v \text{ is } I_{-\mathbf{e}_1}| = false.$

$$\begin{split} \left| \Delta_{\mathbf{e}_{2}-\mathbf{e}_{1}} \Delta_{\boldsymbol{\epsilon}} (h_{1}x_{1}+h_{2}x_{2}^{+}+b(-x_{2})^{+}) \leq 0 \right| \\ \wedge \begin{bmatrix} |\mathcal{O}_{1} \operatorname{propagates} \mathbf{S}_{\boldsymbol{\epsilon},\mathbf{e}_{2}-\mathbf{e}_{1}}| \\ \wedge \begin{bmatrix} |\mathcal{O}_{2} \operatorname{propagates} \operatorname{propagates} \mathbf{S}_{\boldsymbol{\epsilon},\mathbf{e}_{2}-\mathbf{e}_{1}}| \\ \wedge \begin{bmatrix} |\mathcal{O}_{2} \operatorname{propagates} \operatorname{propagates} \mathbf{S}_{\boldsymbol{\epsilon},\mathbf{e}_{2}-\mathbf{e}_{1}}| \\ \wedge \begin{bmatrix} |\mathcal{O}_{2} \operatorname{propagates} \operatorname{$$

From Table 4 we obtain the following relations.

- $|\Delta_{\epsilon}\Delta_{\mathbf{e}_2-\mathbf{e}_1}(h_1x_1+h_2x_2^++b(-x_2)^+)\leq 0| = |\epsilon_{h_1}\leq 0| \wedge |\epsilon_{h_2}\geq 0| \wedge |\epsilon_b\geq 0|,$
- $|\mathcal{O}_1 \text{ propagates } \mathbf{S}_{\boldsymbol{\epsilon}, \mathbf{e}_2 \mathbf{e}_1}| = true,$
- $\bullet \ |\Delta_{\mathbf{e}_2-\mathbf{e}_1}\Omega_{\mathcal{O}_1}v\leq 0|=true,$
- $|\Delta_{\mathbf{e}_2-\mathbf{e}_1}\Omega_{\mathcal{O}_1}v \ge 0| = false,$
- $|\mathcal{O}_2 \text{ propagates } \mathbf{S}_{\boldsymbol{\epsilon}, \mathbf{e}_2 \mathbf{e}_1}| = true,$
- $|\Delta_{\mathbf{e}_2-\mathbf{e}_1}\Omega_{\mathcal{O}_2}v \leq 0| = false,$
- $|\Delta_{\mathbf{e}_2-\mathbf{e}_1}\Omega_{\mathcal{O}_2}v \ge 0| = true,$
- $|\mathcal{O}_3 \text{ propagates } \mathbf{S}_{\boldsymbol{\epsilon}, \mathbf{e}_2 \mathbf{e}_1}| = true,$
- $|\Delta_{\mathbf{e}_2-\mathbf{e}_1}\Omega_{\mathcal{O}_3}v\leq 0|=true,$
- $|\Delta_{\mathbf{e}_2-\mathbf{e}_1}\Omega_{\mathcal{O}_3}v \ge 0| = false,$
- $|v \text{ is } \mathbf{I}_{\mathbf{e}_2-\mathbf{e}_1}| = false,$
- $|v \text{ is } \mathbf{I}_{-\mathbf{e}_2-\mathbf{e}_1}| = false.$

So equations (19) and (20) reduce to

$$|\epsilon_{h_1} = 0| \wedge |\epsilon_{h_2} \ge 0| \wedge |\epsilon_b \ge 0| \wedge |\epsilon_{\mu_1} = 0| \wedge |\epsilon_{\mu_2} = 0| \wedge |\epsilon_{\lambda} \le 0|.$$

Conclusion, the optimal switching curves $s_i(x_1)$ are increasing in the demand rate λ , the backlog costs b, and decreasing in the holding cost h_2 .

