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Abstract

Modeling consumer behavior is a relevant and growing research area in revenue management.

Single-resource (single-leg) capacity control problems comprising consumer choice modeling

constitute the backbone of more complicated models. In existing models, the distribution

of demand is assumed to be independent of external factors. However, in reality demand

may depend on the current external environment which represents the prevailing economic,

�nancial or other factors that a¤ect customer behavior. We formulate a stochastic dynamic

program that comprises a discrete choice model of consumer behavior in a randomly �uctu-

ating demand environment with a Markovian structure. We derive some structural results

on the optimal policy for capacity control. The model and the results generalize earlier work

of Talluri and van Ryzin (2004 a). In particular, the concept of an e¢ cient set of products

plays an important rule but such sets may depend on the particular external environment.

We also present some computational results which illustrate the structural properties and

explore the bene�ts of explicitly modeling the external environment.

Key words: Revenue Management, Dynamic Programming, Markov Modulation, Choice

Behavior

1. Introduction

Modeling the behavior of consumers is one of the widely studied topics of the revenue

management in recent years. Talluri and van Ryzin (2004 a) cover the whole �eld of revenue

management and present relevant consumer choice models in this context. Shen and Su (2007)

provide a more recent overview of consumer behavior modeling in revenue management. A
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standard consumer behavior model involves choosing from a given set of products o¤ered to

the consumer. In the context of revenue management, such a model, referred to as the general

discrete choice model of consumer behavior, is �rst presented and investigated by Talluri and

van Ryzin (2004 b). Gallego et al. (2004) study the network case and propose a choice-based

linear program which is later re�ned by Liu and van Ryzin (2008). Kunnumkal and Topaloglu

(2008), Zhang and Adelman (2009), and Meissner and Strauss (2012a) provide dynamic

programming approximations of such network models and Kunnumkal and Topalo¼glu (2010)

present a new decomposition approach. Chen and Homem-de-Mello (2010) propose and

investigate a preference order based choice model. Vulcano et al. (2010) address estimation

issues for this model using real data and assess the potential bene�ts in practical applications.

Chaneton and Vulcano (2011) and Meissner and Strauss (2012b) propose approximate and

heuristic methods to compute optimal bid prices (which can be used to construct a capacity

control policy) under consumer choice.

Despite the recent emphasis on consumer behavior modeling, most of the above models

assume that the arrival process of fare classes is independent of external factors. On the

other hand, there are situations where the demand rates change according to some external

process, which is referred to as the environmental process. We model this environmental

process by a Markov chain and consider the general discrete choice model of consumer be-

havior in such a randomly �uctuating demand environment. To our knowledge, such a model

has not been studied in a revenue management setting. The only studies that seem to be

related to our work are Barz (2007) and Özkan et al. (2013). These papers both model the

classical single resource allocation problem in a randomly �uctuating demand environment

but do not consider consumer behavior. Barz (2007) models an in�nite horizon problem and

shows that an environment-dependent threshold policy is optimal. Özkan et al. (2013) inves-

tigate further structural results of a �nite-horizon environment-based model and perform a

sensitivity analysis on the optimal policy in terms of the problem parameters such as arrival

probability and revenue of each fare-class.

We observe that modeling a �uctuating demand environment by a Markov modulated

demand process is well-established in inventory systems. For example, Song and Zipkin

(1993), Özekici and Parlar (1999) motivate their models by arguing that current state of the

demand environment can be described by economic and �nancial conditions which have an

impact on the demand. A �uctuating demand environment is also considered in joint dynamic

pricing and replenishment problems for inventory systems. Gayon et al. (2009) investigate

possible pricing strategies in such a setting. Such demand models are more sophisticated

in terms of capturing the dependence of demand on certain factors than standard models
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that ignore such dependence. For revenue management models and applications, van Ryzin

(2005) make a case for better demand modeling. The environment-based framework is an

improvement in this direction. In particular, van Ryzin (2005) emphasizes that short term

market conditions such as competitors�availabilities and prices and weather conditions are

determining factors for �nal consumer demand for a product. There is also considerable

evidence that the aggregate demand is a¤ected by external market forces such as currency

exchange rates and fuel prices. These external factors are each of a di¤erent nature but the

all have an in�uence on the realized demand. Therefore, capturing the e¤ects of these factors

should lead to improved capacity control models. In this paper, we present such a model

for a consumer-choice based demand structure and assess its bene�ts. The optimal policy

structure for the single-leg revenue management problem under the standard demand model

(without consumer choice) is well understood. Talluri and van Ryzin (2004 a), and Ayd¬n

et al. (2009)) present results for environment independent demand case and Barz (2007)

and Özkan et al. (2013) present corresponding results for environment-dependent demand.

