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Abstract

It is known that inaccurate inventory records can lead to profit losses in a supply chain. Inventory records may not be
correct due to various reasons such as transaction errors, misplacement, shrinkage, etc. In order to eliminate inventory
inaccuracy, companies may invest in new information technologies such as radio frequency identification (RFID). In this
paper, we consider a supply chain consisting of a retailer (distributor) and a supplier. We assume a single-period
newsvendor-type setting where the retailer purchases the items from the supplier and distributes them to the regional
warehouses. The paper focuses on the problem of finding the optimal investment levels that maximize profit by decreasing
inventory inaccuracy. The optimal level of investment is examined both for the centralized and the decentralized systems
under two scenarios: inventory sharing between the warehouses is allowed and not allowed. The coordination problem is
also considered for both scenarios. Finally, several extensions of the model are considered: asymmetric warehouse
parameters, demand and inventory inaccuracy correlation and imperfect RFID implementation.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Supply chain inventory management decisions
depend on inventory data gathered from automated
or manual control systems. As a result of advances
in information technologies, companies started to
automate their inventory management processes
and use inventory management software (Lee and
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Ozer, 2005). Although the use of information
technology (IT) has made collecting and storing
data about the flow of items through supply chain
easier and less expensive, the tracking of inventory
remains prone to error. The data collected may
not be accurate due to various reasons: incorrect
product identification, transaction errors, inaccessi-
bility of items due to improper usage of the depot,
misplacements, shrinkage, etc. These may result in
two problems: unplanned inventory depletion and
addition. If the inventory records do not agree with
the actual physical stock, either an order may not be
placed in time or excessive inventory is held.
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Inventory inaccuracy appears to be a significant
issue in practice as reported in a number of recent
studies. Kang and Gershwin (2005) report inventory
accuracies of a global retailer’s stores. It is seen that
the inventory accuracy is only 51% on average for
500 stores. In other words, the stores have accurate
records for only about a half of the SKUs (stock
keeping units). The best performing store in the
study knows its actual inventory with only 75-80%
accuracy. Raman et al. (2001) report similar
findings for a leading retailer. Almost 370,000
SKUs are investigated for the retailer, it is
concluded that more than 65% of the inventory
records do not match with the physical inventory.

To cope with inventory inaccuracy, different
compensation methods can be used, e.g. periodical
review of inventory, tracking of items, eliminating
some of its causes. In particular, RFID (radio
frequency identification) technology which has
received considerable attention in recent years
helps to track items through the supply chain. This
technology is different from bar code technology
in two ways: it does not require line of sight and
RFID tags have unique codes. Many companies
consider investing in the RFID technology as
pioneered by some major retailers such as Wal-
Mart, Tesco, Marks&Spencer and by organi-
zations such as United States Department of
Defense.

The three main components of the RFID
technology are: tag (transponder), antenna and
reader. A tag contains a computer chip that holds
data related to a product. Different types of tags are
available according to their shape, size, memory
properties and frequencies. The readers broadcast
signals via antenna. The tags receive the signals and
send the data to the readers by means of radio
frequencies. The readers send the received data to
the computer system for logging and processing.
This identification provides tracking of items
through the supply chain. However, using this
technology requires a large investment. This invest-
ment consists of the cost of establishing the
infrastructure as well as the costs of the tags and
the readers. Tag price is one of the main issues of
RFID; although pallet-level or case-level tagging is
an option, tag prices are expected to be so low that
they can be attached to every item. Besides tag
prices, RFID implementations cost $400,000 per
distribution center and $100,000 per store and
$35-%$40 million is required for the system integra-
tion of the entire organization (Kearney, 2004).

Motivated by the RFID investment issue, this
research mainly focuses on the decision of the
optimal investment levels in order to decrease the
inventory inaccuracy in a two-level supply chain
consisting of a supplier and a retailer. We consider
both the centralized and decentralized systems. In a
centralized system a central planner decides on the
investment while in a decentralized system the
investment decision is made either by the retailer
or the supplier. Particularly, we defined the follow-
ing research questions:

e What are the optimal investment levels in
centralized and decentralized supply chains?

e What are the resulting benefits in terms of
inventory costs?

e How does centralization affect investment deci-
sions?

e What is the effect of inventory sharing on the
investment decision?

In order to address the above questions, we
analyze a supply chain consisting of a supplier and a
retailer that has multiple warehouses. The demand
for each warehouse is random. The model is investi-
gated under two scenarios: (1) inventory sharing
between warehouses is not allowed, (2) warechouses
are able to share their inventories as needed. In
addition, we address the issue of how to share the
investment within a given class of contracts and
investigate the related coordination aspects. Finally,
several extensions of our basic model are consid-
ered: asymmetric warehouse parameters, demand
and inventory inaccuracy correlation and imperfect
RFID implementation.

The remainder of the paper is organized as
follows. In the following section, the related litera-
ture is reviewed. Section 3 introduces the model and
the underlying assumptions. The analysis of the
model is presented in Section 4. Section 5 presents
the numerical experiments and summarizes the main
observations. Section 6 includes the extensions of
our base model while the conclusion is presented in
Section 7.

2. Literature review

This paper builds on three streams of literature:
inventory inaccuracy, information technology in-
vestment and supply chain coordination. The litera-
ture about the RFID investment is mainly built on
working papers, since the RFID technology is an
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emerging technology and it has recently taken the
attention of the researchers. Hence, the studies on
this subject are not mature yet. The literature is
given in three parts: inventory inaccuracy, the
RFID investment and related literature.

Empirical studies have made clear the existence of
the inventory inaccuracy problem. The first empiri-
cal study that addresses the inventory inaccuracy
problem is performed by Rinehart (1960). The
paper reports on a case study of discrepancies of
a Federal government supply facility. Recently,
Raman et al. (2001) performed an empirical analysis
to reveal the inventory inaccuracy problem. They
reported that 65% of nearly 370,000 inventory
records from 37 stores of a large retailer are
inaccurate. That is, the inventory record of an item
fails to match the physical quantity found in the
store. The profit lost due to inventory inaccuracy is
reported to be 10%. In addition, misplacement can
be observed even when the inventory records are
accurate. For another leading retailer, it is reported
that 16% of the items cannot be found in the store
due to misplacement. It is also reported that
misplaced items reduced profits by 25%. DeHor-
atius and Raman (2004) investigate the problem and
find that the variation in inventory inaccuracy
record is associated with the cost of an item, its
annual selling quantity and the distribution method
used to ship that product to the stores. Further-
more, Kang and Gershwin (2005) report similar
findings for a global retailer’s stores. The inventory
accuracy is 51% on average for 500 stores and the
best performing store in the study knows its actual
inventory with 75-80% accuracy. Those empirical
studies identify the magnitude of the inventory
inaccuracy problem. Although there is a consider-
able amount of research that focuses on inventory
management in the literature, most of this research
assumes perfect knowledge of the inventory data.
There are relatively few studies considering inven-
tory error.

Iglehart and Morey (1972) is an early paper that
studies the inventory inaccuracy problem. The
objective of the paper is to select the proper
frequency of inventory counts and additional safety
stock by minimizing the sum of holding and
counting costs when there is random demand and
inventory inaccuracy. There are other articles
studying counting frequencies and counting techni-
ques to eliminate inventory inaccuracy: e.g. Buck
and Sadowski (1983), Martin and Goodrich (1987),
and Morey and Dittman (1996).

There are studies in which a specific reason of
inventory inaccuracy is the focus. Camdereli and
Swaminathan (2005) study the supply chain co-
ordination issue under misplaced inventory. They
analyze the effect of misplaced inventory on the
ordering decision and compare the performance of
the decentralized system with the centralized system
and suggest coordinating the decentralized system
by means of revenue sharing and buyback contracts.
Kok and Shang (2005) consider the inventory
inaccuracy problem. They work on finding a
counting policy for an inventory replenishment
problem to correct transaction errors. Inventory
inaccuracy is modeled as random and additive
errors as in our model. They develop a joint
inspection and replenishment policy that minimizes
total costs in a finite horizon and show that an
inspection adjusted base-stock policy is near-opti-
mal. Kang and Gershwin (2005) examine the
shrinkage problem. They use simulation to see the
effects of stock loss on stock outs and conclude that
even a small rate of stock loss can create severe out-
of-stocks.

Our research differs from above mentioned
papers, since they do not model the investment
decision in the decentralized system with multiple
decision makers. Also, some of them focus on
specific reasons of inventory inaccuracy. However,
our model is built on a more general framework and
focuses on investment decision under inventory
inaccuracy.

