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Abstract

The newsvendor model is perhaps the most widely analyzed model in inventory management. In this single-

period model, the only source of randomness is the demand during the period and one tries to determine the

optimal order quantity in view of various cost factors. We consider an extention where supply is also random

so that the quantity ordered is not necessarily received in full at the beginning of the period. Such models

have been well-received in the literature with the assumption of independence between demand and supply.

In this setting, we suppose that the random demand and supply are not necessarily independent. We focus on

the resulting optimization problem and provide interesting characterizations on the optimal order quantity.

Keywords. Newsvendor model, random capacity, random yield, quasi-concavity

1 Introduction

The major source of randomness in inventory models is the demand. If the demand exceeds or falls short of

expectations, the inventory manager will face shortage or lost sales. Moreover, the uncertainty of demand is

not necessarily the only source of randomness. In fact, in recent years, there has been a lot of emphasis on

models with supply uncertainty as well. The combined randomness of demand and supply enhances the level

of uncertainty, thus leading to increased complexity. In this paper, we provide an example in the form of the

well-known newsvendor model. Although this is a rather simple single-period model, it often forms the building

block of many multi-period dynamic inventory, capacity-planning, and contract design problems.

The main theme of this exposure concerns randomness in supply. This is an issue that should not be neglected

or underestimated. There are a lot of tragic examples concerning losses incurred due to the randomness in

supply caused by uncertainties in production and transportation processes. Among many others, long machine

downtimes due to unplanned maintenance, strikes, seconds and scraps in a production run, lack of raw material

and rework are some reasons which leads to uncertainty during the production stage. In addition, uncertainty

during transportation is another cause for supply randomness. This is due to accidents, deficiencies in the quality

of transportation and various environmental factors. Chopra and Sodhi [2] and Serel [17] discuss some of the

issues related to randomness in supply and mention a number of real cases. For example, as reported in Norrman

and Jansson [15], a fire at a supplier’s plant disrupted the supply of radio-frequency chips to Ericsson in 2001

resulting in a loss of $400 million. Juttner [11] reports that in the same year, the continuity of production at Land

Rover was threatened due to financial problems faced by the UK chassis manufacturer UPF Thompson. Kharif

[13] states that Motorola failed to ship the phones promised to its major customers during the holiday season in

2003 due to component shortages.
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In random supply models, the quantity ordered by the inventory manager is not received in full with certainty.

Instead, the manager receives a random amount that depends on the order quantity. An earlier review is provided

in Yano and Lee [22] and more recent developments are summarized in Grosfeld-Nir and Gerchak [9]. The earliest

model of a random supply in inventory model was developed by Karlin [12] who assumes that the only decision

available is whether to order, and that if an order is placed, a random quantity is delivered. It is also shown

that if the inventory holding and shortage cost functions are convex increasing, then there is a single critical

initial on-hand inventory below which an order should be placed; otherwise, it is optimal not to order. Shih [19]

assumes that inventory holding and shortage costs are linear and that the distribution of the fraction defective is

invariant with the production level. The optimal production/order quantity can be found using a variant of the

newsvendor model. Noori and Keller [14] extend Shih’s study by providing closed form solutions for the optimal

order quantity for various distributions of the quantity received. Gerchak et al. [8] obtain the same result for

the profit maximization objective by assuming continuous demand and yield. According to their work, there is a

critical level of initial stock above which no order will be placed, and this level is the same as the certain yield

case. Henig and Gerchak [10] discuss single and multi-period models with more general assumptions about the

random replenishment distribution and the cost structure. They prove that for a single-period model there exists

an optimal order point that is independent of replenishment randomness.

Most of the literature on supply randomness considers the following models based on randomness in the

capacity of the supplier and in the yield. An implicit assumption in almost all of the papers is the independence

of demand and supply. Let y be the amount ordered and Q (y) be the amount received.

• Random Yield: The amount ordered could be different from the amount received so that only a fraction

enters the stockpile and

Q (y) = yU (1)

where U represents the proportion of nondefective items received. Henig and Gerchak [10] show that a

non-order-up-to policy is optimal in this case. However, in a simplified version where U is either 0 or 1, also

called the random availability model, Özekici and Parlar [16] establish the optimality of base-stock policies.

