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u.edu.tr (B. Tan), fkaraesmen@ku.edu.tr (F. Ka
a b s t r a c t

We consider the single period stochastic inventory (newsvendor) problem with

downside risk constraints. The aim in the classical newsvendor problem is maximizing

the expected profit. This formulation does not take into account the risk of earning less

than a desired target profit or losing more than an acceptable level due to the

randomness of demand. We utilize Value at Risk (VaR) as the risk measure in a

newsvendor framework and investigate the multi-product newsvendor problem under a

VaR constraint. To this end, we first derive the exact distribution function for the two-

product newsvendor problem and develop an approximation method for the profit

distribution of the N-product case (N42). A mathematical programming approach is

used to determine the solution of the newsvendor problem with a VaR constraint. This

approach allows us to handle a wide range of cases including the correlated demand

case that yields new results and insights. The accuracy of the approximation method

and the effects of the system parameters on the solution are investigated numerically.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

In the vast literature of inventory control, most of the
models employ maximization of the expected profit as the
main optimality criterion. In recent studies, the financial
risk in management of inventory systems is considered
from various perspectives. There are many risk measures
that are used in risk management in stochastic inventory
models such as the satisficing probability maximization,
utility functions, Value at Risk (VaR) and conditional VaR
(CVaR).

In this study, we focus on VaR as a measure of
downside risk and incorporate this risk measure in the
multi-product newsvendor problem. VaR measures the
ll rights reserved.

ler),

raesmen).
maximum value of the random function or the variable in
a b confidence interval, see for example, Jorion (1997),
Artzner et al. (2000), and Simons (1996). VaR is a measure
of the maximum potential change in the value of a
portfolio of financial instruments over a pre-set horizon.
VaR answers the question of how much one can lose with
x% probability over a given time horizon. If a portfolio is
expressed as a 95% one-day VaR of $100 million, this
means that there is only a 5% chance that the portfolio will
lose more than $100 million over the next day.

Multi-product newsvendor problem can also be con-
sidered as a problem of determining the best product
portfolio among all the possible alternatives. Similar to
the case of investing in a financial portfolio, a retailer faces
a substantial risk in its ordering decisions. In a multi-
product portfolio, if the retailer ends up with a high
number of unsold products at the end of the season, the
financial losses can be devastating. From this perspective,
the objective of the retailer is maximizing the expected
return while it takes calculated risks, e.g., the retailer
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knows in advance that the probability of losing more than
a pre-determined level is less than the desired probability.

In this paper, we present a mathematical programming
methodology to solve the multi-product newsvendor
problem with a VaR constraint. The VaR constraint is
expressed explicitly by using the probability distribution
of the total profit.

For the two-product case, we give a compact expres-
sion that yields the total profit distribution based on the
demand distributions. Once the VaR constraint can be
expressed explicitly, the resulting optimization problem
can be solved by a mathematical programming approach.
We illustrate our approach for the cases with independent
and bivariate exponential distributions.

For the multi-product case, we present an approximate
method that is based on approximating the distribution
of the total profit with a normal distribution following
the central limit theorem. Numerical comparisons with
simulation shows that this approximation is quite accu-
rate in representing downside risk constraints.

The organization of the remaining part of this paper is
as follows. In Section 2, we review the pertinent literature.
We introduce the model and summarize the results for
a single-product newsvendor problem with a VaR con-
straint in Section 3. In Section 4, the two-product news-
vendor problem with a VaR constraint is formulated as a
mathematical program by deriving the probability dis-
tribution of the total profit. Results for two products with
independent and correlated demands are also given in this
section. Section 5 extends this approach to multi-product
case by approximating the probability distribution of the
total profit with a normal distribution. Finally, conclusions
are given in Section 6.
2. Literature review

Incorporating risk in inventory management decisions
received some attention in recent years. Sankarasubra-
manian and Kumarasamy (1983) consider a single-period
stochastic inventory problem in which it is required to
determine the product order quantity which maximizes
the probability of realizing a predetermined level of profit.
A condition for deciding the optimal order quantity is
found and explicit expressions for the optimal order
quantities in three special cases are given. Schweitzer
and Cachon (2000) investigate the decision bias in the
newsvendor problem with a known demand distribution.

The satisfaction probability is used as an objective
function in a number of studies (Lau, 1980; Lau and Lau,
1988; Li et al., 1990, 1991; Parlar and Weng, 2003).
Satisficing probability is defined as the probability of
exceeding a prespecified fixed target profit level. The aim
is to maximize the satisfaction probability function in
terms of the product order quantity. Lau (1980) solves the
satisfaction probability maximization problem for a single
product under the assumption of zero salvage value.

Lau and Lau (1988) consider the maximization of the
probability of achieving a target profit in a two-product
newsvendor problem. Solution procedures are developed
to find the optimal order quantities of each product that
will maximize the probability of achieving the target
profit value. Li et al. (1990, 1991) present an analytical
solution procedure to maximize the probability of achiev-
ing a target profit in a two-product newsvendor problem
for uniformly and exponentially distributed demands
respectively. Some analytical results are presented for
these restrictive cases.

Parlar and Weng (2003) investigate the satisfaction
probability value maximization objective in the classical
newsvendor problem. They also develop a model that
integrates this objective with the standard expected profit
maximization objective. In our setting, the satisfaction
probability function is used as a constraint of the classical
newsvendor problem and the aim is to solve this model
for N product case.

