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Abstract

We consider a single-period inventory model where there are risks associated with the uncertainty in

demand as well as supply. Furthermore, the randomness in demand and supply is correlated with the �nancial

markets. Recent literature provides ample evidence on this issue. The inventory manager may then exploit

this correlation and manage his risks by investing in a portfolio of �nancial instruments. The decision problem

therefore includes not only the determination of the optimal ordering policy, but also the selection of the

optimal portfolio at the same time. We analyze this problem in detail and provide a risk-sensitive approach

to inventory management where one considers both the mean and the variance of the resulting cash �ow. The

analysis results in some interesting and explicit characterizations on the structure of the optimal policy.

Keywords. Newsvendor model, random supply, risk hedging, minimum-variance portfolio

1 Introduction

This work is motivated by Gaur and Seshadri [2005] who provides a convincing argument on hedging inventory

risks through instruments in the �nancial markets. Their discussion is based on statistical evidence that an

inventory index (Redbook) that represents average sales is very highly correlated with a �nancial index (S&P

500) that represents average asset prices. Therefore, this leads to the fact that risks associated with random

demand may be hedged by investing in the �nancial markets. In another related research, Okyay et al. [2014]

consider a model where there is additional uncertainty due to the randomness in supply. In this paper, we

combine these 2 lines of research and take a risk-sensitive look at the standard single-period newsvendor model

with random demand and supply. The inventory manager (IM) tries not only to maximize the expected pro�t

or the cash �ow at the end of the period as it is done in almost all of inventory management literature. But,

more importantly, he also needs to consider decreasing the risk or the variance of the cash �ow by investing in a

portfolio of market instruments that are correlated with the random demand and supply.

The overwhelming majority of inventory literature relates to risk-neutral IMs who are concerned with the

expected pro�t or cost criteria. Although this is a mathematically viable approach, it supposes that decision

makers behave risk-neutrally which, in reality, is simply not necessarily true. That�s why models with risk-

neutrality assumptions have limited viability in practice. In recent years, the risk-sensitive behavior of the

decision maker is typically addressed through mean-variance (MV) or semi-variance models, Value-at-Risk (VaR)

or conditional VaR (CVaR) models, utility-based models, and models that aim to maximize some satis�cing

probability.

1



MV approach used in decision making under uncertainty originates from �nance and it was introduced by

Markowitz [1959] for the portfolio management problem. For a given value of mean return, the portfolio that

minimizes the variance of the return is determined. In inventory management literature, pioneered by Lau [1980],

the MV approach has also received signi�cant attention. We refer the reader to Choi et al. [2008], Wu et al.

[2009], Chen and Federgruen [2000], and Choi and Chiu [2012] for examples along the MV line of research. VaR

and CVaR are also used in risk-sensitive decision making and inventory management. VaR and CVaR are widely

used in �nancial mathematics and �nancial risk management as measure of the risk of loss on a speci�c portfolio

of �nancial assets. Gan et al. [2004], Gotoh and Takano [2007], and Özler et al. [2009], among others, consider

the VaR and CVaR criteria.

There are also other papers examining the control of risks with various other approaches. Ahmed et al. [2007]

uses a coherent risk measure in a multi-period model while Wang and Webster [2009] focuses on loss aversion.

Chen et al. [2007] propose a framework for incorporating risk aversion in multi-period inventory models as well

as multi-period models that coordinate inventory and pricing strategies. Parlar and Weng [2003] provides an

example using satis�cing probability maximization, which refers to probability of achieving a certain level of

pro�t. The utility approach is commonly used for modelling risk-sensitivity in inventory management where the

objective function is the expected utility of the decision maker. Eeckhoudt et al. [1995] examine the e¤ects of

risk aversion in a single-period problem using a piecewise-linear payo¤ function and exponential utility function.

In a recent paper, Say¬n et al. [2014] consider a general utility-based model and provide several characterization

on optimal ordering policies.

Our paper focuses on inventory management through �nancial hedging. Van Mieghem [2003] describes �-

nancial hedging as follows: �Risk-averse decision makers may be interested in mitigating risk in the capacity-

investment decision. Mitigating risk, or hedging, involves taking counterbalancing actions so that, loosely speak-

ing, the future value varies less over the possible states of nature. If these counterbalancing actions involve trading

�nancial instruments, including short-selling, futures, options, and other �nancial derivatives, we call this �nancial

hedging.�It should be noted that �nancial hedging is di¤erent than operational hedging which is widely studied

in the inventory management literature through strategies like inventory pooling, component commonality, sup-

plier diversi�cation, etc. Within the literature on inventory models, few worked on controlling the inventory risk

through borrowing and trading in �nancial markets. Anvari [1987] studies the capital asset pricing model to solve

the single-period newsvendor model with no setup costs by investing some portion of capital in inventory and

other on �nancial assets. The resulting optimal policy is characterized and compared with the classical expected

utility maximization structure. Gaur and Seshadri [2005], another pioneer paper on this subject, use the S&P

500 index to construct static hedging strategies using both mean-variance and utility-maximization frameworks.

An important aspect they pointed out is, the risk of inventory carrying can be replicated as a �nancial portfolio

by using simple instruments like bonds, futures and options. Caldentey and Haugh [2006] use �nancial hedging

methods for continuous-time models. Their paper views the non-�nancial operations of a corporation, as assets

in the corporation�s portfolio; thus, turning the problem into a �nancial hedging problem in incomplete markets.

By dynamically hedging the pro�ts of a corporation they propose a framework for modelling the operations of a

non-�nancial corporation that also trades in the �nancial markets. P¬nar et al. [2011] consider a quantity �exibil-

ity contract in a supply chain consisting of a buyer and a seller. It is assumed that random demand is perfectly

correlated with a risky �nancial asset. They then investigate the joint ordering and portfolio optimization problem

to evaluate the value of the contract. A recent paper by Chod et al. [2010] explores operational �exibility (an

operational hedging strategy) and �nancial hedging together and �nds that the two strategies may be substitutes

or complements depending on the problem setting.

A model with supply uncertainty and risk hedging using futures is discussed in Kazaz and Webster [2011].
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They consider a speci�c problem in agriculture involving a 2 stage decision process where the manager decides on

the amount of land to rent in the �rst stage when the product yield of the land is random. In the second stage,

given the realized yield of the �rst stage, the problem is to �nd the optimal selling price, amount of the �nal

product to be produced from internally grown and externally purchased fruit, as well as the amount of fruit to be

sold in the open market without converting to the �nal product. This is a speci�c model that applies to a problem

faced in agriculture where yield is the only source of randomness. Our model is the well-known newsvendor model

with random demand as well as random supply where supply randomness may be due to random yield, or capacity

or both. The models, analysis, results and the corresponding cash �ows are completely di¤erent. Regarding risk

hedging, there is a resemblance to our model in Kazaz and Webster [2011] where the authors discuss the value

of using fruit futures in mitigating the supply risk in their model. Assuming that there is a futures market for

the fruit, they show that fruit futures do not have an impact on �rm�s pro�tability in the risk-neutral case due

to the implicit assumption on no arbitrage in the futures market. They arrive at the same conclusion under yield

independent trading costs. Finally, through a numerical illustration with the exponential utility function, they

illustrate that using fruit futures has an impact on the optimal decisions. The ideas presented by the numerical

illustration in Kazaz and Webster [2011] are very much related to our ideas since they also address the e¤ect of

risk hedging. However, as mentioned above, the fact that the cash �ows are not related is a signi�cant di¤erence.