In addition, Aviv and Pazgal (2005) investigate a dynamic pricing model where demand

is partially observed. They also show that optimal pricing policy depends on the belief

vector which represents the probability distribution of true state of the current environment.

Under consumer choice modeling, Talluri and van Ryzin (2004 b) explore the structure of the

optimal policy and obtain a relatively simple characterization despite the complexity of the

problem. This paper can be considered an extension of Talluri and van Ryzin (2004 b) and

complements the former results by establishing the optimal policy under a consumer choice

model with randomly �uctuating demand.

The paper is structured as follows. We �rst provide the notation and the model formula-

tion in Section 2. After presenting the model, we identify some structural properties of the

optimal admission control policy in Section 3. In Section 4, we provide an example to illus-

trate our structural results and quantify the improvement achieved by using an environment

based model. Concluding remarks are provided in Section 5.

2. Model Formulation

We formulate a discrete time, �nite horizon (T periods) Markov decision process (MDP)

model of the general discrete choice model of consumer behavior under a �uctuating demand

environment. Let Xt 2 f1; 2; � � � ;Mg denote the environment. X = fX0; X1; � � � ; XTg is
assumed to be a Markov chain with transition matrix P where pij = PfXt+1 = jjXt = ig:We
assume that there is at most one arrival during each time interval. We denote the probability
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of arrival in environment j by �j.

Each customer makes a decision according to the current environment and set of products

o¤ered by the �rm. Therefore, �rm�s objective is to choose the optimal set of products to o¤er

to maximize its expected revenue. Let N be the �nite set of all products that can be o¤ered

by the �rm. Let P ja (S) denote the probability that a product of type a 2 S has been chosen
in environment j given that the set of o¤ered products is S. Similarly, we de�ne P j0 (S) as the

probability of no purchase in environment j when the �rm o¤ers product set S � N . Please
note that the model is general in that both the demand rate and the purchase probabilities

are allowed to depend on the environment. The situations where only the demand rate or

purchase probabilities are environment dependent are special cases of the general model.

For each product a that is sold the reward is ra. The transition probabilities and reward

function are assumed to be stationary and we suppose without loss of generality that the fare

classes are ordered so that ra2 � ra1 when a1 � a2: We let R = (�1;+1) denote the set of
real numbers and R+ = [0;+1) denote the set of positive real numbers.
We also use the following notations:

vt(x; j) = expected maximum revenue from period t until period T given that the

current inventory level is x and the environment is j:

�vt (x; k) = vt (x; k)� vt (x� 1; k)
The optimal solution to this problem can be obtained by solving the following Bellman

optimality equation which is a modi�cation of Talluri and van Ryzin (2004 b) to be used in

an environment dependent model:

vt(x; j) = max
S�N

f
X
a2S

�jP
j
a (S)

 
ra +

MX
k=1

Pjkvt+1 (x� 1; k)
!

(1)

+
�
�jP

j
0 (S) + 1� �j

� MX
k=1

Pjkvt+1 (x; k)g

= max
S�N

(X
a2S

�jP
j
a (S)

 
ra �

MX
k=1

Pjk�vt+1 (x; k)

!)
+

MX
k=1

Pjkvt+1 (x; k)

with the following boundary conditions

vt (0; j) = 0 for any environment j; t = 1; � � � ; T;
vT (x; j) = 0 for any inventory level x, environment j:

Talluri and van Ryzin (2004 b) suggest the reformulation for the choice model in a way

that uses the total probability of purchase and the total expected revenue when the o¤ered
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product set is S: We adapt this reformulation to the environment based model and write:

vt (x; j) = �j max
S�N

f(Rj (S)�Qj (S)
MX
k=1

Pjk�vt+1 (x; k)g+
MX
k=1

Pjkvt+1 (x; k) (2)

where

Qj(S) =
P
a2S
P ja (S) = 1� P

j
0 (S) (3)

and

Rj (S) =
P
a2S
raP

j
a (S) . (4)

Note that Qj (S) and Rj (S) respectively denote the probability that a product will be

purchased and the expected revenue if S is o¤ered in environment j. To understand the

structure of the optimal sets, we now de�ne environment based e¢ cient sets.