• Random Capacity: The supplier has some random replenishment capacity K so that

Q (y) = min {K, y} . (2)

When an order is placed for y units, the suppliers will ship y if the total amount K of on hand inventory

that they poses is greater than y. Or else, they will send all the inventory they poses, which is K. Erdem

and Özekici [5] consider a periodically reviewed single-item inventory model in a random environment with

random capacity and show that a base-stock policy is optimal.

• Random Yield and Capacity: This is another model that combines the previous two so that

Q (y) = U min {K, y} . (3)

Once y units are ordered, the supplier can ship at most K and only a proportion U is received in good

shape. In a recent article, Arifoğlu and Özekici [1] consider a model with random yield and fixed capacity

operating in a hidden Markov environment. A state-dependent modified inflated base-stock policy is shown

to be optimal.

In this paper, we discuss variations of the standard newsvendor model with random demand as well as

random supply. The main contribution of the paper is that the demand and supply are dependent. Moreover,
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this dependence has an arbitrary structure and no special restrictions are imposed. Although there is now

abundant literature on inventory models with random supply, only a few consider the dependence between demand

and supply. This is often achieved by supposing that the inventory model operates in a randomly changing

“environment”. As the state of the environment changes so do all stochastic and deterministic parameters.

Because the marginal distributions of the demand and supply both depend on the state of the environment, there

is stochastic dependence between them. For example, Song and Zipkin [20] modeled the “state-of-the-world”

as a Markov chain and assumed that demand in successive periods are dependent on the state of this Markov

chain. In a later study, Sethi and Cheng [18] also incorporated fluctuating demand environment into their model

using Markov chains, and found the most general setting under which an environment-dependent (s, S) policy

is optimal. Later, starting with mid-1990s, researchers introduced models where not only the demand, but the

supply is also affected by the fluctuating environment. For example, Song and Zipkin [21] analyzed the effect of

the fluctuating environment on supply by using a Markov chain approach. They show that the optimal policy has

the same structure as in standard models, but that its parameters change dynamically to reflect current supply

conditions. Another paper which considers the possible effect of the fluctuating environment on supply as well as

on demand and cost parameters is Özekici and Parlar [16]. They assume that the supplier is either available or

unavailable when the order is placed so that the order is either totally satisfied or in the other extreme, remains

entirely unfulfilled. Erdem and Özekici [5] extend this line of research by assuming that the supplier is always

available, but that its capacity is random and dependent on the state of the environment. A survey of articles on

supply randomness can be found in Gallego and Hu [6]. The available literature on inventory models modulated by

an external environmental process provides sufficient justification for the dependence between demand, supply and

other possible sources of randomness. They are dependent because the system as a whole operates in a randomly

changing environment that affects them. This leads to a number of interesting and practically relevant situations.

For instance, supply and demand may be positively correlated due to similar environmental conditions. On the

other hand, during periods where demand surges, suppliers may have to ration production capacity between

multiple customers leading to negative correlation between the supply quantity and the demand. Although there

is dependence between demand and supply due to the randomly changing environment, these models usually

suppose that in any “fixed” environmental state the demand and supply are independent. Their joint distribution

is the product of the marginal distributions in that state. Therefore, there is conditional independence between

demand and supply given the environment. This, of course, provides a computationally tractable procedure to

deal with dependence. In this paper, we do not suppose any special structure of dependence. The demand and

supply have an arbitrary joint distribution function.

In recent years, there has been growing interest in managing risks for the newsvendor model using financial

instruments like futures and options. Gaur and Seshadri [7] provides statistical justification and motivation by

showing that an index that measures sales/demand (Redbook) is highly correlated with a financial index (SP500).

This correlation provides an opportunity to hedge risks associated with random demand by investing in a portfolio

of derivatives of the financial index. We refer the reader to Chu et al. [3], Ding et al. [4], and Okyay et al. [?]

for some developments along this direction. The current literature deals with managing risks associated with

demand uncertainty. Our model involves supply uncertainty as well and similar risk hedging portfolios may be

constructed to control the uncertainty in the cash flows.

