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Abstract We investigate the structural properties of a finite horizon, discrete time single
product inventory rationing problem, where we allow random replenishment (production)
opportunities. In contrast to the standard models of dynamic capacity control in revenue
management or production/inventory systems, we assume that the demand/production rates
are not knownwith certainty but lie in some interval. To address this uncertainty, we formulate
a robust stochastic dynamic program and show how the structural properties of the optimal
policy propagate to the robust counterpart of the problem. Further, we explore how the
optimal policy changes with respect to the uncertainty set. We also show that our results can
be extended to certain alternative robust formulations.

Keywords Inventory control · Stochastic dynamic programming · Robust formulations

1 Introduction

In many practical optimization problems, the input parameters to the problem are not known
with certainty and have to be approximated or estimated from limited data. This, if ignored,
may cause significant suboptimality or infeasibility for the optimization problem consid-
ered. Robust optimization is a methodology that addresses this problem and has received
considerable attention lately Ben-Tal et al. (2009).

Our focus on this paper is on a well-established dynamic capacity control problem in rev-
enue management. Detailed information on revenue management can be found in Talluri and
Ryzin (2005). In our problems, it is assumed that there are different customer classes that ran-
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domly generate demands for a single-product inventory system. The classes are differentiated
according to their rewards. In order to maximize the expected total profit, the systemmanager
can ration the inventory by rejecting some of the arriving demands thereby reserving some
inventory for future more profitable arrivals. The manager has to decide dynamically whether
an incoming demand must be admitted (satisfied from stock) or not, taking into account the
existing inventory position and the time left until the end of the horizon. If replenishment is
allowed, the manager also has to determine when to produce.

The admission control literature for inventory problems is very rich and in this paper, we
revisit two well-known specific problems. The first problem is a stock rationing problem for
a production/inventory system that is first suggested by Ha (1997b). In this case, both the
production systemand the rationing systemare parts of themodel. In particular, the production
system is modeled as a single-server queue that processes items one-by-one. The manager
has to decide dynamically whether to produce an additional item in addition to the rationing
decision for the incomingdemand. Several papers have studied this problemand characterized
the structure of the optimal policy under different assumptions [see Vericourt et al. (2002)
or Gayon et al. (2009)]. The second related problem we consider is the dynamic admission
control problem of Lautenbacher and Stidham (1999) for a single-product inventory which
may be considered as a subcase of the former one. In the context of revenuemanagement, this
problem is typically analyzed under the assumption of a finite horizon and replenishments
are not allowed [see Talluri and Ryzin (2005) or Aydin et al. (2009)].

Most papers on these topics make the assumption that demand and production rates are
known with certainty except for a few exceptions (Birbil et al. 2009; Lan et al. 2008). We
consider the case where the demand arrival and production rates are not known with certainty
but lie in an interval. This is a relevant case since, in practice, demand and processing rates
have to be estimated from limited data or are supported by subjective assessment which
are inaccurate. For the case without replenishment, we contribute to the recent literature
addressing parameter uncertainty by investigating the structure of optimal policies. For the
case with replenishment, to our knowledge, the parameter uncertainty issue has not been
addressed before.

There are several ways of incorporating input uncertainty and developing robust solu-
tions in an optimization problem. Among them, the minimax approach—also known as
absolute robust decision—leads to tractable stochastic dynamic programming formulations.
This approach considers a dynamic game between the controller and Nature. Such a for-
mulation of a Markov decision process with an uncertain transition probability distribution
goes back to Satia and Lave (1973) who proposed a solution by a policy iteration approach.
More recently, Nilim and Ghaoui (2005) and Iyengar (2005) simultaneously studied robust
stochastic dynamic programs and established the existence of a robust Bellman recursion
whose solution yields the robust value function and the corresponding optimal policy. In
addition, both papers emphasized that under appropriate choice of uncertainty sets, the addi-
tional complexity brought by the robust formulation is reasonable if the standard formulation
has a tractable solution. Following such a formulation in the context of robust demand admis-
sion control, the controller’s aim is to maximize the expected profit by choosing the allowable
actions (admission and production), whereas Nature tries to minimize the expected profit by
choosing the worst-possible parameters (arrival and production rates) and acts upon observ-
ing the controller choice. This formulation is known as the robust counterpart of the classical
problem. The robust optimal policy designates the policy which yields the highest expected
profit after minimization by Nature.

In order to represent the connection between the real problem data and the prior estima-
tions, a number of uncertainty models have been proposed. One relatively simple uncertainty
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model is to define uncertainty intervals where parameters are allowed to lie between a lower
bound and an upper bound Satia and Lave (1973). Ben-Tal et al. (2009) andNilim andGhaoui
(2005) propose a number of more sophisticated yet tractable uncertainty sets. Some recent
applications of such uncertainty sets include Lim and Shanthikumar (2007), Jain et al. (2010)
which employ entropy based models of uncertainty in robust dynamic pricing problems. We
employ the simpler model of interval uncertainty in this paper because our focus is on explor-
ing the structure of optimal policies rather than developing efficient uncertainty sets or fitting
data to existing uncertainty sets. Bertsimas and Thiele (2006) consider robust formulations of
some deterministic inventory control problems considering a known demand that is subject
to interval uncertainty in each period. Some recent papers investigate the admission control
problem under demand rate uncertainty. An absolute robust approach for both the static and
dynamic versions of this problem is suggested by Birbil et al. (2009) where they employ an
ellipsoidal model of uncertainty. It is shown that this uncertainty model leads to tractable
solutions of the problem. By considering an interval uncertainty model, we complement the
results of Birbil et al. (2009) by obtaining additional properties of optimal robust policies.
Finally, Lan et al. (2008) and Ball and Queyranne (2009) propose and explore an alternative
approach for addressing uncertainty based on a competitive analysis method.

In contrast to the above papers we obtain results on the structure of the optimal policy
for both the cases with or without replenishment. We also explore how the optimal policies
changewith respect to uncertainty sets. The dynamic queueing and inventory control literature
has a strong tradition in characterizing the structure of optimal policies. This is in part due
to the computational efficiency of structured policies. However, the main reason for looking
for structured policies is that they are usually expressed in a few parameters and tend to
be easy to understand, communicate and implement. There are known general approaches
to investigate the structure of the solution of a stochastic dynamic program [for instance
Koole (1998, 2006), Cil et al. (2009)]. The current paper can be seen as an exploration such
properties in the context of a robust stochastic dynamic program.

The organization of the paper is as follows. In Sect. 2, we analyze the single item inventory
problem with random production referred to as the inventory rationing problem. In Sect. 3,
we focus on an important special case of the problem in Sect. 2 where there are no replen-
ishment opportunities. This model constitutes the building block for most dynamic revenue
management problems. In Sect. 4, we present some numerical results and explore some of
the quantitative trade-offs. Finally, our conclusions are provided in Sect. 5.

