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a b s t r a c t

This paper takes a utility-based approach to the single-period and single-item newsvendor model.
Unlike most models in the literature the newsvendor is not necessarily risk-neutral and chooses the
order quantity that maximizes the expected utility of the cash flow at the end of the period. We suppose
that there is uncertainty in demand as well as supply. Furthermore, random demand and supply may be
correlated with the financial markets. The newsvendor exploits this correlation and manages his risks by
investing in a portfolio of financial instruments. The decision problem therefore includes not only the
determination of the optimal ordering policy, but also the selection of the optimal portfolio at the same
time. We first use a minimum-variance approach to select the portfolio. The analysis results in some
interesting and explicit characterizations on the structure of the optimal policy. We also present
numerical examples to illustrate the effects of the parameters on the optimal order quantity, and the
importance of financial hedging on risk reduction.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Inventory models, including the single-period and single-item
newsvendor model, in which the decision maker needs to choose
an appropriate order quantity that balances the cost of ordering
too many against the cost of ordering too few, have received
significant attention in the literature. Within this literature, much
has been written about the newsvendor who aims to maximize
expected profit or minimize expected cost. However, there is
abundant evidence that decision makers are sensitive to risk and
interest in risk-sensitive approaches is increasing. Expected utility
theory provides by far the most widely used method for modeling
risk-sensitivity in decision making. In this framework, the aim of
the risk-averse decision maker is to maximize the expected utility
of the cash flow. The utility function represents the risk-sensitivity
of the decision maker and it has been used in financial decision
making for a very long time despite its drawbacks. Our primary
aim in this paper is to present a utility-based approach to the
classical newsvendor problem in inventory management.

Expected utility maximization in inventory models began with Lau
(1980). Bouakiz and Sobel (1992) examine the impact of exponential
utility functions on optimal policies for both finite-horizon and
infinite-horizon problems. Eeckhoudt et al. (1995) study a risk-averse
newsvendor who is allowed to obtain additional orders if demand is

higher than his initial order. Agrawal and Seshadri (2000) also
consider a risk-averse newsvendor who decides not only on the order
quantity, but also on the selling price which affects the demand.
Agrawal and Seshadri (2000) consider the importance of intermedi-
aries in supply chains to reduce the financial risk faced by risk-averse
retailers. Schweitzer and Cachon (2000) investigate the optimal order
quantity for a number of models that consider different types of risk
aversion and conclude that for high-profit products the optimal order
quantity is less than the order quantity maximizing the expected
profit, while the opposite is true for low-profit products. Chen et al.
(2007) discuss risk-aversion in a multi-period inventory model. Two
problems, one where demand does not depend on price and another
where demand depends on price, are considered. Keren and Pliskin
(2006) consider an expected utility maximizing newsvendor who is
faced with uniformly distributed demand. The objective function in
Ahmed et al. (2007) involves coherent risk measures in inventory
management. Wang et al. (2008) analyze how selling price affects the
order quantity, while Wang andWebster (2009) consider a loss-averse
newsvendor model by using a kinked piecewise-linear utility function.
A model with a mean-variance objective function is discussed in Wu
et al. (2009). Choi and Chiu (2012) discuss the implications of mean-
downside-risk and mean-variance models for sustainable fashion
retailing. Özler et al. (2009) consider a multi-product newsvendor
problem under a value-at-risk constraint and review the related
literature that considers downside risk. A discussion on the mean-
variance approach can be found in Tekin and Özekici (2013).

Although the major source of randomness is the demand,
supply may also be random in inventory models. The quantity
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received may not be equal to the quantity ordered. During
production or transportation, the supply process may be disrupted
because of some limitations or unforeseen events. Chopra and
Sodhi (2004) state that supply failures may be caused by natural
disasters, labour disputes, machine failures, economic conditions,
accidents, wars, terrorism, supplier equipment malfunctions and
other causes. Serel (2008) discusses issues related to inventory and
pricing decisions in the presence of uncertain supply. The reader is
referred to Arifoğlu and Özekici (2010) and the references cited
there for an overview of the literature and recent developments on
inventory models with random supply.

The randomness of both demand and supply increases the
uncertainty in the model. If the decision maker is risk-sensitive,
this makes the problem more challenging from the perspective of
risk management. In a related line of research, Gaur and Seshadri
(2005) give a very convincing argument and evidence that random
demand may be highly correlated with a financial asset. Their
discussion is motivated by statistical analysis that an inventory
index (Redbook), that represents average sales, is highly correlated
with a financial index (SP500), that represents average asset
prices. This immediately leads to the conclusion that risks in an
inventory model may be hedged by using a portfolio of assets in
the financial markets. They show that a risk-averse newsvendor
orders more inventory when hedging is applied. In our paper, we
also take a look at a utility-based model where financial hedging is
possible. Many financial instruments, such as options and futures,
are available to hedge the inventory risks. The risk-sensitive
decision maker not only tries to maximize the expected utility of
the cash flow at the end of the period, but also needs to consider
decreasing the risk or the variance of the cash flow by investing in
a portfolio of market instruments that are correlated with the
random demand and supply. An earlier paper using financial
instruments to hedge the risk of inventory systems is by Anvari
(1987). Caldentey and Haugh (2006) consider a non-financial
corporation which simultaneously chooses an optimal operating
policy and an optimal trading strategy in the financial markets.
Chu et al. (2009) consider a continuously reviewed model to
mitigate inventory risks when uncertain demand is correlated
with the financial market. A mean-variance criterion is used to
develop an effective financial hedging policy for inventory man-
agers. Ding et al. (2007) propose a framework to combine opera-
tional and financial hedging. Chod et al. (2010) investigate the
value of financial hedging with respect to operational hedging
(resource flexibility) and find that financial hedging has higher
value when operational hedging opportunities are low.

Our work is primarily concerned with financial hedging by
using a portfolio of financial instruments in the market. One
should note that there are other risk mitigation methods that
include the ability to set prices, and buy/sell intermediate products
in the market. Price setting, for example, allows the inventory
manager to have some control on the uncertainty of the demand
or risks by choosing the price as well as the order quantity. This is
due to the fact that the demand is some random function of the
price. In the newsvendor setting, Kocabıyıkoğlu and Popesu (2011)
introduce a measure, called lost sales rate elasticity, associated
with price-setting flexibility. This measures the percentage change
in the rate of lost sales with respect to percentage change in the
price for a given order quantity. They show that the measure can
be effectively used to characterize structural results for pricing and
inventory decisions. In particular, they use this measure to identify
conditions for which the optimal price and quantity can be
obtained as any solution to the first-order optimality condition.
Kazaz and Webster (2013) provide a risk-sensitive extension by
incorporating supply uncertainty as well as risk aversion. In an
earlier paper involving supply uncertainty, Kazaz and Webster
(2011) consider a specific problem in agriculture involving a 2 stage

decision process where the manager decides on the amount of
land to rent in the first stage when the product yield of the land is
random. In the second stage, given the realized yield of the first
stage, the problem is to find the optimal selling price, amount of
the final product to be produced from internally grown and
externally purchased fruit, as well as the amount of fruit to be
sold in the open market without converting to the final product.
This is a specific model that applies to a problem faced in
agriculture where yield is the only source of randomness. Our
model is the well-known newsvendor model with random
demand as well as random supply where supply randomness
may be due to random yield, or capacity or both. The models,
analysis, results and the corresponding cash flows are completely
different. Regarding risk hedging, there is a resemblance to our
model in Kazaz and Webster (2011) where the authors discuss the
value of using fruit futures in mitigating the supply risk in their
model. Assuming that there is a futures market for the fruit, they
show that fruit futures do not have an impact on firm's profit-
ability in the risk-neutral case due to the implicit assumption on
no arbitrage in the futures market. They arrive at the same
conclusion under yield independent trading costs. Finally, through
a numerical illustration with the exponential utility function, they
illustrate that using fruit futures has an impact on the optimal
decisions. The ideas presented by the numerical illustration in
Kazaz and Webster (2011) are very much related to our ideas since
they also address the effect of risk hedging. However, as men-
tioned above, the fact that the cash flows are not related is a
significant difference. More importantly, risk hedging is the central
theme in our paper and this constitutes our main contribution to
the available literature. We present a rather general model with
demand and supply risks to be hedged. We do not suppose the
presence of a futures market for the commodity in question. Our
analysis is based on the assumption that there are a number of
derivative securities present in the financial markets and the cash
flow is hedged by investing in a portfolio of these derivatives. We
present a complete analysis on how to hedge optimally and
discuss its impact on the optimal order quantity of the news-
vendor model as well as the risk (or the variance of the cash flow).
We present a computationally tractable procedure and demon-
strate via a numerical illustration that it is possible to mitigate
inventory risks through various instruments in the financial
markets. To position our paper in the literature in comparison to
those discussed above, we want to mention that our model is one
where the IM first identifies the optimal risk hedging financial
portfolio that minimizes the variance of the cash flow for any
given order quantity. Then, he chooses the optimal order quantity
that maximizes the expected utility of the hedged cash flow. This
approach is at the intersection of industrial and financial management
related to inventory control. In this regard, our approach is similar to
Gaur and Seshadri (2005) who investigate a newsvendor problem
with a similar risk hedging perspective. We show that their approach
can be generalized to supply uncertainty in addition to demand
uncertainty and provide an explicit solution to the problem of finding
the variance minimizing portfolio and the corresponding optimal
inventory decisions. We think that these are significant and non-
trivial generalizations of the pioneering approach of Gaur and Seshadri
(2005) and enhance the application scope of their framework con-
siderably. Although our model uses financial market instruments for
risk hedging, there may be additional benefits in using price setting
flexibility as well. This will surely provide improvements in the
reduction of operational risks.