Initial papers considering the RFID investment
through the supply chain are emerging. Lee and
Ozer (2005) review some of the ongoing research on
RFID and suggest future research opportunities on
the subject. They argue that there is a huge
credibility gap of the value of RFID and call the
academic community to produce models to obtain
realistic estimates of the RFID value.

There are several papers specifically focusing on
tag prices. Gaukler et al. (2003) study the introduc-
tion of item-level RFID in a decentralized supply
chain and argue that the cost of item-level RFID
should be allocated among the retailer and the
supplier. de Kok et al. (2006) considers shrinkage
(specifically theft) as the source of the inventory
inaccuracy. By comparing shrinkage case with and
without shrinkage case the break-even prices for an
RFID tag is found. It is reported that the break-
even prices are strongly correlated with the value of
the items that are lost and the shrinkage fraction.
Models of Gaukler et al. (2003) and de Kok et al.
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(2006) are similar to our model, however there are
some differences. Firstly, they assume that inven-
tory inaccuracy is always negative. Secondly, they
do not consider the costs of scanners, infrastructure
and IT investments. Sahin (2004) studies a single-
stage inventory system under inventory inaccuracy
and builds several mathematical models and evalu-
ates the value of the RFID system based on the
constructed models. Sahin and Dallery (2004)
explore the benefit of using the Auto-ID technology
in improving the inventory accuracy in three stages
including a supplier, a wholesaler and a retailer
without considering the centralized case. A similar
analysis to ours is performed by Rekik et al. (2004).
Our research is similar in spirit but in contrast with
the work of Rekik et al. (2004), we explicitly model
the investment costs in the RFID infrastructure that
depends on how the technology is deployed. Fleisch
and Tellkamp (2005) use simulation to examine
the relationship between inventory inaccuracy and
performance in a three-stage supply chain. In a base
model physical inventory and information system
inventory differ due to low process quality, theft
and items becoming unsaleables. The results of the
paper show that an elimination of inventory
inaccuracy can reduce supply chain costs and the
out-of-stock level. More recently, Heese (2006)
studied the inventory inaccuracy problem by con-
sidering RFID investment costs. Our model and
focus are different in that we consider a multi-
location supply chain and assume that partial
investment is an option and investigate the effects
of different supply chain policies (with or without
inventory sharing) on the investment levels.

One objective of our model is to find the optimal
number of warehouses where the technology is
applied and the optimal order quantity, such as the
problem of sharing information with customers. In
those problems the variance of demand is decreased
by communicating with customers.

Milgrom and Roberts (1988) investigate an
information acquisition model for reducing demand
uncertainty. They study the effects of communica-
tion with the customers on inventories and investi-
gate the situation where the demand variance can be
decreased by means of customer surveys. In the
paper, the optimum amount of investment on
obtaining demand information through customer
surveys is found. Zhu and Thonemann (2004)
considerably extend the framework of Milgrom
and Roberts (1988) by investigating the benefits of
sharing future demand information when customer

demands are correlated and the information given
by the customers is imperfect. Although it is optimal
to contact all or none of the customers if demand is
not correlated and the information is perfect
(Milgrom and Roberts, 1988), it is often optimal
to share information with some customers if the
demands are correlated and the information is
imperfect (Zhu and Thonemann, 2004). Our model
resembles the one in Zhu and Thonemann but we
focus on the effect of multiple decision makers. In
addition, we assume the reduction of inventory
inaccuracy but not of demand variance. It will be
seen later that in our models, the implementation of
the technology lowers the variance of inventory
inaccuracy. This makes our problem similar to the
other variance reduction problems.

The literature in the field of supply chain
coordination by contracts is vast. Cachon (2003)
presents an extensive literature review about supply
chain coordination with contracts. Cachon and
Lariviere (2005) study strengths and limitations of
revenue sharing contracts.

3. The model

Consider a supply chain consisting of a retailer
(distributor) and a supplier. We assume a single-
period newsvendor-type setting where the retailer
purchases the items from the supplier and distri-
butes them to her regional warehouses. It is
assumed that the retailer sells the items to the
customer at a unit price of r and the supplier’s
unit production cost is m. The wholesale price
that the supplier charges the retailer is w, and the
retailer has the chance to sell the unsold items at the
end of the period, the salvage value of an unsold
item 1is s.

More precisely, we consider a single selling period
with random demand at each of the retailer’s
warehouses. In particular, it is assumed that the
retailer has N regional warehouses and the regional
demand for each warehouse has an independent
normal distribution with mean u; and standard
deviation op. This assumption is made to keep the
analysis tractable. In Section 6, we investigate
several extensions that include correlated demand
and asymmetric demand structures. There are two
scenarios for our model: no inventory sharing (NIS)
and inventory sharing (IS). Under the IS scenario,
the warehouses are able to share their inventories as
needed by lateral transshipments in order to avoid
stockouts. In contrast, inventory sharing is not
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Demand is
realized
Error occurs
A
. /s N
Timeline
Retailer Retailer Q*+ X
orders receives
Q* Q*

Fig. 1. The sequence of events.

allowed under the NIS scenario. The retailer decides
on the total amount of inventory needed for her
warchouses O, 0>0. At the beginning of the
period, there is no inventory in the warehouses.
After the retailer receives Q from the supplier, the
inventory inaccuracy problem (due to shrinkage
(losses), misplacement, unplanned additions, etc.)
occurs and then the demand is realized. The
sequence of events is represented in Fig. 1.

Clearly, under the above assumption, the total
demand of the retailer is normally distributed with
mean Ny, and standard deviation +/N op but the
retailer should also take into account inventory
inaccuracy to decide on the order quantity. Let us
elaborate on the modeling of inventory inaccuracy
which may be caused by many reasons. Those
reasons can be summarized under three categories:
misplacement, shrinkage (stock loss) and transac-
tion errors (Lee and Ozer, 2005). Misplacement
occurs when the products are somewhere in the
facility but cannot be found. Generally, the
inaccessible products eventually are found and
become available for sale. The inventory misplace-
ment can be corrected implying that the inventory
can be greater than the inventory records. In our
model, the misplaced products can be found or
some products may be misplaced during the period.
So, the inventory inaccuracy may cause an increase
or a decrease in the number of products available in
the warehouses. Stock loss, which is also known as
shrinkage, is caused by all forms of loss of the
products. The inventory records are higher than the
actual inventory in case of stock loss. Finally,
transaction errors may occur at the inbound or
outbound of a facility during the registration of
products. Such errors affect the inventory records
but not physical inventory. It is stated in Lee and
Ozer (2005) that shrinkage and misplacement are
more challenging than transaction errors since they
would remain unnoticed without tracking the items

by a technology such as RFID. As our main focus is
RFID, our model considers shrinkage and mispla-
cement as the main causes of inventory inaccuracy.
So, the inventory records may be lower or higher
than the actual inventory level. It should however be
emphasized that negative errors are of particular
concern since the products are lost for the current
period and cannot be sold which is an important
problem in our single-period setting.

We denote X; as a random variable representing
the inaccuracy of the inventory record. X; repre-
sents the discrepancy between what is thought to be
available and what is really available at the end of a
period. In our context, X; is the number of items
that are lost or found between the reception of an
order and the sales. This makes the error additive as
in Kok and Shang (2005) and Sahin and Dallery
(2004). More specifically, X; is assumed to be
normally distributed with mean py and standard
deviation oy for each warehouse. We assume that
the retailer is aware of the inventory inaccuracy for
each warehouse and gives her order by considering
this in her ordering decision.

To model the above discussed structure, assume
that the retailer orders the optimal order quantity
Q" from the supplier. However, due to the
inaccuracy of the inventory records, the total actual
quantity available for sale in the warehouses, O*, is
Q" + X where X =YY X,. Therefore, the total
actual inventory available to the retailer through
the season is S~ ,(QF+ X;). As a result, the
system cannot satisfy the demand if Q"+ X <D
(equivalently O* <D — X) and has overstocked items
if 0* + X > D (equivalently Q* > D — X). The model
with inventory inaccuracy X and demand D is then
equivalent to a model with no inventory accuracy
and demand D — X . To simplify the notation, we let
D' = D — X. In other words, inventory inaccuracy
affects the order quantity decision of the retailer in a
similar way as demand uncertainty does. To
summarize, with inventory inaccuracy, the total
equivalent demand of the retailer is normally
distributed with mean Ny, — Nu, and standard
deviation \/N(c3 + %) (IS) or Nv/a3 + a5 (NIS).
On the other hand, if RFID is applied at warehouse i
then the actual inventory level at that warehouse is
known with complete certainty and OF = QF. We
assume that RFID technology eliminates the inven-
tory inaccuracy problem. The random variable X; is
removed if the technology is applied in warehouse i
(we consider the case of imperfect error removal in
Section 6).
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It is well known that RFID technology invest-
ment requires fixed and variable costs. The fixed
cost includes establishing the infrastructure for the
technology, whereas variable costs include cost of
tags and maintenance cost. According to Kearney
(2004), EPC (Electronic Product Code) and RFID
implementations cost $400,000 per distribution
center and $100,000 per store and additional costs
for system integration range from $35 to $40 million
for entire organization.

