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Abstract. There is ample evidence that the demand for products held in an inven-
tory system is often correlated with the returns of securities in �nancial markets.
Therefore, the risks associated with the pro�t or cash �ow in the inventory system
can be hedged by investing in a portfolio of instruments in the �nancial system.
In order to get insights, we take this idea to the extreme by supposing that ran-
dom demand, as well as random supply, both depend "perfectly" on the price of a
security in an almost arbitrary fashion. This allows one to represent the cash �ow
by a replicating portfolio of derivative securities and bonds. Thus, the value of the
cash �ow needs to be determined in terms of the prices of these �nancial instru-
ments. The decisions of the inventory manager are therefore based on this pricing
mechanism. In particular, in a complete market with some risk-neutral martingale
measure that yields no arbitrage opportunities, the expected value of the cash �ow
should be determined using this measure. We discuss these issues in the context of
a single period newsvendor model with random demand and supply.
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Introduction

In a related article, Gaur and Seshadri [7] discuss the relationship between sales of in-
ventory in stores and values of some �nancial index. As it is clearly illustrated by Figure
1 taken from Gaur and Seshadri [7], there is very strong statistical evidence that an in-
ventory index (Redbook) that represents average sales is very highly correlated with a �-
nancial index (S&P 500) that represents average prices of stocks in the �nancial markets.
They further discuss the case when the relationship is perfect so that the random demand
in a period is a linear function of the price of a share of stock traded in the market. In the
context of the newsvendor model, they obtain an explicit expression for the portfolio that
replicates the periodic cash �ow of the newsvendor model. The portfolio consists of a
cash bond and derivatives (futures and European calls) of the stock. This naturally leads
to the conclusion that the inventory manager (IM) should consider the value of the repli-
cating portfolio at the beginning of the period in order to avoid arbitrage opportunities. In
this paper, our primary aim is to extend this analysis to the case where this relationship is
not necessary linear. Furthermore, we also take into account the fact that the risks in the
inventory model is increased due to randomness in the supply in addition to the demand.

Although the main source of randomness is the demand in inventory models, there
has been a lot of emphasis in recent years on models where the supply is random as well.
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Figure 1. Redbook Same-Store Sales Growth Rate vs. Annual Return on the S&P 500 Index

Chopra and Sodhi [4] and Serel [18] discuss some of the issues related to randomness
in supply and mention a number of real cases. For example, as reported in Norrman and
Jansson [12], a �re at a supplier's plant disrupted the supply of radio-frequency chips
to Ericsson in 2001 resulting in a loss of $400 million. Juttner [9] reports that in the
same year, the continuity of production at Land Rover was threatened due to �nancial
problems faced by the UK chassis manufacturer UPF Thompson. Kharif [10] states that
Motorola failed to ship the phones promised to its major customers during the holiday
season in 2003 due to component shortages.

Most of the literature on supply randomness considers the following models based
on randomness in the capacity of the supplier and in the yield. An implicit assumption in
almost all of the papers is the independence of demand and supply. Let y be the amount
ordered and Q .y/ be the amount received.

� Random Yield: The amount ordered could be different from the amount received
so that only a fraction enters the stockpile and

Q .y/ D yU (1)

whereU represents the proportion of nondefective items received. Henig and Ger-
chak [8] show that a non-order-up-to policy is optimal in this case. However, in
a simpli�ed version where U is either 0 or 1, also called the random availability
model, Özekici and Parlar [15] establish the optimality of base-stock policies.

� Random Capacity: The supplier has some random replenishment capacity K so
that

Q .y/ D min fK ; yg . (2)

When an order is placed for y units, the suppliers will ship y if the total amount
K of on hand inventory that they poses is greater than y. Or else, they will send
all the inventory they poses, which is K . Erdem and Özekici [6] consider a pe-
riodically reviewed single-item inventory model in a random environment with
random capacity and show that a base-stock policy is optimal.