2 Inventory rationing for a production/inventory system

2.1 The nominal problem

In this section, we consider the inventory rationing problem for a production/inventory sys-
tem. In this problem, a production system with limited capacity produces a single item that
is demanded by different classes of customers. The demands that arrive when inventory is
unavailable are assumed to be lost. The customer classes are differentiated by their arrival
rates and their profit margins. Because the profit margins are class-dependent, it may be
profitable for the firm to reject arriving demands from certain customer classes in order
to reserve inventory for future more profitable arrivals. The decision problem of the firm
is then to determine, based on the inventory on-hand, whether to produce an additional
item to increase the inventory level and whether to admit an arriving demand from a given
class.
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We investigate a discrete-time model that is motivated by earlier works for the stock
rationing problem for an M/M/1 make-to-stock queue (Ha 1997a, c; Vericourt et al. 2002;
Gayon et al. 2009). This is a model that has received significant attention and was extended
in several directions.

Ha’s (1997b) inventory rationing problem with lost sales can be described as follows.
There are n classes of customers whose demands arrive according to independent Poisson
processeswith rateλi (i = 1, 2, ..., n).A single serverwhose processing time is exponentially
distributed with rate μ produces items one by one. If a demand of class i is admitted when
there is at least one unit of inventory on hand, it is immediately satisfied and a class-dependent
instant reward of Ri is obtained. If inventory is empty, all arriving demands are assumed to
be lost. The classes are ordered such that if i < j then Ri > R j . The fictitious event is
introduced to the problem which corresponds to the probability of no arrival and no product
completion with λn+1 and can also be considered as a special class with Rn+1 = 0. At any
time t , the inventory level is denoted by X (t) (where X (t) ∈ Z+) and the inventory holding
cost rate is h(X (t)) per unit of time. The holding cost function h(x) is increasing and convex
in x . Ha (1997b) considers an infinite-horizon discounted profit maximization objective with
a discount rate of α.

The actions in this problem correspond to production control where it is assumed that
the processor can be stopped and started at any time t and demand admission control where
demands are admitted or rejected from the system upon arrival. Ha (1997b) shows that,
after uniformization, the equivalent discrete time problem can be expressed as follows. Let
γ = μ̄ + ∑n+1

i=1 λ̄i + ᾱ be the uniformization rate which can be set to 1 without loss of
generality and by setting μ = μ̄/γ , λi = λ̄i/γ and α = ᾱ/γ . Here, μ̄, λ̄i and ᾱ are the rates
of the corresponding events in the original system, whereas μ, λi and α are the probabilities
of these events in the uniformized model. We let vt (x) denote the expected optimal profit
with t transitions to go until the end of the horizon. We obtain:

vt (x)=μmax{vt−1(x+1), vt−1(x)}

+
n+1∑

i=1

λi max{vt−1(x−1)+Rivt−1(x)}−h(x) if x>0,

and

vt (0) = μmax{vt−1(1), vt−1(0)} +
n+1∑

i=1

λivt−1(0) − h(0), if x = 0. (1)

Let us denote the difference function by �v(x) = v(x) − v(x − 1). Clearly, a class-i
customer is accepted at stage t if and only if Ri − �vt+1(x) ≥ 0. Setting α′ = (1 − α), Eq.
(1) can alternatively be represented as follows:

vt (x) = μ(�vt−1(x + 1))+

+
n+1∑

i=1

λi (Ri − �vt−1(x))
+ + α′vt−1(x) − h(x), if x > 0,

vt (x) = μ(�vt−1(1))
+ + α′vt−1(0) − h(0), if x > 0,

where a+ denotes max(0, a) for any real number a and v0(x) = 0 for all x .
Ha (1997b) established that the value function vt (x) is concave for all finite t and for the

infinite horizon value function as t tends to infinity. This implies that the optimal inventory
rationing policy is of threshold type. In each period t , there is an admission threshold for each
class. If the inventory available in the period is above the threshold, then the arriving demandis
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admitted. In addition, the optimal production policy is of target level type. There is a target
production level below which the system should produce and at or above which the system
should stop production. These results can be extended to a number of more complicated cases
including Erlang processing times (Ha 2000; Gayon et al. 2009), batch arrivals (Huang and
Iravani 2008; Cil et al. 2009). A different stream of literature considers the related multi-item
production scheduling problem (Vericourt et al. 2000; Bertsimas and Paschalidis 2001).

One interesting extension to the main structural results is to compare the optimal pro-
duction and inventory rationing systems that have different parameters for their demand and
processing probabilities. Let the vector of arrival and production probabilities be given by
(λ, μ) = (λ1, ..., λn+1, μ).

To compare different input vectors, let us employ the following partial order. An arrival
probability vector λ is said to be preferred (denoted by the � operator) over another λ′ if it
receives higher ordered classes with higher probability:

λ � λ′ ⇔
k∑

i=1

λi ≥
k∑

i=1

λ′
i for k = 1, 2, . . . , n + 1.

Similarly, a production probability μ is said to be preferred over another (μ′), if μ ≥ μ′.

Theorem 1 Consider two problems that are identical in all other parameters except their
arrival and production probabilities in period t. Let (λ, μ) and (λ′, μ′) be two arrival and
production probability vectors, and vt (x) and v′

t (x) be the corresponding value functions
respectively:

If λ � λ′ and μ � μ′ then �vt (x) ≥ �v′
t (x) for all x, t .

Proof The proof can be found in Appendix 1. �	
Theorem 1 implies that optimal admission and production thresholds can be compared if

the above preference orders hold. A more preferred arrival vector (together with a lower or
equal production rate) leads to higher inventory targets and higher admission thresholds in
each period, symmetrically a higher production rate (together with a less preferred or equal
arrival vector) leads to lower inventory targets and lower admission thresholds.

2.2 The robust problem

In this section, we consider the discrete-timemodel in Sect. 2.1 but assume that the arrival and
production rates (equivalently probabilities) are not known with certainty. We first consider a
model of interval uncertainty for the finite horizon casewhere each rate parameter is estimated
independently and is assumed to lie in an interval between upper and lower bounds rather
than taking a single value.

In order to model decision making under such an uncertainty, we employ the max–min
formulation and formulate a robust dynamic program. The robust dynamic programming
framework with transition uncertainty was established by Nilim and Ghaoui (2005) and
Iyengar (2005) and a revenue management example is studied in Birbil et al. (2009). Under
the max–min robust formulation, the controller plays a game against nature. It is assumed
that nature selects the worst possible probability distribution from the uncertainty set in each
state and time after observing the controller’s action. To achieve this, we let nature choose
an independent arrival vector for each state, time and action as in Nilim and Ghaoui (2005).