In addition to its practical relevance, the non-independence assumption leads to more challenging and in-

teresting optimization problems and characterizations of the optimal order quantity. We first review the classic

newsvendor problem briefly in Section 2. The random supply extensions with random yield, random capacity,

and their combination are discussed in Section 3, Section 4, and Section 5 respectively. Concluding remarks and

ideas for future work are presented in Section 6.
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2 The Newsvendor Problem

The newsvendor problem is a well-known single-item, single-period inventory problem in which the decision maker

(or newsvendor) has to decide on how much to order. The replenishment decision is critical because if he orders

too many, purchase cost will be unnecessarily high; on the contrary, there will be a missed opportunity for

additional profit if he orders too few. In daily life, it is very common to encounter examples of newsvendor

models, that’s the foremost reason why these models are studied extensively. There is random demand D with a

known distribution function that has a probability density function. Throughout this paper, we assume that all

marginal, joint and conditional distributions corresponding to random demand D, random yield U and random

capacity K have marginal, joint and conditional probability density functions. Moreover, we suppose that there

is a fixed sale price p, a fixed purchase cost c, a fixed shortage penalty h, and a fixed salvage value s which satisfy

p > c > s > 0 and p + h > c to avoid trivial situations.

The aim of the newsvendor is to maximize the expected cash flow at the end of the period by choosing an

ordering quantity y, or

max
y

E [CF (D, y)] (4)

where CF (D, y) is the random cash flow which can be written as

CF (D, y) = −cy + p min {D, y}+ smax {y −D, 0} − h max {D − y, 0}
= (s− c) y + (p + h− s)min {D, y} − hD (5)

so that

E [CF (D, y)] = (s− c) y + (p + h− s) E [min {D, y}]− hE [D] . (6)

Note that for any random variable X with a probability density function fX , we can write

E [min {X, y}] =
∫ y

0

xfX(x)dx + y

∫ +∞

y

fX(x)dx

and one can easily show that

dE [min {X, y}]
dy

=
∫ +∞

y

fX(x)dx = P {X > y} . (7)

In our analysis, we will use (7) repeatedly.

Particularly, in order to solve (4), we take the derivative of (6) with respect to y and set it equal to 0 where

X is D. Hence, we obtain the first order condition

g(y) =
d

dy
E [CF (D, y)] = (s− c) + (p + h− s)P {D > y} = 0. (8)

It can easily be verified that the second order condition is satisfied because the objective function (6) is concave

since
dg(y)
dy

=
d2E [CF (D, y)]

dy2
= − (p + h− s) fD(y) ≤ 0 (9)

where fD is the probability density function of D. Recall that the randomness in (5) is generated by D only and

the newsvendor makes replenishment decisions based on his expectation of CF (D, y). It then follows from (8)

that the optimal order quantity y∗ satisfies

P {D ≤ y∗} =
p + h− c

p + h− s
= p̂. (10)

Note that (10) is the optimality condition and p̂ denotes the critical ratio which clearly satisfies 0 ≤ p̂ ≤ 1. It

is possible that (10) does not have a solution. If P {D = 0} > p̂, then there is no y∗ that satisfies (10) and the

4



optimal solution of (4) is y∗ = 0 trivially. This follows by noting that g(0) < 0 so that the objective function (6)

is clearly decreasing by (9). Similarly, if P {D < +∞} < p̂, then there also is no y∗ that satisfies (10) and now

the optimal solution of (4) is y∗ = +∞ trivially. This follows by noting that g(+∞) > 0 which now implies that

the objective function (6) is increasing by (9). If P {D = 0} ≤ p̂ ≤ P {D < +∞} , then there is 0 ≤ y∗ ≤ +∞
which satisfies (10). Moreover, the solution is unique if P {D ≤ y} is strictly increasing in y.