In this paper, we provide two contributions to the literature by
considering a utility-based approach to the newsvendor model
with random supply and by using financial hedging. The presenta-
tion and the results are given in two main parts. In the first part,
the newsvendor problem with random supply is considered under
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the expected utility framework without financial hedging. The
standard model is considered in Section 2 and the model with
random supply is discussed in Section 3. The effect of risk aversion
and other parameters are analyzed in Section 4. The second part
considers the risk-sensitive newsvendor model with random
demand and supply which are correlated with the financial
market. Section 5 presents the hedging model and the main
results. A number of illustrations are given in Section 6 and we
make our concluding remarks in Section 7. Finally, the detailed
derivations and proofs of our results are all placed in Appendix A
without affecting the flow of our presentation.

2. Utility-based model

We first consider the standard newsvendor model where
randomness is only due to demand. The formulation below is
similar to the one in Eeckhoudt et al. (1995). The demand D during
the single-period is random with a known distribution function
GDðxÞ ¼ PfDrxg and probability density function gD. We suppose
that the newsvendor has an initial wealth z0. He buys items at unit
purchase cost c and sells at unit sale price s. Unsold items at the
end of the period can be salvaged at unit salvage value v. More-
over, if demand exceeds the order quantity, the newsvendor can
buy additional items at a higher cost ch and sell them at the same
price s where crchrs. Therefore, we assume that there is
negative unit shortage penalty pZch�s for each demand that
exceeds the order quantity. To avoid trivial situations, we suppose
that s4c4vZ0 and c�srpr0. It follows from these conditions
that sþp�cZ0 and sþp�vZ0.

The newsvendor is risk-sensitive and this sensitivity is repre-
sented by some utility function u that is twice differentiable. To
avoid trivial situations, we suppose that u is not equal to a
constant and it is strictly increasing so that its derivative u040.
Moreover, the utility function is concave with second derivative
u″r0. The risk-sensitive newsvendor chooses the order quantity y
under the random demand D. The aim of the newsvendor is to
maximize the expected utility of the cash flow by choosing an
order quantity y, or

max
yZ0

HðyÞ ¼ E½uðCFðD; yÞÞ� ð1Þ

where

CFðD; yÞ ¼ z0�ðc�vÞyþðsþp�vÞminfD; yg�pD ð2Þ

is the random cash flow. For further analysis, let

CFðx; yÞ ¼
CF � ðx; yÞ ¼ z0�ðc�vÞyþðs�vÞx; xry

CF þ ðx; yÞ ¼ z0þðsþp�cÞy�px; xZy:

(

It clearly follows that CFðy; yÞ ¼ CF � ðy; yÞ ¼ CF þ ðy; yÞ ¼ z0þðs�cÞy.
Note that we can write

E½uðCFðD; yÞÞ� ¼
Z y

0
uðCF � ðx; yÞÞgDðxÞ dxþ

Z 1

y
uðCF þ ðx; yÞÞgDðxÞ dx:

One can easily show that

d
dy

E½uðCFðD; yÞÞ� ¼ �ðc�vÞE½u0ðCFðD; yÞÞ1fDryg�

þðsþp�cÞE½u0ðCFðD; yÞÞ1fD4yg� ð3Þ

and

d
dy

E½u0ðCFðD; yÞÞ1fD4yg� ¼ �u0ðCFðy; yÞÞgDðyÞ

þðsþp�cÞE½u″ðCF þ ðD; yÞÞ1fD4yg�: ð4Þ

In order to solve (1), we set (3) equal to zero and obtain the first
order optimality condition:

gðyÞ ¼ �ðc�vÞE½u0ðCFðD; yÞÞ1fDryg�
þðsþp�cÞðE½u0ðCFðD; yÞÞ��E½u0ðCFðD; yÞÞ1fDryg�Þ

¼ 0: ð5Þ
Moreover, using (4),

d2E½uðCFðD; yÞÞ�
dy2

¼ �ðsþp�vÞu0ðCFðy; yÞÞgDðyÞ

þðc�vÞ2E½u″ðCF � ðD; yÞÞ1fDryg�
þðsþp�cÞ2E½u″ðCF þ ðD; yÞÞ1fD4yg�

r0 ð6Þ
and the objective function is concave. This also implies that gðyÞ is
decreasing in y.

The above development follows Eeckhoudt et al. (1995). How-
ever, unlike that paper, we prefer to present the optimality
condition in terms of the well-known newsvendor critical ratio
that is expressed in terms of the financial parameters. From (5), we
can conclude that the optimal order quantity yn satisfies

E½u0ðCFðD; ynÞÞ1fDryng�
E½u0ðCFðD; ynÞÞ� ¼ sþp�c

sþp�v
¼ bp ð7Þ

where bp denotes the critical ratio which clearly satisfies 0rbpr1.
This ratio will appear throughout this paper in the characterization
of the optimal order quantity yn. Note that (7) gives the optimal
solution provided that gð0Þ40 and gðþ1Þo0. Since, gðyÞ is
decreasing in y, if gð0Þo0 or gðþ1Þ40, there will be no solution
satisfying (7). But, it is clear that the optimal solution is yn ¼ 0 if
gð0Þr0; or

P D¼ 0f gZ E½u0ðz0�pDÞ�
u0ðz0Þ

� �bp: ð8Þ

Since z0�pDZz0, we have u0ðz0�pDÞru0ðz0Þ, the right-hand side
of (8) is clearly between 0 and 1. If PfD¼ 0g ¼ 1, the decision
maker trivially orders nothing and yn ¼ 0.

Moreover, the optimal solution is yn ¼1 if gðþ1ÞZ0; or

PfD¼ þ1gZ1�bp: ð9Þ
This argument supposes that u is bounded. If the demand is finite
so that PfD¼ þ1g¼ 0; the optimal order quantity yn is also finite
and it satisfies (7). Moreover, if PfD¼ þ1g¼ 1, we have yn ¼ þ1.
As a special case, suppose that the decision maker is risk-neutral
so that the utility function is linear with uðxÞ ¼ aþbx. Then, the
optimality condition in (7) reduces to PfDryng ¼ bp which is the
same condition as in the standard risk-neutral newsvendor
problem.

3. Random supply models

We now focus on the extended model where supply is also
random. Let Q ðyÞ be the amount received when the order quantity
is y. Most of the literature on random supply models can be
described by

Q ðyÞ ¼W minfK ; yg: ð10Þ
where KZ0 and 0rWr1 are random variables representing
random capacity of the supplier and random yield respectively.
This implies that once y units are ordered, the supplier can ship at
most K and only a proportion W is received in good shape. The
special case with Q ðyÞ ¼minfK ; yg is referred to as the random
capacity model and Q ðyÞ ¼Wy is called the random yield model.
We refer the reader to Okyay et al. (2014) and the references cited
there for discussions and results on the newsvendor model with
random supply.
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We suppose that the random capacity K has the distribution
function PfKrzg ¼ GK ðzÞ and density function gK. For technical
reasons that will be clear shortly, we suppose that PfK4yg40 for
all yZ0 so that there is a positive probability of fulfilling the
whole order. Similarly, W has the distribution function
PfWrzg ¼ GW ðzÞ and density function gW. We suppose that
PfW ¼ 0go1 so that E½W �40. Note that D, W and K are not
necessarily independent and they have a joint distribution func-
tion FDKW ðx; z;wÞ ¼ PfDrx;Krz;Wrwg. We also assume that all
the conditional density functions gKjW ¼ w and gD∣K ¼ z;W ¼ w exist.

The cash flow can now be written as

CFðD;K;W ; yÞ ¼ z0�ðc�vÞW minfK ; ygþðsþp�vÞminfD;W minfK; ygg�pD

ð11Þ
after replacing y by Q(y) in (2). The aim of the risk-averse news-
vendor is

max
yZ0

HðyÞ ¼ E½uðCFðD;K ;W ; yÞÞ�:

Theorem 1. The optimal order quantity yn satisfies

E½Wu0ðCFðD;K ;W ; ynÞÞ1fDrWyn ;K4yng�
E½Wu0ðCFðD;K ;W ; ynÞÞ1fK4yng�

¼ bp: ð12Þ

The existence and uniqueness of the optimal order quantity yn

satisfying (12) depends on the structure of hðyÞ in (44). The
objective function H(y) is not necessarily concave as it was in the
standard newsvendor model. Therefore, one needs to impose
additional conditions to have a unique optimal solution that
satisfies (12). For example, if hðyÞ is increasing in y, then this
condition indeed provides the optimal order quantity. If there is a
solution yn that satisfies hðynÞ ¼ bp or gðynÞ ¼ 0, then it follows from
(43) that the derivative gðyÞ is nonnegative on ½0; ynÞ and non-
positive on ½yn;1Þ. So, the objective function H(y) is increasing on
½0; ynÞ and decreasing on ½yn;1Þ. Hence, H(y) is quasi-concave and
yn satisfying (12) is the optimal solution.

Moreover, if hð0Þobpohðþ1Þ, then there exists 0oynoþ1
that satisfies the optimality condition hðynÞ ¼ bp or gðynÞ ¼ 0. How-
ever, the optimal order quantity is yn ¼ 0 if hð0ÞZbp; or
PfD¼ 0 K40j gZ E½Wu0ðz0�pDÞ�

u0ðz0ÞE½W �

� �bp:
Similarly, yn ¼1 if hðþ1Þrbp; or
PfD¼1jK ¼1gZ1�bp:
We can also argue that if the demand is finite, the optimal order
quantity is clearly finite.