Let us now define the action space of the problem. Let a = (a0, a1, a2, . . . , an), where
a0 describes the production decision (i.e. a0 = 0 denotes controller’s action ‘not to produce’
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and a0 = 1 denotes controller’s action ‘to produce’) and similarly ai for i = 1, 2, ..., n
describes the admission decision for class i (i.e. ai = 0 denotes controller’s action ‘to reject’
a class i demand and ai = 1 denotes controller’s action ‘to admit’ ). A denotes the set of
admissible actions (combinations of production and admission decisions for each class) of
the controller. We redefine the arrival and production completion probabilities as λi,t (x, a)
and μt (x, a) which denote the probability of a class-i arrival and production completion
respectively, at time t and when the system is in state x and takes action a. Let an arrival
probability vector be λt (x, a) = (λ1,t (x, a), ..., λn+1,t (x, a)). We assume that the combined
arrival and production completion probability vector pt (x, a) = (λt (x, a), μt (x, a)) belongs
to an uncertainty set which does not depend on state x and action a. This appears to be a
reasonable assumption in the inventory rationing context.

Let us define P 
= ∅ an interval uncertainty set for the demand arrival—production
probability vector:

P =
{

z = (z0, . . . , zn+1) : 0 ≤ zi ≤ zi ≤ z̄i , 0 ≤ q ≤
n∑

i=1

zi ≤ 1

}

,

where zi and z̄i upper and lower bounds on individual event probabilities and q is a lower
bound on the total probability of arrival and production.

We define the robust value functionwt (x) [see for example Nilim and Ghaoui (2005)] as:

wt (x) = max
a∈A min

pt (x,a)∈P
{μt (x, a) (wt−1(x + a0))

+
n+1∑

i=1

λi,t (x, a) (ai Ri + wt−1(x − ai ))} − h(x), if x > 0 (2)

wt (x) = max
a∈A min

pt (x,a)∈P
{μt (0) (wt−1(a0))} − h(0) if x = 0.

Note that the uncertainty set includes additional constraints representing sample infor-
mation in addition to the default constraints λi,t (x, a), μt (x, a) ≥ 0 for all i and t and∑n

i=1 λi,t (x, a) + μt (x, a) ≤ 1 for all t .

2.3 Structural properties

In order to obtain some structural properties, we first begin by noting that the order of max
and min in Eq. (2) can be switched without loss of generality. A proof of this property can
be found in Turgay et al. (2013). The proof is based on the below intuition: Let (λ′, μ′) ∈ P
be any parameter probability vector, then for all such vectors, the optimal action at stage t
must be such that if wt−1(x + 1) ≥ wt−1(x) then it is optimal to produce at state x , and if
wt−1(x − 1) + Ri ≥ wt−1(x) then it is optimal to admit a class i demand at state x . Hence,
the optimal action is independent of Nature’s posteriori choice of input probability vector.
Using this property we can rewrite Eq. 2 as:

wt (x) = min
pt (x)∈P

{

μt (x) (�wt−1(x + 1))+

+
n+1∑

i=1

λi,t (x) (Ri − �wt−1(x))
+
}

+ α′wt−1(x) − h(x), if x > 0 (3)

wt (0) = min
pt (0)∈P

{
μt (0) (�wt−1(1))

+} + α′wt−1(0) − h(0), if x = 0, (4)

123



Ann Oper Res (2015) 231:207–228 213

where a is dropped from the notation of parameters. Note that pt (x) = (λt (x),
μt (x))

Theorem 2 The robust value function wt (x) is concave in x for all t .

Proof Suppose that λt (x) and μt (x) are the optimal solutions of the Nature for state x . We
use an induction argument and assume that wt−1(x) is concave in x . Next, we have to show
that under this assumption wt (x) preserves concavity. Using the concavity assumption, the
following inequality holds if the arrival and rates are identical at states x − 1, x and x + 1
and are equal to λt (x) and μt (x) using the existing results (Ha 1997b; Cil et al. 2009):

μt (x){�wt−1(x + 1)}+ + ∑n+1
i=1 λi,t (x){Ri − �wt−1(x)}+ + α′wt−1(x)

− h(x) ≥ 1/2{μt (x){�wt−1(x)}+ + ∑n+1
i=1 λi,t (x){Ri − �wt−1(x − 1)}+

+ α′wt−1(x − 1) − h(x − 1)} + 1/2{μt (x){�wt−1(x + 2)}+
+∑n+1

i=1 λi,t (x){Ri − �wt−1(x + 1)}+
+ α′wt−1(x + 1) − h(x + 1)}.

Now let us relax the assumption that the arrival and production rates are equal for all states.
Because Nature’s objective is to minimize the robust value function wt (x), the following
holds:

μt (x){�wt−1(x + 1)}+ + ∑n+1
i=1 λi,t (x){Ri − �wt−1(x)}+ + α′wt−1(x)

− h(x) ≥ 1/2{μt (x − 1){�wt−1(x)}+ + ∑n+1
i=1 λi,t (x − 1){Ri − �wt−1(x − 1)}+

+ α′wt−1(x − 1) − h(x − 1)} + 1/2{μt (x + 1){�wt−1(x + 2)}+
+∑n+1

i=1 λi,t (x + 1){Ri − �wt−1(x + 1)}+
+ α′wt−1(x + 1) − h(x + 1)}.

This establishes that wt−1(x) is concave in x . �	
Theorem 2 implies that as in the standard inventory rationing problem of Ha (1997b),

the optimal demand admission policy of the robust problem is of threshold type. Hence, in
each period t and for each class i , there is an admission threshold li,t . Similarly, there is a
target level St for each period t , such that the controller stops production if the inventory
on hand reaches this level. This is a surprising result because the event probabilities in the
robust problem are state (i.e. inventory level) dependent and time dependent by definition.
While concavity can be extended to the time-dependent case in the standard problem, state
dependence is very problematic and concavity does not hold in general when event probabili-
ties are state dependent. Theorem 2 establishes that concavity survives when state dependent
event probabilities are induced by the robust formulation. An illustrative example to such
state dependence is provided in Sect. 4.

We should also note that while concavity of the robust value function can be established,
there are no corresponding results for supermodularity/submodularity of the value function
wt (x) in x, t or the monotonicity of thresholds over time.

Finally, if the uncertainty in event probabilities pertains to only one type of operator,
i.e. either admission operators only or the production operator only, Nature’s solution is
independent of the state x for all stages t . We explore this further in the next section.