3 Random Yield

Let U ≥ 0 be a random variable representing the proportion of the ordered quantity that will be received in good

condition so that the model is given by (1). Note that U and D are not necessarily independent. If we rewrite

our payoff function in (5) in this case, we get

CF (D, U, y) = (s− c)Uy + (p + h− s)min {D, Uy} − hD. (11)

Hence, the objective function becomes

E [CF (D,U, y)] = (s− c) yE [U ] + (p + h− s)E [min {D, Uy}]− hE [D] . (12)

Note that for any random variables X and Z with probability density functions fX and fZ , we can write

E [min {X, Zy}] =
∫ +∞

0

fZ (z) dz

(∫ zy

0

xfX|z (x) dx + zy

∫ +∞

zy

fX|z (x) dx

)

where fX|z is the conditional probability density function of X given Z = z. One can show that

dE [min {X, Zy}]
dy

=
∫ +∞

0

zfZ (z) dz

∫ +∞

zy

fX|z (x) dx = E
[
Z1{X>Zy}

]
. (13)

By using (13), we take the derivative of (12) and set it equal to zero to obtain the first order optimality

condition

g(y) =
d

dy
E [CF (D, U, y)] = (p + h− c) E [U ]− (p + h− s) E

[
U1{D≤Uy}

]
= 0

and this optimality condition can be written as

E
[
U1{D≤Uy∗}

]

E [U ]
=

p + h− c

p + h− s
= p̂. (14)

Note that the objective function (11) is also concave in y since

dg(y)
dy

=
d2E [CF (D,U, y)]

dy2
= − (p + h− s)

∫ +∞

0

u2fU (u)fD|u(uy)du ≤ 0

where fU is the probability density function of U and fD|u is the conditional probability density function of D

given U = u. Therefore, there is an optimal y∗ which satisfies (14) provided that g(0) ≥ 0 and g(+∞) ≤ 0

or, equivalently, E
[
U1{D=0}

] ≤ p̂E[U ] ≤ limy→+∞E
[
U1{D≤Uy}

]
). If E

[
U1{D≤Uy}

]
is strictly increasing in

y, then this solution is unique. A similar argument as in previous section can be made to show that y∗ = 0 if

E
[
U1{D=0}

]
> p̂E[U ], and y∗ = +∞ if limy→+∞E

[
U1{D≤Uy}

]
< p̂E[U ].

As a special case, if the yield is certain so that U = 1, then the optimality condition (14) reduces to (10)

and the problem is identical to the standard newsvendor problem. We now consider a numerical illustration to

demonstrate our results. The supplier’s facility has demand-dependent yield. This is plausible when the supplier

satisfies demands from multiple customers and when the market demand is high. So, he has to produce faster

using excess capacity and human resources which may decrease yield rates. In particular, assume that the buyer’s
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demand has a (truncated) normal distribution with mean 50 and standard deviation 15. If demand is less than 50

then the supplier has perfect yield (U = 1); but when demand is more than 50, the supplier’s yield is uniformly

distributed between ul and uh. The fixed financial parameters are assumed to be: c = $2, s = $1 and h = $0.

The optimality condition defined by (14) can easily be solved by numerical integration to obtain the optimal

order quantity y∗. As a benchmark, we also compute and report the optimal order quantity under independent

yield and demand referred to as y∗ind. For fairness, it is assumed, in this case, that yield is random with the

identical marginal probability density function (i.e., U takes the value of 1 with probability P{D < 50} and is

uniformly distributed between ul and uh otherwise).

Table 1 reports the optimal ordering quantities under dependent demand and yield (y∗) versus if demand and

yield were assumed to be independent (y∗ind) for varying yield distributions and two different sale prices p = $5

and p = $10. It can be observed that as the yield when demand is low stochastically decreases, y∗ increases much

faster than y∗ind for both values of p. For instance, when (ul, uh) = (0.3, 0.5), it is optimal to order 35 additional

units (when p = 5) and 37 additional units (when p = 10) under dependent yield and demand.

p = 5 p = 10

(ul, uh) y∗ y∗ind y∗ y∗ind

(0.7,0.9) 73 67 85 78

(0.6.0.8) 82 72 96 86

(0.5,0.7) 93 76 111 97

(0.4,0.6) 106 82 131 112

(0.3,0.5) 119 84 159 132

Table 1: Optimal ordering quantities for dependent and independent demand and yield when average yield changes

Next, we investigate the effect if increasing yield variability. To this end, we fix p = 10 and vary the intervals

(ul, uh) while keeping the midpoint of the interval at 0.5. Table 2 reports that the optimal order quantities are

relatively insensitive to increasing yield variability.