More importantly, risk hedging is the central theme in our paper and this constitutes our main contribution to

the available literature. We present a rather general model with demand and supply risks to be hedged. We

do not suppose the presence of a futures market for the commodity in question. Our analysis is based on the

assumption that there are a number of derivative securities present in the �nancial markets and the cash �ow is

hedged by investing in a portfolio of these derivatives. We do not only consider a numerical illustration to justify

the impact of risk hedging, but we present a complete analysis on how to hedge optimally and discuss its impact

on the optimal order quantity of the newsvendor model as well as the risk (or the variance of the cash �ow). We

present a computationally tractable procedure and demonstrate via a numerical illustration that it is possible to

mitigate inventory risks through various instruments in the �nancial markets.

To position our paper in the literature in comparison to those discussed above, we want to mention that our

model is one where the IM �rst identi�es the optimal risk hedging �nancial portfolio that minimizes the variance

of the cash �ow for any given order quantity. Then, he chooses the optimal order quantity that maximizes the

expected hedged cash �ow. This approach is at the intersection of industrial and �nancial management related

to inventory control. In this regard, our approach is similar to Gaur and Seshadri [2005] who investigate a

newsvendor problem with a similar risk hedging perspective. We show that their approach can be generalized

to supply uncertainty in addition to demand uncertainty and provide an explicit solution to the problem of

�nding the variance minimizing portfolio and the corresponding optimal inventory decisions. We think these are

signi�cant and non-trivial generalizations of the pioneering approach of Gaur and Seshadri [2005] and enhance

the application scope of their framework considerably.

In addition to random demand D; there is additional uncertainty due to random supply such that the quantity

that is received is Q (y) = U min fK; yg if the order quantity is y: Here, U represents the random proportion of

nondefective items and K is the random capacity of the supplier or manufacturer. This is a rather general model

that combines random yield U and capacity K: It is based on the assumption that the quantity received can be

at most equal to the capacity K; and only a proportion U of nondefective items can enter the store. The reader is

referred to Arifo¼glu and Özekici [2010] for motivations and discussions on the literature related to random supply.

A complete analysis and results on the classical newsvendor model with random supply can be found in Okyay

et al. [2014].

The primary emphasis and contribution of this paper is on the impact of risk hedging in inventory models by
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investing in a portfolio of �nancial assets. Our approach supposes that there is correlation between the uncertainty

in the inventory model and uncertainty in the �nancial markets. This correlation is exploited to provide the IM

betters means of controlling the risk. The uncertainty in the inventory model includes both random demand and

random supply, while the uncertainty in the �nancial market includes random asset prices. The analysis leads to

a rather computationally tractable procedure to determine optimal portfolios that decrease the risk as measured

by the variance of the cash �ow. Our model contributes to the literature on risk-sensitive inventory management

in 2 directions: (1) it includes random supply as another source of uncertainty, and (2) it uses risk hedging by

investing in a �nancial portfolio. There are other means of risk minimization and hedging in inventory models.

For example, Vaagen and Wallace [2008] discuss a mean-variance model in fashion supply chains where the risk

associated with uncertain demand due to uncertain product popularity is hedged by increasing product variety

through blending/fragmentation. Another example in the highly volatile fashion industry is provided by Choi

[2013] where the IM is risk-sensitive and used the mean-variance approach with interest rate, budget, and pro�t

target considerations. The approach in our work is quite di¤erent since we focus on risk hedging by investing in

a �nancial portfolio of assets in the market.

In this paper, we consider the standard newsvendor model with random demand and supply which are cor-

related with the �nancial markets. Since both demand and supply are correlated with the market possibly due

to similar economic cycles, they are also dependent. This corresponds to a number of interesting and practically

relevant situations. During periods where demand surges, suppliers may have to ration production capacity be-

tween multiple customers leading to negative correlation between the supply quantity and the demand. We �rst

review the standard newsvendor model with random supply brie�y in Section 2. The same model with �nancial

hedging is discussed later in Section 3 where characterizations on the structures of the optimal hedging portfolio

and the optimal order quantity are provided. Special cases involving only random demand, random yield, and

random capacity are discussed in Section 4. We illustrate how our results can be used by a number of examples

and interpretations in Section 5. Concluding remarks and ideas for future work are presented in Section 6.

2 The Newsvendor Model with Random Supply

The newsvendor problem is a well-known single-item, single-period inventory problem in which the decision maker

(or newsvendor) has to decide on how much to order. The replenishment decision is critical because if he orders

too many, purchase cost will be unnecessarily high; on the contrary, there will be a missed opportunity for

additional pro�t if he orders too few. In daily life, it is very common to encounter examples of newsvendor

models, that�s the foremost reason why these models are studied extensively. There is random demand D with a

known distribution function that has a probability density function. Throughout this paper, we assume that all

marginal, joint and conditional distributions corresponding to random demand D, random yield U and random

capacity K have marginal, joint and conditional probability density functions. We suppose that the length of

the period is T during which there is interest charged continuously with some rate r: Moreover, we suppose that

there is a �xed sale price s, a �xed purchase cost c, a �xed shortage penalty p � 0; and a �xed salvage value v
which satisfy s > cerT > v > 0 to avoid trivial situations. All cash �ows occur at time T except for the cash

payment made at time 0 to purchase inventory. This model is discussed earlier by Okyay et al. [2014] where there

is no hedging and no interest so that r = 0:We now present their results adjusted accordingly to our setting with

positive interest. Recall that the quantity that is received is Q (y) = U min fK; yg when there is random supply.

The aim of the newsvendor is to maximize the expected cash �ow at the end of the period by choosing an

ordering quantity y, or

max
y
E [CF (D;K;U; y)] (1)
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where CF (D;K;U; y) is the random cash �ow which can be written as

CF (D;K;U; y) = �cerTU min fy;Kg+ smin fD;U min fy;Kgg

+vmax fU min fy;Kg �D; 0g � pmax fD � U min fy;Kg ; 0g

=
�
v � cerT

�
U min fy;Kg+ (s+ p� v)min fD;U min fK; ygg � pD (2)

using the fact that maxfa� b; 0g = a�minfa; bg:

Theorem 1 The optimal order quantity y� satis�es

E
�
U1fK>y�;D�Uy�g

�
E
�
U1fK>y�g

� =
s+ p� cerT
s+ p� v = p̂: (3)

Proof. Note that we can write

E[U minfK; yg] =
Z
ufU (u)du

24 yZ
0

xfKjU=u(x)dx+ y

+1Z
y

fKjU=u(x)dx

35
where fU is the probability density function of U and fKjU=u is the conditional probability density function of

K given U = u: Leibnitz rule gives

dE[U minfK; yg]
dy

=

Z
ufU (u)du

24yfKjU=u(y) + yZ
0

fKjU=u(x)dx� yfKjU=u(y)

35
=

Z
ufU (u)du

yZ
0

fKjU=u(x)dx

or
dE[U minfK; yg]

dy
= E[U1fK>yg]: (4)

The argument for E[minfD;UK;Uyg] is somewhat similar and one can show that

dE[minfD;UK;Uyg]
dy

= E[U1fK>y;D>Uyg] = E[U1fK>yg]� E[U1fK>y;D�Uyg] (5)

so that the optimality condition can be written as

E[U1fK>yg]

��
s+ p� cerT

�
� (s+ p� v)

�
E[U1fK>y;D�Uy;]

E[U1fK>yg]

��
= 0 (6)

by taking the derivative of the expected cash �ow in (1). This leads to the optimality condition (3).