De�nition 1. A set T is j�ine¢ cient if there exists probabilities � (S) for any S � N withP
S�N � (S) = 1 such that

Qj (T ) �
P
S�N

� (S)Qj (S) and Rj (T ) <
P
S�N

� (S)Rj (S) .

Otherwise, T is j�e¢ cient.

The intuition behind the de�nition of an environment based ine¢ cient set is similar to

the interpretation of ine¢ cient sets in Talluri and van Ryzin (2004 b). A set T is j-ine¢ cient

if other sets S � N exist, such that the combination of their corresponding expected revenues

is strictly greater than the expected revenue of T (i:e:; Rj (T )); but the combination of their

corresponding probability of purchase is less than Qj (T ) :

Talluri and van Ryzin (2004 b) show that it is never optimal to o¤er an ine¢ cient set.

We also have the same property and this can be shown by using the following version of

Proposition 1 proven in Talluri and van Ryzin (2004 b).

Proposition 1. A set T is j�e¢ cient if and only if, for some value v � 0; T is an optimal
solution to

max
S�N

�
Rj (S)� vQj (S)

	
.

By using this proposition and the fact that
PM

k=1 Pjk�vt+1 (x; k) � 0, we have the follow-
ing important result.
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Proposition 2. A j�ine¢ cient set cannot be optimal to (2).

Since N is a �nite set, we have �nite number of e¢ cient sets in each environment. Talluri

and van Ryzin (2004 b) argued that e¢ cient sets can be ordered such that both expected

revenues and probabilities of purchase increase such that:

Qj
�
Sj1
�
� Qj

�
Sj2
�
� ::: � Qj

�
Sjk
�
) Rj

�
Sj1
�
� Rj

�
Sj2
�
� ::: � Rj

�
Sjk
�

where Sjn corresponds to the nth e¢ cient set in environment j and k is the total number of

such sets. Talluri and van Ryzin (2004 b) prove this result by using the following version of

Lemma 1 which is also valid for our problem.

Lemma 1. The e¢ cient frontier �Rj : [0; 1]! R de�ned by

�Rj (q) = max

8><>:
P
S�N

� (S)Rj (S) :
P
S�N

� (S)Qj (S) � q;P
S�N

� (S) = 1; � (S) � 0

9>=>;
is concave increasing in q:

3. Structural Properties

In this section, we obtain structural properties of the optimal policy for the choice model

of consumer behavior under a Markov modulated demand. We show the monotonicity results

corresponding to the structure of the optimal policy. First, we need some preliminary results

before stating them.

Lemma 2. If Rj
�
Sjl
�
�Qj(Sjl )v0 � Rj

�
Sjk
�
�Qj(Sjk)v0 for some v0 � 0 and environments

l > k, then

Rj
�
Sjl
�
�Qj(Sjl )v � Rj

�
Sjk
�
�Qj(Sjk)v

for any 0 � v � v0:

Proof. Rj
�
Sjl
�
�Qj(Sjl )v0 � Rj

�
Sjk
�
�Qj(Sjk)v0 is equivalent to

Rj
�
Sjl
�
�Rj

�
Sjk
�
� v0

�
Qj(Sjl )�Qj(S

j
k)
�
:

Since l > k, we have Qj(Sjl ) � Qj(Sjk). Then, we have the following inequality by using

0 � v � v0;
v0
�
Qj(Sjl )�Qj(S

j
k)
�
� v

�
Qj(Sjl )�Qj(S

j
k)
�
:
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Hence, we have the desired result.

Let k�j;t (x) be the index of the e¢ cient set that is optimal in environment j at time t with

an inventory level x. In case of equivalence, we take the set with the largest index. We have

the following proposition to understand the structure of the optimal policy.

Proposition 3. k�j;t (x) is decreasing as
PM

k=1 Pjk�vt+1 (x; k) is increasing.