An alternative approach for modeling risk preferences
in inventory management, has been using utility func-
tions. Lau (1980) maximizes the expected utility of the
newsvendor problem. The utility function is defined in
terms of the expected value of the random profit and its
standard deviation. This corresponds to the well-known
mean-standard deviation trade-off approach. Eeckhoudt
et al. (1995) and Bouakiz and Sobel (1992) examine the
risk aversion in the newsvendor problem with an
exponential utility function and show that a base-stock
policy is optimal when a dynamic version of the news-
vendor model is optimized with respect to an exponential
utility criterion. In a recent paper, Chen et al. (2007)
incorporate risk aversion through utility maximization in
multiperiod inventory models involving pricing strategies.

There is a huge interest in hedging operational risks
using financial instruments. Anvari (1987) uses the well-
known capital asset pricing model (CAPM) in finance to
investigate a newsvendor problem. Gaur and Seshadri
(2005) investigate the impact of financial hedging on
operational decisions in the framework of the newsvendor
problem. They develop optimal hedging transactions that
minimize the variance of profit and increase the expected
utility for a risk-averse decision maker.

Luciano et al. (2003) investigate VaR as a risk measure
in the context of a single-product multi-period Economic
Order Quantity type inventory model. They present an
exact analysis to obtain the VaR and also establish useful
bounds. In contrast, we investigate a single-period
problem but focus on the interaction of multiple products
that are related through the VaR constraint.

In Tapiero (2005), an asymmetric valuation between
ex-ante expected costs above and below an appropriate
target cost, provides an explanation for the VaR criterion
when it is used as a tool for design. This approach gives
some insights regarding the selection of the VaR prob-
ability that turns out to be the ratio of the asymmetric
linear cost parameters in this case. In this setting, it is
proposed to optimize the planned (targeted cost) that is
defined as the sum of the expected newsvendor cost and
risk specification quantile (defined to be ‘‘index of risk
aversion’’) times the standard deviation of the news-
vendor cost under the assumption of normally distributed
newsvendor cost function. We do not consider the design
problem here and assume that a desired profit level and a
corresponding level is specified exogenously. In particular,
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we deal with the multiple product newsvendor problem
with satisfaction probability constraint which enables us
to incorporate the VaR concept into a classical inventory
problem. Another difference in our model with respect to
Tapiero’s (2005) model is the uncertainty in our news-
vendor profit (cost) function is dependent on the demand
uncertainty. This implies that even if the probability
distribution of demand is specified and easy to handle, the
newsvendor cost function may have a much more
complicated probability distribution. This makes our
problem difficult.

Gan et al. (2004) incorporate the VaR concept to a
newsvendor problem with a downside risk constraint for a
single product. This is a decision making problem of a risk-
averse newsvendor subject to a downside risk constraint
which is characterized as the probability that the news-
vendor’s realized profit is less than or equal to his
specified target profit. In this paper, we present results
for a similar problem in the multi-product case. What
makes the multi-product case considerably more difficult
is the nature of the downside risk constraint. Because this
constraint creates a dependency between each product,
we cannot solve multi-product problem separately for
each product.

Finally, Gotoh and Takano (2007) and Zhou et al.
(2008) independently consider the CVaR minimization
in a multi-product newsvendor setting. It is shown that
the CVaR minimization problem in this setting can be
represented as a linear program. From an optimization
point of view, the CVaR formulation has certain nice
features (see for example Artzner et al. 1999) whereas the
VaR problem appears to be more challenging. We are
nevertheless able to develop a non-linear mathematical
programming formulation which is tractable for a small
number of products and an effective approximation that is
appropriate when the number of products is large.

In light of the related literature, the contribution of our
study is two-fold. First, we present a compact representa-
tion of the total profit distribution for the two-product
newsvendor problem. This derivation yields the total
profit distribution based on the given demand distribu-
tions. This approach allows us to handle a wide range
of cases including the correlated demand case. Conse-
quently, the optimal order quantities are determined by
using a mathematical program that incorporates the profit
distribution. Second, we present an approximation meth-
od for the multi-product case and evaluate the accuracy of
this approximation numerically. Since the numerical
results show that this approximation is quite accurate,
the proposed method can be used effectively to analyze
multi-product newsvendor problems.
3. Model

We consider a single-period multi-product stochastic
inventory control problem where a retailer determines the
optimal order quantities for N different products that have
stochastic demand with the objective of maximizing the
expected profit subject to a downside risk constraint.
The downside risk constraint is defined as the probability
of earning less than the target profit value p0 is less than
or equal to the threshold probability value b. The demand
for product i, Di, is a random variable with a distribution
function Fi(xi) and density fi(xi). The joint distribution
function of D1, D2,y,DN is F(x1, x2,y,xN) and the joint
density is f(x1, x2,y,xN). The sales price of product i is pi,
purchasing cost is ci, and the salvage value is si. We
assume that the natural relationship between the cost and
revenue parameters pi 4ci4si holds. The order quantity
for product i is Qi. The profit obtained from the sales of
product i is pi and the total profit obtained from the sales
of all the products is p.

Our main interest is integrating risk considerations
into the single-period multi-product stochastic inventory
problem through a VaR approach. This could be performed
in several ways but our main focus is on the following
formulation which parallels the single-product formula-
tion of Gan et al. (2004). Consider the problem of
determining the order quantities that maximize the
expected total profit while satisfying a VaR constraint.