The objective function is not necessarily concave. However, de�ning

g (y) =
E
�
U1fK>y;D�Uyg

�
E
�
U1fK>yg

� (7)

one obtains conditions for the existence and uniqueness of the solution. More precisely, if g(y) is increasing in y,

there exists 0 � y� � +1 which satis�es the optimality condition g (y�) = p̂ provided that g (0) � p̂ � g (+1) :
This solution is unique if g(y) is strictly increasing. Moreover, the objective function is concave increasing on

[0; y�) and decreasing on [y�;+1). Therefore, it is quasi-concave and the solution y� is indeed the optimal
solution that maximizes the objective function. Finally, y� = 0 if g (0) � p̂ and y� = +1 if g (+1) � p̂.
It is clear that if K = +1 and U = 1; we obtain the standard newsvendor model with no randomness in

supply and g(y) = PfD � yg is always increasing so that the optimality condition becomes

P fD � y�g = p̂ (8)
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since E
�
U1fK>y�;D�Uy�g

�
= E

�
1fD�y�g

�
= P fD � y�g and E

�
U1fK>y�g

�
= 1:

Similarly, in case K = +1; we have random yield only and g(y) = E
�
U1fD�Uyg

�
=E [U ] is also increasing

and the optimality condition becomes
E
�
U1fD�Uy�g

�
E [U ]

= p̂ (9)

since E
�
U1fK>y�;D�Uy�g

�
= E

�
U1fD�Uy�g

�
and E

�
U1fK>y�g

�
= E [U ] :

Finally, if U = 1; then the model involves random capacity only and g (y) = P fD � y j K > yg leads to the
optimality condition

P fD � y� j K > y�g = p̂ (10)

since E
�
U1fK>y�;D�Uy�g

�
= E

�
1fK>y�;D�y�g

�
= P fK > y�; D � y�g and E

�
U1fK>y�g

�
= E

�
1fK>y�g

�
=

P fK > y�g :
Note that in all of the cases, the optimality condition is stated in terms of the same critical ratio p̂: It is clear

that 0 � p̂ � 1 and this important parameter will appear in almost all of our results throughout this paper. Given
the costs and revenues, (8) allows us to interpret p̂ as the optimal probability of satisfying the periodic demand.

3 Newsvendor Model with Hedging

Risk hedging in inventory models, as well as other decision problems under uncertainty, is an important issue that

should not be overlooked. After all, decision makers are not necessarily risk-neutral and the risk associated with

a cash �ow is one of the primary objectives. In the context of inventory models, Gaur and Seshadri [2005] discuss

the relationship between sales of inventory in stores and values of some �nancial index. As it is clearly illustrated

by Figure 1 taken from Gaur and Seshadri [2005], there is very strong statistical evidence that an inventory index

(Redbook) that represents average sales is very highly correlated with a �nancial index (S&P 500) that represents

average prices of stocks in the �nancial markets. They further discuss the case when the relationship is perfect so

that the random demand in a period is a linear function of the price of a share of stock traded in the market. For

the newsvendor model, they obtain an explicit expression for the portfolio that replicates the periodic cash �ow.

The portfolio consists of a cash bond and derivatives (futures and European calls) of the stock. This naturally

leads to the conclusion that the IM should consider the value of the replicating portfolio at the beginning of the

period in order to avoid arbitrage opportunities. Several cases of exactly replicating the cash �ow by investing in

such portfolios is also discussed in Okyay et al. [2011], but they only include unrealistic models where there are

perfect deterministic relationships between demand/supply and �nancial variables. In this paper, our primary

aim is to extend this line of research where these variables are only correlated.

We want to mention that the �nancial portfolios used for hedging may include a variety of products in the

markets. For example, Chen and Yano [2010] consider a supply chain where the demand is weather related and

their emphasis is on hedging risks via weather-linked rebates. They report on cases involving, for example, Wal-

Mart, Cadbury Schweppes, Coca-Cola, Unilever, Nestle, Weatherproof Garment Company who state that their

sales are substantially a¤ected by weather conditions. This directly implies that risks associated with uncertain

demand can be hedged by using portfolios of weather derivatives in �nancial markets. We refer the reader to

Chen and Yano [2010] for examples and motivations.

We now consider the newsvendor model where random demand and supply are correlated with the �nancial

markets. The newsvendor has a more comprehensive task on hand. In addition to determining the order quantity

y, he must also choose a portfolio of �nancial securities to hedge his risks. We suppose that the risk-sensitive

newsvendor tries to minimize the variance of the hedged cash �ow by choosing his portfolio for any possible order
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Figure 1: Redbook Same-Store Sales Growth Rate vs. Annual Return on the S&P 500 Index

quantity. Then, he chooses that order quantity that maximizes the expected value of the minimum-variance cash

�ow. LetX = (D;U;K) denote the vector of random variables corresponding to demand and supply uncertainties,

and S denote the price of a primary asset in the market at the end of the period. The random vector X and

the �nancial variable S are correlated. Suppose that there are n � 1 derivative securities in the market where

fi (S) is the net cash �ow of the ith derivative security of the primary asset at the end of the period. In other

words, it is the payo¤ f̂i (S) received at time T minus its investment cost fTi so that fi (S) = f̂i (S) � fTi . For
example, if the derivative is a call option with some strike price K; then f̂i (S) = (S �K)+ = maxf0; S �Kg so
that fi (S) = maxf0; S �Kg � fTi where fTi is price of the call option compounded to time T: Will also let f0i
denote the price of the ith derivative security at the beginning of the period when it is purchased, and we then

have fTi = e
rT f0i : If the market is complete with some risk-neutral probability measure Q; then it is well-known

that f0i = e
�rTEQ[f̂i (S)] and this will lead to EQ [fi (S)] = EQ

h
f̂i (S)� fTi

i
= 0:We do not necessarily suppose

that the market is complete. However, the consequences of such a market will be analyzed in our numerical

illustrations in the last section.

Let �i denote the amount of security i in the portfolio, and CF (X; y) denote the unhedged cash �ow as a

function of the random vector X and the decision variable y. Although S denotes the price of a single asset, our

analysis actually holds as well when S is indeed a vector representing the price of a number of primary assets in

the market. The total hedged cash �ow is given by

CF� (X; S; y) = CF (X; y) +

nX
i=1

�ifi (Si) .

The problem now is to �nd the optimal portfolio � = (�1; �2; � � � ; �n) to minimize the variance of the total cash
�ow for a given order quantity y. The optimization problem is

min
�
Var

 
CF (X; y) +

nX
i=1

�ifi (S)

!
. (11)

Once the optimal solution �� (y) is determined for any order quantity y, the decision maker then chooses the

optimal order quantity by solving

max
y�0

E

"
CF (X; y) +

nX
i=1

��i (y) fi (S)

#
. (12)

Note that we do not impose nonnegativity restrictions on the portfolio � so that shortselling is possible. The

risk-sensitive newsvendor therefore makes sure that his risk (measured by the variance of the cash �ow) is smallest
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for any order he gives. Our approach involves a two-step procedure where optimization problems (11) and (12)

are solved one after each other. By solving (11), we decrease the risk measured by the variance of the cash �ow

for any order y that the newsvendor gives. This optimal minimum variance portfolio is denoted by �� (y) : Then,

the newsvendor selects that order quantity y� by solving (12). This gives the order quantity that maximizes the

expected value of the hedged cash �ow that includes the cash �ow associated with the inventory management as

well as �nancial cash �ow obtained by investing in the �nancial portfolio. Note that if the market is risk-neutral,

then E [CF (X; y) +
Pn

i=1 �
�
i (y) fi (S)] = E [CF (X; y)] since E [fi (S)] = E

h
f̂i (S)� fTi

i
= 0 and the optimal

order quantity y� of (12) is equal to that of the risk-neutral case. However, by using the optimal portfolio �� (y�) ;

the newsvendor decreases the variance of the cash �ow. This is why our analysis, results, and illustrations mainly

focus on the impact that �nancial hedging has on the newsvendor problem.