Proof. Let vj denote
PM

k=1 pjk�vt+1 (x; k) : Consider 0 � vj1 � vj2, and let ki be the index

among e¢ cient sets such that it solves maxk
�
Rj
�
Sjk
�
�Qj

�
Sjk
�
vji
	
for i = 1; 2: Suppose

k1 � k2; then we have

Rj
�
Sjk2
�
�Qj

�
Sjk2
�
vj2 � Rj

�
Sjk1
�
�Qj

�
Sjk1
�
vj2

since k2 is an optimal e¢ cient set for maxk
�
Rj
�
Sjk
�
�Qj

�
Sjk
�
vj2
	
: By using 0 � vj1 � vj2

and the previous lemma

Rj
�
Sjk2
�
�Qj

�
Sjk2
�
vj1 � Rj

�
Sjk1
�
�Qj

�
Sjk1
�
vj1.

However, this inequality contradicts the optimality of k1 for maxk
�
Rj
�
Sjk
�
�Qj

�
Sjk
�
vj1
	
:

Let S�t (x; j) denote the optimal set that solves (1) so that

S� = fS�t (x; j) ; x = 0; 1; � � � ; N; j = 1; 2; � � � ;M; t = 0; 1; � � � ; Tg

is the optimal policy. We have the following proposition to show the e¤ects of the current

inventory level on the optimal policy.

Proposition 4. vt(x; j) is a concave function of x for any environment j and time t, i.e.,
�vt (x; j) � �vt (x� 1; j) :

Proof. Clearly�vT (x� 1; j) = 0 for any x. By induction, suppose�vt+1 (x; j) � �vt+1 (x� 1; j)
for any x and j: Then,
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�vt (x� 1; j)��vt (x; j) =

MX
k=1

Pjk�vt+1 (x� 1; k)�
MX
k=1

Pjk�vt+1 (x; k)

+
MX
k=1

Pjk
X

a2S�t (x�1;j)

�jP
j
a (S

�
t (x� 1; j)) (ra ��vt+1 (x� 1; k))

�
MX
k=1

Pjk
X

a2S�t (x�2;j)

�jP
j
a (S

�
t (x� 2; j)) (ra ��vt+1 (x� 2; k))

�
MX
k=1

Pjk
X

a2S�t (x;j)

�jP
j
a (S

�
t (x; j)) (ra ��vt+1 (x; k))

+
MX
k=1

Pjk
X

a2S�t (x�1;j)

�jP
j
a (S

�
t (x� 1; j)) (ra ��vt+1 (x� 1; k))

Since S�t (x; j) is the optimal set when inventory level is x, and the environment is j at time

t, any other set will be worse than this set. Hence, we have

�vt (x� 1; j)��vt (x; j) �
MX
k=1

Pjk�vt+1 (x� 1; k)�
MX
k=1

Pjk�vt+1 (x; k)

+
MX
k=1

Pjk
X

a2S�t (x�2;j)

�jP
j
a (S

�
t (x� 2; j)) (ra ��vt+1 (x� 1; k))

�
MX
k=1

Pjk
X

a2S�t (x�2;j)

�jP
j
a (S

�
t (x� 2; j)) (ra ��vt+1 (x� 2; k))

�
MX
k=1

Pjk
X

a2S�t (x;j)

�jP
j
a (S

�
t (x; j)) (ra ��vt+1 (x; k))

+
MX
k=1

Pjk
X

a2S�t (x;j)

�jP
j
a (S

�
t (x; j)) (ra ��vt+1 (x� 1; k))
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After some cancellations, we obtain

�vt (x� 1; j)��vt (x; j) �
MX
k=1

Pjk�(x; k)

+
MX
k=1

Pjk
X

a2S�t (x�2;j)

�jP
j
a (S

�
t (x� 2; j)) �(x� 1; k)

�
MX
k=1

Pjk
X

a2S�t (x;j)

�jP
j
a (S

�
t (x; j)) �(x; k)

where �(x; k) = �vt+1 (x� 1; k)��vt+1 (x; k) : This further leads to

�vt (x� 1; j)��vt (x; j) �
MX
k=1

Pjk
X

a2S�t (x�2;j)

�jP
j
a (S

�
t (x� 2; j)) �(x� 1; k)

+
MX
k=1

Pjk

0@1� X
a2S�t (x;j)

�jP
j
a (S

�
t (x; j))

1A�(x; k)
after some mathematical manipulations. The right hand side of the inequality is positive by

using the induction hypothesis and the fact that
P

a2S�t (x;j)
�jP

j
a (S

�
t (x; j)) � 1:

Proposition 5. �vt+1 (x; j) � �vt (x; j) for any inventory level x; environment j and time
t:

Proof. Clearly �vT (x; j) = 0 � �vT�1 (x; j) for any x. By induction, suppose �vt+2 (x; j) �
�vt+1 (x; j) for any x and j: Then,
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�vt (x; j)��vt+1 (x; j) =

MX
k=1

Pjk�vt+1 (x; k)�
MX
k=1

Pjk�vt+2 (x; k)

+
MX
k=1

Pjk
X

a2S�t (x;j)

�jP
j
a (S

�
t (x; j)) (ra ��vt+1 (x; k))

�
MX
k=1

Pjk
X

a2S�t (x�1;j)

�jP
j
a (S

�
t (x� 1; j)) (ra ��vt+1 (x� 1; k))

�
MX
k=1

Pjk
X

a2S�t+1(x;j)

�jP
j
a

�
S�t+1 (x; j)

�
(ra ��vt+2 (x; k))

+

MX
k=1

Pjk
X

a2S�t+1(x�1;j)

�jP
j
a (S

�
t (x� 1; j)) (ra ��vt+2 (x� 1; k))

Since S�t (x; j) is the optimal set when inventory level is x, and the environment is j at time

t, any other set will be worse than this set. Hence, we have

�vt (x; j)��vt+1 (x; j) �
MX
k=1

Pjk�vt+1 (x; k)�
MX
k=1

Pjk�vt+2 (x; k)

+
MX
k=1

Pjk
X

a2S�t+1(x;j)

�jP
j
a

�
S�t+1 (x; j)

�
(ra ��vt+1 (x; k))

�
MX
k=1

Pjk
X

a2S�t (x�1;j)

�jP
j
a (S

�
t (x� 1; j)) (ra ��vt+1 (x� 1; k))

�
MX
k=1

Pjk
X

a2S�t+1(x;j)

�jP
j
a

�
S�t+1 (x; j)

�
(ra ��vt+2 (x; k))

+
MX
k=1

Pjk
X

a2S�t (x�1;j)

�jP
j
a (S

�
t (x� 1; j)) (ra ��vt+2 (x� 1; k))
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After some cancellations, we obtain

�vt (x; j)��vt+1 (x; j) �
MX
k=1

Pjk (�vt+1 (x; k)��vt+2 (x; k))

�
MX
k=1

Pjk
X

a2S�t+1(x;j)

�jP
j
a

�
S�t+1 (x; j)

�
�(x; k)

+

MX
k=1

Pjk
X

a2S�t (x�1;j)

�jP
j
a (S

�
t (x� 1; j)) �(x� 1; k)

where �(x; k) = �vt+1 (x; k)��vt+2 (x; k) : This is equivalent to

�vt (x; j)��vt+1 (x; j) �
MX
k=1

Pjk

0@1� X
a2S�t+1(x;j)

�jP
j
a

�
S�t+1 (x; j)

�1A�(x; k)
+

MX
k=1

Pjk
X

a2S�t (x�1;j)

�jP
j
a (S

�
t (x� 1; j)) �(x� 1; k)

The right hand side of the inequality is positive by using the induction hypothesis andP
a2S�t+1(x;j)

�jP
j
a

�
S�t+1 (x; j)

�
� 1.

We have the following corollary for the structure of the optimal policy. This corollary is

proven by using Proposition 3, 4, and 5.

Corollary 1. k�j;t (x) is non-decreasing in the inventory level x and the time t, for any
environment j.

Let us discuss the implications of this corollary. As time increases, probability of purchase

and expected revenue from the optimal set of products increase. In addition, these values

decrease as the inventory level decreases. The system manager should o¤er products in such

a way that the probability of purchase is high when there is more inventory or when there is

less time to the end of the selling season.

4. Numerical Illustration

In this section, we present numerical illustrations of some of the properties. Section 4.1

veri�es some of the proven structural properties of the optimal policy. Section 4.2 assesses
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the bene�ts of using the environment-based approach rather than a simpler approach that

ignores the environment dependence.

4.1. Structural Properties

Suppose that there are 2 environments and 3 products which are labeled as K, L andM .

Then, we can o¤er 8 possible sets of products and we label these sets by numbers from 1 to

8. The demand probabilities P ja (S) are provided in Table 1.

We further suppose that the prices of the products are:

Product a K L M

Price ra 100 300 1000

and the arrival probabilities are:

Environment j 1 2

Arrival probability �j 0:8 0:9

with planning horizon T = 11.