Max E½p� ¼
XN

i¼1

E½pi� (1)

subject to

P
XN

i¼1

pipp0

" #
pb (2)

The objective function of the above optimization
problem maximizes the total expected profit just like in
the standard formulation of the newsvendor problem.
The VaR constraint turns out to be the main challenge in
the above formulation since it is expressed in terms of the
probability distribution of the profit. For this reason, we
first turn our attention to obtaining or approximating this
probability distribution and then determine the solution
by using a mathematical programming approach.
3.1. Results for the single-product newsvendor problem with

a VaR constraint

In order to illustrate the approach, we first summarize
the results for the case with a single product. When there
is only one product, the profit can be expressed as

pi ¼ ðpi � ciÞQi � ðpi � siÞ½Qi � Di�
þ (3)

The distribution of pi has a probability mass at the
maximum possible profit of ðpi � ciÞQi with probability
P[QipDi], i.e.,

P½pi ¼ ðpi � ciÞQi� ¼ 1� FiðQiÞ (4)

When Qi4Di, equivalently when pioðpi � ciÞQi

P½piox� ¼ P½ðsi � ciÞQi þ ðpi � siÞDiox�

¼ P Dio
x� ðsi � ciÞQi

pi � si

� �
(5)
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Since Di40, Eq. (5) can be summarized as

P½piox� ¼
Fi

x� ðsi � ciÞQi

pi � si

� �
ðsi � ciÞQipxoðpi � ciÞQi

0 xoðsi � ciÞQi

8><
>:

(6)

Eqs. (4) and (6) completely define the distribution of the
profit for one product. Then the newsvendor problem with
a VaR constraint can be written in terms of the probability
density and distribution function of the demand as

Max E½pi� ¼ ðpi � ciÞQi � ðpi � siÞQiFðQiÞ

þ ðpi � siÞ

Z Qi

0
xf iðxÞdx (7)

subject to

Fi
p0 � ðsi � ciÞQi

pi � si

� �
pb. (8)

where ðsi � ciÞQipp0pðpi � ciÞQi.
The unconstrained solution of (7) is determined by the

critical ratio

Qi ¼ F�1 pi � ci

pi � si

� �
. (9)

If the above quantity satisfies the condition (8), then the
solution of the problem given in (7) subject to (8) is the
same. Otherwise, the VaR constraint must be binding.
Note that if Fiðp0=pi � siÞ4b, or equivalently, if
p04F�1

ðbÞðpi � siÞ the above problem is infeasible.
Given that the problem is feasible, the optimal order

quantity is

Qi ¼
F�1
ðbÞðpi � siÞ � p0

ci � si
(10)

as given in Gan et al. (2004).

4. Two-product newsvendor problem with a VaR
constraint

When there are two products, the solution cannot be
determined easily as the single product case. Similar to
the one-product newsvendor problem with a VaR con-
straint, the multi-product newsvendor problem with a
VaR constraint can be infeasible depending on the
problem parameters.

Given that there is a feasible solution, if the VaR
constraint is not binding at the unconstrained solution,
the optimal values are obtained by the critical ratios for
both products as given in Eq. (9). However, if it is binding,
there are infinitely many Q1 and Q2 values that satisfy the
VaR constraint and the ones that maximize the objective
function need to be determined.

In order to utilize a mathematical programming
approach, the VaR constraint needs to be derived
explicitly in terms of the decision variables Q1 and Q2.
We first derive the distribution of profit for two products
with a joint demand distribution and then analyze the
conditions for the feasibility of the problem. Finally, we
present a mathematical programming formulation that
yields the optimal order quantities.
4.1. Distribution of the profit for two products with a joint

demand distribution

The total profit for two product, p ¼ p1+p2 can be
written as:

p ¼

ðp1 � c1ÞQ1 þ ðp2 � c2ÞQ2 Q1pD1 Q2pD2

ðp1 � c1ÞQ1 þ ðs2 � c2ÞQ2

þðp2 � s2ÞD2 Q1pD1 Q24D2

ðs1 � c1ÞQ1 þ ðp1 � s1ÞD1

þðp2 � c2ÞQ2 Q14D1 Q2pD2

ðs1 � c1ÞQ1 þ ðp1 � s1ÞD1

þðs2 � c2ÞQ2 þ ðp2 � s2ÞD2 Q14D1 Q24D2

8>>>>>>>>>>><
>>>>>>>>>>>:

(11)

The distribution of p has a probability mass at the
maximum possible profit given below:

P½p ¼ ðp1 � c1ÞQ1 þ ðp2 � c2ÞQ2� ¼ P½Q1pD1;Q2pD2�

(12)

When poðp1 � c1ÞQ1 þ ðp2 � c2ÞQ2

P½poxjD1;D2�

¼

P D2o
x� ðp1 � c1ÞQ1 � ðs2 � c2ÞQ2

p2 � s2

� �
Q1pD1 Q24D2

P D1o
x� ðp2 � c2ÞQ2 � ðs1 � c1ÞQ1

p1 � s1

� �
Q14D1 Q2pD2

P½ðp1 � s1ÞD1 þ ðp2 � s2ÞD2ox

�ðs1 � c1ÞQ1 � ðs2 � c2ÞQ2� Q14D1 Q24D2

8>>>>>>>>><
>>>>>>>>>:

Equivalently, the above equation can be written as

P½pox� ¼ P D1XQ1;D2o
x� ya

p2 � s2

� �

þ P D1o
x� yb

p1 � s1
;D2XQ2

� �
þ gðxÞ (13)

where gðxÞ ¼ P½ðp1 � s1ÞD1 þ ðp2 � s2ÞD2ox� yc ;Q14D1;

Q24D2�, ya ¼ ðp1 � c1ÞQ1 þ ðs2 � c2ÞQ2, yb ¼ ðp2 � c2ÞQ2 þ

ðs1 � c1ÞQ1 and yc ¼ ðs1 � c1ÞQ1 þ ðs2 � c2ÞQ2.
Note that condition D2oðx� yaÞ=ðp2 � s2Þ implies

Q24D2 and condition D1oðx� ybÞ=ðp1 � s1Þ implies
Q14D1.