� Random Yield and Capacity: This is another model that combines the previous
two so that

Q .y/ D U min fK ; yg . (3)

Once y units are ordered, the supplier can ship at most K and only a proportion
U is received in good shape. In a recent article, Arifo�glu and Özekici [2] consider
a model with random yield and �xed capacity operating in a hidden Markov en-
vironment. A state-dependent modi�ed in�ated base-stock policy is shown to be
optimal.

In this paper, we consider the standard newsvendor model with random demand
and supply which depend perfectly on the price of a share of stock. We �rst review the
standard newsvendor model with random demand and supply brie�y in Section 1. The
same model with perfect hedging is discussed later in Section 2 where characterizations
on the structures of the replicating portfolio and the optimal order quantity are provided.
Special cases involving only random demand, random capacity, and random yield are
discussed in Section 3. Concluding remarks and ideas for future work are presented in
Section 4.

1. The Newsvendor Model with Random Supply

The newsvendor problem is a well-known single-item, single-period inventory problem
in which the decision maker (or newsvendor) has to decide on how much to order. The
replenishment decision is critical because if he orders too many, purchase cost will be un-
necessarily high; on the contrary, there will be a missed opportunity for additional pro�t
if he orders too few. In daily life, it is very common to encounter examples of newsven-
dor models, that's the foremost reason why these models are studied extensively. There
is random demand D with a known distribution function that has a probability density
function. Throughout this paper, we assume that all marginal, joint and conditional dis-
tributions corresponding to random demand D, random yield U and random capacity K
have marginal, joint and conditional probability density functions. We suppose that the
length of the period is T during which there is interest charged continuously with some
rate r:Moreover, we suppose that there is a �xed sale price p, a �xed purchase cost c, a
�xed shortage penalty h; and a �xed salvage value s which satisfy p > cerT > s > 0
and p C h > cerT to avoid trivial situations. All cash �ows occur at time T except for
the cash payment made at time 0 to purchase inventory. This model is discussed earlier
by Okyay et al. [13] where there is no hedging and no interest so that r D 0: We now
present their results adjusted accordingly to our setting with positive interest.

The aim of the newsvendor is to maximize the expected cash �ow at the end of the
period by choosing an ordering quantity y, or

max
y
E
�
CF .D; K ;U; y/

�
(4)

where CF .D; K ;U; y/ is the random cash �ow which can be written as



CF .D; K ;U; y/ D
�
s � cerT

�
U min fy; K g (5)

C .p C h � s/min fD;U min fK ; ygg � hD:

The optimal order quantity y� satis�es

E
�
U1fK>y�;D�Uy�g

�
E
�
U1fK>y�g

� D
p C h � cerT

p C h � s
D Op: (6)

The objective function is not necessarily concave. However, de�ning

h .y/ D
E
�
U1fK>y;D�Uyg

�
E
�
U1fK>yg

� (7)

one obtains conditions for the existence and uniqueness of the solution. More precisely,
if h.y/ is increasing in y, there exists 0 � y� � C1 which satis�es the optimality
condition h .y�/ D Op provided that h .0/ � Op � h .C1/ : This solution is unique if
h.y/ is strictly increasing. Moreover, the objective function is concave increasing on
0; y�/ and decreasing on y�;C1/. Therefore, it is quasi-concave and y� is indeed the
optimal solution that maximizes the objective function. Finally, y� D 0 if h .0/ � Op and
y� D C1 if h .C1/ � Op.

It is clear that if K D C1 and U D 1; we obtain the standard newsvendor model
with no randomness in supply and h.y/ D PfD � yg is always increasing so that the
optimality condition becomes

P
�
D � y�

	
D
p C h � cerT

p C h � s
D Op. (8)

Similarly, in case K D C1; we have random yield only and

h.y/ D E
�
U1fD�Uyg

�
=E [U ] (9)

is also increasing and the optimality condition becomes

E
�
U1fD�Uy�g

�
E [U ]

D
p C h � cerT

p C h � s
D Op. (10)

Finally, if U D 1; then the model involves random capacity only and h .y/ D
P fD � y j K > yg leads to the optimality condition