As a special case, suppose that there is no capacity limitation
and the only randomness in supply is due to yield uncertainty. In
other words, K is infinite. Then, the optimality condition becomes

E½Wu0ðCFðD;W ; ynÞÞ1fDrWyng�
E½Wu0ðCFðD;W ; ynÞÞ� ¼ bp: ð13Þ

The random capacity model with W¼1 yields the optimality
condition

E½u0ðCFðD;K ; ynÞÞ1fDryn ;K4yng�
E½u0ðCFðD;K; ynÞÞ1fK4yng�

¼ bp: ð14Þ

Finally, when W¼1 and K ¼ þ1, there is no randomness in
supply and we obtain the previous result (7). If the newsvendor
is risk-neutral so that the utility function is linear, then the
optimality condition (12) reduces to

E½W1fDrWyn ;K4yng�
E½W1fK4yng�

¼ bp ð15Þ

which is the same condition in Okyay et al. (2014) for the
newsvendor model with random yield and capacity.

4. Sensitivity analysis

In this section, we perform sensitivity analysis by analyzing the
effect of risk aversion and other model parameters on the optimal
order quantity and compare it with the risk-neutral order quantity
yn
RN satisfying (15) for the standard newsvendor model. As stated

before, the objective function is not necessarily concave when
there is random capacity. This imposes additional restrictions on
sensitivity analysis. Therefore, we will suppose that K ¼ þ1 in
this section so that there is supply randomness due to random
yield only. The objective function is concave since the cash flow

CFðD;W ; yÞ ¼ z0�ðc�vÞWyþðsþp�vÞ minfD;Wyg�pD ð16Þ
is also concave in y.

Eeckhoudt et al. (1995) show that as risk-aversion increases,
the optimal order quantity decreases when there is no supply
randomness. They use an argument by Pratt (1964) which states
that an increase in risk aversion corresponds to a concave
transformation of the utility function. We will use the same
approach here in order to show the effect of the risk aversion.
For this purpose, we replace the utility function u(x) with the new
utility function κðuðxÞÞ where κ is a concave increasing function.
Note that this implies the concavity of the new objective function
with utility function κðuðxÞÞ:

We can clearly write

CF � ðx1;wynÞrCFðwyn;wynÞrCF þ ðx2;wynÞ
for all x1rwynrx2. Then,

u0ðCF � ðx1;wynÞÞZu0ðCFðwyn;wynÞÞZu0ðCF þ ðx2;wynÞÞ
and

κ0ðuðCF � ðx1;wynÞÞÞZκ0ðuðCFðwyn;wynÞÞÞZκ0ðuðCF þ ðx2;wynÞÞÞ
ð17Þ

since the utility functions u and κðuÞ are both concave increasing.
The aim of the more risk-averse newsvendor with utility

function κðuÞ is
max
yZ0

~HðyÞ ¼ E½κðuðCFðD;W ; yÞÞÞ�

and the derivative of the objective function (42) now becomes

~gðyÞ ¼ �ðc�vÞE½Wκ0ðuðCFðD;W ; yÞÞÞu0ðCFðD;W ; yÞÞ1fDrWyg�
þðsþp�cÞE½Wκ0ðuðCFðD;W ; yÞÞÞu0ðCFðD;W ; yÞÞ1fD4Wyg�

ð18Þ
and the optimality condition is ~gðyÞ ¼ 0. Moreover, when we
substitute the optimal order quantity yn for the newsvendor
problem with utility function u in (18), we obtain

~gðynÞ ¼ �ðc�vÞ
Z 1

0
wgW ðwÞ dw

Z wyn

0
κ0ðuðCF � ðx;wynÞÞÞ

�u0ðCF � ðx;wynÞÞgD∣W ¼ wðxÞ dxþðsþp�cÞ
Z 1

0
wgW ðwÞ dw

�
Z 1

wyn
κ0ðuðCF þ ðx;wynÞÞÞu0ðCF þ ðx;wynÞÞgD∣W ¼ wðxÞ dx

rκ0ðuðCFðwyn;wynÞÞÞgðynÞ ¼ 0:

This follows from (17) by noting that gðynÞ ¼ 0; sþp�cZ0, and
c�vZ0. Therefore, we can conclude that ~gðynÞr0 and the new
optimal order quantity ~yn that satisfies ~gð ~ynÞ must also satisfy
~ynryn since the derivative ~g is decreasing due to the concavity of
the objective function ~H . We can thus conclude that as risk-
aversion increases, the optimal order quantity decreases.
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To analyze the effects of various model parameters on the
optimal order quantity, we write the optimality condition (13) as

E½Wu0ðCFðD;W ; yðz0; v; c; pÞÞÞ1fDrWyðz0 ;v;c;pÞg�
E½Wu0ðCFðD;W ; yðz0; v; c; pÞÞÞ�

¼ bp ð19Þ

where yðz0; v; c; pÞ is the optimal order quantity for given para-
meters z0; v; c, and p.

By setting the derivative of the left-hand side of (19) equal to
zero, one can show that dyðz0; v; c; pÞ=dvZ0 and optimal order
quantity increases as the salvage value v increases. Similarly,
dyðz0; v; c;pÞ=dvZ0 and optimal order quantity increases as the
penalty cost p increases. Analyzing the effect of the selling price is
much more complicated. Eeckhoudt et al. (1995) conclude that as
the sale price increases, the optimal order quantity increases if the
utility function is in the decreasing partial risk aversion class, and
the quantity decreases if the utility function is exponential. More-
over, Wang et al. (2008) analyze the effect of sale price and
conclude that a risk-averse newsvendor orders less than an
arbitrarily small quantity as sale price increases if sale price is
higher than a threshold value.

To obtain further sensitivity results, we focus on the exponen-
tial utility function which is commonly employed to represent the
risk sensitivity of decision makers who have constant absolute risk
aversion. Suppose that the utility function is exponential so that
uðzÞ ¼ �Ce� z=β , u0ðzÞ ¼ �ðC=βÞe� z=β and u″ðzÞ ¼ �ðC=β2Þe� z=β for
some CZ0. Then, one can show that dyðz0; v; c; pÞ=dz0 ¼ 0 and the
optimal order quantity is independent of the initial wealth. This is
an intuitive result which states that the newsvendor is “memory-
less in wealth” when the utility function is exponential. In the
exponential case, one can also show that dyðz0; v; c;pÞ=dcr0 so
that the order quantity decreases as the purchase cost increases.
However, these statements are not necessarily true for other utility
functions. Similarly, although the optimal order quantity increases
as the purchase cost increases for the exponential utility model,
this is not necessarily true for all utility functions.

5. Utility-based model with hedging

Gaur and Seshadri (2005) presented a strong case for hedging
demand uncertainty in the newsvendor model using a financial
portfolio. We now analyze the case when there is a financial
market in which there are financial securities correlated with
demand and supply. Therefore, the decision maker needs to decide
not only how much to order from the supplier, but also how much
to invest on a portfolio of financial securities to hedge the risks
associated with the uncertainty in demand and supply. Okyay et al.
(2011) consider the inventory management problem with hedging
and provide a risk-sensitive solution approach to this problem by
considering both the mean and the variance of cash flow. The first
aim is to find an optimal portfolio of financial securities that
minimizes the variance of the hedged cash flow for any possible
order quantity. Then, the mean of the hedged cash flow with this
optimal portfolio is maximized by choosing an optimal order
quantity. In this paper, we use a similar risk-sensitive, two-step
solution approach. Although the first step remains the same, as a
second step we aim to maximize the expected utility of the
hedged cash flow.

We assume that the length of the inventory planning period is
T during which the risk-free interest rate is r. The financial
parameters are same as before but to avoid trivial situations it is
assumed that s4cerT 4vZ0 and cerT �sopr0. All cash flows
occur at time T except for the cash payment made at time 0 to
purchase inventory. Therefore, the unit purchase cost c of the
previous analysis is now replaced by its compounded value cerT .

In particular, the critical ratio is accordingly updated as

bp ¼ sþp�cerT

sþp�v
: ð20Þ

Let X¼ ðD;K ;WÞ denote the vector of random variables corre-
sponding to demand and supply uncertainties, and S denote the
price of a primary asset in the market at the end of the period. The
random vector X and the financial variable S are correlated.
Suppose that there are nZ1 derivative securities in the market
where f iðSÞ is the net payoff of the ith derivative security of the
primary asset at the end of the period. In other words, it is the
payoff f̂ iðSÞ received at time T minus its investment cost fiT so that
f iðSÞ ¼ f̂ iðSÞ� f Ti . Let fi

0 denote the price of the ith derivative
security at the beginning of the period when it is purchased. We
then have f Ti ¼ erT f 0i . If the market is complete with some risk-
neutral probability measure Q, then it is well-known that
f 0i ¼ e� rTEQ ½f̂ iðSÞ� and this will lead to EQ ½f iðSÞ� ¼ EQ ½f̂ iðSÞ� f Ti � ¼ 0.
We do not necessarily suppose that the market is complete.
However, the consequences of such a market will be analyzed in
our numerical illustrations in Section 6.

Let αi denote the amount of security i in the portfolio. The total
hedged cash flow at time T is given by

CFαðX; S; yÞ ¼ CFðX; yÞþαTfðSÞ ð21Þ
where CFðX; yÞ denotes the unhedged cash flow, α¼ ðα1;α2; � � �;αnÞ
is a column vector representing the hedging portfolio, αT is its
transpose, and fðSÞ is another column vector representing the
derivative security payoffs with entries fðSÞ ¼ ðf 1ðSÞ; f 2ðSÞ; � � �; f nðSÞÞ.
Note that we do not impose nonnegativity restrictions on the
portfolio α implying that short selling is possible.