(ul, uh) y∗ y∗ind

(0.5,0.5) 130 113

(0.4, 0.6) 131 112

(0.3,0.7) 132 112

(0.2,0.8) 134 107

(0.1,0.9) 120 102

Table 2: Optimal ordering quantities for dependent and and independent demand and yield when variability of

yield changes

Finally, we investigate the effects of increasing demand variability on the optimal order quantities. The

parameters are: p = 10 and (ul, uh) = (0.3, 0.5) and the standard deviation of the truncated normal demand

distribution is varied between 1 and 50. Figure 1 depicts the optimal order quantities under dependent and

independent demand assumptions. It is observed that the rate of increase in the optimal order quantity is much

higher under the dependent model.
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Figure 1: Effect of demand standard deviation

4 Random Capacity

This section deals with the effects of the supply uncertainty when it is caused by some random capacity K as

prescribed by (2). Here, K represents the maximum number of units that the supplier can ship. We assume that

P{K > z} > 0 for all z without loss of generality for technical reasons. This assumption implies that there is

always some probability that our order will be satisfied in full. Clearly, if P{K > z0} = 0 for some z0, then our

order should not exceed this level since we can not possibly receive more than z0.

Now, (5) should be modified to include the random capacity. The payoff function or the cash flow can now

be represented as

CF (D,K, y) = (s− c)min {K, y}+ (p + h− s)min {D, K, y} − hD. (15)

Then, the objective function becomes

E [CF (D, K, y)] = (s− c)E [min {K, y}] + (p + h− s)E [min {D, K, y}]− hE [D] . (16)

Note that for any random variables Y and Z, we can write

dE [min {Y,Z, y}]
dy

= P {X > y,Z > y} . (17)

This follows from (7) by taking X = min{Y, Z}. In order to obtain the first order optimality condition we need

to take the derivative of (16) with respect to y and set it equal to 0.

Using (7) and (17) where Y represents D and Z represents K, we obtain the optimality condition

g(y) =
dE [CF (D,K, y)]

dy
= (s− c)P {K > y}+ (p + h− s)P {D > y,K > y} = 0 (18)

which can also be written as

g (y) = P {K > y} ((s− c) + (p + h− s) P {D > y | K > y}) = 0. (19)
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Since P {K > y} > 0 for all y by our assumption, (19) can be written as

(s− c) + (p + h− s)P {D > y | K > y} = 0.

Rearranging the terms, we finally obtain the optimality condition

P {D ≤ y∗ | K > y∗} =
p + h− c

p + h− s
= p̂. (20)

Note that we have the same critical ratio on the right-hand side of (10). However, we have a different

probability on the left-hand side of (20). For further analysis, let

h (y) = P {D ≤ y | K > y} = 1− P {D > y | K > y} (21)

denote this conditional probability. The existence and uniqueness of a solution of (20) depends on the structure

of h (y). In the newsvendor model with random capacity, we do not necessarily end up with a concave objective

function since g(y) is not necessarily decreasing. It is clear that we need certain restrictions on the relationship

between the two random variables D and K. This can be obtained by reconsidering the optimality conditions (10)

and (20). Suppose that the conditional probability h(y) is increasing in y. If h (0) ≤ p̂ ≤ h (+∞), then there is a

0 ≤ y∗ ≤ +∞ that satisfies (20) so that g (y∗) = 0 or h (y∗) = p̂. It is also unique if h(y) is strictly increasing.

Moreover, it follows from (19) and (21) that the derivative g(y) is nonnegative and decreasing on [0, y∗), and it is

nonpositive on [y∗, +∞). This is equivalent to saying that the objective function is concave increasing on [0, y∗)

and decreasing on [y∗, +∞). Therefore, it is quasi-concave and the solution y∗ is indeed the optimal solution

that maximizes (16). Although the concavity condition does not hold any more in random capacity models,

quasi-concavity of the objective function leads to the characterization of the optimal order quantity via (20). We

can repeat the arguments made in the previous sections to conclude that y∗ = 0 if h (0) ≥ p̂ and the objective

function decreases on [0, +∞). Moreover, y∗ = +∞ if h (+∞) ≤ p̂ and the objective function is concave increasing

on [0, +∞).