P
�
D � y� j K > y�

	
D
p C h � cerT

p C h � s
D Op. (11)

Note that in all of the cases, the optimality condition is stated in terms of the same critical
ratio Op:



2. Newsvendor Model with Perfect Hedging

We suppose that both demand and supply depend perfectly on the price of the stock. The
newsvendor has to decide on the optimal order quantity y that maximizes the expected
value of the cash �ow or pro�t at time T when the period ends: Let X D .D;U; K /
denote the vector of random variables corresponding to demand and supply uncertainties,
and S D ST denote the price of the stock at the end of the period. The random vector X
is a deterministic function of the �nancial variable S so that

XDg.S/ (12)

for some well-behaving function g: This implies that g.S/ D .D.S/;K.S/;U.S// where
D D D.S/; K D K.S/; and U D U.S/ for some functions D;K; and U . We can also
rewrite (5) as

CF .X; y/ D CF .g.S/; y/ D
�
s � cerT

�
U.S/min fy;K.S/g (13)

C .p C h � s/min fD.S/;U.S/min fK.S/; ygg � hD.S/:

We further suppose that for any �xed y; the function

f .x/ D CF.g.x/; y/ (14)

is right-continuous on 0;C1/ with a �nite number of jumps in any �nite interval and
it can be written as a DC (difference of convex) function between the jumps. Let fxng
denote the discontinuities or jumps of f while fr fng denote the jumpmagnitudes. Figure
2 provides a typical graphical description of such functions.

Figure 2. The Cash Flow

It follows that such functions can be represented as

f .x/ D f .0/C f 0C .0/ x C
X
xn�x

r fn C
Z C1

0
.x � z/C � f .dz/ (15)

where f 0C denotes the right-continuous version of the derivative of f and � f is a measure
on 0;C1/ with � f D f 00 : For any cash �ow CF .g.S/; y/ D f .S/; it is clear that



this representation constitutes a replicating portfolio consisting of bonds (worth f .0/ at
time T ), f 0C .0/ futures of S; digital claims (with payoffs r fn if xn � S/; and European
call options (with payoffs .S � z/C where z is the strike price). Here, we de�ne aC D
maxfa; 0g for any real number a:

Supposing that the �nancial market is complete with some martingale or risk-neutral
measure Q that leads to arbitrage free pricing, the IM is faced with the decision problem

max
y
EQCF .g.S/; y/ (16)

where each derivative security in (15) is priced using the risk-neutral measure Q:
The similarity between (5) and (13) also leads to the characterization

EQ
�
U.S/1fK.S/>y�;D.S/�U.S/y�g

�
EQ

�
U.S/1fK.S/>y�g

� D
p C h � cerT

p C h � s
D Op (17)

for the optimal order quantity y�: The results in Section 1 can be extended naturally to
obtain the optimality conditions

PQ
�
D.S/ � y�

	
D Op (18)

in the standard newsvendor model with K D C1 and U D 1;and

EQ
�
U.S/1fD.S/�U.S/y�g

�
EQ [U.S/]

D Op. (19)

in the random yield model with K D C1; and

PQ
�
D.S/ � y� j K.S/ > y�

	
D Op. (20)

in the random capacity model with U D 1: There is a clear relationship and similarity
between the optimality condition (6) and (17). In the perfect hedging model, one should
use the the risk-neutral measure Q instead of the ordinary probability measure in order
to avoid arbitrage opportunities.

Note that our assumptions are quite restrictive since it is not in general possible
to replicate the cash �ow. In this case, the IM can not hedge the demand and supply
risks perfectly. This leads to risk-sensitive decision making in inventory management.
The overwhelming majority of inventory literature relates to risk-neutral IMs who are
concerned with the expected pro�t or cost criteria. Although this is a mathematically
viable approach, it supposes that decision makers behave risk-neutrally which, in real-
ity, is simply not true. That's why models with risk-neutrality assumptions have limited
viability in practice. In recent years, the risk-sensitive behavior of the decision maker is
addressed implicitly through other criteria such as satis�cing probability maximization,
utility functions, Value-at-Risk (VaR) and other risk measures. For examples along this
direction, the reader is referred to Li et al. [11], Eeckhoudt et al. [5], Agrawal and Se-
shadri [1], Parlar and Weng [17], Gaur and Seshadri [7], Caldantey and Hough [3], Wang
et al. [19], Wu et al. [20], and Ozler et al. [16], among many others.