Appendix F: Detailed tables

	$T_{A(i)}$	$T_{D(i)}$	T_{PD} $\left(\sum_{k} \mathbf{a}_{k} = -\mathbf{e}_{i} - \mathbf{e}_{j}\right)$	$T_{T(i,j)}$
Р	true	true	true	true
N	true	true	true	true
\mathtt{I}_ϵ	true	true	true	true
$\mathbb{S}_{\epsilon,\epsilon}$	true	true	true	true
$\mathbb{S}_{oldsymbol{\epsilon},-oldsymbol{\epsilon}}$	true	true	true	true
${\tt S}_{{\bf e}_i,\epsilon}$	true	true	true	$\mathtt{S}_{\mathbf{e}_{j},\boldsymbol{\epsilon}}$
$\mathtt{S}_{\mathbf{e}_i+\mathbf{e}_j,oldsymbol{\epsilon}}$	true	$\mathtt{S}_{\mathbf{e}_{j},oldsymbol{\epsilon}}$	$\mathtt{S}_{\mathbf{e}_{j}, \boldsymbol{\epsilon}}$	$\mathtt{S}_{\mathbf{e}_{j},oldsymbol{\epsilon}}$
$\mathtt{S}_{\mathbf{e}_{j},oldsymbol{\epsilon}}$	true	true	true	true
${f S}_{{f e}_j-{f e}_i,\epsilon}$	true	$\mathtt{S}_{\mathbf{e}_{j}, \epsilon}$	$\mathbf{S}_{\mathbf{e}_{j},\boldsymbol{\epsilon}} \wedge \mathbf{S}_{-\mathbf{e}_{j},\boldsymbol{\epsilon}}$ (=false in most cases)	true
${ m S}_{-{ m e}_i,\epsilon}$	true	true	true	${f S}_{-{f e}_j,oldsymbol{\epsilon}}$
${\tt S}_{-{f e}_i-{f e}_j,\epsilon}$	true	$\mathtt{S}_{-\mathbf{e}_j, \boldsymbol{\epsilon}}$	$\mathtt{S}_{-\mathbf{e}_{j},\boldsymbol{\epsilon}}$	$\mathtt{S}_{-\mathbf{e}_{j}, \boldsymbol{\epsilon}}$
${ t S}_{-{ extbf e}_j,oldsymbol{\epsilon}}$	true	true	true	true
$\mathtt{S}_{\mathbf{e}_i-\mathbf{e}_j,oldsymbol{\epsilon}}$	true	$\mathtt{S}_{-\mathbf{e}_j, \boldsymbol{\epsilon}}$	$\mathtt{S}_{\mathbf{e}_{j}, \boldsymbol{\epsilon}} \land \mathtt{S}_{-\mathbf{e}_{j}, \boldsymbol{\epsilon}}$	true
$\Omega_{\mathcal{O}} v \ge 0$	$\mathtt{I}_{\mathbf{e}_i}$	$\mathtt{D}_{\mathbf{e}_i}$	$\mathtt{D}_{\mathbf{e}_i}$	$\mathtt{I}_{\mathbf{e}_j-\mathbf{e}_i}$
$\Omega_{\mathcal{O}} v \leq 0$	$\mathtt{D}_{\mathbf{e}_i}$	$\mathtt{I}_{\mathbf{e}_i}$	$\mathtt{I}_{\mathbf{e}_i}$	$\mathtt{D}_{\mathbf{e}_j-\mathbf{e}_i}$
$\Delta_{\epsilon}\Omega_{\mathcal{O}}v \ge 0$	$\mathtt{S}_{oldsymbol{\epsilon},\mathbf{e}_i}$	$\mathtt{S}_{\boldsymbol{\epsilon},-\mathbf{e}_i}$	$\mathtt{S}_{oldsymbol{\epsilon},-\mathbf{e}_i}$	$\mathtt{S}_{\boldsymbol{\epsilon}, \mathbf{e}_j - \mathbf{e}_i}$
$\Delta_{\mathbf{e}_i}\Omega_{\mathcal{O}}v\geq 0$	$\mathtt{S}_{\mathbf{e}_i,\mathbf{e}_i}$	$\mathtt{S}_{\mathbf{e}_i,-\mathbf{e}_i} \land \mathtt{D}_{\mathbf{e}_i}$	$\mathtt{S}_{\mathbf{e}_i,-\mathbf{e}_i} \land \mathtt{D}_{\mathbf{e}_i} \land \mathtt{S}_{\mathbf{e}_j,-\mathbf{e}_i}$	$\mathtt{S}_{\mathbf{e}_i,\mathbf{e}_j-\mathbf{e}_i} \land \mathtt{I}_{\mathbf{e}_j-\mathbf{e}_i}$
$\Delta_{\mathbf{e}_i+\mathbf{e}_j}\Omega_{\mathcal{O}}v\geq 0$	$\mathtt{S}_{\mathbf{e}_i+\mathbf{e}_j,\mathbf{e}_i}$	$\mathtt{S}_{\mathbf{e}_i+\mathbf{e}_j,-\mathbf{e}_i} \land \mathtt{D}_{\mathbf{e}_i}$	$\mathtt{S}_{\mathbf{e}_i+\mathbf{e}_j,-\mathbf{e}_i} \wedge \mathtt{D}_{\mathbf{e}_i}$	$\mathtt{S}_{\mathbf{e}_i+\mathbf{e}_j,\mathbf{e}_j-\mathbf{e}_i} \land \mathtt{I}_{\mathbf{e}_j-\mathbf{e}_i}$
$\Delta_{\mathbf{e}_j}\Omega_{\mathcal{O}}v\geq 0$	$\mathtt{S}_{\mathbf{e}_{j},\mathbf{e}_{i}}$	${ t S}_{{ extbf e}_j,-{ extbf e}_i}$	$\mathtt{S}_{\mathbf{e}_i,-\mathbf{e}_i} \land \mathtt{D}_{\mathbf{e}_i} \land \mathtt{S}_{\mathbf{e}_j,-\mathbf{e}_i}$	$\mathtt{S}_{\mathbf{e}_{j},\mathbf{e}_{j}-\mathbf{e}_{i}}$
$\Delta_{\mathbf{e}_j-\mathbf{e}_i}\Omega_{\mathcal{O}}v \ge 0$	$\mathtt{S}_{\mathbf{e}_j-\mathbf{e}_i,\mathbf{e}_i}$	$\mathtt{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},-\mathbf{e}_{i}}\land \mathtt{I}_{\mathbf{e}_{i}}$	false	$\mathtt{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\mathbf{e}_{j}-\mathbf{e}_{i}}\land\mathtt{D}_{\mathbf{e}_{j}-\mathbf{e}_{i}}$
$\Delta_{-\mathbf{e}_i}\Omega_{\mathcal{O}}v\geq 0$	$\mathtt{S}_{-\mathbf{e}_i,\mathbf{e}_i}$	$\mathtt{S}_{\mathbf{e}_i,\mathbf{e}_i} \land \mathtt{I}_{\mathbf{e}_i}$	$\mathtt{S}_{\mathbf{e}_i,\mathbf{e}_i} \land \mathtt{S}_{-\mathbf{e}_j,-\mathbf{e}_i} \land \mathtt{I}_{\mathbf{e}_i}$	$\mathtt{S}_{-\mathbf{e}_i,\mathbf{e}_j-\mathbf{e}_i} \land \mathtt{D}_{\mathbf{e}_j-\mathbf{e}_i}$
$\Delta_{-\mathbf{e}_i - \mathbf{e}_j} \overline{\Omega_{\mathcal{O}} v} \ge 0$	$S_{-\mathbf{e}_i-\mathbf{e}_j,\mathbf{e}_i}$	$\mathtt{S}_{\mathbf{e}_i + \mathbf{e}_j, \mathbf{e}_i} \land \mathtt{I}_{\mathbf{e}_i}$	$\mathtt{S}_{\mathbf{e}_i+\mathbf{e}_j,\mathbf{e}_i}\wedge\mathtt{I}_{\mathbf{e}_i}$	$\mathbf{S}_{-\mathbf{e}_i-\mathbf{e}_j,\mathbf{e}_j-\mathbf{e}_i}\wedge \mathbf{D}_{\mathbf{e}_j-\mathbf{e}_i}$
$\Delta_{-\mathbf{e}_j}\Omega_{\mathcal{O}}v\geq 0$	$\mathtt{S}_{-\mathbf{e}_j,\mathbf{e}_i}$	${f S}_{-{f e}_j,-{f e}_i}$	$\mathtt{S}_{\mathbf{e}_i,\mathbf{e}_i} \land \mathtt{S}_{-\mathbf{e}_j,-\mathbf{e}_i} \land \mathtt{I}_{\mathbf{e}_i}$	$\mathtt{S}_{-\mathbf{e}_j,\mathbf{e}_j-\mathbf{e}_i}$
$\Delta_{\mathbf{e}_i - \mathbf{e}_j} \overline{\Omega_{\mathcal{O}} v \ge 0}$	$S_{\mathbf{e}_i-\mathbf{e}_j,\mathbf{e}_i}$	$\mathbb{S}_{\mathbf{e}_i - \mathbf{e}_j, -\mathbf{e}_i \wedge \mathbb{D}_{\mathbf{e}_i}}$	false	$S_{\mathbf{e}_i - \mathbf{e}_j, \mathbf{e}_j - \mathbf{e}_i} \wedge I_{\mathbf{e}_j - \mathbf{e}_i}$

Table 6Detailed results for Arrival, Departure, Parallel Departure, and Tandem server operators