The relationship between D and K clearly affects the optimal order quantity. In case K = +∞, K > y is always

true for all y ≥ 0. Hence, the optimality condition (20) reduces to (10) since P {D ≤ y | K > y} = P {D ≤ y}.
This is also true if D and K are independent. To see the intuition behind the increasing property imposed on the

conditional probability h(y), consider the model where

P{K > y} = e−µy

and

P{D > y|K = x} = e−λ(x)y (22)

so that K is exponentially distributed with some rate µ, while D is conditionally exponentially distributed with

some rate λ(x) given K = x. We can then obtain

h(y) = P {D ≤ y | K > y} = 1−
∫ +∞

0

µe−µxdxe−λ(x+y)y. (23)

It is clear that if λ(x) is increasing in x, then h(y) is also increasing in y and our results are valid. Note that

E[D|K] = 1/λ(K) and the demand is decreasing in expectation as the capacity increases.

We now consider a special case where the dependence between random demand and capacity are perfect so

that K = A (D) for some deterministic, increasing and differentiable function A that is invertible. Then,

h(y) = P {D ≤ y | K > y} =
P {y < K ≤ A(y)}

P {K > y} .

We analyze a couple of interesting cases.
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• Case 1: A (y) ≤ y for all y. This clearly implies that h(y) = 0 and y∗ = +∞ since h (+∞) = 0 ≤ p̂.

• Case 2: A (y) > y for all y. This implies that

h(y) =
FK (A (y))− FK(y)

1− FK (y)

where FK is the cumulative distribution function of K, and one eventually obtains

dh(y)
dy

=
fK (A (y)) A′(y)− rK(y)(1− FK (A (y)))

1− FK (y)
(24)

where fK(y) is the probability density function while rK(y) = fK(y)/(1−FK(y)) is the failure rate function

of K. Now, it clearly follows from (24) that h(y) is increasing if

A′(y) ≥ rK(y)
rK(A(y))

. (25)

Therefore, the optimality condition is h(y∗) = p̂ if the additional restriction (25) is satisfied. This holds,

for example, if K has an increasing failure rate distribution and A′(y) ≥ 1. Although the analysis gets a bit

messy, other cases where A(y) intersects y can be analyzed in a similar fashion.

5 Random Yield and Capacity

We now consider the general model (3) that combines the previous two. Then, the cash flow becomes

CF (D, K, U, y) = (s− c)U min {y, K}+ (p + h− s)min {D, U min {K, y}} − hD (26)

and the objective function is

E [CF (D, K,U, y)] = (s− c) E [U min {y, K}] + (p + h− s)E [min {D, UK,Uy}]− hE [D] . (27)

Note that for random variables X, Z and V with probability density functions fX , fZ and fV

E [min {X, ZV, V y}] =
∫ +∞

0

fV (v) dv

∫ +∞

0

fZ|v (z) dz

∫ v min{y,z}

0

xfX|vz (x) dx

+
∫ +∞

0

fV (v) dv

∫ +∞

0

fZ|v (z) dz min {y, z}
∫ +∞

v min{y,z}
fX|vz (x) dx

where fZ|v is the conditional probability density function of Z given V = v, and fX|vz (x) is the conditional

probability density function of X given V = v and Z = z. One can then show that

dE [min {X, ZV, V y}]
dy

=
∫ +∞

0

vfV (v) dv

∫ +∞

y

fZ|v (z) dz

∫ +∞

vy

fX|vz (x) dx

= E
[
V 1{Z>y,X>V y}

]
. (28)

By using (13) and (28) we take the derivative of (27) and set it equal to zero. Hence, the optimality condition

is

g(y) =
dE [CF (D, K, U, y)]

dy
= (s− c)E

[
U1{K>y}

]
+ (p + h− s)E

[
U1{K>y,D>Uy}

]
= 0

which can be written as

g(y) = E
[
U1{K>y}

]
(

(s− c) + (p + h− s)

(
E

[
U1{K>y,D>Uy}

]

E
[
U1{K>y}

]
))

= 0.
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Noting that P{K > y} > 0 for all y by our assumption and supposing that U 6= 0 trivially, E
[
U1{K>y}

]
> 0 and

we can equivalently write

(s− c) + (p + h− s)

(
E

[
U1{K>y,D>Uy}

]

E
[
U1{K>y}

]
)

= 0

so that the optimality condition is

E
[
U1{K>y∗,D≤Uy∗}

]

E
[
U1{K>y∗}

] =
p + h− c

p + h− s
= p̂ (29)

since E
[
U1{K>y,D>Uy}

]
= E

[
U1{K>y}]− E[U1{K>y,D≤Uy}

]
.