Okyay et al. [14] consider the risk-sensitive version of our model where it is not
possible to have the explicit representation in (13) and there is no replicating portfolio.
They suppose that there are n � 1 derivative securities in the market where fi .S/ is the
payoff of the i th derivative security of the primary asset. They construct a model where
the inventory cash �ow CF .X; y/ in (5) is hedged by investing in a portfolio f�i g of
derivatives f fi g: The total hedged cash �ow is given by

CF� .X; S; y/ D CF .X; y/C
nX
iD1

�i fi .Si / . (21)

The �rst problem now is to �nd the optimal portfolio � D .�1; �2; � � � ; �n/ to minimize
the variance of the total cash �ow for a given order quantity y. This optimization problem
is

min
�
Var

 
CF .X; y/C

nX
iD1
�i fi .S/

!
. (22)

Once the optimal solution �� .y/ is determined for any order quantity y, the IM then
chooses the optimal order quantity by solving

max
y
E

"
CF .X; y/C

nX
iD1
��i .y/ fi .S/

#
. (23)

One may of course use other approaches to model the this problem. One of them is
the mean-variance model where the problem is to solve

max
�;y

�
E
�
CF� .X; S; y/

�
� �Var .CF� .X; S; y//

	
(24)

for different values of � that represents the risk-sensitivity of the IM. It is also fairly
common to represent the behaviour of investors by utility functions. This approach leads
to the model

max
�;y
u .CF� .X; S; y// (25)

where u is the utility function of the IM.
In this paper, we consider only models where perfect hedging is possible as de-

scribed by (13). We now provide explicit characterizations on the structure of the repli-
cating portfolios for a number of interesting special cases.

3. Special Models

In this section we consider a number of cases that lead to simpli�ed versions of our
characterization results. Note that the optimality conditions for the general model and its
special cases are given by (17) - (20). These results simply state that, because the cash
�ow can be replicated by a portfolio of derivative securities, the pricing and calculations



should be done by the risk-neutral probability measure to avoid arbitrage opportunities.
In this section, we also provide the replicating portfolios for these special cases using the
representations (13) and (15).

3.1. Hedging Demand Risks

In traditional newsvendor models the only uncertainty is generated by demand and sup-
ply is nonrandom. This implies that K D C1 and U D 1 so that the cash �ow is

CF .S; y/ D
�
s � cerT

�
y C .p C h � s/min fD .S/ ; yg � hD .S/ . (26)

We now suppose that D is a twice differentiable and increasing function with an inverse.
Since S � 0; D D D .S/ � D .0/ and we can take the order quantity y � D .0/ without
loss of generality. This is based on the simple observation that the order quantity should
be chosen so that it is over the minimum demand that can be realized during the period.
We can now apply (15) to �nd a replicating portfolio and use it to hedge demand risks.
It follows from (26) that for �xed y; taking f .S/ D CF.S; y/, we get

f .0/ D
�
s � cerT

�
y C .p � s/D .0/

f 0C .0/ D .p � s/D0 .0/

� f .dz/ D .p C h � s/D00 .z/ 1fD.z/<ygdz

� .p C h � s/D0 .z/ 1fzDD�1.y/g � hD
00 .z/ dz.

The replicating portfolio can therefore be represented by

f .S/ D
h�
s � cerT

�
y C .p � s/D .0/

i
C
�
.p � s/D0 .0/

�
S

�h
Z 1

0
.S � z/CD00 .z/ dz

C .p C h � s/
Z D�1.y/

0
.S � z/CD00 .z/ dz

� .p C h � s/D0
�
D�1 .y/

� �
S �D�1 .y/

�C
.