	$T_{CA(i)}$ and $T_{BA(i)}$	$T_{CD(i)}$
P	$ c \ge 0 $	$ c \ge 0 $
N	$ c \leq 0 $	$ c \leq 0 $
Ι _ε	$ \epsilon_c \ge 0 $	$ \epsilon_c \ge 0 $
$S_{\epsilon,\epsilon}$	$\mathbf{S}_{\mathbf{e}_{i},\epsilon} \wedge \mathbf{S}_{\mathbf{e}_{i},\epsilon}^{ub} \wedge \epsilon_{c} = 0 $	$\mathbf{S}^{ub}_{\mathbf{e}_i, \boldsymbol{\epsilon}} \wedge \mathbf{S}_{\mathbf{e}_i, \boldsymbol{\epsilon}} \wedge \epsilon_c = 0 $
$\mathtt{S}_{oldsymbol{\epsilon},-oldsymbol{\epsilon}}$	$\mathbf{S}_{\mathbf{e}_{i},\boldsymbol{\epsilon}}\wedge\left \boldsymbol{\epsilon}_{c}\geq0\right \vee\mathbf{S}_{\mathbf{e}_{i},\boldsymbol{\epsilon}}^{ub}\wedge\left \boldsymbol{\epsilon}_{c}\leq0\right $	$\mathbf{S}^{ub}_{\mathbf{e}_{i},\boldsymbol{\epsilon}}\wedge\left \boldsymbol{\epsilon}_{c}\geq0\right \vee\mathbf{S}_{\mathbf{e}_{i},\boldsymbol{\epsilon}}\wedge\left \boldsymbol{\epsilon}_{c}\leq0\right $
$\mathbb{S}_{\mathbf{e}_i, \boldsymbol{\epsilon}}$	$\mathbf{S}_{\mathbf{e}_{i},\mathbf{e}_{i}} \land \epsilon_{c} \leq 0 \lor \mathbf{S}_{\mathbf{e}_{i},-\mathbf{e}_{i}} \land \epsilon_{c} \geq 0 \lor \epsilon_{c} = 0 $	$\mathbf{S}_{\mathbf{e}_i,\mathbf{e}_i} \land \epsilon_c \ge 0 \lor \epsilon_c = 0 $
	$\mathbf{S}_{\mathbf{e}_i + \mathbf{e}_j, \mathbf{e}_i} \wedge \mathbf{S}_{\mathbf{e}_j, \epsilon} \wedge \epsilon_c \leq 0 $	$\left(\begin{array}{c} \mathbf{S}^{ub}_{\mathbf{e}_i+\mathbf{e}_j,-\mathbf{e}_i} \end{array} \right)$
$\mathtt{S}_{\mathbf{e}_i+\mathbf{e}_j,\boldsymbol{\epsilon}}$	$\forall \mathbf{S}_{\mathbf{e}_{i}+\mathbf{e}_{j},\mathbf{e}_{i}}^{ub} \land \mathbf{S}_{2\mathbf{e}_{i}+\mathbf{e}_{j},\boldsymbol{\epsilon}} \land \epsilon_{c} \ge 0 $	$\left(\forall \mathbf{S}_{2\mathbf{e}_{i}+\mathbf{e}_{j},\epsilon} \land (\mathbf{S}_{\mathbf{e}_{i},\epsilon} \lor \mathbf{S}_{\mathbf{e}_{i},\epsilon}^{ub}) \land \epsilon_{c}=0 \right)$
	$\forall \mathbf{S}_{2\mathbf{e}_{i}+\mathbf{e}_{j},\boldsymbol{\epsilon}} \land \mathbf{S}_{\mathbf{e}_{j},\boldsymbol{\epsilon}} \land (\mathbf{S}_{\mathbf{e}_{i},\boldsymbol{\epsilon}}^{ub} \lor \mathbf{S}_{\mathbf{e}_{i},\boldsymbol{\epsilon}}) \land \epsilon_{c} = 0 $	$\wedge \mathbf{S}_{oldsymbol{\epsilon},\mathbf{e}_{j}} \wedge \epsilon_{c} \geq 0 $
	$\mathbf{S}_{\mathbf{e}_{j},\mathbf{e}_{i}} \wedge \mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\boldsymbol{\epsilon}} \wedge \boldsymbol{\epsilon}_{c} \leq 0 $	$\mathbf{S}_{\mathbf{e}_{j},-\mathbf{e}_{i}}\wedge\mathbf{S}_{\mathbf{e}_{j}+\mathbf{e}_{i},\epsilon}\wedge\left \epsilon_{c}\leq0\right $
$\mathtt{S}_{\mathbf{e}_{j},\boldsymbol{\epsilon}}$	$ee \mathbf{S}^{ub}_{\mathbf{e}_{j},\mathbf{e}_{i}} \land \mathbf{S}_{\mathbf{e}_{j}+\mathbf{e}_{i},\boldsymbol{\epsilon}} \land \epsilon_{c} \ge 0 $	$ee \mathbf{S}_{\mathbf{e}_{j},-\mathbf{e}_{i}}^{ub} \land \mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon} \land \epsilon_{c} \geq 0 $
	$\forall \mathbf{S}_{\mathbf{e}_{j}+\mathbf{e}_{i},\boldsymbol{\epsilon}} \land \mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\boldsymbol{\epsilon}} \land (\mathbf{S}_{\mathbf{e}_{i},\boldsymbol{\epsilon}}^{ub} \lor \mathbf{S}_{\mathbf{e}_{i},\boldsymbol{\epsilon}}) \land \epsilon_{c}=0 $	$\forall \mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\boldsymbol{\epsilon}} \land \mathbf{S}_{\mathbf{e}_{j}+\mathbf{e}_{i},\boldsymbol{\epsilon}} \land (\mathbf{S}_{\mathbf{e}_{i},\boldsymbol{\epsilon}} \lor \mathbf{S}_{\mathbf{e}_{i},\boldsymbol{\epsilon}}^{ub}) \land \epsilon_{c}=0 $
	$\mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\mathbf{e}_{i}}\wedge\mathbf{S}_{\mathbf{e}_{j}-2\mathbf{e}_{i},\epsilon}\wedge\left \epsilon_{c}\leq0\right $	$\left(\begin{array}{c} \mathbf{S}^{ub}_{\mathbf{e}_j-\mathbf{e}_i,-\mathbf{e}_i} \wedge \mathbf{S}_{\mathbf{e}_j-2\mathbf{e}_i,\epsilon} \end{array} ight)$
$\mathtt{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\boldsymbol{\epsilon}}$	$\forall \mathbf{S}^{ub}_{\mathbf{e}_{j}-\mathbf{e}_{i},\mathbf{e}_{i}} \land \mathbf{S}_{\mathbf{e}_{j},\boldsymbol{\epsilon}} \land \epsilon_{c} \geq 0 $	$\left(\left. \vee \mathbf{S}_{\mathbf{e}_{j}-2\mathbf{e}_{i},\boldsymbol{\epsilon}} \wedge (\mathbf{S}_{\mathbf{e}_{i},\boldsymbol{\epsilon}} \vee \mathbf{S}_{\mathbf{e}_{i},\boldsymbol{\epsilon}}^{ub}) \wedge \left \epsilon_{c} = 0 \right \right) \right.$
	$\forall \mathbf{S}_{\mathbf{e}_{j},\boldsymbol{\epsilon}} \land \mathbf{S}_{\mathbf{e}_{j}-2\mathbf{e}_{i},\boldsymbol{\epsilon}} \land (\mathbf{S}_{\mathbf{e}_{i},\boldsymbol{\epsilon}}^{ub} \lor \mathbf{S}_{\mathbf{e}_{i},\boldsymbol{\epsilon}}) \land \epsilon_{c}=0 $	$\wedge \mathbf{S}_{\mathbf{e}_{j},\boldsymbol{\epsilon}} \wedge 0 \geq \epsilon_{c} $
$\mathtt{S}_{-\mathbf{e}_{i},\boldsymbol{\epsilon}}$	$\mathbf{S}_{\mathbf{e}_{i},-\mathbf{e}_{i}}\wedge\left \epsilon_{c}\leq0\right \vee\mathbf{S}_{\mathbf{e}_{i},\mathbf{e}_{i}}\wedge\left \epsilon_{c}\geq0\right \vee\left \epsilon_{c}=0\right $	$\mathbf{S}_{\mathbf{e}_i,\mathbf{e}_i} \wedge \epsilon_c \le 0 \vee \epsilon_c = 0 $