Motivated by the above structure, our model
considers both the fixed and the variable investment
costs. In our model, the fixed investment cost
consists of the costs required to establish the
infrastructure of the entire system while the variable
investment costs include the costs of investment
required for each warehouse to eliminate its
inaccuracy. Although these costs may be very large
as a one-time investment, since our model considers
a single period, we interpret both fixed costs and
variable costs as equivalent amortized costs per
single selling season.

In short, decreasing the inventory inaccuracy of
every warehouse has a cost, k (per warehouse) and
making an investment requires a fixed cost, K. The
fixed investment cost incurs when the technology is
applied in one or more warchouses. The function
g(n) represents the variable cost incurred by the
investment, n is the number of warehouses where
the technology is applied to eliminate inventory
inaccuracy. The variable investment costs depend
on the number of warehouses where the new
technology is used. So,

K ifn>0
K0 = {0 ow. and g(n) = kn.

The objective of our model is to maximize the
expected profit by finding the optimum number of
warehouses to apply the technology. Making an
investment decreases the number of warehouses that
have inventory inaccuracy. The optimum number of
warehouses #* must be less than or equal to the total
number of warehouses N and greater than 0. To
simplify the analytical expression, we treat n as a
continuous variable.

We solve the problem in two steps:

1. The optimum number of warehouses and the
corresponding increase in profit are found ignor-
ing the fixed cost.

2. If the increase in profit is greater than the fixed
investment cost, then it is optimal to invest.
Otherwise, the optimum solution is to make no
investment.

4. Analysis of the model

In this section, we present the analysis of the
model introduced. We first investigate the NIS
scenario in detail and then mention the main
findings for the IS scenario.

4.1. NIS scenario

Through this section, it is presumed that there is
no inventory sharing between the warechouses. The
retailer decides on Q;, the amount of inventory
needed for warehouse i, i=1,...,N and orders
Zl]\i 10, from the supplier.

4.1.1. The decentralized system

In this section, we focus on the case of a
decentralized supply chain under two extreme
scenarios: either the supplier makes the investment
without any cost sharing support from the retailer
or the retailer makes the investment without any
support from the supplier.

4.1.1.1. The Retailer invests. For each warehouse,
the retailer selects the optimal order quantity Q.
When the investment is made at warehouse i, O =

ip+zrop otherwise QF = up — piy + Zr\/ 05 + 0%,
where zg = @ '(ag). @7! is the inverse cumulative
distribution function of the standard normal dis-
tribution and ogr is the critical fraction for the
retailer (see Zipkin, 2000) and for the decentralized
system, it is given by: ag = (r — w)/(r — ).

To incorporate inventory inaccuracy to our
model, let us define J; such that:

5 1 if an investment is not made at warehouse i,
"T10 ow.

The expected profit of each warehouse is found
under investment decision (using Zipkin, 2000).

E(ITw,) = (r — w)up — (r — 5)p(zr)\/ 03, + 0i0%
+owuy — Kinso) — k,

where ¢(zr) denotes the standard normal density
function for the decentralized system.
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To find the expected profit of the retailer, we sum
the expected profits of N warehouses. This gives:

N
E(ITr) = Y [(r — wp — (r — 9)p(zr)/ 03, + dio%
i=1
+ 51'W,uX] — K{n>0} — kn.

The number of warehouses where the technology
is applied is denoted by n. Then, the expected profit
function of the retailer is written as:

E(IIR) = (r = w)Nup — (r — $)¢(zr)[nop + (N — n)

\/ b + 3]+ wWN = n)uy — Kipso) — kn.

The expected profit consists of five terms. The
first term, (r — w)Nup, is the sure profit. The second
term, (r — s)@(zr)[nop + (N — n)\/a3 + a5, repre-
sents the cost associated with demand uncertainty
(underage and overage costs). The cost of the items
which are lost or found during the period, w(N — n)
Uy, 1s added to the expected profit function, since
the cost of those items are not paid in the current
period. The last two terms, Ky,~0, and kn are the
fixed and variable investment costs of implementing
the technology, respectively.

The retailer’s expected profit function is linear in
n. So, if the function is increasing, the optimal
investment decision is making the full investment,
otherwise the optimal decision is making no
investment. The first derivative of the expected
profit function is

0E(ITR)
on

We observe that there is a threshold for the
variable investment cost k such that making an
investment becomes beneficial for the retailer. We
define kg as the variable investment threshold value
where the retailer starts making a positive profit
from making an investment. kp for NIS scenario is
equal to:

kk = (r = )$ER o) + 0% —opl —wiy. (1)

Proposition 1. If k£>k then n* = N, otherwise
n* = 0.

Proof. If k{ is greater than k, the expected profit of
the retailer increases in n. The first derivative of the
expected profit function with respect to n is positive.
Since the maximum feasible n for our model is N, the
optimal decision is making the full investment.

= (r — 9)¢(zr)(\/ 0] + 0% — 0p) — wuy — k.

Otherwise, the expected profit function of the retailer
decreases in n and the minimum feasible z is 0, so the
optimal decision is making no investment. []

The optimal solution is: n*=N or n* =0
ignoring fixed costs. This is similar to the corre-
sponding result in Milgrom and Roberts (1988) in a
different context.

Corollary 1 examines the impacts of the para-
meters oy, op and py on the investment threshold.

Corollary 1. The investment threshold kg increases
in oy and decreases in op and .

Proof. The effects of oy and py follow directly
from (1). As oy increases, the variable investment
threshold increases. When u, gets smaller,
kgincreases.

The claim on the demand variance follows from
(1). The expression /03 + 6% — op is decreasing in
op, so the increase in gp causes a decrease in the
variable investment cost k; The first derivative of

V/o} + 0% —op with respect to op is equal to

(6p/\/0% + %) — 1, which is less than 0. O

Remark. In our numerical results, kg is also
increasing in the sales price, r.

According to Corollary 1, the retailer is more
likely to make the investment as the initial inventory
inaccuracy increases and the demand variance
decreases. When the inventory inaccuracy is an
important problem for the retailer, the retailer is
more likely to make an investment to decrease it. In
contrast, if there is high demand variance in the
market, the retailer does not prefer spending much
to decrease inventory inaccuracy, since the demand
variance behaves like the inventory inaccuracy
variance. This means decreasing inventory inaccu-
racy variance will not help decreasing uncertainty in
the system due to the demand variance. As the mean
of the inventory inaccuracy decreases, the problem
becomes so important for the retailer that she can
pay more to make the investment.

4.1.1.2. The supplier invests. When the supplier
makes the investment, the expected profit function
of the supplier, found by multiplying the optimal
order quantity of the retailer by the profit margin of
the supplier, is given by:

E(ITs) = [n(up + zrop) + (N — n)((up — px)

+ zry/ 0% + 03)](w — m) — K(y=0) — kn.
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Similarly to the retailer’s case, the first derivative
of the supplier’s expected profit is linear in n which
implies that there is an investment threshold for the
supplier, kg, found as:

ks = [zr(6p — \/ 0 + 0%) + pyJOw — m). ®)

It can be observed that the effects of the
parameters on the supplier’s investment threshold
1s similar to the retailer’s case.

4.1.2. The centralized system

In the centralized supply chain, it is assumed that
a central planner determines the amount of invest-
ment made by the entire supply chain and the order
quantity to maximize the total profit. The optimal
order quantity for the centralized system is

N
Q" = (up — Sitty + zc\/ h + 6i0%).
i=1

Similar to the decentralized case, z¢ is @' (ac)
and oc is the critical fraction of the centralized
system given by: ac = (r —m)/(r — s).