2.4 Behavior of the optimal policy for nested uncertainty sets

In this subsection, we explore the effects of increasing or decreasing uncertainty on the
optimal robust value function and the optimal policy. The results we provided for the revenue
management problemof Sect. 3 also hold for this problemunder certain additional conditions.
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Lemma 1 Consider two problems that are identical in their parameters except their uncer-
tainty sets that represent their arrival probabilities at stage t. LetP andPε be two uncertainty
sets, λt and λε

t be the corresponding Nature’s optimal solutions respectively. Further suppose
that P ⊆ Pε then:

1. If only arrival probabilities are uncertain (i.e. μt is exactly known), then λt � λε
t .

2. If only production probability is uncertain (i.e. λi is exactly known for all customer
classesi), then μt � με

t .

Proof Please note that in either way (1 and 2) solution of Nature is independent of state x .
Proof of Part 1: According to definition of P , Pε ⊇ P if and only if all of the following

conditions hold:

1. qε ≤ q
2. zεi ≤ zi
3. z̄εi ≥ z̄i

The corresponding solution of Nature is given in Theorem 3. For the first case the inequality
is clear since

∑i=k
i=1 λε

i,t ≤ ∑i=k
i=1 λi,t for all k. For the second and third cases, solution assigns

probabilities in increasing order of rewards, thereby implying higher probabilities to lower
revenue classes for Pε . Hence,

n+1∑

i=k

λε
i,t ≥

n+1∑

i=k

λi,t , for all k

which implies that λt � λε
t .

Proof of Part 2: Proof of this part is more obvious since με
i,t ≤ μi,t . �	

Corollary 1 Consider two problems that are identical in their parameters except their uncer-
tainty sets that represent their arrival probabilities at stage t. LetP andPε be two uncertainty
sets, wt (x) and wε

t (x) be the corresponding value functions respectively. If P ⊆ Pε then:

1. wt (x) ≥ wε
t (x) for all t, x,

2. (a) If only the arrival probabilities are uncertain, then �wt (x) ≥ �wε
t (x) for all t, x,

(b) If only the production rate is uncertain, then �wt (x) ≤ �wε
t (x) for all t, x.

Proof (1) This can be formally proven as in Paschalidis and Kang (2008).
(2) In order to prove the second part we use similar arguments to Theorem 1 and the complete

proof is included in Appendix 1. �	
The two properties of Corollary 1 have the following implications. As we enlarge the

uncertainty set, the optimal robust value function decreases. Besides, if arrival rates are
uncertain but the production rate is fixed, enlarging the uncertainty set part of the uncertainty
set leads to lower optimal admission thresholds. Likewise, optimal production target levels
decrease when the uncertainty set is enlarged. Finally, if the arrival rates are fixed, as the
uncertainty set representing the production rates is enlarged, both the optimal admission
thresholds and the production target levels increase.

Next, we investigate the structure of optimal policies under a more general robust dynamic
programming formulation. The so-called S-Robust Policy framework was proposed by
Xu and Mannor (2012) who propose a weighted optimization approach between multiple
uncertainty sets that have a nested structure. In particular, in this approach, it is assumed that
the transition probability vector belongs to a concentration set P� ⊆ P with probability δ
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and it belongs to the larger set P with probability of 1, for all t . Here, the concentration set
P� can be viewed as a prior distribution and δ is a measure of reliance on that distribution.
The concentration set weights could be represented as a vector δ = (δ1, δ2, δ3, ..., δT ) if δ is
allowed to vary between stages.

Xu and Mannor define an S-robust policy as the outcome of the following equation of
optimality for x > 0 is:

wt (x)=max
aεA

{

δt min
p�
t (x,a)∈P�

[

μ�

t (x) (wt−1(x + a0))+
n+1∑

i=1

λ�

i,t (x) (ai Ri +wt+1(x − ai ))

]

+ (1 − δt ) min
pt (x,a)∈P

[

μt (x) (wt−1(x + a0))

+
n+1∑

i=1

λi,t (x) (ai Ri + wt+1(x − ai ))

]}

− h(x)

The above equation is rewritten as:

wt (x) = δt min
p�
t (x)∈P�

[

μ�

t (x) (�wt−1(x + 1))+ +
n+1∑

i=1

λ�

i,t (x)(Ri − �wt+1(x))
+
]

+ (1 − δt ) min
pt (x)∈P

[

μt (x) (�wt−1(x + 1))+ +
n+1∑

i=1

λi,t (x)(Ri − �wt+1(x))
+
]

+ α′wt−1(x) − h(x).

The next corollary establishes that robust value functions are monotone with respect to
the reliance weight vector δ.

Corollary 2 Consider two problems that are identical in their parameters except their
reliance weight factors at stage t. Let δ1 and δ2 be two reliance weight factors, w1

t (x)
and w2

t (x) be the corresponding value functions respectively. If δ
1
t ≥ δ2t then: t:

1. w1
t (x) ≥ w2

t (x) for all t, x,
2. (a) If only the arrival probabilities are uncertain, then �w1

t (x) ≥ �w2
t (x) for all t, x,

(b) If only the production rate is uncertain, �w1
t (x) ≤ �w2

t (x) for all t, x.

Proof The results follow from Corollary 1. �	

At this point, it is useful tomake some remarks. First, production costs can be added and/or
multiple servers can be included to the model by using event based approach (Koole 1998,
2006; Cil et al. 2009) without much difficulty. In addition to this, we may let uncertainty
set P to vary between stages without any violation to our established results. Finally, let us
briefly discuss the infinite horizon extension. Iyengar (2005) and Nilim and Ghaoui (2005)
establish that the respective controller and nature policies are stationary for the infinite horizon
problem. Moreover, Nilim and Ghaoui (2005) show that the optimal value function of the
infinite horizon problem with a discounted cost function can be obtained as the unique limit
of the finite horizon problem. This suggests that the optimal policy structure can be extended
to the infinite horizon case.
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3 A robust dynamic revenue management problem

3.1 The nominal problem

Let us focus on a special case of the inventory rationingmodel in Sect. 2where replenishments
are not allowed. This special case is worthy of an additional discussion because it corresponds
to a typical revenue management problem. Moreover, in this case we allow the probability of
demand arrivals to depend on time t . A given inventory is to be sold over a finite time horizon
to multiple customer classes with random demand and no replenishment opportunities. This
is the typical situation for standard formulations in revenue management [see for example
Lautenbacher and Stidham (1999), Talluri and Ryzin (2005) or Aydin et al. (2009)].