Since the main theme and purpose of the paper is to demonstrate how and how much risk reduction can be

done through hedging, we consider the choice problem on the portfolio � to be more signi�cant than the choice

problem on the order quantity y: For this purpose we have not really formulated an optimization problem involving

� and y at the same time. For any given y; the optimal portfolio which solves (11) is optimal in minimizing the

variance of the cash �ow. However, it follows that the two-step optimization procedure (11) and (12) actually

solves the optimization problem

max
y�0

E

"
CF (X; y) +

nX
i=1

�i (y) fi (S)

#
(13)

such that

Var

 
CF (X; y) +

nX
i=1

�i(y)fi (S)

!
� Var

 
CF (X; y) +

nX
i=1

�ifi (S)

!
(14)

for all portfolios � = (�1; �2; � � � ; �n) and y � 0: In this formulation, we require that for any order quantity y;
only the minimum-variance portfolio should be used in hedging. The solution to this optimization problem is

obtained by solving (11) and (12) sequentially.

Note that the optimal solution of (13) and (14), denoted by (y�; ��(y�)); gives the optimal order quantity

and the optimal portfolio of the decision maker who wishes to maximize the expected return using minimum-

variance �nancial portfolios. Decision makers do not all have the same perception towards risk. One can, of

course, make other formulations that involve mean-variance, utility, downside risk, prospect, or other types of

risk models. We believe that our formulation (13) and (14) is plausible while the two-step procedure (11) and

(12) is tractable. Moreover, the two-step optimization approach can be exploited to numerically explore other

interesting formulations. For instance, let us consider the mean-variance optimization problem. A theoretical

study of this problem appears challenging and is beyond the scope of this paper. On the other hand, since we

can characterize the variance minimizing portfolio for any given order quantity, we can numerically compute the

expected returns and the corresponding minimum variances for an appropriate discretization of order quantities

and generate an approximation of the e¢ cient mean-variance frontier. This frontier represents the combinations

of expected returns and variances that are available to a risk-averse decision maker. Clearly, our solution y� is

on this e¢ cient frontier, but a decision maker may also consider other choices of y on the frontier depending on

his attitude toward risk. For example, if p = 0; a decision maker with no risk tolerance will choose y = 0 and not

y� because it leads to no risk with, of course, no return.

When there is random yield and capacity so that Q (y) = U min fK; yg, the cash �ow is

CF (X; y) =
�
v � cerT

�
U min fK; yg+ (s+ p� v)min fUy;UK;Dg � pD

where X = (D;U;K) while the hedged cash �ow becomes

CF� (X; S; y) = CF (X; y) +
nX
i=1

�ifi (S) :
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The objective function in (11) can be written as

Var (CF� (X; S; y)) = Var

 
CF (X; y) +

nX
i=1

�ifi (S)

!

=
nX
i=1

nX
j=1

�i�jCov (fi (S) ; fj (S))

+2
nX
i=1

�iCov (fi (S) ; CF (X; y))

+Var (CF (X; y)) .

We can rewrite the objective function in compact matrix notation as

Var (CF� (X; S; y)) = �TC�+ 2�T� (y) +Var (CF (X; y)) (15)

where � is a column vector, �T is the transpose of �, C is the covariance matrix of the securities with entries

Cij = Cov (fi (S) ; fj (S)) (16)

and �(y) is a vector with entries

�i (y) = Cov (fi (S) ; CF (X; y)) (17)

that denotes the covariance between the �nancial securities and the cash �ow.

It turns out that the optimal portfolio can be expressed in a compact formula as stated in the following

proposition.

Proposition 2 The minimum-variance �nancial portfolio is given by

�� (y) = �C�1� (y) . (18)

Proof. By taking the gradient of (15) with respect to � and setting it equal to zero, the �rst order optimality

condition is obtained as

C�+ � (y) = 0

where 0 = (0; 0; � � � ; 0) is the zero vector. The second order condition is also veri�ed since the Hessian matrix of
(15) is the covariance matrix C which is always positive de�nite.

By substituting ��(y) = �C�1�(y) into the variance function (15), we can rewrite it as

Var
�
CF��(y) (X; S; y)

�
= Var (CF (X; y))� �(y)TC�1�(y): (19)

Since a covariance matrix is C always positive de�nite, so is its inverse, and �(y)TC�1�(y) � 0 for any y � 0:
Therefore, the hedged variance Var

�
CF��(y) (X; S; y)

�
is always less than or equal to that of the unhedged cash

�ow for any order quantity y: This show the impact of hedging; there is much to be gained by hedging in variance

reduction. This, of course, depends on the correlation between the unhedged cash �ow and payo¤s of the derivative

securities used for hedging. If there is no correlation and �(y) = 0; then we have the same variance function and

hedging has no e¤ect.

Next we focus on the determination of the order quantity that maximizes the expected cash �ow while using

the minimum-variance portfolio �� (y). Then, the objective function is

E
�
CF��(y) (X; S; y)

�
=

�
v � cerT

�
E [U min fK; yg] (20)

+(s+ p� v)E [min fD;UK;Uyg]

�pE [D]� � (y)TC�1E [f (S)]

9



where f (S) = (f1 (S) ; f2 (S) ; � � � ; fn (S)) denotes the column vector of the payo¤s of the derivative securities. Let
�0 (y) denote the gradient vector of � (y) obtained by the derivatives �0i (y) = d�i (y) =dy: The characterization

of the optimal order quantity is provided in the following result.

Theorem 3 The optimal order quantity that maximizes the expected cash �ow while using the minimum-variance

portfolio �� (y) satis�es
E
�
U1fD�Uy�;K>y�g

�
E
�
U1fK>y�g

� +
�0 (y�)

T
C�1E [f (S)]

(s+ p� v)E
�
U1fK>y�g

� = p̂. (21)

Proof. By taking the derivative with respect to y of the expected cash �ow (20), we obtain the optimality

condition �
v � cerT

�
E
�
U1fK>yg

�
+ (s+ p� v)E

�
U1fD>Uy;K>yg

�
� �0 (y)TC�1E [f (S)] = 0: (22)

To get (22), we also use (4) and (5). The optimality condition can be rewritten as�
v � cerT

�
E
�
U1fK>yg

�
+ (s+ p� v)

�
E
�
U1fK>yg

�
� E

�
U1fD�Uy;K>yg

��
� �0 (y)TC�1E [f (S)] = 0

or �
s+ p� cerT

�
E
�
U1fK>yg

�
� (s+ p� v)E

�
U1fD�Uy;K>yg

�
� �0 (y)TC�1E [f (S)] = 0.

This leads to (21).

The characterization in Theorem 3 is similar to that of the standard random supply model (3) in the previous

section. The only di¤erence is that we now have an additional term

h (y) =
�0 (y)

T
C�1E [f (S)]

(s+ p� v)E
�
U1fK>yg

�
and the optimal solution satis�es

g(y�) + h(y�) = p̂: (23)

Note that we need to impose additional restrictions on g + h in for the existence and uniqueness of the optimal

solution. In particular, if g(y) + h(y) is increasing in y, there exists 0 � y� � +1 which satis�es the optimality

condition g (y�) + h(y�) = p̂ provided that g (0) + h(0) � p̂ � g (+1) + h(+1): This solution is unique if
g(y) + h(y) is strictly increasing. Moreover, y� = 0 if g (0) + h(0) � p̂ and y� = +1 if g (+1) + h(+1) � p̂. If
the new term h(y) is positive and increasing, then the optimal order quantity will be smaller than the optimal

order quantity without hedging, and vice versa. Moreover, if there is no correlation between demand, supply and

the market, h (y) will be equal to zero since �0 (y) = 0 and the model reverts to the random supply model in the

previous section.