The expected profit function of the centralized
system is shown to be similar to the expected profit
function of the retailer and it is equal to:

E(Ilc) = (r —m)Nup — (r — $)p(zc)lnop + (N — n)

\/ 05+ 03]+ m(N — n)uy — K=oy — kn.

As in the decentralized case, it can be shown that,
there is an investment threshold for the variable
investment cost kz given by:

ki = (r — $)p(zo)\/ o3 + 0% — opl — mpy. 3)

Paralleling the results in Corollary 1, it is
observed that the investment threshold increases
as the variance of demand decreases or the variance
of inventory inaccuracy increases.

4.1.2.1. The effects of centralization on investment.

Comparing the variable investment threshold values
of the retailer and the centralized system gives
insight about the investment decisions of the retailer
and the centralized system. To make the compar-
ison easier, the value of py is assumed to be 0. In
order to compare the investments made by the
centralized system and retailer, we should compare
(1) and (3). Since all the parameters are equal except
the density functions, ¢(z¢) and ¢(zr), the value of
the density functions must be compared to analyze

the investment decision. Since ¢(z¢) can be greater
than or less than or equal to ¢(zr), the investment
threshold of the centralized system can be greater
than or less than or equal to the investment
threshold of the retailer. The conditions for the
comparison of the investment thresholds are pre-
sented in Proposition 2.

Proposition 2. The threshold values of the centralized
system and retailer differ according to following
conditions:

1. If r —w =m —s, then the investment threshold
values are equal,
2. If r—w>m —s, then k¢ is less than ky,

3. If r—w<m—s, then k(T; is greater than kﬁ.

Proof. If the sum of ac and agr is equal to 1, then
the density functions are equal for both systems. So,
it is concluded that if r—w=m —s, then the
investment thresholds are equal. Both the centra-
lized system and retailer are willing to make an
investment, if the variable investment cost of
eliminating inventory inaccuracy for each ware-
house is less than the investment threshold ignoring
the fixed investment cost.

r—w>m—s means that sum of «c and or i1s
greater than 1. Since w>m, ac is always greater
than ar. When the density functions are compared,
the centralized system has a smaller density function
value if r — w>m — s holds. That is ¢(z¢) < @(zr)
and from (1) and (3), kg<k£. As a result, the
retailer has a higher tendency to make an investment.
The third condition can be shown similarly. [

According to Proposition 2, the retailer has a
higher tendency to make an investment to decrease
demand variance when her profit margin is high. In
a way, she tends to make an unnecessary investment
for the supply chain in that case since making an
investment may not be the optimal strategy for the
centralized system. In contrast, when her profit
margin is lower, she may not want to make an
investment even though it is beneficial for the
centralized system.

4.1.3. Coordination of the supply chain

In this subsection, we investigate investment cost
sharing structures between the retailer and the
supplier through simple contracts. We consider the
well-known revenue sharing contracts and investi-
gate coordination issues under this contract and
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discuss a straightforward extension to buyback
contracts. Throughout the coordination section,
Uy 1is assumed to be 0, since having positive or
negative u, can cause problems such as: how to
share the revenue generated from the items which
are not purchased in the current period (under
the revenue sharing contract) or how to give the
unsold items to the supplier if they are not
purchased in the current period (under the buyback
contract). It is also assumed that when the decision
is making an investment by considering the variable
investment threshold, the fixed investment cost is
compensated.

4.1.3.1. Revenue sharing contract. Revenue sharing
contracts coordinate the supply chain by dividing
the revenue according to a given proportion, f§ and
adjusting the wholesale price w accordingly. Under
these contracts, the retailer keeps f portion of all
revenue while the supplier takes (1 — ff) portion. A
conventional revenue sharing contract coordinates
the system by forcing the retailer to give the
(centralized) optimum order quantity. However, in
our model the fixed and variable investment costs
are also needed to be shared to coordinate the
system. We assume that the retailer pays 0, portion
of the fixed investment cost and 0, portion of the
variable investment cost and the supplier pays (1 —
0,) portion of the fixed investment cost and (1 — 6,)
portion of the variable investment cost.

Under the revenue sharing contract, the expected
profit functions of the retailer and supplier are as
follows:

E(IIr) = (Br = w)Nup — p(r — $)¢(zr)(nop + (N — n)

0%+ 0%) — 01K {0y — O2kn

and the expected profit function of the supplier is
E(Ils) = [n(up + zroD)
+ (N = n)(up + zr\/ 03 + 031w — m)
+ (1 = Prl(npp + (N — n)puy) — ¢(zr)(nop
+ (N —n)y/o3 + %))
+ (1 = p)slzr + @(zr)(nop + (N —n)

X4/ op + 03] — (1 = 0)K 0 — (1 — 02)kn,

where ¢ is the standard normal loss function,
@(zr) = —zr[l — @(zr)] + P(zR).

Proposition 3 establishes the optimal retailer
portions of the fixed and variable costs 6] and 6,
that coordinate the system. For system coordina-
tion, the investment decisions for the centralized
and decentralized systems must be the same and the
order quantities must be equal.

Proposition 3. The coordinating contract parameters
are as follows: 07 = 05 = f and w = fim.

Proof. As it is seen in (1) and (3), the investment
decision is only affected by the standard normal
density function and the standard normal density
function depends on the critical ratio, o (when pyis
equal to 0). The optimal order quantity is also
obtained by using the critical ratio. It is known that
the revenue sharing contract coordinates the system
if the wholesale price w is equal to f percent of the
unit production cost m (see Cachon and Lariviere,
2005).

r—m _ fr—fm 4
r—s  Pr—Ps’ ¢ (=)

=07\ (zr) and (=) = p(zw)

as a result, O = Q3 and k- = kg

If the wholesale price w is equal to  percent of
the unit production cost m, the system makes the
optimum investment and gives the optimum order
quantity. We also know that the revenue sharing
contract shares both the profit and the revenue
according to the proportion f (Cachon and
Lariviere, 2005). Since, the profit function is multi-
plied by p, sharing the total investment cost
according to the same ratio coordinates the system.
So, we conclude that:

0 = 05 = B.

The revenue sharing contract coordinates our
system where w = fm and 0] =05 = . O

Zc =

Proposition 3 implies that there are coordinating
revenue sharing contracts. Interestingly, the revenue
sharing contract may coordinate the supply chain,
even if the investment cost is not shared according
to the ratio . Below we investigate conditions
under which coordination can be achieved. Note
that, the following conditions coordinate the system
only if making an investment is optimal for the
centralized system. The gain of the retailer and
supplier without considering the investment cost
when the investment is made are equal to:

9 = p(r — 9)P(zr)IN\/ (6} + 0%) — Nop]
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and

9s = [Ny/0% + 0% — Nop]l(m — w)zr
+ (1 = Pr — 9)e(zr)].

Consider a case where the supplier is stronger
than the retailer. In this case, the following
conditions may hold.

e The supplier pays all variable cost, 6, = 0 and 0,
is negotiated. The system is coordinated if:

Ir=0,K and Is=(1 —0)K + kN.

Since the supplier is the strongest member of the
supply chain, he can own all the variable
investment cost and even he can share the fixed
investment cost required for the infrastructure to
support the retailer to make an investment.

e The supplier pays all fixed cost, 0; = 0 and 0, is
negotiated. The system is coordinated if:

Ir=0,kKN and IJs=K+ (1 — 0,)kN.

The supplier establishes the infrastructure of the
system and supports the retailer to use the
technology by paying a fraction of the variable
investment cost.

Now, consider a case where the retailer is stronger
and benefits more from making an investment on
RFID than the supplier. In such a case, the retailer
may want to own the greater part of the investment
cost.

e b =f and 0, is negotiated. The system is
coordinated if:

Ir=0K + pkN and
9s>(1 — 0)K + (1 — P)KN.

Since the retailer is the strongest member of the
supply chain, she can own all the variable cost
and shares the fixed investment cost required for
the infrastructure to force the supplier to make
an investment.

e 0 =f and 0, is negotiated. The system is
coordinated if:

I9r=PK + kN and

Is=(1 - PHK + (1 — 0,)kN.

The retailer establishes the infrastructure of the
system and forces the supplier to use the techno-

logy by paying a fraction of the variable
investment cost.

Finally, the supplier and the retailer may have
equivalent strengths and both of them may benefit
from making an investment. In that case, both sides
may negotiate on sharing the variable investment
cost or the fixed investment cost.

e The retailer pays all variable costs, 6, = 1 and 0,
is negotiated. The system is coordinated if:

=0 K+ kN and Ss=(1 —0)K.