It is clear that the objective function (27) is not necessarily concave. However, defining

h (y) =
E

[
U1{K>y,D≤Uy}

]

E
[
U1{K>y}

] = 1− E
[
U1{K>y,D>Uy}

]

E
[
U1{K>y}

] (30)

we can obtain similar results as in the previous section. More precisely, if h(y) is increasing in y, there exists

0 ≤ y∗ ≤ +∞ which satisfies the optimality condition h (y∗) = p̂ provided that h (0) ≤ p̂ ≤ h (+∞) . This

solution is unique if h(y) is strictly increasing. Moreover, the objective function is concave increasing on [0, y∗)

and decreasing on [y∗,+∞). Therefore, it is quasi-concave and the solution y∗ is indeed the optimal solution that

maximizes (27). Finally, y∗ = 0 if h (0) ≥ p̂ and y∗ = +∞ if h (+∞) ≤ p̂.

It is clear that (10), (14), and (20) are all special cases of (29) obtained by setting K = +∞ and/or U = 1.

The optimality condition is expressed in terms of a function h(y) which needs to be determined using the joint

distribution of demand, yield, and capacity. In case this function is increasing, the first order condition h (y∗) = p̂

is indeed sufficient for optimality through concavity or quasi-concavity. In all of the cases, it is clear that the

optimality condition is stated in terms of a probabilities since we can easily write

h (y) =
E

[
U1{K>y,D≤Uy}

]

E
[
U1{K>y}

] =
E [UP {K > y, D ≤ Uy|U}]

E [UP {K > y|U}] (31)

which is indeed a number between 0 and 1.

The optimality conditions for various cases are given explicitly by conditions (10), (14), (20), and (29). It

is amazing that all of them involve probabilistic statements with the same critical ratio p̂ that is determined by

the economic parameters of the model. These conditions clearly require the joint distribution of demand and

supply. Although the marginal distribution is sufficient to determine the optimal order quantity using (10) in

the standard newsvendor model, we need the joint distributions in the others. This requires probabilistic models

as well as statistical analysis of data. We shall not dwell with these issues in detail here since our objective is

to obtain optimality conditions. In our models, we have at most 3 random variables and this does not really

impose a formidable task. One approach may be to determine the marginal distribution of one of the variables

and the conditionals of the others. As a matter of fact, the illustration in Section 4 is an example along this

direction which leads to the explicit condition (23). In the random capacity model, the marginal distribution of

the capacity and the conditional distribution of the demand given the capacity can be put together to obtain the

optimal solution. Of course, this may require the use of numerical methods since it may not be possible to find an

exact explicit solution. The numerical illustration in Section 3 also demonstrates how the optimal order quantity

can be determined given conditional probabilistic information on demand and yield. Note that our discussion

and review on the random environment models in Section 1 also suggest a tractable procedure to obtain the joint

distribution. Suppose that the are m possible environmental states and the state during the period will be i with

some probability pi. Moreover, demand D, yield U, and capacity K are conditionally independent with marginal
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distributions F i
D, F i

U , and F i
K given that environment is i. Then, we can obtain the joint distribution

P{D ≤ x,U ≤ u,K ≤ z} =
m∑

i=1

piF
i
D(x)F i

U (u)F i
K(z) (32)

using the marginal distributions.

It is indeed very difficult to claim a specific shape for the distribution (32) as well as the conditional distri-

butions of random demand and supply. It clearly depends on how D,U, and K vary in a given environment. It

may be such that D and K are positively correlated because producers increase capacity when demand is high.

But, it may very well be the case that the opposite is true if producers do not increase capacity and they ration

production capacity between multiple customers. Similarly, one may have negative correlation between D and

U since a surge in demand may force excessive production leading to higher defectives. As a matter of fact,

the numerical illustration in Section 3 demonstrates such a case. From a mathematical point of view, one may

directly use distributions conditional on the value of one of the random variables. For example, the conditional

exponential distribution (22) explains such a relationship where the shape of the parameter λ(x) identifies the

relationship between demand and capacity. Although there is sufficient justification for the dependence of supply

and demand, we did not conduct a statistical analysis to determine joint or conditional distributions based on

observed data. However, it is clear that one may not have a specific class of distributions that applies to all

plausible scenarios.