Since f .S/ D CF .S; y/ for any y, we can replicate the cash �ow CF .S; y/ by a
portfolio consisting of �

s � cerT
�
y C .p � s/D .0/

cash bonds,

.p � s/D0 .0/



futures, and a possibly in�nite mixture

.p C h � s/

"Z D�1.y/

0
.S � z/CD00 .z/ dz �D0

�
D�1 .y/

� �
S �D�1 .y/

�C#

�h
Z 1

0
.S � z/CD00 .z/ dz

of European call options.
The optimality condition (18) can be rewritten as

PQ
�
D.S/ � y�

	
D PQ

n
S � D�1.y�/

o
D FS.D�1.y�/ D Op (27)

so that

y� D D
�
F�1S . Op/

�
(28)

where FS is the distribution of S under the risk-neutral measure Q:
If there is a linear relationship D .S/ D aC bS as in Gaur and Seshadri [7], we have

D .0/ D a; D0 .z/ D b;and D00 .z/ D 0 so that the portfolio consists of
�
s � cerT

�
y C

.p � s/ a cash bonds, .p � s/ b futures, and �.p C h � s/b European call options with
strike price .y � a/=b for y � D .0/ D a:Moreover, the optimal order quantity satis�es
the optimality condition

PQ
�
S �

y� � a
b

�
D Op. (29)

3.2. Hedging Joint Demand and Supply Risks

We now investigate a couple of cases when supply is also random by analyzing random
capacity and random yield models separately.

3.2.1. Random Capacity Model

Let U D 1; D D D .S/ and K D K .S/ where both D .S/ and K .S/ are twice differen-
tiable and increasing functions with an inverse. Then

CF .S; y/ D
�
s � cerT

�
min fK .S/ ; yg (30)

C .p C h � s/min fD .S/ ;K .S/ ; yg � hD .S/ .

The relationship between D and K determines the structure of the replicating portfolio.
We now examine the following three cases which do not necessarily cover all possibili-
ties. As before, we take y � D .0/ :



� Case 1: K .x/ > D .x/ for all x � 0. One can show that

f .0/ D
�
s � cerT

�
min fK .0/ ; yg C .p � s/D .0/

f 0C .0/ D
�
s � cerT

�
K0 .0/ 1fK.0/<yg C .p � s/D0 .0/

� f .dz/ D
�
s � cerT

�
K00 .z/ 1fK.z/<ygdz �

�
s � cerT

�
K0 .z/ 1fzDK�1.y/g

C .p C h � s/D00 .z/ 1fD.z/<ygdz

� .p C h � s/D0 .z/ 1fzDD�1.y/g � hD
00 .z/ dz.

This provides the structure of the replicating portfolio consisting of the cash bond,
futures and European calls through (15). Moreover, the optimality condition can
be written as

PQ
�
D .S/ � y� j K .S/ > y�

	
D PQ

n
S � D�1.y�/ j S > K�1.y�/

o
D Op.
(31)

� Case 2: D .x/ > K .x/ for all x � 0. In this case,

f .0/ D
�
p C h � cerT

�
K .0/� hD .0/

f 0C .0/ D
�
p C h � cerT

�
K0 .0/� hD0 .0/

� f .dz/ D
�
s � cerT

�
K00 .z/ 1fK.z/<ygdz �

�
s � cerT

�
K0 .z/ 1fzDK�1.y/g

C .p C h � s/K00 .z/ 1fK.z/<ygdz

� .p C h � s/K0 .z/ 1fzDK�1.y/g � hD
00 .z/ dz.

Once again, the structure of the replicating portfolio is found through (15). Of
course, the optimality condition is the same as (31).