® The retailer pays all fixed costs, 0; = 1 and 0, is
negotiated. The system is coordinated if:

9r=K + 0-kN and  9s>(1 — 0)kN.

The supplier and retailer negotiate on the
investment decision. Since we initially assumed
that making an investment is profitable, they can
find fractions both for the variable investment
cost and fixed investment cost such that making
an investment will be beneficial for both parties.

In the above conditions, the number of ware-
houses and the variance of inventory inaccuracy
have positive effects on supply chain coordination.
An increase in those parameters causes an increase
in the gains of both the retailer and the supplier. On
the other hand, the variance of demand has a
negative effect on the gain.

Finally, it should be noted that coordination
can also be achieved by a modified buyback type
contract with an additional parameter for invest-
ment cost sharing. In particular, Cachon and
Lariviere (2005) show that in the newsvendor setting
with a fixed price, for any coordinating buyback
contract there exists a unique revenue sharing
contract {f,w} that generates the same profit for
the retailer and supplier. By using this property, the
investment can be shared between the supplier and
the retailer by adding an extra parameter to the
standard buyback contract (see Ugkun, 2006 for
more detail).

4.2. IS scenario

In this section, it is assumed that the warchouses
are able to share their inventories as needed by
lateral transshipments in order to avoid stockouts.
Since our aim is benchmarking this structure with
the NIS situation, we ignore the additional costs
that may be incurred due to transshipments. Once
again, the retailer decides on the total optimal order
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quantity, Q* for N warchouses and orders O* from
the supplier.

4.2.1. The decentralized system

As in Section 4.1.1, two cases will be analyzed
for the decentralized system: the retailer makes the
investment and the supplier makes the investment.

4.2.1.1. The retailer invests. When the retailer con-
siders the investment decisions without any support
from the supplier, she selects the optimal total
quantity Q* to maximize her individual profits. This
quantity is given by:

O* = Nup — (N — n)uy +ZR\/NO'2D + (N —n)a3.

When the investment decision is made by the
retailer and the total equivalent demand is normally
distributed with mean Nup — (N — n)uy and stan-
dard deviation /Na? + (N —n)s%, the expected
profit function of the retailer is found to be:

E(IIr) = (r — w)Nup

—(r— s)q')(zR)\/No% + (N — n)ag(
+wN —n)uy — K=oy — kn.

The retailer’s expected profit function is convex in
n since:

QE(ITr) _ oy (r — 9)¢(zr)
o’n 4 3/%/NJ% + (N — n)ag( -

Since the expected profit function is convex, the
optimal solution is either making no investment or
making an investment to eliminate the inventory
inaccuracy in all warehouses. Therefore, if we
ignore the fixed costs: n* = N or n* = 0.

As in the previous section, we observe that
there is a threshold for the variable investment
cost k£ such that making an investment becomes
beneficial for the retailer. We define kj as the
investment threshold value where the retailer
starts making a positive profit from making an
investment.

Proposition 4. If ky>k then n* =N, otherwise
n* =0.

Proof. Since the expected profit function is con-
vex, it is argued that if the full investment case
results in lower cost than no investment case,
then the investment is made to eliminate the
inventory inaccuracy in all warehouses. This corre-

sponds to:
(r — 9)$(zr)opvV'N
+ kN <(r — 5)¢p(zr)\/ N(03 + 6%) — wNpiy.

According to the above comparison, the invest-
ment threshold is found to be:

N )p(zR)[V/N(op, + %) — op/N]
R N

Wiy .
(4)

If the variable investment cost k is less than kg,
then the optimal solution for the retailer is making
the full investment when the fixed investment cost is
ignored. [

The effects of parameters oy, 6p and N on the
investment threshold are given in Corollary 2.

Corollary 2. The investment threshold ky increases
in oy and decreases in N, op and uy.

Proof. The effect of N follow directly from (4). The
other effects follow in a straightforward manner as
in Corollary 1. [

Remark. In our numerical results, kg is also
increasing in price r.

The parameters oy and op affect the investment
threshold in the same way as in the NIS scenario.
On the other hand, if there is a large number of
warehouses, to decide on the investment, lower
variable investment costs are expected by the
retailer, because the total amount of investment is
higher when the number of warehouses is large.

4.2.1.2. The supplier invests. When the supplier
considers the investment without any support from
the retailer, his expected profit function is:

E(Ils) = (Nup — (N — n)uy
+ 20y Noh + (N — ) )w — m)
— K0y — kn,

where the optimal ordering quantity is equal to:

0" = Nyup — (N = myiy + zry/ Noh + (N — ).

The expected profit function of the supplier is
known to be convex when zgr is negative and
concave when zg is positive, since:

OE(ITs)* ot (w — m)zgp
o’n 4 3/%/No% + (N — n)o%( ‘
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As in the retailer’s case, we find that there exists
an investment threshold for the variable investment
cost kg such that there is a positive benefit for the
supplier for all k<l€g. The supplier prefers making
an investment if:

(Nup + zropVN)(w — m) — kN
>(N(ptp — py) + zry/ N(0p + 03))(w — m).
Then, kg is found to be:

i (w —m)zr[opvV/N — /N(c% + %)]
N

+ (W —muy. (%)
4.2.2. The centralized system

The optimal order quantity for the centralized
system is

Q" =Nup — (N —n)uy +ZC\/N62D+(N—I’Z)6§(.

As in Section 4.1.2, the expected profit function of
the centralized system is shown to be similar to the
retailer’s expected profit function and it is equal to:

E(IIc) = (r — mNpp — (r — $)p(zc)y/ Noh + (N —m)
+ m(N — I’l)/,tX — K(n>0} — kn.

The convexity of the expected profit function of
the centralized system can be verified since:

OE(Ic)’ I { U )[4 29)
In 4R/Nep+(N—nmoy

Just like in the decentralized case, due to
convexity, the optimal solution is either making no
investment or making an investment to eliminate
the inventory inaccuracy in all warehouses.

TLike kL, the threshold for the centralized system
ke is

i (r — $)¢(zo)[v/N(o} + %) — op/N] o
N

Hy-

(6)

Similar to the decentralized case, if the investment
variable cost k is less than k{, then the optimal
solution for the centralized system is making the
investment when the fixed investment cost is not
considered.

As proposed in Corollary 2, IEE increases in the
inventory inaccuracy variance, oy and decreases in
the number of warehouses, N and the demand
variance, op. In contrast to the NIS scenario, the

variable investment threshold decreases in the
number of warehouses for the retailer and the cen-
tralized system.

The analysis performed to compare the invest-
ment decisions of the centralized system and the
retailer in Proposition 2 is valid for the IS scenario.

When NIS and IS scenarios are compared, it is
concluded that k£ is always greater than l€£ and kE
is always greater than l% (see Egs. (1) and (4) and
(3) and (6)). Under the IS scenario, the retailer and
the centralized system have less tendency to make
an investment. A general conclusion is that inven-
tory sharing decreases the need for the RFID
investment.

For all the scenarios proposed, after finding the
optimum number of warehouses, the second step is
making a comparison of the increase in the expected
profit with the fixed investment cost and to decide
whether to invest or not.

4.2.3. Coordination of the supply chain

As in the NIS scenario, to coordinate the supply
chain under the investment decision, a revenue
sharing contract or a modified version of the
buyback contract is used. The mean of inventory
inaccuracy, uy is assumed to be 0. We present the
analysis for the revenue sharing contract. The
corresponding results for the buyback contract can
be found in Ugkun (2006).

Under the revenue sharing contract, the expected
profit functions of the retailer and supplier are as
follows:

E(IIr) = (pr — w)Nup — p(r — $)p(zr)
X\/NO'ZD + (N — I’l)O%( — 91K{n>0} — Okn

and

E(ITs) = (Nup + ZR\/NG%) + (N — n)a3)(w —m)
+ (1= Br(Npp — 9(zr)\ [ N + (N — o)

+ (1= Ps(er + ()Y Nah + (N = o)
— (1 = 0K >0y — (1 — O2)kn.

For system coordination, the investment deci-
sions must be the same and the order quantities
must be equal for the centralized and decentralized
systems. The optimum 67 and 63 that coordinate the
system are equal to S as proposed in Proposition 3.

In addition to the above case, it may be argued
that under the coordination conditions explained
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for the revenue sharing contract under the NIS
scenario, the coordination can be achieved even if
investment cost is not shared according to the ratio
p. However, the conditions coordinate the system
only if making an investment is optimal for the
centralized system.