Let Products 1 and 2 be indexed such a way that
ðp1 � s1ÞQ1Xðp2 � s2ÞQ2, i.e., yaXyb. Since D140 and
D240, Eq. (13) can be expressed as

P½pox�

¼

R1
Q1

R x�ya=p2�s2

0 f ðx1; x2Þdx2 dx1

þ
R x�yb=p1�s1

0

R1
Q2

f ðx1; x2Þdx2 dx1 þ gðxÞ ymXxXyaR x�yb=p1�s1

0

R1
Q 2

f ðx1; x2Þdx2 dx1 þ gðxÞ yaXxXyb

gðxÞ ybXxXyc

0 yc4x

8>>>>>>>>>><
>>>>>>>>>>:

(14)

where ym ¼ ðp1 � c1ÞQ1 þ ðp2 � c2ÞQ2.
The function gðxÞ ¼ P½ðp1 � s1ÞD1 þ ðp2 � s2ÞD2ox�

yc ;Q14D1;Q24D2� is determined by integrating the
probability density functions of Products 1 and 2 in an
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appropriate region depending on the system parameters.
Fig. 1 depicts these different regions.

Consequently, when Q1Xðx� ycÞ=ðp1 � s1Þ, or equiva-
lently when yaXx and Q2Xðx� ycÞ=ðp2 � s2Þ that is when
ybXx, g(x) is evaluated as

gðxÞ ¼

Z x�yc=p1�s1

0

Z x�yc�ðp1�s1Þx1=p2�s2

0
f ðx1; x2Þdx2 dx1.

(15)

When yaXx and ybox, g(x) is evaluated as

gðxÞ ¼

Z x�yc�ðp2�s2ÞQ2=p1�s1

0

Z Q2

0
f ðx1; x2Þdx2 dx1

þ

Z x�yc=p1�s1

x�yc�ðp2�s2ÞQ2=p1�s1

Z x�yc�ðp1�s1Þx1=p2�s2

0

� f ðx1; x2Þdx2 dx1. (16)

Similarly, when yaox and ybox, g(x) is evaluated as

gðxÞ ¼

Z x�yc�ðp2�s2ÞQ2=p1�s1

0

Z Q2

0
f ðx1; x2Þdx2 dx1

þ

Z Q1

x�yc�ðp2�s2ÞQ2=p1�s1

Z x�yc�ðp1�s1Þx1=p2�s2

0

� f ðx1; x2Þdx2 dx1. (17)

Since yc þ ðp2 � s2ÞQ2 ¼ yb, g(x) is completely defined by

gðxÞ

¼

R x�yb=p1�s1

0

RQ2

0 f ðx1; x2Þdx2 dx1 þ
RQ1

x�yb=p1�s1

�
R x�yc�ðp1�s1Þx1=p2�s2

0 f ðx1; x2Þdx2 dx1 ymXxXyaR x�yb=p1�s1

0

RQ2

0 f ðx1; x2Þdx2 dx1 þ
R x�yc=p1�s1

x�yb=p1�s1

�
R x�yc�ðp1�s1Þx1=p2�s2

0 f ðx1; x2Þdx2 dx1 ya4x4ybR x�yc=p1�s1

0

R x�yc�ðp1�s1Þx1=p2�s2

0 f ðx1; x2Þdx2 dx1 ybXxXyc

8>>>>>>>>>>>><
>>>>>>>>>>>>:

.

(18)

Now Eqs. (14) and (18) allow one to evaluate the
probability distribution of the total profit by using the
joint demand distribution. If the integrals in Eqs. (14) and
(18) can be evaluated in closed form, the distribution
of the total profit can be written in closed form. For
example, when the demands for Products 1 and 2 are
independent exponential random variables with averages
l1 and l2, the distribution of the total profit is given in
closed form in Appendix B.
4.2. Feasibility of the two-product newsvendor problem

with a VaR constraint

As in the single-product case, there may not be a
feasible solution in the multi-product case. More specifi-
cally, if minQ1 ;Q2

P½pox�4b, there will be no feasible
solution to this problem.

For two products, the minimum b value that ensures
the feasibility of the problem can be determined by
minimizing the probability distribution function derived
in Eqs. (14) and (18) for a given value of p0. Fig. 2 depicts
the minimum b value for different values of p0 for a
system with two identical products and exponential
demand distribution where E½puc� and s½puc� are the
expectation and the standard deviation of the total profit
without a VaR constraint and k is a constant that shows
how many s½puc�’s x is away from E½puc�.
4.3. A mathematical programming approach for the

newsvendor problem with a VaR constraint

In the two-product case, the probability distribution
function is determined by Eq. (14). Since the distribution
function is different depending on the region, the problem
can be written as:

Max E½p� ¼
X2

i¼1

ðpi � ciÞQi � ðpi � siÞQiFðQiÞ

þ ðpi � siÞ

Z Qi

0
xf iðxÞdx (19)
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subject to

R1
Q1

R x�ya=p2�s2

0 f ðx1; x2Þdx2 dx1

þ
R x�yb=p1�s1

0

R1
Q2

f ðx1; x2Þdx2 dx1 þ gðp0Þpb if ym4p04yaR x�yb=p1�s1

0

R1
Q2

f ðx1; x2Þdx2 dx1 þ gðp0Þpb if ya4p04yb

gðp0Þpb if yb4p04yc

(20)

where g(x) was given in Eq. (18). Since ya ¼

ðp1 � c1ÞQ1 þ ðs2 � c2ÞQ2, yb ¼ ðp2 � c2ÞQ2 þ ðs1 � c1ÞQ1,
and yc ¼ ðs1 � c1ÞQ1 þ ðs2 � c2ÞQ2, the regions also depend
on the decision variables.