� Case 3: K .x/ > D .x/ for all 0 � x < Ny and K .x/ < D .x/ for all x > Ny when
there is a unique Ny for which K . Ny/ D D . Ny/ : In Case 1 and 2, the functions K
and D do not intersect. Now, we take a look at the case when they are equal at
some unique Ny. Following the same steps as in previous examples, we now obtain

f .0/ D
�
s � cerT

�
min fK .0/ ; yg C .p � s/D .0/

f 0C .0/ D
�
s � cerT

�
K0 .0/ 1fK.0/<yg C .p � s/D0 .0/

� f .dz/ D
�
s � cerT

�
K00 .z/ 1fK.z/<ygdz �

�
s � cerT

�
K0 .z/ 1fK.z/Dyg

C .p C h � s/D00 .z/ 1fz�Ny;D.z/�ygdz

C .p C h � s/K00 .z/ 1fz> Ny;K.z/�ygdz

� .p C h � s/D0 .z/ 1fzDNyg C .p C h � s/K0 .z/ 1fzDNyg
� .p C h � s/D0 .z/ 1fD.z/Dygdz

� .p C h � s/K0 .z/ 1fK.z/Dygdz � hD00 .z/ dz:



The replicating portfolio consists of the cash bond, futures and European calls by
(15) and the the optimality condition is the same as (31).

3.2.2. Random Yield Model

In this model, we let K D C1; D D D .S/ and U D U .S/ where both D .S/ and U .S/
are twice differentiable and increasing functions with an inverse. Then,

CF .S; y/ D
�
s � cerT

�
U .S/ y C .p � s C h/min fU .S/ y;D .S/g . (32)

For any y; suppose that there is a unique Ny .y/ where U .x/ y and D .x/ intersect each
other so that U . Ny .y// y D D . Ny .y//. Then,

f .0/ D
�
s � cerT

�
U .0/ y C .p � s C h/min fU .0/ y;D .0/g � hD .0/

f 0C .0/ D
�
s � cerT

�
yU 0 .0/C .p � s C h/ yU 0 .0/ 1fU.0/y<D.0/g

C .p � s C h/D0 .0/ 1fU.0/y>D.0/g � hD0 .0/

� f .dz/ D
�
s � cerT

�
yU 00 .z/ dz C .p � s C h/ yU 00 .z/ 1fU.z/y<D.z/gdz

C .p � s C h/D00 .z/ 1fU.z/y>D.z/gdz

C .p � s C h/
�
D0 . Ny .y//� yU 0 . Ny .y//

�
� hD00 .z/ dz.

This provides the replicating portfolio through (15) and optimality condition becomes

EQ
�
U .S/ 1fD.S/�U.S/y�g

�
EQ [U .S/]

D Op: (33)

We want to point out that we have imposed some restrictions on D;K and U in
order to make explicit representations on the replicating portfolios. However, one can
determine these portfolios in more general cases provided that the cash �ow function
f .x/ D CF.g.x/; y/ in (13) has the structure in (15).

4. Concluding Remarks

In this paper, we considered a number of inventory models where random demand and
supply depend on the price of a primary asset. Moreover, the dependence leads to a
representation of the cash �ow by a replicating portfolio that consists of a mixture of
derivative securities of the primary asset. As a consequence, the cash �ow is valued using
the market prices of the securities and the optimal order quantity is determined by using
these prices. In the presence of a risk-neutral probability measure, this implies that the
objective function should be the expected value of the cash �ow where the expectation
is computed using the risk-neutral measure to avoid arbitrage opportunities. We also
provide explicit representations of the replicating portfolio in a number of cases involving
random demand and supply.



One can extend this line of research in several directions by combining risk man-
agement with inventory management. This will eventually require models where the risk
sensitivity of the IM is somehow built into the model. For example, one can construct
utility-based models where the objective is to maximize the expected utility of the cash
�ow which may be hedged by some portfolio of �nancial instruments. Another line of
future research involves multi-period and in�nite-period models where the optimality of
base-stock policies or its variations should be investigated. Another promising approach
is to use binomial models to represent demand and supply risks in inventory model, and
proceed with the usual risk management tools of �nancial models. Moreover, it is well-
worth studying the possibility of continuous hedging through �nancial instruments in
continuous extensions.
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