5. Numerical results

In this section, the findings of our study are
illustrated by numerical examples. As the base case
in the numerical examples, we used the following
parameters: pp = 100, op = 30, uy = =2, ox = 10,
r=10, w=5, m=3, s=2 and N =10. (The
variable investment cost, k, changes for every
example, since the profit improvements are com-
pared. A k value which results in an investment
decision is chosen.) In order to evaluate the effect of
any parameter, we vary the value of that parameter
while keeping the others at their base values.

Let us first investigate the impacts of changes in
the financial parameters which have an effect
through the critical fraction «. In Fig. 2, the x-axis
corresponds to the o« and the y-axis corresponds to
the expected profit when the investment is made.
The critical fraction is equal to (r —m)/(r — s) for
the centralized system and (r —w)/(r —s) for the
decentralized system. If the critical fraction is low, it
can be interpreted as a low relative profit margin
and vice versa. The results are reported for the
centralized and decentralized systems under NIS
and IS scenarios. Our first focus is quantifying the
decentralization penalty (i.e. the profit difference
between the decentralized and the centralized
system). In Fig. 2, it is observed that this difference
can be severe when the critical fraction is low for the
retailer (see for example ag = 0.25 and 0.375). This
is the well-known effect of double marginalization.
It is also observed from Fig. 2 that the decentraliza-
tion penalties of the NIS scenario are worse than the

~N
o
o
o

6,000

o
o
S
S

Expected Profit

0.25 0.375 0.5 0.625
Critical Fraction (Retailer)

B Centralized System
Bl Decentralized System

ones of the IS scenario. This is due to the fact that
under the IS scenario the system requires lower
inventories thanks to the demand pooling effect
even before the investment. Under both scenarios,
the retailer may not make any investment when her
profit margin is low, even though it is optimal
for the centralized system (when uy =0, see
Proposition 2).

In Fig. 3, the effects of the standard deviation of
the inventory inaccuracy are investigated. In this
figure, the y-axis corresponds to the profit improve-
ment which is the difference of the expected profits
of the system that makes a full investment and the
one that makes no investment. It is observed that as
the standard deviation of the inventory inaccuracy
increases, the system (the centralized system and the
retailer) benefits more from making an investment.
If the variance of demand is high, trying to decrease
the variance of inventory inaccuracy may be mean-
ingless; since the profit improvement may not
compensate the fixed investment cost. It is easier
to make an investment if the standard deviation of
demand is low (see Corollaries 1 and 2). Fig. 3
depicts that property with the numerical examples
for the NIS and IS scenarios. As the standard
deviation of demand increases, the profit improve-
ment decreases (for the centralized system and the
retailer). It is also observed in examples not
reported here (see Ugkun, 2006) that the effect of
demand variance on the investment decision de-
creases if the mean of the inventory inaccuracy is
negative, since under this situation the inventory
inaccuracy problem is more critical.

Next, we compare in Figs. 4 and 5 the individual
profit improvements of the retailer and the supplier.
The figures illustrate that when the wholesale
price increases (or the retailer’s critical fraction
decreases), the profit improvements for the supplier
are higher. In this situation, either too low or
too high critical fractions result in low profit

7,000

6,000

Expected Profit

5,000

0.25 0.375 0.5 0.625 0.75
Critical Fraction (Retailer)

B Centralized System
& Decentralized System

Fig. 2. The effect of investment decision on decentralization under the IS and NIS scenarios.
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Fig. 3. The effects of the standard deviation of the inventory inaccuracy and the demand on investment decision.
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Fig. 4. The profit improvements for the retailer (left) and the supplier (right) (1, = 0 and the retailer makes the investment decision and
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« 507 50 1
5 -
g 40 A S 40
5 ./’—_.—‘h\\—. g
5 30 o 30 A
s o
£ 20+ g_ 20 A
104 &¥—* ) — = 101 \
a 5
0 T T T T T T a 0 T T |
02 03 04 05 06 07 08 0 0.4 tm:: 0.8
—— |S Critical Fraction (Retailer) Critical Fraction (Retailer)
—=—NIS ——|S
—=—NIS

Fig. 5. The profit improvements for the retailer (left) and the supplier (right) (¢, = 0 and the supplier makes the investment decision and

pays for the investment).

improvements for the retailer. If the supplier does
not have a high profit margin, he may not prefer to
make an investment. This can be seen, for instance,
in the cases corresponding to ag = 0.5, 0.6 and 0.7
in Figs. 4 (right) and 5 (right). In addition, in other
numerical examples, it was observed that the centra-
lized system and the retailer prefer to make an
investment if the mean of the inventory inaccuracy

is negative whereas the supplier prefers to make an
investment if the mean of the inventory inaccuracy
is positive (Uckun, 2006).

In Fig. 6, the variable investment thresholds of
the retailer for the IS and NIS scenarios are
depicted. The retailer has a higher variable invest-
ment threshold when there is no inventory sharing.
The same result is relevant for the centralized
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Fig. 6. Comparison of the variable investment thresholds of the
retailer under IS and NIS scenarios, puy = 0.

system. If the profit margin is either too low or too
high, the variable investment threshold is low both
for the centralized system and the retailer.

Finally, a common observation from our numer-
ical studies is that if there is no inventory sharing
between the warehouses, making an investment to
decrease inventory inaccuracy is more beneficial.

In the following section several extensions of our
model are considered and the results of relaxing
some assumptions are represented.

6. Extensions

In this section, we consider some extensions of the
model introduced in Section 3. We try to observe
the effects of relaxing some assumptions. In Section
6.1, we analyze the case where the system para-
meters are asymmetric for every warehouse so that
partial investment decisions can be optimal. In
Section 6.2, we analyze the situation where the
demands are correlated. In Section 6.3, imperfect
RFID implementation is analyzed. Each section is
analyzed both for NIS and IS scenarios. The
analysis is performed by considering the centralized
case, but the results are relevant for the decentra-
lized case as well (the retailer makes the investment
decision). Throughout this section, the fixed invest-
ment cost is not considered since it is easy to take
into account and py is assumed to be 0 to facilitate
the comparison.

6.1. Asymmetric parameters

NIS scenario: The statistical and financial para-
meters for each warehouse were identical in the
model in Section 3. Here, we investigate the
situation with non-identical parameters. Since non-
identical warehouse parameters result in different

investment thresholds, partial investment decisions
can be optimal in the case of asymmetric para-
meters. The main results are summarized in
Proposition of Appendix A.1.

In case of non-identical parameters, the decision
in which warehouse to implement the technology is
affected in the following ways. First, if demands for
the warehouses are non-identical, the optimal policy
is implementing the technology at warehouse for
which the variance of the demand is the smallest.
Second, if the inventory inaccuracies of warehouses
are not identical, the optimal policy is implementing
the technology in the warehouse for which the
variance of inventory inaccuracy is the highest. The
above results are obtained using similar arguments
to Corollaries 1 and 2.

IS scenario: In the IS scenario, the ordering
decision of a warehouse affects the other ware-
houses since the inventory is shared. Therefore,
when deciding on investment, all investment alter-
natives must be considered.

Let us focus on the asymmetry of the parameters
ox and k in order to keep the analysis tractable. If r,
w and m were asymmetric for the warehouses, the
expected profit function could not be written in
the form that we used in the previous sections. This
would bring new issues such as how to share
the items that have different prices. Throughout
the analysis, it is observed that the asymmetry of the
mean pu, and the standard deviation op of demand
do not have an effect on the investment decision.

In Appendix A.2, we show that there is a
complementarity between the investments in differ-
ent warehouses, which suggests that implementing
the technology in a warechouse makes making the
investment in other warehouses more attractive.
We, therefore, argue that full investment is optimal
for the system if the variable investment costs are
low. On the other hand, it is found that if the
variable investment costs are too large or relative
values of inventory inaccuracies of the warehouses
are different, making full investment may not be the
optimal solution.

6.2. Demand correlation

NIS scenario: Let us relax the assumption of
independent demands and consider correlated
demands for the warehouses. For the NIS scenario,
the demand correlation does not have an effect on
the system. Under the NIS scenario, each ware-
house is considered separately and the demand
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correlation does not change the ordering decisions
and expected profits. Since inventories of the
warehouses are separate, the ordering decision is
based on the marginal demand distributions.

IS scenario: The expected profit function can be
written in case of demand correlation under IS
scenario, the expected profit is shown to be convex
in n. The optimal solution is still making the full
investment or no investment. The details of the
analysis can be found in Appendix B.