We divide the risk-sensitive optimization problem into two. As
is commonly done in financial portfolio optimization, we first seek
the optimal portfolio α¼ ðα1;α2; � � �;αnÞ to minimize the variance
of the total cash flow for a given order quantity y. So, the first step
of the optimization problem is

min
α

VarðCFðX; yÞþαTfðSÞÞ: ð22Þ

Once the optimal solution αnðyÞ is determined for any order
quantity y, the risk-averse decision maker chooses the optimal
order quantity in the second step by solving

max
yZ0

E½uðCFðX; yÞþαnðyÞTfðSÞÞ�: ð23Þ

We can rewrite the objective function of (22) in compact
matrix notation as

VarðCFαðX; S; yÞÞ ¼αTCαþ2αTμðyÞþVarðCFðX; yÞÞ ð24Þ
where C is the covariance matrix of the securities with entries

Cij ¼ Covðf iðSÞ; f jðSÞÞ

and μðyÞ is a column vector with entries

μiðyÞ ¼ Covðf iðSÞ;CFðX; yÞÞ:

Proposition 2. For any order quantity y, the optimal portfolio is

αnðyÞ ¼ �C�1μðyÞ: ð25Þ

By substituting αnðyÞ ¼ �C�1μðyÞ into the objective function
(24), we can rewrite it as

VarðCFαn ðX; S; yÞÞ ¼ VarðCFðX; yÞÞ�μðyÞTC�1μðyÞ: ð26Þ
Therefore, this clearly shows the impact of hedging on the
variance function. Since a covariance matrix is always positive
definite, so is its inverse, and μðyÞTC�1μðyÞZ0 for any yZ0. This
allows us to conclude that the hedged variance is always less than
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or equal to that of the unhedged cash flow. The amount of
reduction in the variance, of course, depends on the correlation
between the unhedged cash flow and payoffs of the derivative
securities used for hedging. If there is no correlation and μðyÞ ¼ 0,
then we have the same variance function and hedging has no
effect since μðyÞTC�1μðyÞ ¼ 0.

When there is a single asset, it follows from Proposition 2 that

αnðyÞ ¼ �Covðf ðSÞ;CFðX; yÞÞ
Varðf ðSÞÞ ð27Þ

since C�1 ¼ 1=Covðf ðSÞ; f ðSÞÞ ¼ 1=Varðf ðSÞÞ.
First, suppose that there is no randomness in the supply so that

K ¼ þ1 and W¼1. Then, the hedged cash flow is

CFαðX; S; yÞ ¼ CFðD; yÞþαTfðSÞ
¼ �ðcerT �vÞyþðsþp�vÞminfD; yg�pDþαTfðSÞ ð28Þ

where X¼D.
The optimal portfolio αnðyÞ is used to maximize the utility of

the expected cash flow. So, the new optimization problem is

max
y

E½uðCFαnðyÞðD; S; yÞÞ� ð29Þ

and the hedged cash flow can also be represented using

CFαnðyÞðx; t; yÞ ¼
CF � ðx; t; yÞ ¼ �ðcerT �vÞyþðs�vÞx�μðyÞTC�1fðtÞ; xry

CF þ ðx; t; yÞ ¼ ðsþp�cerT Þy�px�μðyÞTC�1fðtÞ; xZy

(

where CF � ðy; t; yÞ ¼ CF þ ðy; t; yÞ ¼ ðs�cerT Þy�μðyÞTC�1fðtÞ. Then,
the objective function can be written as

E½uðCFαnðyÞðx; S; yÞÞ� ¼
Z y

0
Ex½uðCF � ðx; S; yÞÞ�gDðxÞ dx

þ
Z 1

y
Ex½uðCF þ ðx; S; yÞÞ�gDðxÞ dx ð30Þ

where Ex is the conditional expectation given D¼ x.

Theorem 3. The optimal order quantity yn satisfies

E½u0ðCFαnðynÞðD; S; ynÞÞ1fDryng�þCovðfTðSÞ;1fD4yngÞC�1E½fðSÞu0ðCFαnðynÞðD; S; ynÞÞ�
E½u0ðCFαnðynÞðD; S; ynÞÞ� ¼ bp:

ð31Þ

Once again, the existence and uniqueness of the optimal order
quantity depends on the structure of hðyÞ. For example, if hðyÞ is
increasing in y and hð0Þobpohðþ1Þ, the first order condition in
(31) identifies the optimal order quantity.

As a special case when there is a single security, the optimality
condition is

E½u0ðCFðD; S; ynÞÞ1fDryng�þβ
0

DðynÞE½f ðSÞu0ðCFðD; S; ynÞÞ�
E½u0ðCFðD; S; ynÞÞ� ¼ bp ð32Þ

where

β
0

DðyÞ ¼
Covðf ðSÞ;1fD4ygÞ

Varðf ðSÞÞ :

If αnðyÞ ¼ 0, which is indeed the case if D and S are uncorrelated,
the optimality condition is identical to (7). Finally, in the risk-
neutral case where uðxÞ ¼ aþbx, the optimality condition reduces
to

PfDryngþCovðfTðSÞ;1fD4yngÞC�1E½fðSÞ� ¼ bp
which is the same condition in Okyay et al. (2011).

We now suppose that there is also supply uncertainty. The
random variables D;W and K are not necessarily independent
and they have a joint distribution function GDKW ðx; z;wÞ ¼
PfDrx;Krz;Wrwg. The conditional distribution function of D
given K¼z and W¼w is gD∣K ¼ z;W ¼ w and the conditional

probability density function of K given W¼w is gK ∣W ¼ w. We also
suppose that D, W and K are all correlated with S.

We now take X¼ ðD;W ;KÞ in the previous analysis so that we
still have αnðyÞ ¼ �C�1μðyÞ where

μiðyÞ ¼ Covðf iðSiÞ;CFðD;K;W ; yÞÞ
denotes the covariance between the financial securities and the
unhedged cash flow for the model with random supply.

The optimization problem is (23) where the hedged cash flow is

CFαnðyÞðX; S; yÞ ¼ �ðcerT �vÞW minfK; yg
þðsþp�vÞminfD;WK ;Wyg�pDþαnðyÞTfðSÞ:

Theorem 4. The optimal order quantity yn satisfies

E½Wu0ðCFαnðynÞðX; S; ynÞÞ1fDrWyn ;K4yng�
E½Wu0ðCFαnðynÞðX; S; yÞÞ1fK4yng�

þ μðynÞTC�1

ðsþp�vÞ

 !

� E½fðSÞu0ðCFαnðynÞðX; S; ynÞÞ�
E½Wu0ðCFαnðynÞðX; S; ynÞÞ1fK4yng�

¼ bp: ð33Þ

As before, the existence and uniqueness of the optimal solution
depends on the structure of hðyÞ. For example, if hðyÞ is increasing
in y and hð0Þobpohðþ1Þ, the first order condition in (33)
identifies the optimal order quantity. Suppose that there is no
hedging opportunity, or αnðyÞ ¼ 0, the optimality condition can
now be rewritten as

E½Wu0ðCFðX; S; ynÞÞ1fDrWyn ;K4yng�
E½Wu0ðCFðX; S; ynÞÞ1fK4yng�

¼ bp
which is identical to (7). If the utility function is linear uðxÞ ¼ aþbx
so that the newsvendor is risk-neutral, then we have

E½W1fDrWyn ;K4yng�
E½W1fK4yng�

þ μðyÞTC�1

ðsþp�vÞ

 !
E½fðSÞ�

E½W1fK4yng�
¼ bp

which is the same condition as Okyay et al. (2011). If there is no
capacity constraint and supply randomness is only due to yield so
that K ¼1, then the condition becomes

E½Wu0ðCFαnðynÞðX; S; ynÞÞ1fDrwyng�
E½Wu0ðCFαnðynÞðX; S; ynÞÞ� þ μðynÞTC�1

ðsþp�vÞ

 !

�E½fðSÞu0ðCFαnðynÞðX; S; ynÞÞ�
E½Wu0ðCFαnðynÞðX; S; ynÞÞ� ¼ bp: ð34Þ

Finally, if W ¼ 1, then

E½u0ðCFαnðynÞðX; S; ynÞÞ1fDryn ;K4yng�
E½u0ðCFαnðynÞðX; S; ynÞÞ1fK4yng�

þ μðynÞTC�1

ðsþp�vÞ

 !
E½fðSÞu0ðCFαnðynÞðX; S; ynÞÞ�

E½u0ðCFαnðynÞðX; S; ynÞÞ1fK4yng�
¼ bp: ð35Þ

6. Numerical illustrations

We now illustrate how our results can be used and demonstrate
how utility theory and hedging influences the optimal decisions. We
will first consider a simple binary model and identify the optimal
order quantity explicitly. Then, a continuous model is analyzed via
simulation. The illustrations will involve the random demand case
only for brevity and simplicity without loss of conceptual generality.

6.1. Analysis of a simple binomial model

In this section, to see the effects of some parameters on the optimal
order quantity, we consider an example similar to the one in
Eeckhoudt et al. (1995). The utility function is uðxÞ ¼ �expð�x=βÞ
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exponential where β represents the newsvendor's level of risk
tolerance. Suppose that the newsvendor has no initial wealth
(z0 ¼ 0Þ and no salvage or extra buying options exist (v¼ p¼ 0Þ. He
purchases each itemwith purchase cost c and sells it at sale price s4c.
We first analyze the problem when there is no hedging option, and
then when there is hedging opportunity. Therefore, the cash flow is
CFðD; yÞ ¼ �cyþs minfD; yg.