There are many cases where a single period model is applicable when there is discontinuous seasonal demand

and supply for a given duration of time. Moreover, the single period analysis extends to infinite horizon analysis

through renewal theory if there are identical periodic conditions and inventory in a given period is used only to

satisfy the demand of that period. The reader is referred to Silver et al. [?] for examples and applications of single

period models. Our discussions and results provide means of determining the optimal order quantity. Furthermore,

the analysis of general inventory models in multiple and infinite periods starts with a complete investigation of the

single period case. Here, inventory left at the end of a period is carried over to the next to satisfy future demands.

Therefore, interest in single period models is also due to its implications and generalizations in multiple periods.

This is often accomplished by using dynamic programming through recursive arguments that involve convexity

of the objective function and base-stock or (s, S) structures of the optimal ordering policy. The extension to the

multiple period is easily made when only demand is random and the optimality of a base-stock policy is well-

known. However, this is not necessarily true when supply is also random with an arbitrary dependence structure.

Our preliminary investigations show that if there is some initial inventory x at the beginning of the period, then

the optimal order-up-to level is not constant and it depends on x. This rules out the optimality of base-stock

policies when there is no structured dependence. In the random environment model of Erdem and Özekici [5]

with random demand and capacity, an environment-dependent base-stock policy is optimal due to conditional

independence of demand and capacity given the state of the environment.

6 Concluding Remarks

In this paper, we considered several variations of the standard newsvendor model that incorporates supply ran-

domness. We analyzed three different types of supply uncertainty: random yield, random capacity, and both.

Although the literature includes a variety of such models, to our knowledge, we present the first example where

random demand, capacity, and yield are directly dependent. In all cases, we found characterizations of the optimal

order quantity through the same critical ratio. These characterizations are based on certain properties and as-

sumptions on the optimality conditions and the structure of the objective function. For the random yield case, the
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objective function is concave, and we find simple and explicit characterizations for the optimal ordering quantity.

Models with random capacity have non-concave objective functions, but we are able to establish quasi-concavity

of the objective function and this leads to an explicit characterization of the optimal order quantity through

the same critical ratio. However, the existence and uniqueness of the solution require certain assumptions. The

most general case that involves both random capacity and yield also leads to non-concave objective functions.

Therefore, additional conditions are required to obtain an explicit optimality condition and the existence as well

as uniqueness of its solution. A number of special cases are also discussed.

This line of research can be extended in several directions by future research. One of them involves multi-

period and infinite-period models. It is indeed a very challenging problem to identify structural properties, if

any, of the optimal policy. With an arbitrary and general structure of dependence, the optimal policy does

not necessarily have a base-stock structure. The determination of the dependence structure obviously requires

statistical analysis based on observed data on demand and supply. We hope future work on statistical issues will

be conducted to address this important and interesting issue. Another direction for research involves hedging

risks associated with random demand and supply by some financial instruments. It has been shown by Gaur and

Seshadri [7] that random demand may be highly correlated by a financial index or variable for which there are

spot and derivatives markets. This correlation is exploited to manage the risks associated with uncertainty in

demand by holding a portfolio of financial instruments in the market. It makes perfect sense to manage the risks

associated with supply uncertainty as well using a similar approach.
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[1] K. Arifog̃lu and S. Özekici, Optimal policies for inventory systems with finite capacity and partially observed

Markov-modulated demand and supply processes, European Journal of Operational Research 204 (2010),

421–483.

[2] S.C. Chopra and M.S. Sodhi, Managing risk to avoid supply-chain breakdown, MIT Sloan Management

Review 46 (2004), 53–61.

[3] L-K. Chu, J. Ni, Y. Shi, and Y. Xu, Inventory risk mitigation by financial hedging, Proceedings of the World

Congress on Engineering and Computer Science (2009).

[4] Q. Ding, L. Dong, and P. Kouvelis, On the integration of production and financial hedging decisions in global

markets, Operations Research 55 (2007), no. 3, 470–489.
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