The variable investment threshold decreases as
the correlation between warehouses increases. As the
demand correlation increases, the effective demand
variance also increases. Since an increase in the
demand variance decreases the variable investment
threshold, an increase in the demand correlation has
the same effect on the variable investment threshold.

6.3. Imperfect RFID implementation

NIS scenario: Although RFID technology pro-
mises many benefits and most companies are ready
to implement the technology, it has some short-
comings. First of all, pilot programs have shown
that errors such as misread and no-read occur too
often. Eighty percentage of success rate in reading is
being identified in the report of AMB Property
(2004). Secondly, radio frequencies are absorbed by
liquids and reflected by metals. Such problems in
implementation may result in imperfect implemen-
tation of the technology. In our initial model, we
assume that when the technology is implemented in
a warchouse, the inventory inaccuracy is completely
eliminated. However, this may not be the case in
real applications. We relax the assumption of
perfect implementation in this section. Let ¢ denote
the fraction of inventory inaccuracy that is elimi-
nated by investing on the RFID technology.

The expected profit and the variable investment
threshold increase in efficiency of implementation,
which means that the system can pay more for the
investment if the implementation is perfect. The
detailed analysis can be found in Appendix C.

IS scenario: As in the NIS scenario, the expected
profit function and the investment threshold is
increasing in ¢ under the IS scenario. This is
summarized in Appendix C.

7. Conclusion

One of the important premises of the RFID
technology is decreasing the inventory inaccuracy.

We focused on the problem of how fixed and
variable investment costs related to RFID affect a
decentralized supply chain. Our model yields several
insights on RFID investment cost sharing in a
supply chain under different situations. Obviously,
the RFID investment improves the supply chain
efficiency by decreasing inventory inaccuracy under
the two proposed scenarios if the per warehouse
investment cost is under the threshold and the
increase in expected profit compensates the fixed
investment cost. The thresholds have different
characterizations for the supplier and the retailer
and different decisions may emerge when only one
of the parties makes the investment. If the profit
margin of the retailer is too low, she may not make
an investment to decrease inventory inaccuracy
although it is optimal for the centralized system.
Also, the penalty of decentralization can be severe
in cases where the profit margin of the retailer is
low. Finally, the effect of the investment on supply
chain efficiency is much more significant when there
is no inventory sharing between the warehouses.

We can also characterize the important factors
for the investment decision. Clearly, making an
investment is easier when the per warehouse and
the fixed investment costs are low. In addition, as
the demand variance increases, the tendency of the
system to make an investment decreases. If the
market is characterized by highly uncertain de-
mand, making an investment on the RFID technol-
ogy to decrease inventory inaccuracy may not be
reasonable. It is also observed that initiatives
toward better supply chain efficiency such as
increased demand pooling or inventory sharing
between retailers diminishes the need for RFID
investment.

Our analysis focuses on the inventory inaccuracy
reduction aspect of the RFID technology. However,
it is known that this technology may provide other
benefits such as making warehouses smaller, im-
proving shelf availability, decreasing out of stocks
at the retail store level, etc. It would be a challenging
but useful extension of our model to take into
account the store-level benefits of RFID.

Appendix A. Asymmetric parameters
A.1. Asymmetric parameters in the NIS case
Let us relax the assumption of identical ware-

house demands, inventory inaccuracies, prices,
wholesale prices and production costs. Let uj and
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op;, denote the mean and standard deviation of
warehouse i’s demand, oy, denote the standard
deviation of warehouse 7’s inventory inaccuracy,
and r;, w; and m; denote price, wholesale price and
production cost for warehouse i, respectively. The
variable investment cost threshold for warehouse i is
k,-T. Proposition 5 identifies the optimum investment
level when the parameters are non-identical for the
warehouses.

Proposition 5. If the system parameters (ip, 6p, Oy,
r, w, m and s) are not identical for the warehouses, the
optimal policy is ordering the warehouses according
to the thresholds kT, kT, o ,k% in decreasing order
and making the investment in the warehouses whose
threshold values are greater than the actual variable
investment cost, k.

Proof. In our initial model, we make the investment

in warehouses for which the variable investment

threshold is greater than the actual variable invest-

ment cost. (Invest if k<k€ (without considering

fixed investment cost), otherwise do not invest.)
For warehouse i:

if k<k(T:, then the expected profit function
increases by making an investment,
if k>k(, then the expected profit function
decreases by making an investment.

If the warehouses are ordered in the decreasing
order according to the their variable investment
thresholds, there will be a warehouse for which
making an investment becomes non-profitable. The
optimal decision is investing up to this ware-
house. [

Proposition 5 defines the characteristic of optimal
investment decision in case of non-identical ware-
house parameters. The optimal policy is making no
investment or full investment if the parameters are
identical, because the investment thresholds of every
warehouse are equal. In the asymmetric parameters
case, the optimal solution is again implementing the
technology in the warehouses that have greater
variable investment thresholds than the actual
variable investment cost. However, in that case the
investment thresholds are not equal. So, a partial
investment decision can be optimal. It should be
noted that non-identical means of the warehouse
demands do not affect the optimal decision.

A.2. Asymmetric parameters in the IS case

Here, we perform a marginal analysis to find out
the optimal investment decision in the case of
asymmetric parameters in the IS case. To this end,
we use supermodularity and complementarity con-
cepts. Complementarity suggests that having more
of one variable increases the marginal returns to
having more of the other variable. A function f :
E; x E; — R has increasing differences in (e;,¢)) if
the following inequality holds (Amir, 2005):

SO +ete)—f+e)=f(y+e)—f»)
Vy,ei,e; € R. (7

Let us define I1¢(-) as the expected profit of the
centralized system, y as a vector representing the
warehouses where the RFID is implemented, ¢; and
e; as the unit vectors showing that the RFID
technology is implemented in warehouses i and j.
Please note that y is a vector of 0,1 in R" and ¢; and
e; are unit vectors in R". In Proposition 6, inequal-
ity (7) is shown to be true for our model under some
conditions.

Proposition 6.

Hc(y +ei+e) — Hc(y +e)=Ic(y +¢) — Hc(y)
Vy, €, e € RN. (8)

Proof. Let us denote I as the set of warehouses
where RFID is implemented and NI as the set of
warehouses where RFID is not implemented and
select two warehouses i and j such that i,j € NI
Then, I1c(y + e; + ¢;) is the expected profit when the
technology is implemented in warchouses that
belong to set 7 and in warehouses i and j, I1c(y +
e;) and Ilc(y + e;) are the expected profits when the
technology is implemented in warehouses which
belong to set / and additionally warehouse i and
warehouse j, respectively, and I1c(y) is the expected
profit when no additional investment is made
(RFID is implemented in warehouses that belong
to I).

To show that the inequality holds, we write the
expected profits explicitly.

N
(r—m) (Z qu> — (r — 9)$(zc)
q=1

Z G%(p_ki_kj

N
x o +
Dy
q=1 PENILp#ij
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N
—(r—m) (Z upq) + (r— 9)¢(zc)
g=1

N
2 2 2 .

X g Tp, T g GXP—I—an—l-k,
g=1 PENI p#iyj

N
>(r —m) (Z uD,,> — (r = 9)¢(zc)
q=1
N
2ot o ek —k
q=1 pPeNIp#ij
N
—(r—m) (Z qu> +(r = 9)p(zc)
q=1

N
)
Dy
q=1

By simplifying the above inequality, we obtain:

N
E op, + g ok, + ag(j
=1
q_

PENI p#ij
N

- ZGZDq—i_ Z G%"p

q=1 PENIL p#iyj

2 2 2
E UX,,"'JX,-"'UX]--
PENI p#ij

2 2 2 2
= E 0p, T E 0%, + 0%, + 0%,
q=1 PENILp#ij '

o Z %q—i_ Z Gg(p—i-ﬁi/[.

g=1 PENILp#ij

In the above form it is observed that the
asymmetry of u, and op do not affect the inequal-
ity. Multiplying and dividing both sides by their
conjugates gives the following form:

Proposition 6 establishes that investing in ware-
house j is more profitable when an investment is
made at warehouse i. At first sight, Proposition 6
seems to suggest that implementing the technology
at all warehouses is optimal, since implementation
has a complementarity property. However, in
situations where oy is higher for a warehouse
relatively and/or the variable investment costs for
the warehouses are high, the profit differences
should be investigated carefully. In those situations,
partial investment or no investment decisions may
be optimal, since the increases in profits can be
negative.