	$\mathbf{S}_{-\mathbf{e}_{i}-\mathbf{e}_{j},\mathbf{e}_{i}} \wedge \mathbf{S}_{-2\mathbf{e}_{i}-\mathbf{e}_{j},\boldsymbol{\epsilon}} \wedge \epsilon_{c} \leq 0 $	$\left(S_{\mathbf{e}_i + \mathbf{e}_j, \mathbf{e}_i} \right)$
$\mathtt{S}_{-\mathtt{e}_i-\mathtt{e}_j,\boldsymbol{\epsilon}}$	$\forall \mathbf{S}_{-\mathbf{e}_{i}-\mathbf{e}_{j},\mathbf{e}_{i}}^{ub} \land \mathbf{S}_{-\mathbf{e}_{j},\boldsymbol{\epsilon}} \land \epsilon_{c} \geq 0 $	$\left(\forall \mathbf{S}_{-2\mathbf{e}_{i}-\mathbf{e}_{j},\epsilon} \land (\mathbf{S}_{-\mathbf{e}_{i},\epsilon}^{ub} \lor \mathbf{S}_{-\mathbf{e}_{i},\epsilon}) \land \epsilon_{c}=0 \right)$
	$\forall \mathbf{S}_{-\mathbf{e}_{j},\boldsymbol{\epsilon}} \land \mathbf{S}_{-2\mathbf{e}_{i}-\mathbf{e}_{j},\boldsymbol{\epsilon}} \land (\mathbf{S}_{\mathbf{e}_{i},\boldsymbol{\epsilon}}^{ub} \lor \mathbf{S}_{\mathbf{e}_{i},\boldsymbol{\epsilon}}) \land \epsilon_{c} = 0 $	$\wedge \mathbf{S}_{-\mathbf{e}_j,\epsilon} \wedge \epsilon_c \le 0 $
	$S \rightarrow AS \rightarrow AS \rightarrow A = A = A$	$\mathbf{S}_{\mathbf{e}_{j},\mathbf{e}_{i}} \land \mathbf{S}_{-\mathbf{e}_{j}+\mathbf{e}_{i},\boldsymbol{\epsilon}} \land \epsilon_{c} \leq 0 $
S-or c	$\sum_{i=0}^{n} e_i, e_i \land b_{i=0} = e_i, e_i \land e_i \ge 0 $	$\forall \mathbf{S}_{\mathbf{e}_{j},\mathbf{e}_{i}}^{ub} \land \mathbf{S}_{-\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon} \land \epsilon_{c} \ge 0 $
$-e_j,e$	$\bigvee \mathbf{S}_{-\mathbf{e}_j,\mathbf{e}_i}, \forall \mathbf{S}_{-\mathbf{e}_j,\mathbf{e}_i,\mathbf{S}_{-\mathbf{e}_j,\mathbf{e}_i}, \forall \mathbf{S}_{-\mathbf{e}_j,\mathbf{e}_i}, \forall \mathbf{S}_{-\mathbf{e}_j,\mathbf{e}_i,\mathbf{S}_{-\mathbf{e}_i,\mathbf{e}_i,\mathbf{e}_i,\mathbf{S}_{-\mathbf{e}_j,\mathbf{e}_i}, \forall \mathbf{S}_{-\mathbf{e}_j,\mathbf{e}_i,\mathbf{S}_{-\mathbf{e}_i,\mathbf{e}_i,\mathbf{S}_{-\mathbf{E}_i,\mathbf{S}_{-\mathbf{e}_i,\mathbf{S}_{-\mathbf$	$\vee \mathtt{S}_{-\mathtt{e}_{j}-\mathtt{e}_{i},\epsilon} \wedge \mathtt{S}_{-\mathtt{e}_{j}+\mathtt{e}_{i},\epsilon} \wedge \bigl(\mathtt{S}_{\mathtt{e}_{i},\epsilon} \vee \mathtt{S}_{\mathtt{e}_{i},\epsilon}^{ub} \bigr)$
	$\mathbf{v} = \mathbf{e}_j + \mathbf{e}_i, \mathbf{e}_j + \mathbf{e}_$	$\wedge \epsilon_c = 0 $
	$\mathbf{S}_{\mathbf{e}_{i}-\mathbf{e}_{j},\mathbf{e}_{i}}\wedge\mathbf{S}_{-\mathbf{e}_{j},\mathbf{\epsilon}}\wedge\left \epsilon_{c}\leq0\right $	$\left(\mathbf{S}^{ub}_{\mathbf{e}_{i}-\mathbf{e}_{j},-\mathbf{e}_{i}} \wedge \epsilon_{c} \geq 0 \right)$
$\mathtt{S}_{\mathbf{e}_{i}-\mathbf{e}_{j},\boldsymbol{\epsilon}}$	$\forall \mathbf{S}_{\mathbf{e}_{i}-\mathbf{e}_{j},\mathbf{e}_{i}}^{ub} \land \mathbf{S}_{2\mathbf{e}_{i}-\mathbf{e}_{j},\boldsymbol{\epsilon}} \land \epsilon_{c} \ge 0 $	$\left(\left. \vee \mathbf{S}_{2\mathbf{e}_{i}-\mathbf{e}_{j},\epsilon} \wedge (\mathbf{S}_{-\mathbf{e}_{i},\epsilon}^{ub} \vee \mathbf{S}_{-\mathbf{e}_{i},\epsilon}) \wedge \left \epsilon_{c} = 0 \right \right)$
	$\forall \mathbf{S}_{2\mathbf{e}_{i}-\mathbf{e}_{j},\epsilon} \land \mathbf{S}_{-\mathbf{e}_{j},\epsilon} \land (\mathbf{S}_{\mathbf{e}_{i},\epsilon}^{ub} \lor \mathbf{S}_{\mathbf{e}_{i},\epsilon}) \land \epsilon_{c} = 0 $	$\wedge \mathbf{S}_{oldsymbol{\epsilon},-\mathbf{e}_j} \wedge \epsilon_c \geq 0 $
$\Omega_{\mathcal{O}} v \ge 0$	$ \Delta_{\mathbf{e}_i} v \ge -c $	$ \Delta_{-\mathbf{e}_i} v \ge -c $
$\Omega_{\mathcal{O}} v \leq 0$	true	true
$\Delta_{\epsilon} \Omega_{\mathcal{O}} v \ge 0$	$\mathbf{S}_{\boldsymbol{\epsilon},\mathbf{e}_i} \wedge \epsilon_c \ge 0 $	$\mathbf{S}_{\boldsymbol{\epsilon},-\mathbf{e}_i}\wedge \epsilon_c\geq 0 $
$\Delta_{\mathbf{e}_i}\Omega_{\mathcal{O}} v \geq 0$	${ m S}_{{ m e}_i,{ m e}_i}$	$\mathbf{S}_{\mathbf{e}_i,-\mathbf{e}_i} \wedge \Delta_{-\mathbf{e}_i} v \ge -c $
$\Delta_{\mathbf{e}_i+\mathbf{e}_j}\Omega_{\mathcal{O}} v \ge 0$	$\mathtt{S}_{\mathbf{e}_i+\mathbf{e}_j,\mathbf{e}_i}$	$\mathbf{S}_{\mathbf{e}_i+\mathbf{e}_j,-\mathbf{e}_i} \wedge \Delta_{-\mathbf{e}_i} v \ge -c $
$\Delta_{\mathbf{e}_j} \Omega_{\mathcal{O}} v \ge 0$	${\tt S}_{{f e}_j,{f e}_i}$	$\mathtt{S}_{\mathbf{e}_{j},-\mathbf{e}_{i}}$
$\Delta_{\mathbf{e}_{j}-\mathbf{e}_{i}}\Omega_{\mathcal{O}}v\geq0$	$\mathbf{S}_{\mathbf{e}_j-\mathbf{e}_i,\mathbf{e}_i}$	$\mathbf{S}_{\mathbf{e}_j-\mathbf{e}_i,-\mathbf{e}_i} \wedge \Delta_{-\mathbf{e}_i} v \leq -c $
$\Delta_{-\mathbf{e}_i}\Omega_{\mathcal{O}} v \geq 0$	S_{-e_i,e_i}	S_{e_i,e_i}
$\Delta_{-\mathbf{e}_i-\mathbf{e}_j}\Omega_{\mathcal{O}}v\geq 0$	$\mathtt{S}_{-\mathtt{e}_i-\mathtt{e}_j,\mathtt{e}_i}$	$\mathtt{S}_{-\mathbf{e}_i-\mathbf{e}_j,-\mathbf{e}_i}$
$\Delta_{-\mathbf{e}_j}\Omega_{\mathcal{O}}v \ge 0$	$\mathtt{S}_{-\mathbf{e}_j,\mathbf{e}_i}$	$S_{-\mathbf{e}_j,-\mathbf{e}_i}$
$\Delta_{\mathbf{e}_i - \mathbf{e}_j} \Omega_{\mathcal{O}} v \ge 0$	${f S}_{{f e}_i-{f e}_j,{f e}_i}$	$\mathbf{S}_{\mathbf{e}_i-\mathbf{e}_j,-\mathbf{e}_i} \wedge \Delta_{-\mathbf{e}_i} \overline{v \geq -c }$