Table 1: Demand Probabilities
Set Label 1 2 3 4 5 6 7 8

a ? fKg fLg fMg fK;Lg fK;Mg fL;Mg fK;L;Mg
K 0 0:8 0 0 0:7 0:7 0 0:65

P 1a (S) L 0 0 0:5 0 0:15 0 0:4 0:1
M 0 0 0 0:2 0 0:1 0:2 0:1
0 1 0:2 0:5 0:8 0:15 0:2 0:4 0:15

Label 1 2 3 4 5 6 7 8
a ? fKg fLg fMg fK;Lg fK;Mg fL;Mg fK;L;Mg
K 0 0:9 0 0 0:55 0:65 0 0:55

P 2a (S) L 0 0 0:6 0 0:4 0 0:5 0:2
M 0 0 0 0:3 0 0:3 0:2 0:2
0 1 0:1 0:4 0:7 0:05 0:05 0:3 0:05

To �nd the e¢ cient sets, we �rst compute Rj (S) and Qj (S) for the above parameters

using (3) and (4). Hence, we obtain:
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Set Label 1 2 3 4 5 6 7 8

? fKg fLg fMg fK;Lg fK;Mg fL;Mg fK;L;Mg
R1 (S) 0 80 150 200 115 170 320 195

Q1 (S) 0 0:8 0:5 0:2 0:85 0:8 0:6 0:85

R2 (S) 0 90 180 300 175 365 350 315

Q2 (S) 0 0:9 0:6 0:3 0:95 0:95 0:7 0:95

Then, we plot a diagram of the corresponding values Rj(S) and Qj(S) for any o¤er set

S and j = 1; 2 to determine the e¢ cient sets for both environments. We �nd that fMg and
fL;Mg are e¢ cient sets in environment 1 and fMg, fL;Mg and fK;Mg in environment 2
by considering Figure 1.
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Figure 1: E¢ cient Sets in Each Environment

Finally, let us suppose that the transition matrix of the environmental process is

P =

"
0:95 0:05

0:05 0:95

#
.

To �nd the optimal set for any inventory level, environment and time, we use the labels

de�ned for any set in each environment. We search among all sets, in order to verify that

ine¢ cient sets cannot be optimal. Also note that e¢ cient sets of environment 1 are fMg
and fL;Mg which are labeled 4 and 7 respectively. Since R1 (fMg) � R1 (fL;Mg), we label
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Table 2: Environment 1 - Optimal Sets
Env. 1 Time���! 1 2 3 4 5 6 7 8 9 10

1 4j1 4j1 4j1 4j1 4j1 4j1 4j1 4j1 7j2 7j2
2 4j1 4j1 4j1 4j1 4j1 7j2 7j2 7j2 7j2 7j2

" 3 4j1 4j1 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2
x 4 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2
# 5 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2

6 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2
7 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2
8 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2 7j2

fMg as the 1st e¢ cient set, and fL;Mg the 2nd e¢ cient set. Similarly, the e¢ cient sets
of environment 2 are fMg; fL;Mg and fK;Mg which are labeled 4, 7 and 6 respectively.
Since R1 (fMg) � R1 (fL;Mg) � R1 (fK;Mg), we label fMg; fL;Mg; and fK;Mg the 1st,
2nd and 3rd e¢ cient sets respectively. We use the notation ijj to represent the two indices
together where i is the index among all sets, j is the index among e¢ cient sets. Table 2

shows the optimal set for a given inventory level and time when the current environment is

the �rst one.

As we expect, only 4th and 7th sets are optimal, and none of the ine¢ cient sets is optimal

in environment 1. For a given inventory level, the index of the optimal set increases from 1

to 2 as time increases. Similarly, for a given time, we observe an increase in the index of the

optimal set as inventory level increases. The optimal sets for environment 2 are presented in

Table 3.