We use the identical notation as in Sect. 2. The nominal problem has the following opti-
mality equation:

vt (x) =
n∑

i=1

λi,t max{Ri + vt−1(x − 1), vt−1(x)} + λn+1,tvt−1(x), (5)

We can alternatively express (5) as follows:

vt (x) =
n∑

i=1

λi,t (Ri − �vt−1(x))
+ + vt−1(x), (6)

Because the above problem is a special case of the inventory rationing problem of Sect. 2,
all structural results reported in that section hold for this version too. In addition to being
concave Lautenbacher and Stidham (1999), vt (x) is also supermodular in t and x , i.e.
�vt (x) ≥ �vt−1(x) for all t , x [see Talluri and Ryzin (2005) or Aydin et al. (2009)].

3.2 The robust problem

In this section, we focus on a robust formulation that takes into account arrival uncer-
tainty for the discrete time revenue management formulation. Let us assume that the arrival
probabilities—whichmay depend on x- λi,t (x) are not knownwith certainty but are estimated
to lie in some uncertainty set Pt in each period t , where:

Pt =
{

y = (y0, . . . , yn+1) : 0 ≤ y
i,t

≤ yi ≤ ȳi,t , 0 ≤ qt ≤
n∑

i=1

yi ≤ 1

}

,

where y
i,t

and ȳi,t are respectively lower and upper bounds on the arrival probability and
qt is a lower bound on the minimum total probability of demand arrival.

Pt is a fairly standard interval uncertainty set for a probability vector. However, some of
the results we present in this section can be extended to a modified uncertainty set Ct ⊆ Pt

where Ct 
= ∅ is defined as follows:

Ct =
{

y = (y1, . . . , yn+1) : 0 ≤ y
i,t

≤ yi ≤ ȳi,t ,

n∑

i=1

bi yi,t ≥ Qt , 0 ≤ qt ≤
n∑

i=1

yi ≤ 1

}

,

where Qt is a lower bound on a linear combination of the decision variables yi . In particular,
using this constraint and taking bi = Ri one can bound the expected reward per stage which
is useful for revenue management applications.
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Given the uncertainty set Pt , the robust value function, for x > 0, is given by:

wt (x) = max
a∈A min

λt (x,a)∈Pt

{
n∑

i=1

λi,t (x, a) (ai Ri + wt−1(x − ai ))

}

, (7)

where we take the boundary conditions as wT (x) = 0 for all x and wt (0) = 0 for all t .

3.3 Structural properties

We first by presenting a property that does not necessarily hold when replenishments are
allowed but facilitates the structure of the problem for the case without replenishments.

Theorem 3 Consider the uncertainty set Pt , then Nature’s optimal choice of probability
distribution can be obtained by a simple rule and is identical for all states at all times:
λt (x) = λt for all x.

Proof Consider Nature’s problem for a given x and t , which is a Linear Program with deci-
sion variablesλt (x) and objective function coefficients (R1 − �wt (x))+ , (R2 − �wt (x))+ ,

..., (Rn − �wt (x))+. Since R1 ≥ R2 ≥ ... ≥ Rn , (R1 − �wt (x))+ ≥ (R2 − �wt (x))+ ≥

... ≥ (Rn − �wt (x))+ for all t, x . Please note that the problem can be also represented
by the following equation through a transformation of the uncertainty set Pt to �Pt (See
Appendix 2:

wt (x) =
n∑

i=1

λi,t (x) (Ri − �wt−1(x))
+

+ min
�λt (x)∈�Pt

{
n∑

i=1

�λi,t (x) (Ri − �wt−1(x))
+
}

+ wt−1(x).

The minimization term corresponds to a continuous Knapsack problem with upper
bounds [with decision variables �λi,t (x)]. In addition, the objective function coefficients
(Ri − �wt−1(x))+ are decreasing in i since Ri > R j if i < j for any given state x . The opti-
mal solution is then given by the following allocationwhere k denotes a class between1, ..., n:

�λi,t (x) = 0 i f 1 ≤ i < k

�λk,t (x) = qt −
n∑

i=k+1

�λi,t (x)

�λi,t (x) = λ̄i,t − λi,t i f k < i ≤ n.

The optimal solution clearly does not depend on x for all t . The result then follows. �	

We have established that Nature’s solution is identical for all states x for any stage t .
Moreover, if the uncertainty set is not time dependent, i.e. Pt = P for all t , then nature’s
optimal choice of probability distribution is identical for all states at all times: λt (x) = λ for
all x, t .

Corollary 3 Consider the uncertainty set Ct , if bi ≤ b j for all i ≤ j then Nature’s optimal
choice of probability distribution can be obtained by a simple rule and is identical for all
states at all times: λt (x) = λt for all x.
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Proof Since b1 ≤ b2 ≤ ... ≤ bn , it is easy to conclude that:

(R1 − �wt (x))+

b1
≥ (R2 − �wt (x))+

b2
≥ ... ≥ (Rn − �wt (x))+

bn
.

for all t, x . Since Ct ⊆ Pt the resultant optimal solution is given as:

�λi,t (x) = 0 i f 1 ≤ i < k

�λk,t (x) = �Qt − ∑n
i=k+1 bi�λi,t (x)

bk
�λi,t (x) = λ̄i,t − λi,t i f k < i ≤ n.

As in Theorem 3, the optimal solution does not depend on x at all stages t . �	
Corollary 4 Consider the uncertainty set Ct , if bi = Ri for all i then Nature’s optimal choice
of probability distribution is identical for all states at all stages: λt (x) = λt for all x.

Proof We know that:

(R1 − �wt−1(x))+

R1
≥ (R2 − �wt−1(x))+

R2
≥ ... ≥ (Rn − �wt−1(x))+

Rn

Using a similar argument to the one in the Proof of Corollary 3 we find that Nature’s optimal
solution does not depend on x . This establishes the result. �	

Under the conditions of Theorem 3, Nature’s probability distribution cannot be state
dependent. The controller is then playing a game against a state-independent arrival distribu-
tion which makes the problem a standard Markov decision processes as in Talluri and Ryzin
(2005) or Aydin et al. (2009). The next theorem establishes that all structural results of the
nominal problem propagate to the robust counterpart.

Theorem 4 Consider the uncertainty set Pt , then the robust value has function has the
following properties:

1. wt (x) is nondecreasing (ND) in x for all t ,
2. wt (x) is concave in x for all t ,
3. wt (x) is supermodular in x, t for all x, t .

Proof Due to Theorem 3, nature’s optimal policy does not depend on x . The controller’s
problem then becomes a Markov decision process with state independent demand arrival
rates. The proof then follows from the results on the nominal problem given in Aydin et al.
(2009). �	

Theorem 4 establishes that, unlike in Sect. 2, all major principal structural properties
of the optimal polices also hold for the robust counterpart of the problem defined in Eq.
(7). This implies the optimality of threshold policies as in the nominal problem. Besides,
supermodularity implies that the thresholds are also monotone over time.