It is possible to include the boundary constraints of the
type if f(x)o0 then g(x)o0 by adding two different
constraints g(x)pM(1�I) and f(x)pM(1�I) where M is a
big number and I is binary decision variable in the
formulation.

Combining all the definitions in the formulation yields

Max E½p� ¼
X2

i¼1

ðpi � ciÞQi � ðpi � siÞQiFðQiÞ

þ ðpi � siÞ

Z Q1

0
xf iðxÞdx (21)

subject to

p0 � ðp1 � c1ÞQ1 þ ðp2 � c2ÞQ2pMð1� I1Þð1� I2Þð1� I3Þ,

ðp1 � c1ÞQ1 þ ðs2 � c2ÞQ2 � p0pMð1� I1Þ

p0 � ðp1 � c1ÞQ1 � ðs2 � c2ÞQ2pMð1� I2Þð1� I3Þ

ðp2 � c2ÞQ2 þ ðs1 � c1ÞQ1 � p0pMð1� I2Þ

p0 � ðp2 � c2ÞQ2 � ðs1 � c1ÞQ1pMð1� I3Þ

ðs2 � c2ÞQ2 þ ðs1 � c1ÞQ1 � p0pMð1� I3Þ

Z 1
Q1

Z x�ya=p2�s2

0
f ðx1; x2Þdx2 dx1

þ

Z x�yb=p1�s1

0

Z 1
Q2

f ðx1; x2Þdx2 dx1

þ

Z x�yb=p1�s1

0

Z Q2

0
f ðx1; x2Þdx2 dx1

þ

Z Q1

x�yb=p1�s1

Z x�yc�ðp1�s1Þx1=p2�s2

0
f ðx1; x2Þdx2 dx1

� bpMð1� I1Þ

Z x�yb=p1�s1

0

Z 1
Q2

f ðx1; x2Þdx2 dx1

þ

Z x�yb=p1�s1

0

Z Q2

0
f ðx1; x2Þdx2 dx1

þ

Z x�yc=p1�s1

x�yb=p1�s1

Z x�yc�ðp1�s1Þx1=p2�s2

0
f ðx1; x2Þdx2 dx1

� bpMð1� I2Þ

Z x�yc=p1�s1

0

Z x�yc�ðp1�s1Þx1=p2�s2

0

� f ðx1; x2Þdx2 dx1 � bpMð1� I3Þ
ðp1 � s1ÞQ1 � ðp2 � s2ÞQ240

I1 þ I2 þ I3 ¼ 1

Q1X0; Q2X0; I1; I2; I3 2 f0;1g (22)

Note that the above formulation is a mixed-integer
programming formulation with a nonlinear objective
function and mixed linear and nonlinear constraints.
Alternatively, it is also possible to solve a number of
different problems assuming a certain region in each of
them. Then the feasible results obtained for each sub-
problem can be compared to determine the global optimal
of the problem.

4.4. Results for independent exponential demand

distribution

Appendix A gives the distribution of the total profit
when the demands for Products 1 and 2 are independent
exponential random variables. Using this distribution and
solving the resulting mathematical program yield the
optimal order quantities as shown in Fig. 3. The dotted
lines show the unconstrained solutions that follow Eq. (9).
Similarly Fig. 4 shows the optimal expected total profit for
the same case.

4.5. Results for a bivariate exponential demand distribution

Since the distribution of the total profit is derived by
using a joint demand distribution, our methodology
allows us to analyze two-product newsvendor problem
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with a VaR constraint and with correlated demand
distributions.

For example, let us consider a case where the demands
for Products 1 and 2 have a bivariate exponential
distribution. That is

P½D1px1;D2px2�

¼ F1ðx1ÞF2ðx2Þð1þ a½1� F1ðx1Þ�½1� F2ðx2Þ�Þ jajp1

and FiðxiÞ ¼ 1� e�1=lixi . The correlation coefficient of D1

and D2 is r ¼ a/4. There are many forms of bivariate
exponential distributions in the literature. We use this
particular form Gumbel (1960) because it is especially
convenient to model correlated exponential random
variables and experimenting by varying the correlation
coefficient systematically. This particular form has the
limitation that the correlation coefficient is restricted
jrjp1=4 which is sufficient for illustration purposes. Of
course, similar results can be generated for other tractable
bivariate forms using the results in Section 4.1. For this
setting, the probability distribution function for the
demand is derived in closed form in Appendix B. Figs. 5
and 6 show the cumulative distribution and probability
density function of the total profit for different values of r
for a specific case.