The demand D is binary and it is either 0 with probability p1 or
it is equal to some M40 with probability p2 ¼ 1�p1. The optim-
ality condition for the standard newsvendor model in (7) can be
written for our example as

hðynÞ ¼ E½u0ðCFðD; ynÞÞ1fDryng�
E½u0ðCFðD; ynÞÞ� ¼ s�c

s
¼ bp

where we can explicitly obtain

hðyÞ ¼
p1

p1þp2 expð�sy=βÞ ; 0ryoM

1; yZM:

8<:
It is obvious that hðyÞ is increasing in y. If hð0ÞobpohðMÞ, then
there exists a unique yn that satisfies the optimality condition.
However, if hð0ÞZbp, we have yn ¼ 0; and if hðM�Þrbp, we have
yn ¼M. Setting hðynÞ ¼ bp, the optimal order quantity is found to be

yn ¼

0; p2rc=s
β
s
ln

p2
p1

s�c
c

� �� �
; c=sop2o

c
cþðs�cÞ expð�sM=βÞ

M; p2Z
c

cþðs�cÞ expð�sM=βÞ :

8>>>>><>>>>>:
ð36Þ

This characterization of the order quantity depends on the
probability of positive demand p2. If p2 is less than or equal to c/s,
the decision maker orders nothing. If p2 is larger than
c=ðcþðs�cÞ expð�sM=βÞÞ, the decision maker orders M units. In
between, the optimal order quantity is linearly increasing in β. In
other words, as the risk tolerance β decreases and the newsvendor
becomes more risk averse, he orders less. We observe that
the optimal order quantity increases up to M as β increases and
the decision maker orders at most M units which is logical because
the demand can be at most M. The risk-neutral order quantity is
clearly 0 if p2rc=s or M if p24c=s. If s¼28, c¼ 20;M¼ 100, and
p2 ¼ 0:75, then it follows from (36) that the optimal order quantity
depends on the risk tolerance β such that ynðβÞ ¼ 0:0065115β
provided that βr15;357:44. Otherwise, it is 100.

Suppose now that there is a financial security with net payoff
f ðSÞ which is either �L or L for computational simplicity. They
have a joint distribution function

f ðSÞ ¼ �L, D¼0 with probability q1
f ðSÞ ¼ �L, D¼M with probability q2
f ðSÞ ¼ L, D¼0 with probability q3
f ðSÞ ¼ L, D¼M with probability q4 .

Let us also assume that

E½f ðSÞ� ¼ �ðq1þq2ÞLþðq3þq4ÞL¼ 0 ð37Þ
so that

Varðf ðSÞÞ ¼ L2: ð38Þ
Note that p2 ¼ PfD¼Mg ¼ q2þq4. The optimal portfolio can be
found using (27) as

αnðyÞ ¼ � Covðf ðSÞ;minfD; ygÞ
Varðf ðSÞÞ

� �
s:

One can easily show that

Covðf ðSÞ;minfD; ygÞ ¼ ðq4�q2ÞLy

and

αnðyÞ ¼ q2�q4
L

� �
sy:

We observe that the sign of the optimal quantity of the derivative
security in the portfolio depends on the sign of the q2�q4:We also
have

Covðf ðSÞ;DÞ ¼ ðq4�q2ÞLM:

Therefore, we can conclude that if f ðSÞ and D are positively
correlated, the sign of αnðyÞ is negative and then the optimal
decision is to short sell the derivative. However, if f ðSÞ and D are
negatively correlated, the sign of αnðyÞ is positive and it is optimal
to buy the derivative. Moreover, the hedged cash flow becomes

CFαnðyÞðD; S; yÞ ¼ �cyþs min D; y
� �þ q2�q4

L

� �
syf ðSÞ:

Using the exponential utility function uðxÞ ¼ �expð�x=βÞ, the
optimality condition in (32) can be written as

ððq2�q4ÞsþcÞq1 expð�ðq4�q2Þsyn=βÞ
þððq2�q4�1ÞsþcÞq2 expð�ðq4�q2þ1Þsyn=βÞ
þððq4�q2ÞsþcÞq3 expð�ðq2�q4Þsyn=βÞ
þððq4�q2�1ÞsþcÞq4 expð�ðq2�q4þ1Þsyn=βÞ ¼ 0: ð39Þ

Letting Cn ¼ yn=β, (39) becomes

a1e�b1C
n þa2e�b2C

n þa3e�b3C
n þa4e�b4C

n ¼ 0 ð40Þ
where a1 ¼ ððq2�q4ÞsþcÞq1, a2 ¼ ððq2�q4�1ÞsþcÞq2, a3 ¼ ððq4
�q2ÞsþcÞq3, a4 ¼ ððq4�q2�1ÞsþcÞq4, b1 ¼ ðq4�q2Þs, b2 ¼
ðq4�q2þ1Þs, b3 ¼ ðq2�q4Þs and b4 ¼ ðq2�q4þ1Þs. We can easily
conclude that if there exists a solution Cn to (40), it is independent
of β. This further implies that the optimal order quantity yn ¼ Cnβ
is linear in β where the slope Cn is found by solving (40).

To illustrate this numerically, recall that s¼28, c¼ 20;M¼ 100
and suppose now that ðq1; q2; q3; q4Þ ¼ ð0:15;0:35;0:10;0:40Þ. Then,
(40) becomes

2:79e�1:4Cn �3:29e�29:4Cn þ2:14e1:4C
n �2:64e�26:6Cn ¼ 0: ð41Þ

Multiplying both sides of (41) by e�1:4Cn

; we obtain

2:79e�2:8Cn �3:29e�30:8Cn �2:64e�28Cn þ2:14¼ 0:

Moreover, by letting x¼ e�2:8Cn

, we have

rðxÞ ¼ 2:79x�3:29x11�2:64x10þ2:14¼ 0

where rðxÞ is a polynomial and the problem is to find a positive
root of r.

Note that r0ðxÞ ¼ 2:79�36:19x10�26:4x9 and r″ðxÞ ¼
�361:9x9�237:6x8r0 for xZ0: Therefore, r is concave on
½0; þ1Þ. Since rð0Þ ¼ 2:1440 and r0ð0Þ ¼ 2:7940 there may exist
only one positive root xn that satisfies rðxnÞ ¼ 0: That value is
xn ¼ 0:98168 so that Cn ¼ �ð1=2:8Þ lnðxnÞ ¼ 0:0066035: Therefore,
the optimal order quantity is ynðβÞ ¼ 0:0066035β which is clearly
more than the optimal order quantity without hedging. The
hedging option provides the exponential utility maximizing news-
vendor the opportunity to order more.

6.2. Simulation analysis of a continuous model

In this section, a continuous demand model will be considered
via simulation. Our aim is to quantify the effects of the utility
framework and financial hedging to compensate for demand and
supply risks. As the base scenario, we take the setting of the
example in Gaur and Seshadri (2005) where the demand risk is
hedged by a stock in the financial market. Let the initial stock price
S0 be $660 and the interest rate be r¼ 10% per year. Assume that
T¼6 months and that the return ST=S0 has a lognormal distribu-
tion under the risk-neutral measure with mean ðr�0:5s2ÞT and
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standard deviation s
ffiffiffi
T

p
where s¼ 20% per year. That is,

lnðST=S0Þ �Nððr�0:5s2ÞT ;s
ffiffiffi
T

p
Þ¼Nð0:04;0:14142Þ:

Let the demand be D¼ b ST þϵ where b¼10 and ϵ has a normal
distribution with mean zero and standard deviation sϵ. Therefore,
the random demand is linearly correlated with the financial
market as suggested by the statistical evidence provided by Gaur
and Seshadri (2005). The financial parameters are as follows: s¼1,
c¼ 0:6, p¼ �0:3, and v¼ 0:1. Moreover, we suppose that the
utility function is uðxÞ ¼ 800�100e� x=β .

We set S¼ ST throughout the following and consider three
types of financial portfolios. The first portfolio consists of the future
on the stock only and has the net payoff f 1ðSÞ ¼ S�erTS0, the
second portfolio consists of the call option on the stock with strike
price κ only and has the net payoff f 2ðSÞ ¼maxfST �κ;0g�erTC
where C is the price of the call option at time 0. Finally, the third
portfolio uses both instruments jointly and has the net payoffs f 1ðSÞ
and f 2ðSÞ. Motivated by Gaur and Seshadri (2005) who show that
the risk can be perfectly hedged when ϵ¼ 0, we use replicating
portfolios consisting of bonds, stock futures, and European call
options with strike price κ ¼ y=b. We further suppose that the call
price in the market does not provide any arbitrage opportunities so
that C ¼ E½e� rT max fST �κ;0g� and E½f 2ðSÞ� ¼ 0.

We want to point out that all our numerical calculations are
done using Monte Carlo simulations throughout the remainder of
this section. We use Matlab as a simulation tool. Cash flows are
generated by using the simulated values of S;D;U, and K whenever
needed. The following eight scenarios are considered:

1. Newsvendor maximizes the expected cash flow.
2. Newsvendor maximizes the expected hedged cash flow using

the first portfolio (futures).
3. Newsvendor maximizes the expected hedged cash flow using

the second portfolio (call options).
4. Newsvendor maximizes the expected hedged cash flow using

the third portfolio (futures and call options).
5. Newsvendor maximizes the expected utility of the cash flow.
6. Newsvendor maximizes the expected utility of the hedged cash

flow using the first portfolio (futures).
7. Newsvendor maximizes the expected utility of the hedged cash

flow using the second portfolio (call options).
8. Newsvendor maximizes the expected utility of the hedged cash

flow using the third portfolio (futures and call options).