Next we establish the structural results for the uncertainty set C under certain conditions.

Corollary 5 Consider the uncertainty set Ct , if bi ≤ b j for all i ≤ j or bi = Ri for all i ,
then the robust value function has the following properties:

1. wt (x) is nondecreasing (ND) in x for all t ,
2. wt (x) is concave in x for all t ,
3. wt (x) is supermodular in x, t for all x, t .
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Proof Due to Corollaries 3 and 4, nature’s optimal policy does not depend on x . Once again,
the proof then follows from the results on the nominal problem given in Aydin et al. (2009).

�	

4 Numerical results

4.1 An illustrative example

The robust inventory rationing problem of Sect. 2 has many interesting features and presents
some challenges. To shed further light onto some of these features, let us explore a numerical
example. In order to represent the controller’s optimal actions in the problem, let us use a
different (but equivalent) representation as in the following:

vt (x) = μmax
a0

{a0vt−1(x + 1) + (1 − a0)vt−1(x)}

+
n+1∑

i=1

λi max
ai

{ai (vt−1(x − 1) + Ri ) + (1 − ai )vt−1(x)} − h(x) if x > 0

and

vt (0) = μmax
a0

{a0vt−1(1) + (1 − a0)vt−1(0)} +
n+1∑

i=1

λivt−1(0) − h(0), if x = 0. (8)

To obtain numerical results, let us focus on a particular case of the above problem with
two customer classes and μt = μ, λ1,t = λ1, λ2,t = λ2, λ3,t = 0 (i.e. there is no fictitious
class) for all t . Recall that for each demand class ai = 1 denotes the action that admits the
arriving demand and ai = 0 corresponds to rejecting the customer. Similarly a0 = 1 denotes
an order to produce whereas a0 = 0 denotes an order not to stop production. Remember, the
nominal problem is then represented by for x > 0:

vt (x) = μmax
a0

{a0vt−1(x + 1) + (1 − a0)vt−1(x)}
+ λ1 max

a1
{a1(vt−1(x − 1) + R1) + (1 − a1)vt−1(x)}

+ λ2 max
a2

{a2(vt−1(x − 1) + R2) + (1 − a2)vt−1(x)} − hx if x > 0 (9)

Let us next consider the robust version where the uncertainty set P is such that μt (x) +
λ1,t (x) + λ2,t (x) = 1, 0.20 ≤ μt (x) ≤ 0.50, 0.20 ≤ λ1,t (x) ≤ 0.50 and 0.20 ≤
λ2,t (x) ≤ 0.50. Let’s denote by pt (x, a) = (μt (x, a), λ1,t (x, a), λ2,t (x, a)).

wt (x) = max
a

{ min
pt (x,a)∈P

μt (x, a) (a0wt−1(x + 1) + (1 − a0)wt−1(x))

+ λ1,t (x, a) (a1(wt−1(x − 1) + R1) + (1 − a1)wt−1(x))

+ λ2,t (x, a) (a2(wt−1(x − 1) + R2) + (1 − a2)wt−1(x))} − hx if x > 0 (10)

with w0(x) = 0, for all x , and wt (0) = 0 for all t .
Let us further assume that T = 10, R1 = 10, R2 = 1 and the holding cost h(x) = 0.01x .

We solve the resulting robustMDP numerically. Let a∗
t (x) = (a0, a1, a2) denote the optimal

action selected by controller at time t and state x and p∗
t (x) = (μ, λ1, λ2) denote the optimal

event probability distribution selected by Nature for that action. Table 1 reports p∗
t (x) and

a∗
t (x) for t = 5, 10, 15 and x = 1, 2..., 5.
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Table 1 Controller’s and nature’s optimal policies for the example

x ↓ |t → 15 10 5

0 (1, 0, 0), (0.2, 0.3, 0.5) (1, 0, 0), (0.2, 0.3, 0.5) (1, 0, 0), (0.2, 0.3, 0.5)

1 (1, 1, 0), (0.3, 0.2, 0.5) (1, 1, 0), (0.3, 0.2, 0.5) (1, 1, 0), (0.2, 0.3, 0.5)

2 (1, 1, 0), (0.3, 0.2, 0.5) (1, 1, 0), (0.3, 0.2, 0.5) (1, 1, 0), (0.3, 0.2, 0.5)

3 (1, 1, 1), (0.5, 0.2, 0.3) (1, 1, 0), (0.3, 0.2, 0.5) (1, 1, 0), (0.3, 0.2, 0.5)

4 (0, 1, 1), (0.5, 0.2, 0.3) (1, 1, 1), (0.3, 0.2, 0.5) (1, 1, 0), (0.3, 0.2, 0.5)

5 (0, 1, 1), (0.5, 0.2, 0.3) (1, 1, 1), (0.5, 0.2, 0.3) (1, 1, 1), (0.3, 0.2, 0.5)

Table 2 Demand and reward
parameters for the numerical
example

Customer Reward Nominal arrival Interval
class probability

1 $80 per item 0.075 (0.05, 0.10)

2 $35 per item 0.075 (0.05, 0.10)

3 $25 per item 0.15 (0.10, 0.20)

In summary, Nature is allowed to choose the probability distributions at each stage, state
and action from P . It can be observed from Table 1 that Nature’s solution is dependent on
the state of the system. The event probabilities are varying over time and over the available
inventory levels. However, as established in Sect. 2, wt (x) is concave in x for all t and the
optimal policy of the controller is of threshold type.

4.2 Numerical analysis

In this section, we present some numerical results for the make-to-stock queue with multiple
demand classes introduced in Sect. 2. Let us consider a system consisting of three customer
classes. The holding cost is assumed to be $5 per item per year (approximately $0.0142 per
item per day). The (daily) production probability is 0.2 and is certain. The (daily) demand
arrival probabilities are assumed to be uncertain. In particular, we assume that there is best
guess for the demand probability which we label as the nominal probability and an interval
around this nominal probability. This data as well as the rewards of each class are presented
in Table 2.

We experiment with the S-Robust Policy which includes the nominal policy and the pure
robust policy as special cases. The nominal probabilities are taken as the concentration set
and the optimal policies are obtained for different δ values where δ reflects the weight of the
concentration set. Hence, δ = 1.0 designates the nominal solution whereas δ = 0 designates
the pure robust solution. We solve the problem for different δ values between [0, 1] and
compute the optimal S − robust policy for different values of δ. Then we simulate the
performance of these policies for demand data that is sampled from the uncertainty set. In
particular, we generate the arrival probabilities to lie in their associated intervals uniformly,
consequently with a mean equal to the nominal arrival probability.