Once the probability function is available, the solution
of the VaR problem is obtained by using the mathematical
programming approach. Fig. 7 shows the optimal order
quantities for different values of r and b for a specific case.
Fig. 8 shows the optimal expected profit and Fig. 9 shows
0
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Fig. 5. Cumulative distribution function of the profit p1 ¼ 5, p2 ¼ 5,
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Fig. 8. Optimal expected total profit for the VaR problem with bivariate

exponential demand p1 ¼ 5, p2 ¼ 5, c1 ¼ 3, c2 ¼ 3, s1 ¼ 2, s2 ¼ 2, l1 ¼ 5,

l2 ¼ 5, p0 ¼ E½p� � s½p�.
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s2 ¼ 2, l1 ¼ 5, l2 ¼ 5, Q1 ¼ 7, Q2 ¼ 7, p0 ¼ E½p� � s½p�.
the percentage change in the expected total profit with
respect to the independent demand, i.e., r ¼ 0 case for the
same example. As the figures show, when two products
are negatively correlated, it is possible to increase the
expected profit up to 25% with respect to the independent
case. This is due to the reduction in variability when the
demands are negatively correlated. Similarly, when the
demands are positively correlated, the expected profit is
lower.
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5. Multi-product newsvendor problem with a VaR
constraint

If the order quantities that are obtained by the critical
ratios given in Eq. (9) for all products satisfy the VaR
constraint, in other words, if the VaR constraint is not
binding at the unconstrained solution, then these order
quantities will be the optimal order quantities for the
multi-product newsvendor problem with a VaR con-
straint.

However, if this is not the case, extending the
procedure outlined for the two product case in Section 3
to determine the distribution of p with more than two
products is challenging due to the difficulty of determin-
ing the probability distribution of the total profit.
Furthermore, the multi-product newsvendor problem
with a VaR constraint may be infeasible for given system
parameters.

This section presents a simple approximation in the
case when there are N products with independent
demands. Since the total profit is the sum of the profits
of individual products that are random with independent
distributions, we can utilize the central limit theorem to
determine the distribution of the profit approximately.

Once the VaR constraint is expressed by using the
normal approximation, we can analyze the feasibility
conditions and determine the optimal order quantities by
using the mathematical programming approach.
5.1. Approximate distribution of the profit for N products

Under the assumption that the conditions for Central
Limit Theorem are satisfied, the distribution of the profit
function approaches to a normal distribution in a large
product portfolio. Practically, we can write the approx-
imate probability as

P̃ðppxÞ ¼ f
x� E½p�
s½p�

� �
(23)

where fðxÞ is the standard normal density function.
Since the demands are independent, E½p� ¼

PN
i¼1E½pi�

and Var½p� ¼
PN

i¼1Var½pi� where the expectation and
the variance of the profit for a single product can be
determined by using the probability distribution of the
profit given in Eq. (6). Appendix A presents E½pi� and
Var½pi� explicitly for exponential demand.

In this section, we evaluate the accuracy of this
approximation by comparing the approximate distribu-
tion with simulation results. Fig. 10 depicts the distribu-
tion of the total profit as the number of products, N

increases from 1 to 20 for a specific case with identical
product parameters with p ¼ 1, c ¼ 0.5, s ¼ 0.3, l ¼ 10,
Q ¼ 12. As the figure shows, the distribution of the total
profit approaches the normal distribution quite fast. Since
the probability mass is at the right tail, using the normal
approximation for the probability values closer to the
probability mass will be valid when N is large. However,
probabilities concerning the left tail, i.e., the downside
risk, such as the VaR values can be approximated quite
well even when N is small.
Table 1 compares the exact probability obtained by
simulation and the normal approximation for a specific
system with identical products with exponential demand
in a wide range of x values as N increases from 5 to 50. As
the table indicates the normal approximation performs
quite well especially when x is less than the expected total
profit. It is also observed that the average error is very
small as the number of products is large. Table 2 presents
the same comparison for non-identical products with
uniformly distributed price, cost, and salvage values.

These results assure us that the normal approximation
can be used to describe the VaR constraint in the multi-
product newsvendor problem. Therefore, the same math-
ematical programming approach will be used to deter-
mine the order quantities for the multi-product
newsvendor problem with independent demands.
5.2. Feasibility of the multi-product newsvendor problem

with a VaR constraint

Similar to the two-product case, multi-product news-
vendor problem with a VaR constraint can be infeasible if
minQ1 ;...;QN

P½pox�4b.
Fig. 11 shows how the distribution function, deter-

mined by using the normal approximation, changes as
order quantities change for a system with identical
products. As the figure shows, for a given value of x,
P[pox] has a minimum for a specific value of Q.

In this case, the condition for the existence of a feasible
solution can be determined by finding the values of order
quantities Q0 i i ¼ 1,y,N that minimize the probability
function for a given value of p0 given in Eq. (23). These
order quantities can be determined from the derivative of
Eq. (23) with respect to Qi that yields

�
qE½p�
qQi
ðE½p2� þ p0E½p�Þ ¼ 1

2

qE½p2�

qQi
ðp0 � E½p�Þ,

i ¼ 1; . . . ;N

where E½p� ¼
PN

i¼1E½pi� and E½p2� ¼ Var½p� þ E2
½p�.