Vercraene, Gayon, and Karaesmen: Effects of system parameters in a class of multi-dimensional queueing control problems Article submitted to Operations Research 43

 Table 7
 Detailed results for Controlled Arrival, Batch Arrival, and Controlled Departure operators

	$T_{CT(i,j)}$	$T_{CAF} \left(\mathbf{a} = \mathbf{e}_i + \mathbf{e}_j \right)$
Р	$ c \ge 0 $	$ c \ge 0 $
N	$ c \leq 0 $	$ c \leq 0 $
Ι _ε	$ \epsilon_c \ge 0 $	$ \epsilon_c \ge 0 $
$\mathbb{S}_{\epsilon,\epsilon}$	$\mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon}\wedge\mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon}^{ub}\wedge\left \epsilon_{c}=0\right $	$\mathbf{S}_{\mathbf{e}_i+\mathbf{e}_j,\epsilon} \wedge \mathbf{S}_{\mathbf{e}_i+\mathbf{e}_j,\epsilon}^{ub} \wedge \epsilon_c = 0 $
$\mathtt{S}_{oldsymbol{\epsilon},-oldsymbol{\epsilon}}$	$\mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\boldsymbol{\epsilon}}\wedge\left \epsilon_{c}\geq0\right \vee\mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\boldsymbol{\epsilon}}^{ub}\wedge\left \epsilon_{c}\leq0\right $	$\mathbf{S}_{\mathbf{e}_{i}+\mathbf{e}_{j},\epsilon}\wedge \epsilon_{c}\geq0 \forall\mathbf{S}_{\mathbf{e}_{i}+\mathbf{e}_{j},\epsilon}^{ub}\wedge \epsilon_{c}\leq0 $
		$\mathbf{S}_{\mathbf{e}_{i},\mathbf{e}_{i}+\mathbf{e}_{j}}\wedge\mathbf{S}_{\mathbf{e}_{j},\epsilon}\wedge\left \epsilon_{c}\leq0 ight $
$\mathtt{S}_{\mathbf{e}_{i},\boldsymbol{\epsilon}}$	$\mathbf{S}_{\mathbf{e}_{i},\mathbf{e}_{j}-\mathbf{e}_{i}}^{ub}\wedge\mathbf{S}_{\mathbf{e}_{j},\boldsymbol{\epsilon}}\wedge\mathbf{S}_{\boldsymbol{\epsilon},\mathbf{e}_{j}}\wedge \epsilon_{c}\geq0 $	$\forall \mathbf{S}_{\mathbf{e}_{i},\mathbf{e}_{i}+\mathbf{e}_{j}}^{ub} \land \mathbf{S}_{2\mathbf{e}_{i}+\mathbf{e}_{j},\epsilon} \land \epsilon_{c} \ge 0 $
		$\forall \mathbf{S}_{2\mathbf{e}_{i}+\mathbf{e}_{j},\epsilon} \land \mathbf{S}_{\mathbf{e}_{j},\epsilon} \land (\mathbf{S}_{\mathbf{e}_{i}+\mathbf{e}_{j},\epsilon}^{ub} \lor \mathbf{S}_{\mathbf{e}_{i}+\mathbf{e}_{j},\epsilon}) \land \epsilon_{c}=0 $
	$\left(S^{ub}_{\mathbf{e}_i + \mathbf{e}_j, \mathbf{e}_j - \mathbf{e}_i} \right)$	$\mathbf{S}_{\mathbf{e}_i + \mathbf{e}_j, \mathbf{e}_i + \mathbf{e}_j} \land \epsilon_c \le 0 $
$\mathtt{S}_{\mathbf{e}_i+\mathbf{e}_j,\boldsymbol{\epsilon}}$	$\left(\forall \mathbf{S}_{\mathbf{e}_{i},\epsilon} \land (\mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon}^{ub} \forall \mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon}) \land \epsilon_{c} = 0 \right)$	$\forall \mathbf{S}_{\mathbf{e}_{i}+\mathbf{e}_{j},\mathbf{e}_{i}+\mathbf{e}_{j}}^{ub} \land \mathbf{S}_{\mathbf{e}_{i}+\mathbf{e}_{j},\epsilon} \land \epsilon_{c} \ge 0 $
	$\wedge \mathbf{S}_{oldsymbol{\epsilon},\mathbf{e}_{j}} \wedge \epsilon_{c} \geq 0 $	$\forall \mathbf{S}_{\mathbf{e}_{i}+\mathbf{e}_{j},\boldsymbol{\epsilon}} \land (\mathbf{S}_{\mathbf{e}_{i}+\mathbf{e}_{j},\boldsymbol{\epsilon}}^{ub} \lor \mathbf{S}_{\mathbf{e}_{i}+\mathbf{e}_{j},\boldsymbol{\epsilon}}) \land \epsilon_{c}=0 $
	$\mathbf{S}_{\mathbf{e}_{j},\mathbf{e}_{j}-\mathbf{e}_{i}}\wedge\mathbf{S}_{\mathbf{e}_{i},\boldsymbol{\epsilon}}\wedge\left \boldsymbol{\epsilon}_{c}\leq0\right $	$\mathbf{S}_{\mathbf{e}_{j},\mathbf{e}_{i}+\mathbf{e}_{j}}\wedge\mathbf{S}_{-\mathbf{e}_{i},\boldsymbol{\epsilon}}\wedge\left \epsilon_{c}\leq0\right $
$\mathtt{S}_{\mathbf{e}_{j},\boldsymbol{\epsilon}}$	$\vee \mathbf{S}^{ub}_{\mathbf{e}_{j},\mathbf{e}_{j}-\mathbf{e}_{i}} \wedge \mathbf{S}_{2\mathbf{e}_{j}-\mathbf{e}_{i},\boldsymbol{\epsilon}} \wedge \left \boldsymbol{\epsilon}_{c} \geq 0 \right $	$\!$
	$\forall \mathtt{S}_{2\mathtt{e}_{j}-\mathtt{e}_{i},\epsilon} \land \mathtt{S}_{\mathtt{e}_{i},\epsilon} \land (\mathtt{S}_{\mathtt{e}_{j}-\mathtt{e}_{i},\epsilon}^{ub} \lor \mathtt{S}_{\mathtt{e}_{j}-\mathtt{e}_{i},\epsilon}) \land \epsilon_{c} = 0 $	$\forall \mathbf{S}_{\mathbf{e}_i+2\mathbf{e}_j,\epsilon} \land \mathbf{S}_{-\mathbf{e}_i,\epsilon} \land (\mathbf{S}_{\mathbf{e}_i+\mathbf{e}_j,\epsilon}^{ub} \lor \mathbf{S}_{\mathbf{e}_i+\mathbf{e}_j,\epsilon}) \land \epsilon_c = 0 $
		$\mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\mathbf{e}_{i}+\mathbf{e}_{j}}\wedge\mathbf{S}_{-\mathbf{e}_{i},\epsilon}\wedge\left \epsilon_{c}\leq0\right $
$\mathtt{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\boldsymbol{\epsilon}}$	$\mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\mathbf{e}_{j}-\mathbf{e}_{i}}\wedge\left \epsilon_{c}\leq0\right \vee\left \epsilon_{c}=0\right $	$\vee \mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\mathbf{e}_{i}+\mathbf{e}_{j}}^{ub} \wedge \mathbf{S}_{\mathbf{e}_{j},\boldsymbol{\epsilon}} \wedge \epsilon_{c} \geq 0 $
		$\vee \mathbf{S}_{\mathbf{e}_{j},\boldsymbol{\epsilon}} \wedge \mathbf{S}_{-\mathbf{e}_{i},\boldsymbol{\epsilon}} \wedge (\mathbf{S}_{\mathbf{e}_{i}+\mathbf{e}_{j},\boldsymbol{\epsilon}}^{ub} \vee \mathbf{S}_{\mathbf{e}_{i}+\mathbf{e}_{j},\boldsymbol{\epsilon}}) \wedge \boldsymbol{\epsilon}_{c} = 0 $
	$\left(\begin{array}{c} \mathbf{S}_{-\mathbf{e}_{i},\mathbf{e}_{j}-\mathbf{e}_{i}} \wedge \mathbf{S}_{-\mathbf{e}_{j},\epsilon} \end{array} ight)$	$\mathbf{S}_{-\mathbf{e}_i,\mathbf{e}_i+\mathbf{e}_j} \land \mathbf{S}_{-2\mathbf{e}_i-\mathbf{e}_j,\mathbf{\varepsilon}} \land \epsilon_c \leq 0 $
$\mathtt{S}_{-\mathbf{e}_i,\boldsymbol{\epsilon}}$	$\left(\forall \mathbf{S}_{-2\mathbf{e}_{i}+\mathbf{e}_{j},\epsilon} \land (\mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon}^{ub} \forall \mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon}) \land \epsilon_{c}=0 \right)$	$\vee \mathbf{S}_{-\mathbf{e}_{i},\mathbf{e}_{i}+\mathbf{e}_{j}}^{ub} \wedge \mathbf{S}_{\mathbf{e}_{j},\epsilon} \wedge \epsilon_{c} \geq 0 $