In Figs. 1– 4 we present the long run results (using 1 million periods) of the problem. In
Figs. 1 and 2 the admission thresholds of classes 2 and 3 and the target levels are depicted
as a function of δ. Obviously, customer class 1 is the preferred customer in this problem
and is always accepted to the system. Clearly, the admission thresholds increase as reliance
on the nominal distribution increases as established in Corollary 2. Similarly, optimal target
levels also increase as reliance on the nominal distribution increases. Therefore, at any given
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Fig. 1 Optimal admission thresholds of customer classes 2 and 3 as a function of δ

Fig. 2 Optimal base stock levels as a function of δ

inventory level, the controller becomes less willing to sell and more willing to produce when
δ increases. Robustness in this problem requires setting lower thresholds and lower target
inventory levels.

Figure 3 depicts the average profit per stage as a function of δ. To better understand
how the average profit increases in δ, we next investigate the fill rates (demand satisfaction
probabilities) for each class as a function of δ. Apparently, increasing robustness (measured
by δ) requires treating customers similarly in terms of demand admission in addition to
keeping lower target inventory levels. Figure 4 reports the fill rates of class 1 and class 3,
this shows that the fill rate of class 1 is increasing and the fill rate of class 3 is decreasing
in δ. Please note that decreasing δ, results in a decrease in the service quality of the class
1 customer as the controller uses a lower base stock level and admits more customers from
other classes which increases the stock-out probability. On the other hand, class 3 has better
access to the inventory and its fill rate improves when δ decreases.
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Fig. 3 Average profit as a function of δ

Fig. 4 Fill rates of class 1 and class 3 customers wrt δ

An interesting question is how robustness affects overall performance. For this investiga-
tion, we consider two measures of performance: the expected total profit and the variance of
the total profit obtained by simulation. Next, we report results for these performance mea-
sures as a function of δ. In order to explore the effects of variability on the expected profit,
we explored the total expected profit over a short horizon. We consider the case where the
total horizon is 55 stages and the initial inventory is 0. With these parameters the expected
sales over the horizon is approximately 9 units. As a benchmark, we also consider the case
where replenishment is not allowed. In this case, we assume that the starting inventory is 9
(corresponding to the average sales with the above case). In Fig. 5, we present the expected
profit versus the variance for both cases. It can be observed that there is a significant trade-off
between expected profit and variance of the profit. In addition to this, in Fig. 6 we depict
the “simulated expected total profit—standard deviation of the profit”. Figure 6 depicts an
interesting result, the performance of the nominal solution is sufficiently high in the case with
production. However, when there is no production semi-robust solutions performs better than
the nominal solution when variability is introduced to the objective.

Obviously the variance in the case without replenishment is less than the former case
since the number of available items in the stock not affected by random production. Besides,
in this case the opportunity to improve this variability is stronger. The total changes in
the expected profit between the absolute robust and the nominal cases are nearly the same
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Fig. 5 Simulated expected total profit versus variance of the profit with production (left) and without pro-
duction (right)

Fig. 6 Simulated expected total profit—standard deviation of the profit versus δ with production (left) and
without production (right)

but the improvement in the variance is approximately 4% in the case with production and
30%without production. This preliminary exploration suggests that theremay be useful links
between robust policies and their applications in a risk-sensitive decisionmaking environment
where decision makers may also be concerned about controlling the variance of the return.

Our last comparison is on expected profit of the nominal and pure robust solutions under
different conditions. In order to make such comparison we calculate the expected profits of
pure robust and nominal policies between themost pessimistic [where arrival vector is ppes =
(0.05, 0.05, 0.10)] and most optimistic [where arrival vector is popt = (0.10, 0.10, 0.20)]
conditions. Please note that the pure robust solution optimizes themost pessimistic condition,
whereas nominal solution optimizes a probability vector which is simply the average of the
ppes and popt . We compare the expected profit of the policies with respect to different
weighted averages of these probability vectors ppes and popt and the results are presented in
Fig. 7. Although robust policy is advantageous over nominal policy in terms of variability and
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Fig. 7 Comparison of expected profits of robust and nominal policy for different probability vectors with
production (left) and without production (right)

worst case situations, as it is clearly seen in the figure it significantly deviates from optimality
as the condition improves.

5 Conclusion

We investigated the robust versions of two single-product dynamic demand admission prob-
lems: an inventory rationing and production control problem for a production/inventory
system and a revenue management problem where a fixed inventory is allocated over time
to different classes of customers. We showed that, under certain interval uncertainty mod-
els, the optimal policy structure of the corresponding nominal problems without parameter
uncertainty extends to the robust case.

One drawback of a robust dynamic model is that the resulting policy may be too con-
servative. To alleviate this problem, we extended the analysis to a weighted optimization
approach recently suggested by Xu andMannor (2012). This approach can calibrate the level
of robustness by choosing the appropriate weights between alternative objectives.We showed
that the optimal policy structure is not affected by this formulation.

Finally, we presented numerical results that explore how robustness affects optimal admis-
sion and production policies. While expected profits may be affected negatively by taking
a robust approach, there are situations where the gain in the variance of the profit may be
significant. This may suggest a computational link between risk-sensitive decision making
and robust optimal policies.

In future research, we aim to explore the optimal policy structure for robust formula-
tions of more general production/inventory control problems. Risk-sensitive optimization
and computational approaches also appear to be fruitful avenues for further exploration.

Appendix 1: A proof of theorem

Before proving Theorem 1 we introduce a simple algorithm that starts with λ and ends
up with λ′ (where λt � λ′

t ) by a sequence of reallocation of probabilities. By definition,
∑n+1

i=1 λi ≤ 1 and
∑n+1

i=1 λ′
i ≤ 1. Now consider the following sequence of vectors,

λ(1),λ(2), ...,λ(n+1). Let λ(1) = λ.
Now let ε1 = λ1 − λ′

1, we construct λ(2) = λ(1) + (−ε1, ε1, 0, 0, ..., 0). Obviously
ε1 ≥ 0. In the next iteration, we let ε2 = λ2 + λ1 −λ′

1 − λ′
2, again ε2 ≥ 0 and λ(3) =
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λ(2) + (0,−ε2, ε2, 0, ..., 0). We continue to iterate similarly for n steps. At step n we have:
λ(n) = λ(n−1) + (0, 0, ...,−εn, εn). At step n we have: λ(n+1) = λ(n−1) + (0, 0, ...,−εn+1).
By construction, we have λ(n+1) = λ′. In addition, the sequence of vectors have the property
λ(1) � λ(2) � ... � λ(n+1).