Fig. 12 shows the minimum b values that ensure
feasibility of the multi-product VaR problem with iden-
tical products with exponential demand distribution.
5.3. Solution of the multi-product newsvendor problem with

a VaR constraint

By using the normal approximation for the probability
distribution of the total profit as described in Section 4.1,
the VaR problem for N products is written as

Max E½p� ¼
XN

i¼1

ðpi � ciÞQi � ðpi � siÞQiFðQiÞ

þ ðpi � siÞ

Z Qi

0
xf iðxÞdx (24)

Subject to:

Pðppp0Þ ¼ f
p0 � E½p�
s½p�

� �
pb (25)
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The above constraint can be rewritten as:

p0 � E½p�pf�1
ðbÞs½p� (26)

where f�1
ðxÞ is the inverse of the standard normal

distribution function.
For each product with possibly different demand
distribution, E½pi� and Var½pi� are determined by using
the probability distribution of the profit given in Eq. (6).
Using these probability distributions in Eqs. (24) and (26)
yield a nonlinear optimization problem that can be solved
by using standard nonlinear solvers such as BARON in
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Table 1

Accuracy of the normal approximation for the total profit PðpoE½p� þ ks½p�Þ � P̃ðpoE½p� þ ks½p�Þ
�� �� pi ¼ 1, ci ¼ 0.5, si ¼ 0.2, li ¼ 10, Qi : optimal for the

unconstrained problem, i ¼ 1:N.

k N

5 (%) 10 (%) 15 (%) 20 (%) 25 (%) 30 (%) 35 (%) 40 (%) 45 (%) 50 (%)

�3.00 0.03 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.00

�2.40 0.06 0.13 0.10 0.09 0.10 0.11 0.06 0.06 0.05 0.04

�1.80 0.51 0.30 0.27 0.22 0.19 0.18 0.15 0.13 0.10 0.12

�1.20 0.62 0.38 0.26 0.19 0.19 0.17 0.08 0.12 0.13 0.19

�0.60 0.27 0.07 0.06 0.17 0.16 0.10 0.02 0.11 0.01 0.05

0.00 1.28 0.71 0.60 0.41 0.44 0.35 0.28 0.34 0.32 0.25

0.60 1.15 0.84 0.60 0.46 0.39 0.28 0.33 0.28 0.32 0.30

1.20 0.16 0.10 0.02 0.04 0.02 0.01 0.01 0.06 0.05 0.02

1.80 0.53 0.39 0.35 0.27 0.22 0.19 0.19 0.15 0.14 0.15

2.40 0.82 0.32 0.24 0.19 0.17 0.15 0.11 0.12 0.11 0.12

3.00 0.13 0.11 0.08 0.07 0.05 0.06 0.05 0.04 0.04 0.05

AVG 0.51 0.31 0.24 0.19 0.18 0.15 0.12 0.13 0.12 0.12

Table 2

Accuracy of the normal approximation for the total profit jPðpoE½p� þ ks½p�Þ � P̃ðpoE½p� þ ks½p�Þj c ¼ u1, pi ¼ ci (1+u2), si ¼ si (1�u3), li ¼ 10u4, u1, u2, u3,

u4�U(0,1) Qi : optimal for the unconstrained problem, i ¼ 1:N.

K N

5 (%) 10 (%) 15 (%) 20 (%) 25 (%) 30 (%) 35 (%) 40 (%) 45 (%) 50 (%)

�3.00 0.00 0.13 0.06 0.11 0.02 0.02 0.11 0.00 0.12 0.01

�2.40 0.74 0.80 0.16 0.46 0.21 0.08 0.42 0.06 0.62 0.02

�1.80 1.85 1.95 1.25 0.45 0.77 0.62 0.92 0.29 1.42 0.16

�1.20 5.48 0.41 1.85 1.60 0.93 1.03 0.73 0.24 0.53 0.35

�0.60 0.17 5.13 0.27 3.36 0.22 0.19 0.51 0.16 2.26 0.23

0.00 8.41 2.83 2.46 0.50 1.41 1.48 1.83 0.62 2.85 0.50

0.60 17.42 4.24 4.39 4.55 2.85 1.62 2.00 0.45 0.14 0.77

1.20 11.51 3.46 0.80 1.36 0.45 0.03 0.06 0.03 1.2 0.14

1.80 3.59 0.80 3.16 1.92 1.56 0.96 0.93 0.34 0.74 0.33

2.40 0.82 0.82 0.82 0.82 0.76 0.62 0.81 0.28 0.20 0.30

3.00 0.13 0.13 0.13 0.13 0.13 0.12 0.32 0.10 0.00 0.10

AVG 4.56 1.88 1.40 1.39 0.85 0.62 0.79 0.23 0.92 0.26
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Fig. 11. Effect of the order quantity on P[pox] pi ¼ 1, ci ¼ 0.5, si ¼ 0.2,
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GAMS. Note that due to the simplicity of the approxi-
mate profit probability distribution, the mathematical
program for the multi-product case is much simpler than
the two-product case that has a mixed integer nonlinear
formulation.
5.4. Results for the multi-product case with exponential

demand

Fig. 13 shows the optimal order quantities obtained by
solving the above problem for a specific case with
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identical products. The dotted lines show the uncon-
strained solutions that follow Eq. (9). It is not possible to
obtain a feasible solution when b is below the minimum
value shown in the figure. Fig. 14 shows the optimal
expected total profit for the same case.

Table 3 shows the optimal order quantities with non-
identical products with average demand, uniformly dis-
tributed price, cost, and salvage values.
6. Conclusions

In this study, we present a mathematical programming
approach to solve a multi-product newsvendor problem
with a VaR constraint. We express the VaR constraint
by deriving the probability distribution of the total profit.
For the two-product case, a compact expression that
yields the total profit distribution based on the demand
distributions is given. This approach allows us to handle a
0.8
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Fig. 13. Optimal expected total profit for the N-Product VaR problem

pi ¼ 1, ci ¼ 0.5, si ¼ 0.3, li ¼ 1, Qi ¼ Q*, i ¼ 1:10, p0 ¼ E½p� � s½p�.
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Fig. 14. Optimal expected total profit for the N-Product VaR problem.

pi ¼ 1, ci ¼ 0.5, si ¼ 0.3, li ¼ 1, Qi ¼ Q*, i ¼ 1:10, p0 ¼ E½p� � s½p�.