	$\wedge \mathbf{S}_{-\mathbf{e}_j,\boldsymbol{\epsilon}} \wedge \epsilon_c \leq 0 $	$\forall \mathbf{S}_{\mathbf{e}_{j},\boldsymbol{\epsilon}} \land \mathbf{S}_{-2\mathbf{e}_{i}-\mathbf{e}_{j},\boldsymbol{\epsilon}} \land \big(\mathbf{S}_{\mathbf{e}_{i}+\mathbf{e}_{j},\boldsymbol{\epsilon}}^{ub} \lor \mathbf{S}_{\mathbf{e}_{i}+\mathbf{e}_{j},\boldsymbol{\epsilon}} \big) \land \big \boldsymbol{\epsilon}_{c} = 0 \big $
	$\left(\begin{array}{c} {{\mathbf{S}}_{ - {{\mathbf{e}}_j},{{\mathbf{e}}_j} - {{\mathbf{e}}_i}} ightarrow {\mathbf{S}}_{ - {{\mathbf{e}}_j},\epsilon}} \end{array} ight)$	$\mathbf{S}_{-\mathbf{e}_{i}-\mathbf{e}_{j},\mathbf{e}_{i}+\mathbf{e}_{j}}\wedge\mathbf{S}_{-\mathbf{e}_{i}-\mathbf{e}_{j},\epsilon}\wedge\left \epsilon_{c}\leq0\right $
$\mathtt{S}_{-\mathtt{e}_{i}-\mathtt{e}_{j},\boldsymbol{\epsilon}}$	$\left(\left. \forall \mathbf{S}_{-\mathbf{e}_{i},\epsilon} \land (\mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon}^{ub} \forall \mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon}) \land \left \epsilon_{c} = 0 \right \right) \right.$	$\forall \mathbf{S}_{\mathbf{e}_i + \mathbf{e}_j, \mathbf{e}_i + \mathbf{e}_j} \land \epsilon_c \ge 0 $
	$\wedge \mathbf{S}_{-\mathbf{e}_j,\epsilon} \wedge \epsilon_c \le 0 $	$\forall \mathbf{S}_{-\mathbf{e}_i-\mathbf{e}_j,\epsilon} \land (\mathbf{S}^{ub}_{\mathbf{e}_i+\mathbf{e}_j,\epsilon} \lor \mathbf{S}_{\mathbf{e}_i+\mathbf{e}_j,\epsilon}) \land \epsilon_c = 0 $
	$\mathbf{S}_{-\mathbf{e}_{j},\mathbf{e}_{j}-\mathbf{e}_{i}}\wedge\mathbf{S}_{-2\mathbf{e}_{j}+\mathbf{e}_{i},\epsilon}\wedge\left \epsilon_{c}\leq0\right $	$\mathbf{S}_{-\mathbf{e}_{j},\mathbf{e}_{i}+\mathbf{e}_{j}}\wedge\mathbf{S}_{-2\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon}\wedge\left \epsilon_{c}\leq0\right $
$\mathtt{S}_{-\mathbf{e}_{j},\boldsymbol{\epsilon}}$	$ee \mathbf{S}^{ub}_{-\mathbf{e}_j,\mathbf{e}_j-\mathbf{e}_i} \land \mathbf{S}_{-\mathbf{e}_i,\epsilon} \land \epsilon_c \ge 0 $	$ee \mathbf{S}^{ub}_{-\mathbf{e}_j,\mathbf{e}_i+\mathbf{e}_j} \wedge \mathbf{S}_{\mathbf{e}_i,\epsilon} \wedge \epsilon_c \ge 0 $
	$\forall \mathbf{S}_{-\mathbf{e}_{i},\epsilon} \land \mathbf{S}_{-2\mathbf{e}_{j}+\mathbf{e}_{i},\epsilon} \land (\mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon}^{ub} \lor \mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon}) \land \epsilon_{c} = 0 $	$\forall \mathbf{S}_{\mathbf{e}_{i},\boldsymbol{\epsilon}} \land \mathbf{S}_{-2\mathbf{e}_{j}-\mathbf{e}_{i},\boldsymbol{\epsilon}} \land (\mathbf{S}_{\mathbf{e}_{i}+\mathbf{e}_{j},\boldsymbol{\epsilon}}^{ub} \lor \mathbf{S}_{\mathbf{e}_{i}+\mathbf{e}_{j},\boldsymbol{\epsilon}}) \land \epsilon_{c} = 0 $
		$\mathbf{S}_{\mathbf{e}_i - \mathbf{e}_j, \mathbf{e}_i + \mathbf{e}_j} \land \mathbf{S}_{-\mathbf{e}_j, \boldsymbol{\epsilon}} \land \boldsymbol{\epsilon}_c \leq 0 $
$\mathtt{S}_{\mathbf{e}_{i}-\mathbf{e}_{j},\boldsymbol{\epsilon}}$	$\mathbf{S}_{\mathbf{e}_{i}-\mathbf{e}_{j},\mathbf{e}_{j}-\mathbf{e}_{i}}^{ub} \wedge \epsilon_{c} \geq 0 \vee \epsilon_{c} = 0 $	$\forall \mathbf{S}_{\mathbf{e}_{i}-\mathbf{e}_{j},\mathbf{e}_{i}+\mathbf{e}_{j}}^{ub} \land \mathbf{S}_{\mathbf{e}_{i},\epsilon} \land \epsilon_{c} \ge 0 $
		$\forall \mathbf{S}_{\mathbf{e}_{i},\epsilon} \land \mathbf{S}_{-\mathbf{e}_{j},\epsilon} \land (\mathbf{S}_{\mathbf{e}_{i}+\mathbf{e}_{j},\epsilon}^{ub} \lor \mathbf{S}_{\mathbf{e}_{i}+\mathbf{e}_{j},\epsilon}) \land \epsilon_{c} = 0 $
$\Omega_{\mathcal{O}} v \ge 0$	$\left \Delta_{\mathbf{e}_{j}-\mathbf{e}_{i}}v\geq-c\right $	$\left \Delta_{\mathbf{e}_{i}+\mathbf{e}_{j}}v\geq-c\right $
$\Omega_{\mathcal{O}} v \le 0$	true	true
$\Delta_{\epsilon} \Omega_{\mathcal{O}} v \ge 0$	$\mathbf{S}_{\boldsymbol{\epsilon},\mathbf{e}_j-\mathbf{e}_i}\wedge \boldsymbol{\epsilon}_c\geq 0 $	$\mathbf{S}_{\boldsymbol{\epsilon},\mathbf{e}_i+\mathbf{e}_j} \wedge \epsilon_c \ge 0 $
$\Delta_{\mathbf{e}_i} \Omega_{\mathcal{O}} v \ge 0$	$\mathbf{S}_{\mathbf{e}_i,\mathbf{e}_j-\mathbf{e}_i} \land \left \Delta_{\mathbf{e}_j-\mathbf{e}_i} v \ge -c \right $	$\mathtt{S}_{\mathbf{e}_i,\mathbf{e}_i+\mathbf{e}_j}$
$\Delta_{\mathbf{e}_i + \mathbf{e}_j} \Omega_{\mathcal{O}} v \ge 0$	$\mathbf{S}_{\mathbf{e}_i+\mathbf{e}_j,\mathbf{e}_j-\mathbf{e}_i} \land \left \Delta_{\mathbf{e}_j-\mathbf{e}_i} v \ge -c \right $	$\mathbf{S}_{\mathbf{e}_i+\mathbf{e}_j,\mathbf{e}_i+\mathbf{e}_j}$
$\Delta_{\mathbf{e}_j} \Omega_{\mathcal{O}} v \ge 0$	$S_{\mathbf{e}_j,\mathbf{e}_j-\mathbf{e}_i}$	$\mathtt{S}_{\mathbf{e}_{j},\mathbf{e}_{i}+\mathbf{e}_{j}}$
$\Delta_{\mathbf{e}_j - \mathbf{e}_i} \Omega_{\mathcal{O}} v \ge 0$	$\mathbf{S}_{\mathbf{e}_j-\mathbf{e}_i,\mathbf{e}_j-\mathbf{e}_i}$	$\mathbf{S}_{\mathbf{e}_j-\mathbf{e}_i,\mathbf{e}_i+\mathbf{e}_j}$
$\Delta_{-\mathbf{e}_i}\Omega_{\mathcal{O}}v \ge 0$	S_{-e_i,e_j-e_i}	$\mathtt{S}_{-\mathtt{e}_i,\mathtt{e}_i+\mathtt{e}_j}$
$\Delta_{-\mathbf{e}_i-\mathbf{e}_j}\Omega_{\mathcal{O}}v \ge 0$	$\mathbf{S}_{-\mathbf{e}_i-\mathbf{e}_j,\mathbf{e}_j-\mathbf{e}_i}$	$\mathbf{S}_{-\mathbf{e}_{j},\mathbf{e}_{j}+\mathbf{e}_{j}}$
$\Delta_{-\mathbf{e}_j}\Omega_{\mathcal{O}}v \ge 0$	$\mathbf{S}_{-\mathbf{e}_{j},\mathbf{e}_{j}-\mathbf{e}_{i}}$	$\mathtt{S}_{-\mathbf{e}_{j},\mathbf{e}_{i}+\mathbf{e}_{j}}$
$\Delta_{\mathbf{e}_i - \mathbf{e}_j} \Omega_{\mathcal{O}} v \ge 0$	$\mathbf{S}_{\mathbf{e}_{i}-\mathbf{e}_{j},\mathbf{e}_{j}-\mathbf{e}_{i}}\wedge\left \Delta_{\mathbf{e}_{j}-\mathbf{e}_{i}}v\geq-c\right $	$\mathbf{S}_{\mathbf{e}_i-\mathbf{e}_j,\mathbf{e}_i+\mathbf{e}_j}$