Proof We prove the desired result in two phases corresponding to stages t and t+1. Consider
two systems that are identical and substitute λt with λ′

t and μt with μ′
t . In the first phase, we

prove that �vt (x) ≥ �v′
t (x) holds at t , then in the second phase we prove that �vt+1(x) ≥

�v′
t+1(x). Please note that at stage t , we have vt−1(x) = v′

t−1(x), for all x and λt 
= λ′
t and

μt+1 
= μ′
t+1 whereas in stage t + 1, λt+1 = λ′

t+1 and μt+1 = μ′
t+1.

Suppose �vt (x) ≥ �v′
t (x) holds, then vt (x) − v′

t (x) ≥ vt (x − 1) − v′
t (x − 1). This

implies that as we replace the λt with λ′
t at stage t the loss in vt (x) is greater than loss in

vt (x − 1). Whereas as we replace μt with μ′
t at stage t , associated gain in vt (x) is less than

gain in vt (x − 1). We again use the above algorithm in order to perform such a replacement.
Hence, we consecutively decrease the arrival probability of a class i by ε and increase a class
j by ε where i < j . Then we simply increase the production rate by μ′

t − μt .

ε (Ri − �vt−1(x))
+ − ε

(
R j − �vt−1(x)

)+ ≥ ε (Ri − �vt−1(x − 1))+

−ε
(
R j − �vt−1(x − 1)

)+
. (11)

We prove the inequality case by case, note that A stands for admission and R stands for
rejection. The non-trivial cases are listed below (we do not present the cases where all classes
are accepted or all classes are rejected since these are obvious). Please note that accepting
a lower class ( j) means that a higher class (i) is always accepted. Also please note that, if
a customer class is accepted at an inventory x − 1 then it is also accepted at x , and if it is
rejected at x then it is also rejected at x − 1.

Ri − R j ≥ Ri − R j
−�vt−1(x) −�vt−1(x) ≥ −�vt−1(x − 1) −�vt−1(x − 1) Result

(A) (A) (A) (R) Ri − R j ≥
Ri − �vt−1(x − 1)

(A) (R) (A) (R) Ri − �vt−1(x) ≥
Ri − �vt−1(x − 1)

(A) (A) (R) (R) Ri − R j ≥ 0

(A) (R) (R) (R) Ri − �vt−1(x) ≥ 0

Except for the case in the first row, all inequalities follow easily by concavity of v(x)
(a summary of the result is provided in the last column). Consider the case in the first row:
because class j is rejected at x−1 for this case, we must have R j −�vt−1(x−1) ≤ 0. This
implies that Ri − R j ≥ Ri − �vt−1(x − 1). Lastly, it is obvious that (�vt−1(x + 1))+ ≤
(�vt−1(x))+.

Next,we consider the secondphasewhereweneed to establish that�vt−1(x) ≥ �v′
t−1(x).

We use a similar approach here, but we consider only one operator T i (admission decision for
a single class) and T (production decision) at a time. The cases related to accept all and reject
all for both systems at states x−1 and x are obvious. Please note that since�vt (x) ≥ �v′

t (x),
therefore Ri − �vt (x) ≤ Ri − �v′

t (x), which means that any class accepted to the initial

123



226 Ann Oper Res (2015) 231:207–228

system will always be accepted to the second system. Except from the obvious cases (accept
all, reject all) there are only four alternatives:

T ivt−1(x) −T iv′
t−1(x) ≥ T ivt−1(x − 1) −T iv′

t−1(x − 1) Result

(A) (A) (R) (R) Ri + vt (x − 1) − Ri − v′
t (x − 1) ≥

vt (x − 1) − v′
t (x − 1)

(A) (A) (R) (A) Ri + vt (x − 1) − Ri − v′
t (x − 1) ≥

vt (x − 1) − Ri − v′
t (x − 2)

(R) (A) (R) (A) vt (x) − Ri − v′
t (x − 1) ≥

vt (x − 1) − Ri − v′
t (x − 2)

(R) (A) (R) (R) vt (x) − v′
t (x − 1) − Ri ≥

vt (x − 1) − v′
t (x − 1)

The first case is clear. Consider the second case, since it is optimal to accept at x − 1 for
the second system, Ri + v′

t (x − 2) ≥ v′
t (x − 1). The third case is trivial, the LHS can be

easily decreased by replacing the optimal action of the first system and the second case is
attained. The last case is clear too, since the optimal action of the first system at state x is
rejection, vt (x) ≥ vt (x − 1) + Ri .

For the production operator which we denote by T we need to show that it also preserves
the inequality. Since �vt+1(x) ≥ �v′

t+1(x) if it is not optimal to produce in the original
system then it is also not optimal to produce in the perturbed system. By concavity we know
that the base stock policy is optimal therefore the cases except from the produce at all of the
conditions and not produce at all of the conditions the cases are as follows:

T vt+1(x) −T v′
t+1(x) ≥ T vt+1(x − 1) −T vt+1(x − 1) Result

(NP) (NP) (P) (P) vt (x) − v′
t (x) ≥

vt (x) − v′
t (x)

(P) (NP) (P) (P) vt (x + 1) − v′
t (x) ≥

vt (x) − v′
t (x)

(NP) (NP) (P) (NP) vt (x) − v′
t (x) ≥

vt (x) − v′
t (x − 1)

(P) (NP) (P) (NP) vt (x + 1) − v′
t (x) ≥

vt (x) − v′
t (x − 1)

The first case is clear. In the second case it is optimal to make a production in the original
system therefore vt (x + 1) ≥ vt (x). The third case is similar too, since it is not optimal to
produce at the second systemwe have v′

t (x) ≤ v′
t (x−1). For the last case vt (x+1)−v′

t (x) ≥
vt (x) − v′

t (x) and vt (x) − v′
t (x) ≥ vt (x) − v′

t (x − 1). These results hold for each operator
Ti and T , hence any convex combination of them satisfies the inequality. This completes the
proof. �	
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Appendix 2: Definition of �P t and �Ct

Here we present the definitions of the transformed uncertainty sets employed in the proofs.

�Pt =
{

�y = (�y0, . . . , �yn+1) : 0 ≤ �yi ≤ ȳi,t − y
i,t

,

0 ≤ q −
n∑

i=1

y
i,t

≤
n∑

i=1

�yi ≤ 1

}

,

�Ct =
{

�y = (�y1, . . . , �yn+1) : 0 ≤ �yi,t ≤ ȳi − y
i,t

,

n∑

i=1

bi�yi ≥ Q −
n∑

i=1

bi�yi , 0 ≤ q −
n∑

i=1

y
i,t

≤
n∑

i=1

�yi ≤ 1

}

,
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