Table 3

Optimal order quantities as b changes ci ¼ u1, pi ¼ ci (1+u2), si ¼ si (1�u3), li ¼ 1

problem, i ¼ 1:10, p0 ¼ 0.

b Q1
* Q2

* Q3
* Q4

* Q5
*

0.01 17.835 1.859 0.350 3.880 0.139

0.02 17.870 1.863 0.351 4.302 0.139

0.03 17.908 1.866 0.335 4.579 0.139

0.04 17.918 1.867 0.352 4.857 0.139

0.05 17.918 1.867 0.352 4.904 0.139

0.06 17.918 1.867 0.352 4.904 0.139
wide range of cases including the correlated demand case
that yields new results and insights.

The solution of the two-product newsvendor problem
with a VaR constraint and correlated demands illustrate
that the existence of the VaR constraint makes the product
portfolio selection an important decision. More specifi-
cally, we observed that when there is a VaR constraint, the
expected profit is higher when two products with
negatively correlated demands are used. In contrast, for
the multi-product newsvendor problem without a VaR
constraint, demand correlations do not affect the expected
profit.

We also present an approximation method that is based
on approximating the total profit from the sales of different
products with independent demand distributions with a
normal distribution following the central limit theorem.
Our numerical experiments assure us that this approxima-
tion is quite accurate and the normal distribution can be
used to measure the downside risk even for portfolios with
a relatively low number of products.

Extending the same approach to the case with
correlated demand structures is not straightforward. Even
for the case with multinomial normal distribution, the
total profit may not converge to a normal distribution
depending on the correlations. For example, if all the
products are perfectly correlated, then the total profit will
have a probability mass at the maximum profit and the
resulting distribution cannot be approximated with a
normal distribution. Analysis of the multi-product news-
vendor problem with a correlated demand structure is left
for future research.
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Appendix A. One product exponential demand case

When the demand for product i is an exponential
random variable with rate li, the distribution of the profit
pi is given below:

P½pi ¼ ðpi � ciÞQi� ¼ e�Qi=li ,

P½piox� ¼
1� e�1=lix�ðsi�ciÞQi=pi�si ðsi � ciÞQipxoðpi � ciÞQi

0 xoðsi � ciÞQi

(

0u4, u1, u2, u3, u4�U(0,1) Qi : optimal for the optimal for the unconstrained

Q6
* Q7

* Q8
* Q9

* Q10
*

4.538 14.901 6.809 0.182 12.157

5.133 16.096 8.414 0.183 15.193

5.580 17.013 9.786 0.183 17.360

5.845 17.441 11.073 0.185 19.146

5.897 17.447 11.205 0.185 19.170

5.897 17.447 11.205 0.185 19.170
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Accordingly, the expected profit is written as

E½pi� ¼ ðpi � ciÞQie
�Qi=li þ

Z ðpi�ciÞQi

ðsi�ciÞQi

x
e�1=lix�ðsi�ciÞQi=pi�si

liðpi � siÞ
dx

(27)

which yields

E½pi� ¼ ðsi � ciÞQi þ liðpi � siÞð1� e�Qi=li Þ (28)

Similarly,

E½p2
i � ¼ ððsi � ciÞQi þ liðpi � siÞÞ

2
þ l2

i ðpi � siÞ
2

þ ðpi � ciÞ
2Q2

i e�Qi=li � ðððpi � ciÞQi

þ liðpi � siÞÞ
2
þ l2

i ðpi � siÞ
2
Þe�Qi=li (29)

and

Var½pi� ¼ liðpi � siÞ
2
ðlið1� e�2Qi=li Þ � 2Qie

�Qi=li Þ.

Appendix B. Distribution of the profit with
exponential demand—two product case

When the demand for product i is an exponential
random variable with rate li, the distribution of the total
profit, p1+p2 is given below:

P½pox� ¼

1� e�x�yc=l1ðp1�s1Þ �
1

yd
ðe�x�yc=l1ðp1�s1Þ

�e�x�yc=l2ðp2�s2ÞÞ yaXybXx

1� e�x�yc=l1ðp1�s1Þ �
e�x�yc=l2ðp2�s2Þ

yd

�ðex�yc=ðp1�s1Þyd=l1 � ex�yb=ðp1�s1Þyd=l1 Þ yaXx4yb

1� e�x�ya=l2ðp2�s2Þ�Q 1=l1 �
e�x�yc=l2ðp2�s2Þ

yd

�ðeQ1yd=l1 � ex�yb=ðp1�s1Þyd=l1 Þ x4ya4yb

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

where yd ¼ l1ðp1 � s1Þ � l2ðp2 � s2Þ=l2ðp2 � s2Þ when
yda0 and

P½pox� ¼

1� e�x�yc=l1ðp1�s1Þ �
e�x�yc=l2ðp2�s2Þ

l1

x� yc

ðp1 � s1Þ
yaXybXx

1� e�x�yc=l1ðp1�s1Þ �
e�x�yc=l2ðp2�s2Þ

l1

ðp2 � s2ÞQ2

ðp1 � s1Þ
yaXx4yb

1� e�x�ya=l2ðp2�s2Þ�Q1=l1 �
e�x�yc=l2ðp2�s2Þ

l1

�
Q1ðp1 � c1Þ þ Q2ðp2 � c2Þ � x

ðp1 � s1Þ

� �
x4ya4yb

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

when yd ¼ 0.
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