6.2.1. Random demand model
We will analyze various cases starting with the one where

demand is the only source of uncertainty. The linear relation-
ship D¼ 10 ST þϵ also implies that E½S� ¼ 693:84; E½D� ¼ 6938:4;
VarðSÞ ¼ 457:9 3� 103, CovðD; SÞ ¼ 10 VarðSÞ ¼ 457:9 3� 104 and
the coefficient of determination between D and S is

ρ2 ¼ 1þ s2
ϵ

457:9 3� 103

� ��1

:

Therefore, the level of correlation increases as sϵ decreases. We
first suppose that the standard deviation of demand is sϵ ¼ 600
and the risk-tolerance parameter is β¼ 500. We run our simula-
tion for different order quantity values and generate 50,000
instances to calculate the optimal portfolios. In each instance, we
generate the stock price and demand and determine the optimal
portfolios using our results. Finally, we generate another 50,000
instances so that we obtain stock prices, demand quantities and
profits. For all scenarios, we calculate the mean, the variance, and
the coefficient of variation (CV) (the ratio of the standard deviation
to the mean) of the cash flow for each order quantity.

Based on the mean of the cash flows, for scenarios 1–4, and the
mean of the utility of the cash flows, for scenarios 5–9, we obtain
the optimal order quantities approximately. Table 1 depicts the
results for each scenario. Note that the means are approximately
equal for scenarios 1–4 since the expected cash flow obtained
from the portfolios is approximately 0. The minor differences are
due to simulation error. Table 1 shows the variance reductions in
the cash flows that are made possible by financial hedging.
Consider, in particular, the variance reductions when both portfo-
lios are used. The financial hedging provides variance reduction by
68.6% when we do not use the utility model and by 66% when we
use the utility model. The effect of the utility model can be
observed by comparing scenario 1 and scenario 5. The risk-
averse decision maker orders less and so his expected gain is also
less. However, the variance of the expected cash flow is reduced
by 30%.

We analyzed the models by also changing the demand varia-
bility. The results are summarized in Table 2 for a perfect correla-
tion between the demand and the stock price, in Table 3 for a high
degree of a correlation between the demand and the stock price.

When the standard deviation of the demand error is zero so
that there is perfect correlation between the demand and the
stock price, hedging with a portfolio of futures and options
eliminates the variance of the cash flow and the variance of the
utility of cash flow totally. When the standard deviation of the
demand error is small (sϵ ¼ 300), indicating a high degree of
correlation between the demand and the stock price, significant
variance reductions are achieved, 89% for the standard model and
87% for the utility model. The reductions decrease when the
correlation decreases since for sϵ ¼ 600 the variance of the cash
flow can be lowered considerably, 68.6% for the standard model
and 66% for the utility model.

We also analyze the effect of the risk-tolerance parameter β on
the optimal order quantity and the variance. Table 4 depicts the
optimal order quantities, means of the cash flows, variances of the
cash flows and the optimal portfolios. We conclude that as risk-
tolerance increases, the optimal order quantity increases.

Table 1
The variances of the cash flows and the optimal investment amounts for random
demand model when the standard deviation of demand error is 600.

sϵ ¼ 600 yn Mean Variance CV Portfolio ðαÞ

S1 5588 2435.2 181,260 0.1748 –

S2 5587 2434.5 60,561 0.1011 �3.5191
S3 5583 2433.7 66,290 0.1058 �3.5761
S4 5587 2435.8 56,966 0.0980 �8.9780,5.7328

S5 4657 2401.4 127,480 0.1487 –

S6 5086 2422.8 42,432 0.0850 �3.1950
S7 5008 2418.9 41,358 0.0841 �3.1745
S8 5164 2427.0 43,355 0.0858 �9.8903,6.7478

Table 2
The variances of the cash flows and the optimal investment amounts for random
demand model when the standard deviation of demand error is 0.

sϵ ¼ 0 yn Mean Variance CV Portfolio ðαÞ

S1 5804 2457.4 125,410 0.1441 –

S2 5802 2456.7 7,150 0.0344 �3.4823
S3 5800 2455.9 18,470 0.0553 �3.5538
S4 5804 2458.1 0 0 �9.00, 6.00

S5 5235 2440.0 94,726 0.1261 –

S6 5662 2455.4 4,914 0.0285 �3.3467
S7 5468 2449.3 6,426 0.0327 �3.2467
S8 5804 2458.1 0 0 �9.00, 6.00
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Moreover, from the variances of the cash flows, we can state that
hedging always reduces the variance significantly and leads to
some relatively modest benefits in the expected profit. It is
also observed that the variance reductions decrease slightly as
β increases.

As for the optimal portfolio structure, it is always optimal to sell
the future since demand and stock price are assumed to be
positively correlated in the above examples. On the other hand,
in the optimal portfolio, the call option is bought when used as the
second instrument along with the future, but is sold when it is
used as the sole instrument. It is also interesting to note that using
a portfolio consisting only of the future on the stock is very
effective and achieves most of the variance reduction benefits. On
the other hand, the call option serves to fine tune the portfolio
along with the investment in the stock but is not as effective when
used alone.

6.2.2. Random yield model
To analyze the problem with random yield, we take the

following plausible example where U ¼ 1�e�ð1=S0Þðγþ ST Þ and γ is
normally distributed with mean zero and standard deviation sγ
independent of ST and ϵ. We take the same base scenario and use
identical portfolio options to see the effect of financial hedging on
risks. Therefore, we fix the order quantity to yn ¼ 7000 and
consider only the first four scenarios. We first set sϵ ¼ 600 and
β¼ 500. Then, for different values of sγ (0, 200,400), we calculate
the means, variances, coefficient of variations and the optimal
portfolios. The result is presented in Table 5.

Although the variance reduction decreases when sγ increases,
we can conclude that financial hedging provides considerable
reductions in the variance for all scenarios. Then, by considering
the same example, we vary the standard deviations sγ and sϵ
together. Table 6 reports the results of this experiment. We can

conclude that when the standard deviations are smaller, the
variance reduction is 94% for the standard models. However, when
we further increase the standard deviation, the variance reduction
is lower as expected due to increased uncertainty.

6.2.3. Random capacity model
We also analyze a model with random capacity so that

K ¼ kST þη where k¼9 and η has a normal distribution with mean
zero and standard deviation sη independent of ST and ϵ. Once
more, we set yn ¼ 7000 and β¼ 500: Note that as sϵ and sη
increase, the correlations between the demand and the market,
and the capacity and the market weaken. At the same time, the
correlation between the demand and the capacity also weakens.
Table 7 reports that the resulting variances as sϵ and sη are
changed together. It can be observed that, once again, significant
reductions in variance can be achieved by hedging. The reductions
are naturally most important when the market correlation is
strong. For instance, the case sϵ ¼sη ¼ 300 corresponds to high
correlation with the market and the variance can be reduced by
92%. Even in the case when the correlations with the market are
relatively low (sϵ ¼ sη ¼ 900), the variance reduction is less but
considerable, 44% for the standard models.

6.2.4. Random yield and capacity model
Finally, we analyzed the combination of random yield and

capacity models discussed above. We take yn ¼ 7000 as before and
fix the standard deviations as sϵ ¼ 600, sγ ¼ 200 and sη ¼ 300.
The resulting means, variances, coefficient of variations and the
optimal portfolios are summarized in Table 8.

From Table 8, we can conclude that significant variance reduc-
tions for financial hedging are achievable, 78% for the models

Table 3
The variances of the cash flows and the optimal investment amounts for random
demand model when the standard deviation of demand error is 300.

sϵ ¼ 300 yn Mean Variance CV Portfolio ðαÞ

S1 5742 2451.3 139,460 0.1523 –

S2 5740 2450.6 20,553 0.0585 �3.4916
S3 5736 2449.7 29,810 0.0705 �3.5601
S4 5744 2451.9 14,855 0.0497 �8.9135, 5.8281

S5 5085 2430.1 103,180 0.1322 –

S6 5513 2447.4 15,294 0.0505 �3.2970
S7 5348 2441.3 15,089 0.0503 �3.2273
S8 5640 2451.3 13,554 0.0475 �8.9600, 5.8849

Table 4
The variances of the cash flows and the optimal investment amounts for different
risk-tolerance values when the standard deviation of demand error is 600.

sϵ ¼ 600 β yn Mean Variance Portfolio ðαÞ

S5 250 3850 2348.8 120,680 –

500 4650 2401.0 127,340 –

750 4950 2417.3 135,830 –

S6 250 4500 2391.2 34,444 �3.0469
500 5100 2423.4 42,766 �3.2010
750 5250 2428.8 46,896 �3.2753

S7 250 4450 2387.7 35,286 �3.0415
500 5000 2418.6 43,532 �3.1712
750 5200 2426.6 47,319 �3.2693

S8 250 4000 2382.9 32,700 �14.2763, 11.2262
500 5150 2426.5 41,017 �9.9375, 6.7979
750 5350 2432.8 43,391 �9.3728, 6.1884

Table 5
The variances of the cash flows and the optimal investment amounts for different
random yield models when the standard deviation of demand error is 600 and the
order quantity is 7000.

sγ Scenario Mean Variance CV Portfolio ðαÞ

0 S1 2395 135,518 0.1537 –

S2 2395 32,688 0.0755 �3.2570
S3 2395 88,389 0.1242 �1.7302
S4 2395 32,678 0.0755 �3.3122, 0.1032

200 S1 2384 143,524 0.1589 –

S2 2384 37,658 0.0814 �3.3048
S3 2384 95,544 0.1296 �1.7458
S4 2384 37,618 0.0813 �3.4185, 0.2128

400 S1 2349 173,863 0.1775 –

S2 2349 58,096 0.1026 �3.4558
S3 2349 122,914 0.1492 �1.7990
S4 2349 57,862 0.1024 �3.7315, 0.5159

Table 6
The variances of the cash flows and the optimal investment amounts when the
standard deviations of demand error and yield error vary together (y¼7000).

sγ ¼ sϵ Scenario Mean Variance CV Portfolio ðαÞ

200 S1 2386 110,752 0.1394 –

S2 2386 6,807 0.0346 �3.2746
S3 2386 63,221 0.1054 �1.7376
S4 2386 6,793 0.0345 �3.3418, 0.1257

400 S1 2353 148,684 0.1639 –

S2 2353 35,452 0.0800 �3.4178
S3 2353 98,538 0.1334 �1.7847
S4 2353 35,275 0.0798 �3.6577, 0.4490
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without the utility maximization objective and 66% for the models
with the utility maximization objective.