There is further simpli�cation in our results when there is only n = 1 security. These results are summarized

in the following corollary.

Corollary 4 If only one security is used for �nancial hedging (i.e., n = 1), then the minimum-variance portfolio

consists of

�� (y) = �Cov (f (S) ; CF (X; y))
Var (f (S))

= p�D (+1)�
�
v � cerT

�
�K;U (y)� (s+ p� v)�D;K;U (y) (24)

where

�D (y) =
Cov (f (S) ;min fD; yg)

Var (f (S))
(25)

�K;U (y) =
Cov (f (S) ; U min fK; yg)

Var (f (S))
(26)

10



and

�D;K;U (y) =
Cov (f (S) ;min fUy;UK;Dg)

Var (f (S))
. (27)

Moreover, the optimal order quantity y� that maximizes the expected cash �ow for the minimum-variance portfolio

satis�es
E
�
U1fD�Uy�;K>y�g

�
E
�
U1fK>y�g

� +
�0D;K;U (y

�)E [f (S)]

E
�
U1fK>y�g

� +

�
v � cerT

�
�0K;U (y

�)E [f (S)]

(s+ p� v)E
�
U1fK>y�g

� = p̂ (28)

where

�0D (y) =
Cov

�
f (S) ; 1fD>yg

�
Var (f (S))

(29)

�0K;U (y) =
Cov

�
f (S) ; U1fK>yg

�
Var (f (S))

(30)

and

�0D;K;U =
Cov

�
f (S) ; U1fK>y;D>Uyg

�
Var (f (S))

. (31)

Proof. The results follow directly from Proposition 2 and Theorem 3 by noting that if there is only one derivative

security for hedging with payo¤ f(S); then C = Cov(f (S) ; f (S)) = Var(f(S)) and � (y) = Cov(f (S) ; CF (X; y))

where CF (X; y) =
�
v � cerT

�
U min fK; yg + (s+ p� v)min fUy;UK;Dg � pD: Note also that �D (+1) =

Cov(f (S) ;min fD;+1g) =Var(f (S)) = Cov(f (S) ; D) =Var(f (S)) : To see (29), we �rst write

Cov (f (S) ;min fD; yg) = E [f (S)min fD; yg]� E [f (S)]E [min fD; yg]

where

E [f (S)min fD; yg] =
Z
f(s)gS(s)ds

24 yZ
0

zfDjS=s(z)dz + y

yZ
0

fDjS=s(z)dz

35 :
Here, gS is the probability density function of S and fDjS=s is the conditional probability density function of D

given S = s: Using Leibnitz rule as in the proof of Theorem 1, we get

dE [f (S)min fD; yg]
dy

= E[f(S)1fD>yg]:

Now, if we simply take f(S) = 1 in this analysis as a special case, dE [min fD; yg] =dy = E[1fD>yg] and

dCov (f (S) ;min fD; yg)
dy

= E[f(S)1fD>yg]� E [f (S)]E[1fD>yg]

= Cov
�
f (S) ; 1fD>yg

�
which leads to (29). The arguments for (30) and (31) are somewhat similar and they are omitted for brevity.

One may be able to use the formulas in Corollary 4 to obtain explicit analytical solutions. However, this may

be a formidable task in general, but they can be estimated using simulation. We now need to take

h (y) =
�0D;K;U (y)E [f (S)]

E
�
U1fK>yg

� +

�
v � cerT

�
�0K;U (y)E [f (S)]

(s+ p� v)E
�
U1fK>yg

�
as the additional term in (23). Our results provide compact characterizations of minimum-variance portfolios and

corresponding expected value maximizing order quantities. As a �nal remark on the solutions of (11) and (12),

note that determination of the optimal portfolio (18) does not require any additional assumptions. This result

provides the main contribution of this paper and it always holds. However, we need additional conditions in

determining the optimal order quantity by solving (21). The conditions that we impose address the existence and

uniqueness of the solution of the optimality condition. After all, the objective function is not necessarily concave

11



when there is random supply as demonstrated by the fact that the derivative of the objective function in (6) is

not necessarily decreasing. This is true even for the simpler case of the standard newsvendor problem without

hedging. The remedy for this situation is obtained, for example, whenever g(y) is increasing which leads to

quasi-concavity of the objective function. In the model with hedging, this is not su¢ cient and we need additional

conditions on gy)+h(y): Recall that if the market is risk-neutral, then E [f (S)] = 0 so that h(y) = 0 and we only

need to impose restrictions on g(y):Without such additional restrictions, the optimality condition (21) may have

many solutions. They may give local minima, maxima or in�ection points. In this case, additional computational

e¤ort is needed to identify all solutions and choose the one that maximizes the objective function. In the next

section, we investigate some special cases of the results presented in this section in order to obtain insights for

the optimal hedging portfolio and the optimal order quantity.

4 Special Models

In this section we consider a number of special cases that lead to simpli�ed versions of our characterization results.

They are obtained by setting the values of K = +1 and/or U = 1 in (24) - (31).

4.1 Random Demand Model

Suppose that the supply is certain with K = +1; U = 1 and the randomness of the pro�t comes only from

demand. The hedged cash �ow is given by

CF� (D;S; y) =
�
v � cerT

�
y + (s+ p� v)min fD; yg � pD +

nX
i=1

�ifi (S) .

Let �̂ (y) denote a vector of functions where the ith entry is �̂i (y) = Cov
�
fi (S) ; 1fD>yg

�
: One can show that

the optimality condition (21) simpli�es to give the following optimality condition.

Corollary 5 The optimal order quantity that maximizes the expected cash �ow while using the minimum-variance

portfolio �� (y) satis�es

P fD � y�g+ �̂ (y�)TC�1E [f (S)] = p̂: (32)

Proof. This follows by noting that E
�
U1fK>y�;D�Uy�g

�
= E

�
1fD�y�g

�
= P fD � y�g ; E

�
U1fK>y�g

�
= 1; and

�i (y) = (s+ p� v)Cov (fi (S) ;min fD; yg)� pCov (fi (S) ; D) :

This completes the proof since dCov(fi (S) ;min fD; yg) =dy = Cov
�
fi (S) ; 1fD>yg

�
= �̂i (y) by (29) and �

0
i (y) =

(s+ p� v) �̂i (y).
The right-hand side of the optimality condition (32) is the same critical ratio p̂. The left-hand side consists

of a cumulative distribution function g(y) = P fD � yg that is always increasing, plus the additional term
h(y) = �̂ (y)

T
C�1E [f (S)]. Note that this term�s sign and behavior is crucial. If it is non-decreasing and

positive, then the optimal ordering quantity will be smaller compared to unhedged optimal ordering quantity. If

it is non-decreasing and negative, then the optimal ordering quantity will be larger compared to the unhedged

optimal ordering quantity. Furthermore, if there is no correlation between S and D, � (y) will be zero; thus, the

optimality condition in (32) reverts back to standard newsvendor model (8).

If there is a single hedging asset, then one can show that (24) reduces to

�� (y) = p�D (+1)� (s+ p� v)�D (y) (33)
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and the optimal order quantity now satis�es

P fD � y�g+ �0D (y�)E [f (S)] = p̂ (34)

from (32).

Recall that the right-hand side of (34) p̂ is the same critical ratio. The left-hand side consists of g(y) =

P fD � yg which is increasing plus a covariance term �0D (y) = Cov
�
f (S) ; 1fD>yg

�
multiplied by the expected

payo¤ of the derivative security E [f (S)]. Hence, the structure of the optimal solution depends on the covariance

term�s sign and shape. Assuming that the payo¤ f (S) is non-negative,

� If Cov
�
f (S) ; 1fD>yg

�
> 0, the optimal order quantity with hedging will be smaller than the optimal order

quantity without hedging.