Table 3: Environment 2 - Optimal Sets
Env. 2 Time���! 1 2 3 4 5 6 7 8 9 10

1 4j1 4j1 4j1 4j1 4j1 4j1 4j1 4j1 4j1 6j3
2 4j1 4j1 4j1 4j1 4j1 4j1 4j1 4j1 6j3 6j3

" 3 4j1 4j1 4j1 4j1 4j1 4j1 7j2 6j3 6j3 6j3
x 4 4j1 4j1 4j1 4j1 7j2 7j2 6j3 6j3 6j3 6j3
# 5 4j1 4j1 7j2 7j2 6j3 6j3 6j3 6j3 6j3 6j3

6 7j2 7j2 7j2 6j3 6j3 6j3 6j3 6j3 6j3 6j3
7 7j2 7j2 6j3 6j3 6j3 6j3 6j3 6j3 6j3 6j3
8 6j3 6j3 6j3 6j3 6j3 6j3 6j3 6j3 6j3 6j3

Recall that we have 3 e¢ cient sets in environment 2. We observe that only these sets are

optimal and monotonicity results corresponding to the structure of the optimal policy also

hold in environment 2.
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4.2. E¤ectiveness of the Environment Based Model

In this section we assess the e¤ectiveness of using the environment-based model rather

than a simpler approach that ignores the dependence of the problem parameters on the ex-

ternal environment. In order to have a simple but plausible benchmark we assume that the

alternative policy is obtained by solving an environment independent problem by averag-

ing over the environment-dependent parameters using a probabilistic mixture. This can be

viewed as a certainty equivalent approximation.

In the benchmark model, the demand arrival probabilities are obtained by mixing the

probabilities of each product demanded so that Pa (S) = qP 1a (S) + (1� q) P 2a (S) where
q 2 [0; 1] is the mixture probability. Similarly, we mix the arrival probabilities by � = q

�1 + (1� q) �2. We use the same arrival probabilities as we did in the previous subsection.
Please note that the mixing probability q is a parameter of the policy and di¤erent mixing

probabilities lead to di¤erent policies. In the environment based model, the inventory man-

ager makes full use of the information that is available at any time. The optimal product

sets that are o¤ered depend on the environment. In the benchmark mixed model, however,

the information is either ignored or unavailable. Instead, the manager considers a simpli�ed

problem where the parameters for the next period are a probablistic mixture of those in

environment 1 with a mixing probability q and those in environment 2 with probability 1�q.
Finally, we take the horizon length T = 100, capacity 50 and the transition matrix of the

environmental process to be:

P =

"
0:5 0:5

0:5 0:5

#
.

Let us consider the optimal policy of the benchmark problem which is independent of

the environment. The optimality equation corresponds to that of a standard problem under

consumer choice and is given by:

wt(x) = max
S�N

f
X
a2S

�Pa (S) (c (a) + wt+1 (x� 1))

+ (�P0 (S) + 1� �)wt+1 (x)g

with boundary conditions wT (x) = 0 and wt (0) = 0 for all x and t.

By using this model, we obtain a policy that does not depend on the environment. This

gives an approximate policy for our environment based model. The approximate policy

disregards the environments and uses the same product for each environment. We then
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evaluate this policy using our environment-based model and we calculate the corresponding

expected revenue for time 0 and inventory level 50 starting with environment 1. We compare

this value with the expected revenue for time 0, inventory level 50 and environment 1 by

using the optimal policy of the environment based model. This comparison and di¤erence is

given for di¤erent values of q in Figure 2.

Figure 2 clearly demonstrates the bene�ts of our environment based model. We also

observe that the benchmark policy provides the best approximation when the mixing proba-

bility is 0:5. This is not surprising because the limiting distribution of environmental process

is [0:5 0:5], which means that the proportion of time spent in each environment is 0:5 in

the long-run. However, there is still more than 1:6 percent of expected revenue di¤erence

between the optimal result and the heuristic when the mixing probability is 0:5. The error

becomes more signi�cant if the user of the benchmark policy is not able to correctly identify

the best mixing probability and chooses extreme values for these parameters.

5. Conclusion

In this paper, we have established the structural properties of the optimal capacity control

policy under a discrete choice model of consumer behavior in a randomly �uctuating demand

environment. In particular, we showed that as far as the structure of the optimal policy, the

main results of the general discrete choice model of consumer behavior in the standard setting

also hold in a randomly �uctuating demand environment with some environment dependence.

In other words, we established that only e¢ cient sets can be optimal and the index of the
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optimal e¢ cient set has a monotonic structure in time and inventory level. Moreover, we

illustrated the structural results and assessed the e¤ectiveness of the environment based

model. A worthwhile extension of this study would be to consider hidden Markov models of

this setting since the environment may not be observed directly. Investigating similar models

in network settings or in continuous time are also interesting directions for future research.
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