 Vercraene, Gayon, and Karaesmen: Effects of system parameters in a class of multi-dimensional queueing control problems

 44
 Article submitted to Operations Research

 Table 8
 Detailed results for Controlled Tandem and Controled Arrival as Fork operators

	$T_{R(i,j)}$
Р	$\left c^{j}\geq0\right \wedge\left c^{i}\geq0\right $
N	$\left c^{j}\leq0\right \wedge\left c^{i}\leq0\right $
I_{ϵ}	$\left \epsilon_{c}^{j}\geq0\right \wedge\left \epsilon_{c}^{i}\geq0\right $
$\mathbb{S}_{\epsilon,\epsilon}$	$\mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\boldsymbol{\epsilon}}\wedge\mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\boldsymbol{\epsilon}}^{ub}\wedge\left \epsilon_{c^{j}}=\epsilon_{c^{i}}\right $
$\mathtt{S}_{oldsymbol{\epsilon},-oldsymbol{\epsilon}}$	$\mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\boldsymbol{\epsilon}}\wedge\left \boldsymbol{\epsilon}_{c^{j}}\geq\boldsymbol{\epsilon}_{c^{i}}\right \vee\mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\boldsymbol{\epsilon}}^{ub}\wedge\left \boldsymbol{\epsilon}_{c^{j}}\leq\boldsymbol{\epsilon}_{c^{i}}\right $
	$\mathbf{S}_{\mathbf{e}_i,\mathbf{e}_j-\mathbf{e}_i} \land \mathbf{S}_{2\mathbf{e}_i-\mathbf{e}_j,\boldsymbol{\epsilon}} \land \boldsymbol{\epsilon}_{c^j}-\boldsymbol{\epsilon}_{c^i} \leq 0 $
$\mathtt{S}_{\mathtt{e}_i,\epsilon}$	$\vee \mathbf{S}^{ub}_{\mathbf{e}_{i},\mathbf{e}_{j}-\mathbf{e}_{i}} \wedge \mathbf{S}_{\mathbf{e}_{j},\epsilon} \wedge \left \epsilon_{c^{j}}-\epsilon_{c^{i}} \geq 0\right $
	$\forall \mathbf{S}_{\mathbf{e}_{j},\epsilon} \land \mathbf{S}_{2\mathbf{e}_{i}-\mathbf{e}_{j},\epsilon} \land (\mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon}^{ub} \lor \mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon}) \land \epsilon_{c^{j}}-\epsilon_{c^{i}}=0 $
	$\mathbf{S}_{\mathbf{e}_{i}+\mathbf{e}_{j},\mathbf{e}_{j}-\mathbf{e}_{i}}\wedge\mathbf{S}_{\mathbf{e}_{i},\epsilon}\wedge\left \epsilon_{c^{j}}-\epsilon_{c^{i}}\leq0\right $
$\mathtt{S}_{\mathbf{e}_i+\mathbf{e}_j,\boldsymbol{\epsilon}}$	$\vee \mathbf{S}_{\mathbf{e}_i+\mathbf{e}_j,\mathbf{e}_j-\mathbf{e}_i}^{ub} \wedge \mathbf{S}_{\mathbf{e}_j,\epsilon} \wedge \epsilon_{c^j}-\epsilon_{c^i} \geq 0 $
	$\forall \mathtt{S}_{\mathtt{e}_{j},\epsilon} \land \mathtt{S}_{\mathtt{e}_{i},\epsilon} \land \bigl(\mathtt{S}^{ub}_{\mathtt{e}_{j}-\mathtt{e}_{i},\epsilon} \lor \mathtt{S}_{\mathtt{e}_{j}-\mathtt{e}_{i},\epsilon} \bigr) \land \epsilon_{c^{j}}-\epsilon_{c^{i}}=0 $
	$\mathbf{S}_{\mathbf{e}_{j},\mathbf{e}_{j}-\mathbf{e}_{i}}\wedge\mathbf{S}_{\mathbf{e}_{i},\epsilon}\wedge\left \epsilon_{c^{j}}-\epsilon_{c^{i}}\leq0\right $
$\mathtt{S}_{\mathbf{e}_{j}, \boldsymbol{\epsilon}}$	$\forall \mathbf{S}^{ub}_{\mathbf{e}_{j},\mathbf{e}_{j}-\mathbf{e}_{i}} \land \mathbf{S}_{2\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon} \land \epsilon_{c^{j}}-\epsilon_{c^{i}} \geq 0 $
	$\forall \mathbf{S}_{2\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon} \land \mathbf{S}_{\mathbf{e}_{i},\epsilon} \land (\mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon}^{ub} \lor \mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon}) \land \epsilon_{c^{j}}-\epsilon_{c^{i}}=0 $
	$\mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\mathbf{e}_{j}-\mathbf{e}_{i}}\wedge\left \epsilon_{c^{j}}-\epsilon_{c^{i}}\leq0\right $
$\mathtt{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\boldsymbol{\epsilon}}$	$\forall \mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\mathbf{e}_{j}-\mathbf{e}_{i}}^{ub} \land \mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon} \land \epsilon_{c^{j}}-\epsilon_{c^{i}} \ge 0 $
	$\vee \mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon}\wedge\left \epsilon_{c^{j}}-\epsilon_{c^{i}}=0\right $
	$\mathbf{S}_{-\mathbf{e}_{i},\mathbf{e}_{j}-\mathbf{e}_{i}}\wedge\mathbf{S}_{-\mathbf{e}_{j},\epsilon}\wedge\left \epsilon_{c^{j}}-\epsilon_{c^{i}}\leq0\right $
$\mathtt{S}_{-\mathbf{e}_i,\boldsymbol{\epsilon}}$	$\vee \mathbf{S}^{ub}_{-\mathbf{e}_i,\mathbf{e}_j-\mathbf{e}_i} \wedge \mathbf{S}_{\mathbf{e}_j-2\mathbf{e}_i,\epsilon} \wedge \left \epsilon_{c^j} - \epsilon_{c^i} \geq 0 \right $