� If Cov
�
f (S) ; 1fD>yg

�
< 0, the optimal order quantity with hedging will be larger than the optimal order

quantity without hedging.

� If Cov
�
f (S) ; 1fD>yg

�
= 0, they will be equal.

To make further characterizations, we need some assumptions about the relationship between D and S. To

this end, the concept of �positive association�between random variables is quite useful. Two random variables,

such as D and S, are positively associated (PA) if Cov(g (D) ; h (S)) � 0 is true for all pairs of non-decreasing

functions g and h. Therefore, assuming D and S are PA variables implies that Cov
�
f (S) ; 1fD>yg

�
� 0 if the

payo¤ f (S) is an increasing function of S. Hence, �D (y) becomes an increasing function of y. Based on this, we

observe that �� (0) = p�D (+1) > 0, �� (+1) = � (s+ p� v)�D (+1) < 0 and as y increases �� (y) decreases.
This means that a lower amount of investment in the security is needed when the order quantity is higher.

4.2 Random Yield Model

We now suppose that K = +1 so that Q (y) = Uy. Now, the cash �ow becomes

CF� (D;U; S; y) =
�
v � cerT

�
Uy + (s+ p� v)min fD;Uyg � pD +

nX
i=1

�ifi (S) : (35)

Corollary 6 The optimal order quantity that maximizes the expected cash �ow while using the minimum-variance

portfolio �� (y) satis�es
E
�
U1fD�Uy�g

�
E [U ]

+
�0 (y�)

T
C�1E [f (S)]

(s+ p� v)E [U ] = p̂: (36)

Proof. This follows from the optimality condition in (21) by observing that we have E
�
U1fK>y�g

�
= E [U ] and

E
�
U1fD�Uy�;K>y�g

�
= E

�
U1fD�Uy�g

�
whenever K = +1:

Note that g(y) = E
�
U1fD�Uyg

�
=E [U ] is increasing and one needs to impose additional restrictions on h(y)

as discussed before. If there is a single asset, then (24) becomes

� (y�) = p�D (+1)�
�
v � cerT

�
y�U � (s+ p� v)�D;U (y) (37)

where

�D;U (y) =
Cov (f (S) ;min fD;Uyg)

Var (f (S))

and

�U =
Cov (f (S) ; U)
Var (f (S))

.
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Moreover, the optimality condition (36) becomes

E
�
U1fD�Uy�g

�
E [U ]

+

�
(s+ p� v)�0D;U (y�) +

�
v � cerT

�
�U
�
E [f (S)]

(s+ p� v)E [U ] = p̂ (38)

where one can also show that

�0D;U (y) =
Cov

�
f (S) ; U1fD>Uyg

�
Var (f (S))

using an analysis similar to the one in the proof of Corollary (4).

Recalling that �i (y) = Cov(fi (S) ; CF (X; y)) = Cov
�
fi (S) ;

�
v � cerT

�
Uy + (s+ p� v)min fD;Uyg � pD

�
;we

can further take

�0i (y) =
�
v � cerT

�
Cov (fi (S) ; U) + (s+ p� v)Cov

�
fi (S) ; U1fD>Uyg

�
in (36) for the multiple asset case.

4.3 Random Capacity Model

As a �nal case, we consider the random capacity model where U = 1 so that Q (y) = min fy;Kg and the cash
�ow is

CF� (D;K; S; y) =
�
v � cerT

�
min fK; yg+ (s+ p� v)min fD;K; yg � pD +

nX
i=1

�ifi (S) . (39)

Corollary 7 The optimal order quantity that maximizes the expected cash �ow while using the minimum-variance

portfolio �� (y) satis�es

P fD � y� j K > y�g+ �0 (y�)
T
C�1E [f (S)]

(s+ p� v)P fK > y�g = p̂: (40)

Proof. This follows from the optimality condition in (21) by noting that E
�
U1fK>y�g

�
= P fK > y�g and

E
�
U1fD�Uy�;K>y�g

�
= P fD � y�;K > y�g whenever U = 1:

Furthermore, if there is only 1 asset, then (24) yields

�� (y) = p�D (+1)�
�
v � cerT

�
�K (y)� (s+ p� v)�D;K (y) (41)

where

�K (y) =
Cov (f (S) ;min fK; yg)

Var (f (S))

and

�D;K (y) =
Cov (f (S) ;min fD;K; yg)

Var (f (S))
.

Moreover, the optimality condition (40) further reduces to

P fD � y� j K > y�g+
��
v � cerT

�
�0K (y

�) + (s+ p� v)�0D;K (y�)
�
E [f (S)]

(s+ p� v)P fK > y�g = p̂ (42)

where

�0K (y) =
Cov

�
f (S) ; 1fK>yg

�
Var (f (S))

and

�0D;K (y) =
Cov

�
f (S) ; 1fD>y;K>yg

�
Var (f (S))

using an analysis similar to the one in the proof of Corollary (4).
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Finally, �i (y) = Cov(fi (S) ; CF (X; y)) = Cov
�
fi (S) ;

�
v � cerT

�
min fK; yg+ (s+ p� v)min fD;K; yg � pD

�
leads to

�0i (y) =
�
v � cerT

�
Cov

�
fi (S) ; 1fK>yg

�
+ (s+ p� v)Cov

�
fi (S) ; 1fD>y;K>yg

�
in (40) for the multiple asset case.

The results on these important cases lead to a number of managerial insights. The �rst observation is that the

optimal order quantity y� is not a¤ected by hedging if E [f (S)] = 0;or if the expected cash �ow from the �nancial

portfolio is zero. In other words, if the prices of the �nancial assets is the portfolio do not lead to arbitrage

opportunities, there is no gain expected in the cash �ow. The formulas (32), (36), and (40) trivially reduce to

(8), (9), and (10) respectively. If this is not true and E [f (S)] 6= 0; then the optimal order quantity is a¤ected by
hedging as it is implied by the second term on the right-hand side of (32), (36), and (40). Whether this will lead to

increased or decreased order quantities depends on a number of factors. For example, if �0 (y�)TC�1E [f (S)] > 0;

then the optimal order quantity will be higher provided that the usual assumptions on g(y) + h(y) holds. The

opposite is true when �0 (y�)TC�1E [f (S)] < 0: There is no quick and easy way to check this condition, it

depends on correlations among the random variables involved. This condition can be further simpli�ed in case

there is only one asset used for hedging. They are presented by (34), (38), and (42). The discussion at the end

Section 4.1 sheds some light on this issue. The most important point that needs to be emphasized is that, no

matter what the order quantity is, one can always determine the hedging portfolio and this will surely have a

positive impact on the risk or variance of the cash �ow. The formulas (18), (24), (33), (37), and (41) explain

explicitly how this can be done. The numerical analysis requires the computation of a number of � values. If the

computation can not be done analytically, one can always use simulation for estimation. As a matter of fact, we

will use this approach in the section on numerical illustrations next.

5 Numerical Illustrations

In this section, we present numerical examples to quantify the e¤ects of employing �nancial hedging to com-

pensate for demand and supply risks. We consider three di¤erent models: the random demand case and two

generalizations, �rst with random capacity and second with random yield. We want to point out that all of our

numerical calculations are done using Monte Carlo simulations throughout the remainder of this section. This

is because explicit analytical expressions for variances and covariances can not be found. We use Matlab as the

simulation tool. Cash �ows are generated by using the simulated values of S;D;K; and U whenever needed.