Corollary 3. If (1) oy, is strictly higher than o X; and
(2) ki and k; are sufficiently large (for any given i
and j), the optimal policy may not be making the full
investment.

Proof. The values of the parameters may affect the
optimal solution, since inequality (8) may hold since
investing at a warehouse may not be profitable in
some cases. Not to ignore those cases, the expected
profit increases should be investigated carefully. To
show that the optimum investment decision can be
affected by the relative values of oy and k, let us
examine the following inequality which is equal to
inequality (8).

Hc(y +ei+e) — Ic(y)=c(y + ¢;) — IIc(y)
+1c(y+¢) —Ic(y) Vy,ene € RY. 9)

In this inequality, the profit improvement when
full investment is made is compared with the profit
improvements of making individual investments. It
is argued that inequality (9) holds since it is
equivalent to inequality (8). However, by looking
at this inequality, it is realized that making an
investment may decrease the expected profit of

N 2 2 2 N 2
\/qulfqu + ZpeNI,p;&iJ“Xp oy, + \/Eq:ﬂpq + Zpezvl,p;éi,jaxp

2
Oy.
X

>
= .
N 2 2 2 2 N 2 2 2
\/Zq:laDq + ZpeNl,p;ei,/GXp oy, + oy, + Zq:lGDq + ZpeNl,pséi,/JX,, + oy,

Looking at the above form of the inequality, we
see that the inequality holds, since the denominator
of the term on the left is less than the denominator
of the term on the right. O

warehouse i due to high variable investment cost.
Although the equation holds, making the invest-
ment in two warehouses may not be optimal.
Relative values of inventory inaccuracy variances
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may affect the inequality in the same way. As a
result, it is certain that if all the expected profit
increases are positive, the optimal investment
decision is still making the full investment. Other-
wise, profit improvements should be checked for
each pair. [

For example to Corollary 3, the following four
cases which result in different solutions can be
outlined:

[ ] N=2, Ox, 220, Ox, = 10, Op, = 10, Op, = 10,
r=5 m=3, s=0 and k; =k, =10. The
difference between no investment and full invest-
ment cases is IIc(y + e + e2) — IIc(y) = 3.8 and
investing in the first warehouse increases the
profit by Ic(y + e1) — I1c(y) = 7.7 and investing
in the second warehouse increases the profit by
IIc(y + e3) — H(y) = —6.2. Clearly, the optimal
decision is investing in warehouse 1 only. In this
case, the inventory inaccuracy variance of ware-
house 1 is higher than the inventory inaccuracy
variance of warehouse 2.

[ ] N:2, 0Xx, :20, Ox, = 14, Op, = 10, Op, = 10,
r=5 m=3 s=0 and k| =k, =20.
Hc(y + e +e) —Ic(y) = —12.8, Ic(y+er)—
IlIc(y) = —3.9 and Ilc(y + e2) — IIc(y) = —12.8.
As it is seen, investing in the warehouses
decreases the expected profit (the variable invest-
ment costs are too large), the optimal decision is
making no investment. In this case, the variable
investment costs are large.

[ ] N=2, OXx, =20, 0Xx, =20, Op, = 10, Op, = 10,
r=5 m=3,5s=0and k| =5,k, = 15. lc(y+
e1+e) — Ic(y) =138, Ic(y +e) — lc(y) =
8.8 and IIc(y + e3) — IIc(y) = —1.2. Investing in
warehouse 1 is profitable since the variable
investment cost is low for warehouse 1. Although
investing in warehouse 2 alone is not profitable,
the optimal decision is still making the full
investment.

[ ] N=2, Ox, = 30, 0X, =20, Op, = 10, Op, = 10,
r=5 m=3, s=0 and k| =k, =10. Hc(y+
e1 +e) —Ic(y) =275 IHc(y+e)—Ic(y) =
17.5 and Hc(y + e;) — IIc(y) = 0.75, the optimal
decision is making the full investment.

Appendix B. Correlated demands
Since demand correlation has no effect on the

decision in the NIS case, we focus only on the NIS
case in this section. The demand for warehouse

i is normally distributed with mean u; and variance
o3 and demands for any two warehouses are cor-
related with correlation coefficient p,, —1/(N — 1)

<pp<1." By recalling that:

N N N
Vcﬂ(ZDi) =D op;+2) ) CouD;, D)
i=1 i=1

i=1 j<i
and
Cov(D;, Dj) = pp X ap, X oD

the total demand variance is 13 = [N + N(N — 1)
pD]o'zD and total variance affecting the system is
15 + No%.

Depending on the above structure, the optimal
total order quantity of the centralized system is

0" = Nup + 2c1/(N + NN — Dpp)od + (N — n)a.
(10)

If the demands for warehouses are correlated,
the expected profit function of the centralized
system is

E(Ilc) = (r —m)Nup — (r — s)¢(zc)
x \/ (N + NN — 1)pp)ed + (N — no’
— K{n>0} — kn.

It is seen in Eq. (10) that when z¢ is positive
(underage cost is higher than overage cost), as the
demand correlation increases the centralized sys-
tem’s total order quantity increases. When z¢ is
negative (underage cost is lower than overage cost),
as the demand correlation increases the centralized
system’s total order quantity decreases. On the
other hand, the expected profit function decreases in
pp and the negative correlation is beneficial for the
system, since the system has the ability to share the
inventories between warehouses.

As it is seen, the demand correlation between the
warehouses does not affect the structure of the
expected profit function. The expected profit func-
tion is still convex in n, since:

OE(Ic)
’n
_ (r = 99(z0)} =0
43/(N+ NN = Dpp)ad + (N —n)a%

'To ensure that the total demand variance is positive (Zhu and
Thonemann, 2004).
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The optimal solution is still making the full
investment or no investment. However, the variable
investment threshold is affected by the correlation
of demands. The variable investment threshold
value when demands are correlated is

It is observed that as the efficiency of implemen-
tation increases (as ¢ increases), the expected profit
increases, which is an intuitive result.

Imperfect implementation does not affect the
structure of the expected profit function. The

kL =
¢ N

The variable investment threshold is decrea-
sing in pp, as can be verified by taking its first
derivative:
kL 1
oo = 3 PEOW = Dir=s)a,

y 1
<\/(N + N(N — l)pp)as, + No3

! <0.
V(N +N(N = 1)pp)a3,

As the demand correlation increases, the effective
demand variance also increases. Since an increase in
the demand variance decreases the variable invest-
ment threshold, an increase in the demand correla-
tion has the same effect on the variable investment
threshold.

Appendix C. Imperfect implementation
C.1. Imperfect implementation in the NIS case
Let us consider the NIS scenario first. The

optimum order quantity for the warehouse in which
the RFID is implemented is

0" = pup +zc\/(1 — oy + 07,

and for the warehouse in which the RFID is not
implemented is

Q" = up + zc\/ 0% + 0.

The expected profit function is
E(Ilc) = (r—m)Npup — (r — $)d(zc)

x[n\/o%—l—(l — o + (N —n)
x\/o%—i—a%(] — K=oy — kn.

_ 1= 9V + NV = Dpplap + Noy = V(N + NIV = Dpplop]l

function is increasing if:

T = =00 (/o + o
—/oh+ (1 — t)a%,) —k=0.

The optimum solution is making the full invest-
ment, if the first derivative above is greater than 0,
and making no investment otherwise.

The expected profit function is increasing when:

k=(r —s)¢(zc) [\/0% + 0% — \/0% +(1 - t)ag(].
(11)

The above expression characterizes the variable
investment threshold. The variable investment
threshold increases in ¢, which means the system
can pay more for investment if the implementation
is perfect.

C.2. Imperfect implementation in the IS case

For the IS scenario, similar results to the NIS
scenario are obtained. The total optimum order
quantity and the expected profit function in case of
imperfect implementation are

O*=Nup+ ZC\/(N — ni)o% + No3,
and
E(Ilc) = (r —m)Nup — (r — 5)¢(zc)
x \/ (N — nt)o% + No?,
— Kiy>0) — kn.

Convexity of the expected profit function is verified
since:

OE(IIc)’ _ ax(r = $)p(zc)P?

o%n _43/%/Na%+(N—nt)0'§(/ '
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In case of imperfect implementation under the IS
scenario, the variable investment threshold is
(r— S)(ﬁ(Zc)[\/N(O'ZD + o%() - \/NO'ZD + (N — Nt)agf]

T _
ke = N .
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