7. Concluding remarks

In this paper, we investigate the single-period, single-item
inventory problem when the decision-maker (newsvendor) is
risk-averse. We use the expected utility theory framework where
the risks result not only from random demand, but also from
random supply. In our initial model, there is no risk hedging and
we obtained optimality conditions for the order quantity. Although
the objective function is concave for the random yield case, this is
not necessarily true when capacity is random. However, we are
able to establish quasi-concavity under reasonable conditions and
this allows us to obtain the optimality condition. We also pre-
sented various results on the effect of the model parameters on
the optimal order quantity.

The second part of the paper focuses on models where the
randomness in demand and supply is correlated with financial
markets. We consider the opportunities of financial hedging to
mitigate inventory risks. In our context, the decision-maker needs
to choose the financial portfolio and the order quantity at the
same time. We provide a two step solution approach to this
problem. In the first step, we find the optimal portfolio that
minimizes the variance of the cash flow for any order quantity.
Then, in the second step, we find the optimal order quantity that
maximizes the expected utility of the cash flow by using the
characterization for the optimal portfolio. Although the minimiza-
tion of the variance is a convex optimization problem, we do not
necessarily have concavity in the maximization of the expected
utility of the cash flow. However, under some conditions, one can
establish quasi-concavity and find explicit characterizations for
the optimal order quantities. Finally, some numerical illustrative

numerical examples on these models are presented. The effects
of risk-tolerance and some other parameters on the optimal
order quantities are examined. Moreover, we also analyze the
effect of risk-sensitivity and financial hedging on the variance of
the problem. We conclude that as risk-tolerance increases, the
optimal order quantity also increases. We further observe that
financial hedging reduces the variance of the problem
significantly.

This line of research can be extended in several directions by
future research. The model can involve multi-period, infinite-
period, or multi-product models. Furthermore, Bayesian models,
models where demand and supply are modulated by a random
environment, and hidden Markov models are other suitable areas
for extensions. Another line of research is to combine risk hedging
using financial instruments with other risk mitigation methods
like the ability to set prices.
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Appendix A

In this Appendix we provide the proofs of the main results
presented in the paper.

A.1. Proof of Theorem 1

Proof. Note that

E½uðCFðD;K ;W ; yÞÞ� ¼
Z 1

0
gW ðwÞ dw

Z 1

0
gKjwðzÞ dz

�
Z wðz4yÞ

0
uðCF � ðx;wðz4yÞÞÞgD∣K ¼ z;W ¼ wðxÞ dx

�

þ
Z 1

wðz4yÞ
uðCF þ ðx;wðz4yÞÞÞgD∣K ¼ z;W ¼ wðxÞ dx

�

where we let a4b¼minfa; bg for any real a and b. We can also
show that

d
dy

E½uðCFðD;K ;W ; yÞÞ� ¼ �ðc�vÞE½Wu0ðCFðD;K;W ; yÞÞ1fDrWy;K4yg�

þðsþp�cÞE½Wu0ðCFðD;K ;W ; yÞÞ1fD4Wy;K4yg�
ð42Þ

and the optimality condition becomes

gðyÞ ¼ E½Wu0ðCFðD;K;W ; yÞÞ1fK4yg�ð�ðsþp�vÞhðyÞþðsþp�cÞÞ ¼ 0

ð43Þ
where

hðyÞ ¼ E½Wu0ðCFðD;K;W ; yÞÞ1fDrWy;K4yg�
E½Wu0ðCFðD;K ;W ; yÞÞ1fK4yg�

: ð44Þ

Noting that PfK4yg40 for all y and E½W �40 by our assumption,
E½Wu0ðCFðD;K ;W ; yÞÞ1fK4yg�40 since u040, and (43) can also be
written as �ðsþp�vÞhðyÞþðsþp�cÞ ¼ 0. This clearly leads to the
optimality condition (12). □

Table 7
The variances of the cash flows and the optimal investment amounts for random
capacity models when the standard deviations of demand error and capacity error
vary together (y¼7000).

sϵ ¼ sη Scenario Mean Variance CV Portfolio ðαÞ

300 S1 2500 129,629 0.1440 –

S2 2500 10,959 0.0419 �3.4989
S3 2500 77,189 0.1111 �1.8251
S4 2500 10,756 0.0415 �3.7561, 0.4814

600 S1 2459 202,656 0.1831 –

S2 2459 69,219 0.1070 �3.7102
S3 2459 143,498 0.1541 �1.9385
S4 2459 69,020 0.1068 �3.9644, 0.4757

900 S1 2403.1 339,815 0.2426 –

S2 2402.7 189,127 0.1810 �3.9427
S3 2402.7 272,720 0.2173 �2.0644
S4 2402.8 188,944 0.1809 �4.1866, 0.4564

Table 8
The variances of the cash flows and the optimal investment amounts for a random
yield and capacity model when the standard deviations of demand error, yield
error and capacity error are 600, 200 and 300, respectively (y¼7000).

Scenario Mean Variance CV Portfolio ðαÞ

S1 2352.0 155,739 0.1678 –

S2 2352.0 34,967 0.0795 �3.5191
S3 2351.4 101,383 0.1354 �1.8514
S4 2352.1 34,912 0.0794 �3.6528, 0.2511
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A.2. Proof of Proposition 2

Proof. By taking the gradient of the objective function (24) and
setting it equal to zero, the first order condition is obtained as

∂
∂α

ðVarðCFαðX; S; yÞÞÞ ¼ 2Cαþ2μðyÞ ¼ 0

and the Hessian is

∂2

∂α2ðVarðCFαðX; S; yÞÞÞ ¼ 2C≽0

as the covariance matrix C is always positive definite. So, the
second order condition is satisfied and the first order condition
gives the optimality condition. □

A.3. Proof of Theorem 3

Proof. The derivative of (30) is

d
dy

E½uðCFαnðyÞðx; S; yÞÞ� ¼ �ðcerT �vÞ
Z y

0
Ex½u0ðCF � ðx; S; yÞÞ�gDðxÞ dx

þðsþp�cerT Þ
Z 1

y
Ex½u0ðCF þ ðx; S; yÞÞ�gDðxÞ dx

�μ0ðyÞTC�1
Z 1

0
Ex½fðSÞu0ðCF � ðx; S; yÞÞ�gDðxÞ dx

¼ �ðcerT �vÞE½u0ðCFαnðyÞðD; S; yÞÞ1Dry�
þðsþp�cerT ÞE½u0ðCFαnðyÞðD; S; yÞÞ1D4y�
�μ0ðyÞTC�1fðSÞE½u0ðCFαnðyÞðD; S; yÞÞ� ð45Þ

where the derivative of μðyÞ equals

μ0ðyÞ ¼ d
dy

CovðfðSÞ;CFðD; yÞÞ ¼ ðsþp�vÞCovðfðSÞ;1fD4ygÞ: ð46Þ

Therefore, using (45) and (46), the first order optimality condition
can be written as

gðyÞ ¼ E½u0ðCFαnðyÞðD; S; yÞÞ�ððsþp�cerT Þ�ðsþp�vÞhðyÞÞ ¼ 0 ð47Þ
where

hðyÞ ¼ E½u0ðCFαnðyÞðD; S; yÞÞ1fDryg�þCovðfTðSÞ;1fD4ygÞC�1E½fðSÞu0ðCFαnðyÞðD; S; yÞÞ�
E½u0ðCFαnðyÞðD; S; yÞÞ�

:

Note that by our assumption u040, then the first order condition
in (47) can be rewritten as gðyÞ ¼ 0 or hðyÞ ¼ bp which gives (31). □

A.4. Proof of Theorem 4

Proof. We can write the objective function as

E½uðCFαnðyÞðX; S; yÞÞ�

¼
Z 1

0
gW ðwÞ dw

Z y

0
gKjW ¼ wðzÞ dz

�
�
Z wz

0
Ex;z;w½uðCF � ðx; S;wðz4yÞÞÞ�gD∣K ¼ z;W ¼ wðxÞ dx

�
þ
Z 1

wz
Ex;z;w½uðCF þ ðx; S;wðz4yÞÞÞ�gD∣K ¼ z;W ¼ wðxÞ dx

��
þ
Z 1

0
gW ðwÞ dw

Z 1

y
gKjW ¼ wðzÞ dz

�
�
Z wy

0
Ex;z;w½uðCF � ðx; S;wðz4yÞÞÞ�gD∣K ¼ z;W ¼ wðxÞ dx

�
þ
Z 1

wy
Ex;z;w½uðCF þ ðx; S;wðz4yÞÞÞ�gD∣K ¼ z;W ¼ wðxÞ dx

��
ð48Þ

where Ex;z;w denotes the conditional expectation given D¼ x;K ¼ z,
and W ¼w.