We generate 20; 000 instances to calculate the stock prices, demand, capacity, yield, and payo¤ of the derivative

securities. Then, we use the formulas (33), (37), and (41) obtained in Section 4 to calculate the optimal portfolios

using estimates of the covariances in these formulas. Finally, we generate another 20; 000 instances to obtain the

corresponding cash �ows. For each illustration, we calculate the means and variances of the cash �ows in order

to emphasize the impact of �nancial hedging. Since our primary aim is to discuss hedging, we will not consider

secondary problems involving the choice of the order quantity obtained from (34), (38), and (42). As a matter of

fact, we will construct a risk-neutral model with E [f (S)] = 0 and the optimal order quantity is not a¤ected by

hedging. This also implies that the expected values of the unhedged and hedged cash �ows are equal so that we

can make a fair comparison among various hedging portfolios.

5.1 Random Demand Case

As the base scenario, we take the setting of the example in Gaur and Seshadri [2005] where the demand risk

is hedged by a stock in the �nancial market. Let the initial stock price S0 be $660 and the interest rate be
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r = 10% per year. Assume that T = 6 months and that the return ST =S0 has a lognormal distribution with

� = 10% per year and � = 20% per year. We assume that the demand D = b ST + � where b = 10 and � has a

normal distribution with mean zero and standard deviation ��. The �nancial parameters are as follows: s = $1,

c = $0:6; p = 0, and v = $0:1. Finally, we let the order quantity be y = 7000 in almost all of our illustrations.

This is a round �gure that is close to the order quantity y �= 6719:30 that satis�es

PfD = 10ST � 6719:30g = p̂ = (s+ p� cerT )=(s+ p� v) �= 0:41

for the lognormal distribution in the random demand case. Our primary objective is to illustrate the e¤ect of

hedging by a �nancial portfolio in order to decrease the variance while keeping the mean cash �ow intact.

It is important to note that Gaur and Seshadri [2005] have shown that when �� = 0 there is a risk-free portfolio

that consists of stock futures and call options with strike price of $y=b = $700 (and settlement date T ). Let us

denote by f̂1(S) = S the future and by f̂2(S) = (S � 700)+ the call option. It turns out that if the optimal

investment amounts in these instruments are chosen to be �1 = �(s � v)b and �2 = (s � v)b, the variance of
the hedged pro�t is zero. This shows that a portfolio consisting of stock futures and appropriately selected call

options on the stock is su¢ cient to remove all variability under this special case. The conclusion follows from the

observation that

CF� (D;S; y) =
�
v � cerT

�
y + (s� v)min fD; yg+ �1

�
S � fT1

�
+ �2((S � (y=b))+ � fT2 )

which can be rewritten as

CF� (D;S; y) =
�
v � cerT

�
y + (s� v) bS � (s� v)b((S � (y=b))+ (43)

+�1
�
S � fT1

�
+ �2((S � (y=b))+ � fT2 )

=
�
v � cerT

�
y � �1fT1 � �2fT2 :

after noting that min fD; yg = D � (D � y)+ and substituting D = bS. The hedged cash �ow (43) is made

deterministic by choosing the portfolio �1 = �(s� v)b = �9 and �2 = (s� v)b = 9: Moreover, it is equal to

CF� (D;S; y) =
�
v � cerT

�
y + (s� v)berT

�
f01 � f02

�
independent of D or S where f01 and f

0
2 are the purchase prices of the two derivatives at the beginning of the

period. In our analysis, we will focus on the e¤ect of the portfolios on the variance of the cash �ow. We can

make fair comparisons on risk reduction when the expected values of the cash �ows are the same with or without

�nancial hedging. That is why we suppose that E
�
S � fT1

�
= E

�
(S � (y=b))+ � fT2

�
= 0 and the expected gain

from the �nancial portfolio is 0. This leads to the expected cash �ow

E [CF� (D;S; y)] =
�
v � cerT

�
y + (s� v) bE [S]� (s� v)bE

�
((S � (y=b))+

�
:

Although perfect hedging is possible when there is a perfect linear relation D = bS; this is not realistic at all.

It can not be achieved when D = b ST + � with �� > 0 and minimum-variance portfolios should be determined

by using our results. For hedging demand variability, we consider three types of �nancial portfolios. The �rst

portfolio consists of the future on the stock only and has the structure �1 t �1;1f1(S), the second portfolio

consists of the call option on the stock with strike price y=b only and has the structure �2 t �2;2f2(S). Finally,
the third portfolio uses both instruments jointly and has the structure �3 t �3;1f1(S) + �3;2f2(S). The optimal
portfolios in the three cases are determined using Proposition 2 and Corollary 4 where the intermediate covariance

calculations are done using the estimators from Monte Carlo simulations.
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�� E[CF ] Var(CF ) Var(CF�1) Var(CF�2) Var(CF�3) �1;1 �2;2 �3;1 �3;2

0 2095.54 220185.58 64459.51 172989.59 0.00 -4.46 -4.03 -9.00 9.00

100 2094.06 222868.73 67335.25 175316.46 3924.57 -4.46 -4.05 -8.96 8.93

500 2055.20 287406.26 133664.83 232866.11 86700.63 -4.43 -4.34 -8.27 7.67

900 1976.77 434629.42 281201.20 369730.28 251124.68 -4.43 -4.73 -7.45 6.13

Table 1: The variances of the cash �ows and the optimal investment amounts for di¤erent hedging portfolios

(y = 7000)

Table 1 shows the variance reductions in the cash �ows that are made possible by �nancial hedging. It

is seen that a deterministic pro�t is possible using the �nancial portfolio (�9f1(S) + 9f2(S)) when there is
perfect correlation between the stock price and demand (�� = 0). In addition, signi�cant variance reductions are

achieved when the standard deviation of the demand error is small (�� = 100) corresponding to the case of a

strong correlation. The reductions decrease when the correlation decreases but even when �� = 900 the variance of

the cash �ow (434629.42) can be lowered by more than 40% (251124.68) using the appropriate �nancial portfolio

(�7:45f1(S)+6:13f2(S)). Figure 2 depicts similar results graphically for a larger set of demand standard deviation
values.

As for the optimal portfolio structure, it is always optimal to sell the future since demand and stock price are

taken to be positively correlated. On the other hand, in the optimal portfolio, the call option is bought when

used as the second instrument along with the future but is sold when it is used as the sole instrument. It is also

interesting to note that using a portfolio consisting only of the future on the stock is very e¤ective and achieves

most of the variance reduction bene�ts. On the other hand, the call option serves to �ne tune the portfolio along

with the investment in the stock but is not as e¤ective when used alone.

Figure 2: E¤ects of di¤erent hedging portfolios on the variance of the cash �ow

5.2 Random Capacity Model

For the base examples, we use the same assumptions as in Section 5.1. In addition, we assume the following

relationship between the stock price and the capacity K = k ST +� where k = 10 and � has a normal distribution

with mean zero and standard deviation ��.
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We �rst assume that there is ample demand in the market with respect to the capacity available (i.e., PfD >

Kg = 1) and that capacity is perfectly correlated with the stock (�� = 0). To gain an understanding of the

variance reductions achievable, we use the same three types of portfolios from the previous subsection (future

alone, call option alone and future and call option together). It can be shown that if the strike price of the

call option is taken as y=k = 700 and the optimal investment amounts in the instruments are chosen to be

�3;1 = �(s� c erT )k = �3:69 and �3;2 = (s� c erT )k = 3:69, the variance of the hedged pro�t is zero.

y E[CF ] Var(CF ) Var(CF�1) Var(CF�2) Var(CF�3) �1;1 �2;2 �3;1 �3;2

6000 2082.60 5410.10 3721.80 4611.30 0.00 -0.44 -0.34 -3.69 3.69

8000 2405.60 83725.00 6276.60 69809.00 0.00 -2.98 -4.21 -3.69 3.69

10000 2435.20 117340.00 194.14 115380.00 0.00 -3.67 -11.57 -3.69 3.69

12000 2435.80 118780.00 0.08 118620.00 0.00 -3.69 -159.46 -3.69 3.69

Table 2: The variances of the cash �ows and the optimal hedging portfolios when capacity is perfectly correlated

with the stock (�� = 0) and demand is ample (D > K)

Table 2 shows that �nancial hedging in the random capacity model has similar properties as in the random

demand case. In particular, a portfolio consisting only of the future is extremely e¤ective and achieves most

of the variance reduction. Of course, adding the call option as a second instrument removes all of the rest of

the remaining variance as before. Note that there is a signi�cant bene�t to holding a �nancial portfolio in this

situation because the optimal expected cash �ow is increasing in the order quantity. But increasing the order

quantity also increases the variance without �nancial hedging. The �nancial hedge removes the variance and

enables the newsvendor to order higher quantities while tolerating reasonable variances on the cash �ow. Note

that it is not realistic to have �� = 0 so that there is perfect linear relationship between stock price and capacity.