	$\forall \mathbf{S}_{\mathbf{e}_{j}-2\mathbf{e}_{i},\epsilon} \land \mathbf{S}_{-\mathbf{e}_{j},\epsilon} \land (\mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon}^{ub} \lor \mathbf{S}_{\mathbf{e}_{j}-\mathbf{e}_{i},\epsilon}) \land \epsilon_{c^{j}}-\epsilon_{c^{i}}=0 $
	$\mathbf{S}_{-\mathbf{e}_{j}-\mathbf{e}_{j},\mathbf{e}_{j}-\mathbf{e}_{i}}\wedge\mathbf{S}_{-\mathbf{e}_{j},\epsilon}\wedge\left \epsilon_{c^{j}}-\epsilon_{c^{i}}\leq0\right $
$\mathtt{S}_{-\mathtt{e}_i-\mathtt{e}_j,\boldsymbol{\epsilon}}$	$\vee \mathbf{S}^{ub}_{-\mathbf{e}_i-\mathbf{e}_j,\mathbf{e}_j-\mathbf{e}_i} \wedge \mathbf{S}_{-\mathbf{e}_i,\epsilon} \wedge \left \epsilon_{c^j} - \epsilon_{c^i} \geq 0 \right $
	$\forall \mathtt{S}_{-\mathtt{e}_{i},\epsilon} \land \mathtt{S}_{-\mathtt{e}_{j},\epsilon} \land \bigl(\mathtt{S}^{ub}_{\mathtt{e}_{j}-\mathtt{e}_{i},\epsilon} \lor \mathtt{S}_{\mathtt{e}_{j}-\mathtt{e}_{i},\epsilon} \bigr) \land \epsilon_{c^{j}}-\epsilon_{c^{i}}=0 \bigr $
	$\mathbf{S}_{-\mathbf{e}_{j},\mathbf{e}_{j}-\mathbf{e}_{i}}\wedge\mathbf{S}_{-2\mathbf{e}_{j}+\mathbf{e}_{i},\epsilon}\wedge\left \epsilon_{c^{j}}-\epsilon_{c^{i}}\leq0\right $
$\mathtt{S}_{-\mathbf{e}_{j},\boldsymbol{\epsilon}}$	$\vee \mathbf{S}^{ub}_{-\mathbf{e}_{j},\mathbf{e}_{j}-\mathbf{e}_{i}} \wedge \mathbf{S}_{-\mathbf{e}_{i},\epsilon} \wedge \left \epsilon_{c^{j}} - \epsilon_{c^{i}} \geq 0 \right $
	$\forall \mathbf{S}_{-\mathbf{e}_i,\epsilon} \land \mathbf{S}_{-2\mathbf{e}_j+\mathbf{e}_i,\epsilon} \land \big(\mathbf{S}^{ub}_{\mathbf{e}_j-\mathbf{e}_i,\epsilon} \lor \mathbf{S}_{\mathbf{e}_j-\mathbf{e}_i,\epsilon} \big) \land \epsilon_{c^j}-\epsilon_{c^i}=0 $
	$\mathbf{S}_{\mathbf{e}_i-\mathbf{e}_j,\mathbf{e}_j-\mathbf{e}_i} \wedge \mathbf{S}_{\mathbf{e}_i-\mathbf{e}_j,\epsilon} \wedge \left \epsilon_{c^j} - \epsilon_{c^i} \leq 0 \right $
$\mathtt{S}_{\mathbf{e}_i-\mathbf{e}_j,\boldsymbol{\epsilon}}$	$\vee \mathbf{S}_{\mathbf{e}_{i}-\mathbf{e}_{j},\mathbf{e}_{j}-\mathbf{e}_{i}}^{ub} \wedge \left \epsilon_{c^{j}}-\epsilon_{c^{i}} \geq 0\right $
	$ee \left \epsilon_{c^j - c^i} = 0 ight $
$\Omega_{\mathcal{O}} v \ge 0$	$\left \Delta_{\mathbf{e}_{i}}v \geq -c^{i}\right \wedge \left \Delta_{\mathbf{e}_{j}}v \geq -c^{j}\right $
$\Omega_{\mathcal{O}} v \le 0$	$\left \Delta_{\mathbf{e}_{i}}v\leq-c^{i}\right \vee\left \Delta_{\mathbf{e}_{j}}v\leq-c^{j}\right $
$\Delta_{\boldsymbol{\epsilon}} \Omega_{\mathcal{O}} v \ge 0$	$\mathbf{S}_{\boldsymbol{\epsilon},\mathbf{e}_i} \wedge \mathbf{S}_{\boldsymbol{\epsilon},\mathbf{e}_j-\mathbf{e}_i} \wedge \left \epsilon_c^j \geq 0 \right \wedge \left \epsilon_c^i \geq 0 \right $
$\Delta_{\mathbf{e}_i}\Omega_{\mathcal{O}} v \geq 0$	$\mathbf{S}_{\mathbf{e}_i,\mathbf{e}_i} \wedge \mathbf{S}_{\mathbf{e}_i,\mathbf{e}_j-\mathbf{e}_i}$
$\Delta_{\mathbf{e}_i+\mathbf{e}_j}\Omega_{\mathcal{O}}v\geq 0$	$\mathtt{S}_{\mathbf{e}_i+\mathbf{e}_j,\mathbf{e}_i} \land \mathtt{S}_{\mathbf{e}_i+\mathbf{e}_j,\mathbf{e}_j-\mathbf{e}_i}$
$\Delta_{\mathbf{e}_j}\Omega_{\mathcal{O}}v \ge 0$	$\mathtt{S}_{\mathtt{e}_{j},\mathtt{e}_{i}} \land \mathtt{S}_{\mathtt{e}_{j},\mathtt{e}_{j}-\mathtt{e}_{i}}$
$\Delta_{\mathbf{e}_j-\mathbf{e}_i}\Omega_{\mathcal{O}}v\geq 0$	$\mathtt{S}_{\mathtt{e}_{j}-\mathtt{e}_{i},\mathtt{e}_{i}}\land \mathtt{S}_{\mathtt{e}_{j}-\mathtt{e}_{i},\mathtt{e}_{j}-\mathtt{e}_{i}}$
$\Delta_{-\mathbf{e}_i}\Omega_{\mathcal{O}} v \ge 0$	$S_{-\mathbf{e}_i,\mathbf{e}_i} \wedge S_{-\mathbf{e}_i,\mathbf{e}_j-\mathbf{e}_i}$
$\Delta_{-\mathbf{e}_i-\mathbf{e}_j}\Omega_{\mathcal{O}}v\geq 0$	$\mathtt{S}_{-\mathbf{e}_i-\mathbf{e}_j,\mathbf{e}_i} \land \mathtt{S}_{-\mathbf{e}_i-\mathbf{e}_j,\mathbf{e}_j-\mathbf{e}_i}$
$\Delta_{-\mathbf{e}_j}\Omega_{\mathcal{O}}v \ge 0$	$\mathtt{S}_{-\mathtt{e}_{j},\mathtt{e}_{i}}\land \mathtt{S}_{-\mathtt{e}_{j},\mathtt{e}_{j}-\mathtt{e}_{i}}$
$\Delta_{\mathbf{e}_i - \mathbf{e}_j} \Omega_{\mathcal{O}} v \ge 0$	$\mathbf{S}_{\mathbf{e}_i-\mathbf{e}_j,\mathbf{e}_i} \land \mathbf{S}_{\mathbf{e}_i-\mathbf{e}_j,\mathbf{e}_j-\mathbf{e}_i}$

 Table 9
 Detailed results for Routing operator