The derivative of the objective function (48) is

d
dy

E½uðCFαnðyÞðX; S; yÞÞ�

¼
Z 1

0
gW ðwÞ dw

Z y

0
gKjW ¼ wðzÞ dz

�
Z wz

0
E1gD∣K ¼ z;W ¼ wðxÞ dxþ

Z 1

wz
E2gD∣K ¼ z;W ¼ wðxÞ dx

� �
þ
Z 1

y
gKjW ¼ wðzÞ dz

Z wy

0
E3gD∣K ¼ z;W ¼ wðxÞ dxþ

�
Z 1

wy
E4gD∣K ¼ z;W ¼ wðxÞ dx

��
¼ �μðyÞTC�1E½fðSÞu0ðCFαnðyÞðX; S; yÞÞ�
�ðcerT �vÞE½Wu0ðCFαnðyÞðX; S; yÞÞ1fDrWy;K4yg�
þðsþp�cerT ÞE½Wu0ðCFαnðyÞðX; S; yÞÞ1fD4Wy;K4yg�

where

E1 ¼ Ex;z;w½ð�μðyÞTC�1fðSÞÞu0ðCF � ðx; S;wðz4yÞÞÞ�
E2 ¼ Ex;z;w½ð�μðyÞTC�1fðSÞÞu0ðCF þ ðx; S;wðz4yÞÞÞ�
E3 ¼ Ex;z;w½ð�ðcerT �vÞw�μðyÞTC�1fðSÞÞu0ðCF � ðx; S;wðz4yÞÞÞ�

and

E4 ¼ Ex;z;w½ððsþp�cerT Þw�μðyÞTC�1fðSÞÞu0ðCF þ ðx; S;wðz4yÞÞÞ�:
Then, the first order condition can be written as

gðyÞ ¼ ðsþp�vÞE½Wu0ðCFαnðyÞðX; S; yÞÞ1fK4yg�
sþp�cerT

sþp�v

� �
�hðyÞ

� �
¼ 0

ð49Þ
where

hðyÞ ¼ E½Wu0ðCFαnðyÞðX; S; yÞÞ1fDrWy;K4yg�
E½Wu0ðCFαnðyÞðX; S; yÞÞ1fK4yg�

þ μðyÞTC�1

ðsþp�vÞ

 !
E½fðSÞu0ðCFαnðyÞðX; S; yÞÞ�

E½Wu0ðCFαnðyÞðX; S; yÞÞ1fK4yg�
:

Note that u040 and PfK4yg40 by our assumption, and the
optimality condition gðyÞ ¼ 0 leads to hðyÞ ¼ bp which is identical to
(33). □

References

Agrawal, V., Seshadri, S., 2000. Impact of uncertainty and risk aversion on price and
order quantity in the newsvendor problem. Manuf. Serv. Oper. Manag. 2,
410–423.

Agrawal, V., Seshadri, S., 2000. Risk intermediation in supply chains. IIE Trans. 32,
819–831.

Ahmed, S., Çakmak, U., Shapiro, A., 2007. Coherent risk measures in inventory
problems. Eur. J. Oper. Res. 182, 226–238.

Anvari, M., 1987. Optimality criteria and risk in inventory models: the case of the
newsboy problem. J. Oper. Res. Soc. 38, 625–632.

Arifoğlu, K., Özekici, S., 2010. Optimal policies for inventory systems with finite
capacity and partially observed Markov-modulated demand and supply pro-
cesses. Eur. J. Oper. Res. 204, 421–483.

Bouakiz, M., Sobel, M.J., 1992. Inventory control with exponential utility criterion.
Oper. Res. 40, 603–608.

Caldentey, R., Haugh, M.B., 2006. Optimal control and hedging of operations in the
presence of financial markets. Math. Oper. Res. 31, 285–304.

Chen, X., Sim, M., Simchi-Levi, D., Sun, P., 2007. Risk aversion in inventory
management. Oper. Res. 55, 828–842.

Chod, J., Rudi, N., Van Mieghem, J.A., 2010. Operational flexibility and financial
hedging: complements or substitutes? Manag. Sci. 56, 1030–1045.

Choi, T., Chiu, C., 2012. Mean-downside-risk and mean-variance newsvendor
models: implications for sustainable fashion retailing. Int. J. Prod. Econ. 135,
552–560.

Chopra, S.C., Sodhi, M.S., 2004. Managing risk to avoid supply-chain breakdown.
MIT Sloan Manag. Rev. 46, 53–61.

F. Sayın et al. / Int. J. Production Economics 154 (2014) 178–189188

http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref1
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref1
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref1
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref2
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref2
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref3
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref3
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref4
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref4
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref5
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref5
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref5
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref6
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref6
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref7
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref7
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref8
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref8
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref9
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref9
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref10
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref10
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref10
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref11
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref11


Chu, L.-K., Ni, J., Shi, Y., Xu, Y., 2009. Inventory risk mitigation by financial hedging.
In: Proceedings of the International Conference on Systems Engineering and
Engineering Management (ICSEEM'09), pp. 1260–1263.

Ding, Q., Dong, L., Kouvelis, P., 2007. On the integration of production and financial
hedging decisions in global markets. Oper. Res. 55, 470–489.

Eeckhoudt, L., Gollier, C., Schlesinger, H., 1995. The risk-averse (and prudent)
newsboy. Manag. Sci. 41, 786–794.

Gaur, V., Seshadri, S., 2005. Hedging inventory risk through market instruments.
Manuf. Serv. Oper. Manag. 7, 103–120.

Kazaz, B., Webster, S., 2011. The impact of yield-dependent trading costs on pricing
and production planning under supply uncertainty. Manuf. Serv. Oper. Manag.
13, 404–417.

Kazaz, B., Webster, S., 2013. A Note on Price-Setting Newsvendor Problems with
Uncertain Supply and Risk Aversion. Working Paper, Syracuse University,
Whitman School of Management, 2013.

Keren, B., Pliskin, J.S., 2006. A benchmark solution for the risk-averse newsvendor
problem. Eur. J. Oper. Res. 174, 1643–1650.

Kocabıyıkoğlu, A., Popesu, I., 2011. An elasticity approach to the newsvendor with
price sensitive demand. Oper. Res. 59, 301–312.

Lau, H.S., 1980. The newsboy problem under alternative optimization objectives.
J. Oper. Res. Soc. 31, 525–535.

Okyay, H.K., Karaesmen, F., Özekici, S., 2014. Newsvendor models with dependent
random supply and demand. Optim. Lett. 8, 983–999.

Okyay, H.K., Karaesmen, F., Özekici, S., 2011. Hedging Demand and Supply Risks in
the Newsvendor Model. Working Paper, Koç University, Department of Indus-
trial Engineering.

Özler, A., Tan, B., Karaesmen, F., 2009. Multi-product newsvendor problem with
value-at-risk considerations. Int. J. Prod. Econ. 117, 244–255.

Pratt, J.W., 1964. Risk aversion in the small and in the large. Econometrica 32,
122–136.

Schweitzer, M.E., Cachon, G.P., 2000. Decision bias in the newsvendor problem with a
known demand distribution: experimental evidence. Manag. Sci. 46, 404–420.

Serel, D., 2008. Inventory and pricing decisions in a single-period problem
involving risky supply. Int. J. Prod. Econ. 116, 115–128.

Tekin, M., Özekici, S., 2013. Mean-Variance Newsvendor Model with Random
Supply and Financial Hedging. Working Paper, Koç University, Department of
Industrial Engineering.

Wang, C.X., Webster, S., 2009. The loss-averse newsvendor problem. Omega 37,
93–105.

Wang, C.X., Webster, S., Suresh, N.C., 2008. Would a risk-averse newsvendor order
less at a higher selling price? Eur. J. Oper. Res. 196, 544–553.

Wu, J., Li, J., Wang, S., Cheng, T.C.E., 2009. Mean-variance analysis of the news-
vendor model with stockout cost. Omega 37, 724–730.

F. Sayın et al. / Int. J. Production Economics 154 (2014) 178–189 189

http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref13
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref13
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref14
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref14
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref15
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref15
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref16
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref16
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref16
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref18
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref18
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref19
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref19
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref20
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref20
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref21
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref21
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref23
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref23
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref24
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref24
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref25
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref25
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref26
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref26
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref28
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref28
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref29
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref29
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref30
http://refhub.elsevier.com/S0925-5273(14)00129-7/sbref30

	Newsvendor model with random supply and financial hedging: �Utility-based approach
	Introduction
	Utility-based model
	Random supply models
	Sensitivity analysis
	Utility-based model with hedging
	Numerical illustrations
	Analysis of a simple binomial model
	Simulation analysis of a continuous model
	Random demand model
	Random yield model
	Random capacity model
	Random yield and capacity model


	Concluding remarks
	Acknowledgement
	Proof of Theorem 1
	Proof of Proposition 2
	Proof of Theorem 3
	Proof of Theorem 4

	References