In reality, this will not be true but there may be some level of correlation between them and this can be exploited

to reduce the variance of the cash �ow.

Next, in order to explore the e¤ect of imperfect correlations with the market, we return to the base example

and take D = 10ST + �. Further, it is assumed that K = 9ST + �. Note that as �� and �� increase, the

correlations between the demand and the market, and the capacity and the market weaken. At the same time,

the correlation between the demand and the capacity also weakens. Table 3 reports the optimal portfolios and the

resulting variances as �� and �� are varied together. It can be observed that, once again, signi�cant reductions in

variance can be achieved by hedging. The reductions are naturally most important when the market correlation

is strong. For instance, the case �� = �� = 400 corresponds to correlation coe¢ cients of 0.9 with the market and

the variance can be reduced by a factor of more than 5. Even in the case when the correlations with the market

are relatively low (�� = �� = 1000 corresponds to correlation coe¢ cients lower than 0.7), the variance reduction

is considerable.

Last, we �x the demand-market correlation by letting �� = 600 and vary the capacity-market correlation by

varying ��. The results are summarized in Table 4. The variance reductions are comparable to those in Table

3. It appears that in this case a strong correlation between the market and the capacity is su¢ cient to achieve

signi�cant variance reductions even if the demand-market correlation is relatively lower.

5.3 Random Yield Model

In this subsection, we brie�y present an example for the random yield model. The functional form relating

the stock price to the yield can take many forms and we take the following plausible example where U =
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�� = �� E[CF ] Var(CF ) Var(CF�1) Var(CF�2) Var(CF�3) �1;1 �2;2 �3;1 �3;2

200 2150.80 63174.00 9829.10 51930.00 3782.90 -2.47 -3.15 -3.29 3.24

400 2124.10 78679.00 20981.00 65698.00 15243.00 -2.57 -3.39 -3.37 3.15

600 2073.10 112240.00 45949.00 95739.00 40719.00 -2.76 -3.82 -3.52 3.01

800 2010.90 162890.00 87211.00 142060.00 82674.00 -2.95 -4.29 -3.65 2.80

1000 1943.40 228810.00 144350.00 203510.00 140520.00 -3.11 -4.73 -3.76 2.58

Table 3: The variances of the cash �ows and the optimal hedging portfolios in the case of imperfect demand -

market and demand - capacity correlation (y = 7000)

�� E[CF ] Var(CF ) Var(CF�1) Var(CF�2) Var(CF�3) �1;1 �2;2 �3;1 �3;2

0 2122.90 79958.00 19439.00 66631.00 13147.00 -2.64 -3.43 -3.47 3.30

200 2116.10 84115.00 23056.00 70294.00 17061.00 -2.65 -3.50 -3.46 3.22

400 2098.20 95573.00 32573.00 80570.00 27045.00 -2.69 -3.64 -3.47 3.10

600 2073.10 112240.00 45949.00 95739.00 40719.00 -2.76 -3.82 -3.52 3.01

800 2043.90 132470.00 61976.00 114390.00 56819.00 -2.84 -4.00 -3.60 2.99

1000 2013.20 154830.00 79871.00 135270.00 74632.00 -2.93 -4.16 -3.69 3.01

Table 4: The variances of the cash �ows and the optimal hedging portfolios (y = 7000)

1 � e�(1=S0)(
+ST ). As in the previous examples, we take 
 to be normally distributed with mean zero and
standard deviation �
 .

We take the base scenario of Section 5.1 and use the identical portfolio consisting of the stock itself and a

call option. We assume that �
 = 100 leading to a market-yield correlation of 0.7 and vary the market-demand

correlation by changing ��. The results are summarized in Figure 3. As before, it can be seen that signi�cant

variance reductions are achievable.

Figure 3: E¤ect of �nancial hedging on variance of the cash �ow in the case of random yield
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5.4 Summary of Numerical Observations

Sections 5.1 �5.3 present numerical examples for three di¤erent models. In Section 5.1, the only uncertainty is

due to random demand and capacity and yield are certain. In Section 5.2, both capacity and demand are random

and in Section 5.3 both demand and yield are random. The common threads to the analysis can be summarized

as follows:

� For plausible order quantities, there is considerable variability in the cash �ow in all cases. This should be
a cause for concern.

� The variability in cash �ow can be e¤ectively mitigated by �nancial hedging when the uncertainty in the
inventory operation is correlated to the uncertainty in a �nancial instrument. The e¤ectiveness of �nancial

hedging depends on the degree of correlation but signi�cant improvements in variability are possible even

for moderate levels of correlation

� The most e¤ective �nancial portfolio involves a combination of futures and call options on the correlated
instrument. However, a portfolio consisting only of the future on the instrument is also extremely e¤ective.

On the other hand, a portfolio consisting only of a call option has limited e¤ectiveness.

6 Concluding Remarks

In this paper, we take a risk-sensitive approach in managing a single-period, single-item inventory (newsvendor)

model. The risks or uncertainties in our model are generated by random demand as well as random supply due

to capacity and yield. The combined randomness of demand and supply enhances the level of uncertainty, thus

leading to an increased risk for the newsvendor. Furthermore, based on statistical evidence, we suppose that the

randomness in the inventory model correlated with the randomness in the �nancial markets. We consider the

opportunities of �nancial hedging to mitigate inventory risks when the demand and/or supply are correlated with

the price of a �nancial asset. The correlation is not necessarily perfect and this prevents us from constructing a

replicating portfolio; thus, limiting our ability to remove the variability of the cash �ow completely. Moreover,

the inexistence of such a portfolio implies that the cash �ow will remain random, making the analysis more

challenging. Since the cash �ow can not be replicated, we choose to minimize the variance of the hedged cash

�ow by holding a portfolio of �nancial securities. Therefore, in our context, the newsvendor selects the order

quantity and the �nancial portfolio simultaneously. Once the minimum-variance portfolio is determined for each

order quantity, the newsvendor then chooses that order quantity that maximized the expected cash �ow. The

structure of the optimal portfolio and the optimal order quantity clearly depends on the correlation between the

random variables of the inventory model and the random �nancial variables.

Our analysis shows that �nancial hedging is a useful tool to further improve management of inventory. In our

analysis, we illustrated how it can be done for a speci�c well-known inventory model. There are many suitable

areas for extensions, such as using utility functions to represent the risk-sensitivity of the decision maker. Another

line of future research involves multi-period and in�nite-period models where the optimality of base-stock policies

or its variations should be investigated. In continuous-time models, it is well-worth studying the possibility of

continuous hedging through �nancial instruments.
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