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1. Introduction
The objective of the present paper is to study the strategic
behavior of customers that arrive at a certain transportation
station and face the dilemma of whether to wait for the next
transportation facility or balk. An arriving customer that
encounters a small number of waiting customers in the station
anticipates a large waiting time for the next transportation
facility. Indeed, the presence of few customers gives a signal
that the previous visit of the facility occurred recently and
therefore, under some natural conditions, the time till the
next visit may be long. On the other hand, the presence of
only a few customers implies that the next transportation
facility will have enough space to accommodate him with
high probability (assuming that the transportation facility
accepts the customers on a first-come, first-served basis
till its capacity is exhausted). On the contrary, an arriving
customer that finds a lot of customers in the system expects
the time till the next arrival of the facility to be relatively
short, but he assumes a high risk of not being served by it.
Therefore, it is not clear which decision is preferable for
an arriving customer, to wait or balk, given the number of
customers that he finds in the system. As the customers want
to maximize their individual benefits, taking into account
that the other customers have the same objective, we can
consider this situation as a game among them.

The study of service (queueing) systems under a game-
theoretic perspective was initiated by Naor (1969) who
studied the strategic behavior of customers in the basic
M/M/1 queue with a linear reward-cost structure. More

specifically, Naor (1969) assumed that an arriving customer
observes the number of customers and then makes the deci-
sion whether to join or balk (observable case). Subsequently,
Edelson and Hildebrand (1975) complemented this study by
considering the same queueing system, but assuming that
the customers make their decisions without being informed
about the state of the system. Since then, there is a growing
number of papers that deal with the strategic behavior of
customers in variants of the M/M/1 queue.

One important family of papers that deals with strategic
customer behavior in M/M/1-type queues is the literature on
vacation queueing systems and strategic customers; see, e.g.,
Burnetas and Economou (2007) (for a passive server) or Guo
and Hassin (2011) and Guo and Zhang (2013) (for proactive
servers). There are also diverse studies that analyze the effect
of the information on the strategic behavior of the customers
(see, e.g., Whitt 1999, Guo and Zipkin 2007, Hassin 2007,
Armony et al. 2009, and Guo and Hassin 2011). On the
other hand, results on the strategic customer behavior in
queueing systems with general service times are very scarce
(see, e.g., Altman and Hassin 2002, Economou et al. 2011,
and Kerner 2011). The books of Hassin and Haviv (2003)
and Stidham (2009) present the main approaches and several
results in this area of the economic analysis of queueing
systems.

Most of the queueing models that have been studied under
this game-theoretic point of view assume that the facility
serves the customers one by one. However, the situation of a
transportation facility that visits a certain station periodically
is represented by stochastic models with batch services
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and frequently by stochastic clearing systems. Indeed, it
is reasonable to assume (at least as a first approximation)
that the station is left empty after each visit of the facility,
since the waiting customers are normally unwilling to wait
for its next visit. Stochastic clearing systems have been
studied extensively in the literature. More specifically, in
the majority of the corresponding studies, the interest of
the researchers lies in the performance descriptors of the
underlying processes. Moreover, the dynamic control of
such systems by a central decision maker has also been
studied. However, the only work that we are aware of on the
strategic behavior of customers in such systems is the recent
paper by Economou and Manou (2012), which considers
a different model under more restrictive assumptions with
respect to this paper.

In the present paper, we study the customer strategic
behavior at a clearing system that models a transportation
station. The model is substantially different from existing
work in two ways. First, we assume that the transportation
facility has varying capacity in its successive visits, that is
modeled by a sequence of independent identically distributed
random variables. This is more realistic, as the capacity
of the facility upon arrival to the station of interest is
the remaining space that is conditioned by its visits to
other stations of its itinerary. Second, we assume generally
distributed intervisit times, a fact that allows representing
more practical situations. We have to stress here that the
majority of studies of a game-theoretic nature in queueing
assume a Markovian framework. From a technical point
of view, the departure from the Markovian assumption in
the present paper makes the analysis nontrivial and more
interesting. Furthermore, the insights are considerably richer
with respect to the Markovian case. Indeed, it turns out
that, avoid-the-crowd (ATC), follow-the-crowd (FTC), or
mixed strategic behavior of the customers can be observed,
according to the type of the intervisit time and the capacity
distributions. On the contrary, in the Markovian framework,
the analysis of the observable case is trivial: The expected
net benefit function of a tagged customer does not depend on
the strategy of the other customers and there exist dominant
strategies.

The main contributions of the paper can be summarized
as follows:

• The analysis of strategic customer behavior in observ-
able queueing systems with general service times is a quite
new endeavor. Indeed, the only papers we are aware of that
deal with this problem is Altman and Hassin (2002) and
Kerner (2011). As for clearing systems, to our knowledge,
this paper is the first to consider general intervisit times.
The basic difficulty in these type of problems lies in the
computation of the conditional distributions of the residual
service time at an arrival instant of a tagged customer, given
the various possible states of the system and a strategy
followed by the other customers. Kerner (2008) provided
an analytic approach to compute these distributions, which
relies on the computation of the joint stationary mass-density

function of the queue length and the remaining service time
using the method of supplementary variables.

In the present paper, we present a novel alternative
approach that establishes recursive equations for the sojourn
times of customers that find n and n− 1 customers in the
system in terms of random variables. This approach is prob-
abilistic and relies on sample-path arguments that compare
the sojourn times of a customer that finds n customers
in the system with a customer that finds n− 1 customers.
This new approach seems to have three advantages: First,
it is direct and economical, since it does not require the
computation of the joint stationary mass-density function of
the queue length and the remaining service time. Second, it
does not assume the existence of a density for the service
times, so it can also deal with discrete/mixed distributions
for the service times. Third, it enables one to use closure
(preservation) properties of stochastic orders to formally
establish monotonicity properties of the best responses and
uniqueness of equilibrium strategies for some classes of
service time distributions.

• On the modeling side, we consider a fairly general
model of a transportation facility with non-Markovian inter-
visit times and random capacity and demonstrate that this
model can be analyzed in the strategic customers case.
This model corresponds to a clearing queueing system with
general service times, in which all customers are served
simultaneously. Up to now, the analysis of strategic customer
behavior in observable queueing systems with general service
times has been carried out in the framework of the M/G/1
queueing system, which is substantially different, since the
customers are served there sequentially (one by one).

• On the technical side, we have also provided a short and
direct derivation of the stationary queue length distribution
under any joining strategy of the customers, using Little’s
law and the Poisson arrivals see time averages (PASTA)
property.

• In the Markovian case, both the equilibrium and socially
optimal strategies have been identified. Moreover, it has
been proven that the equilibrium and socially optimal strate-
gies coincide in the observable case. In the literature, the
coincidence of equilibrium and socially optimal strategies
is encountered in situations where the customers do not
impose externalities to other customers. The present paper
provides a rare example, where the customers impose nega-
tive externalities to the other customers, but nevertheless the
equilibrium and socially optimal strategies do coincide. This
is because the negative externalities are shown to be always
smaller than the positive value for the tagged customer.

• Using the recursive relationships for the random vari-
ables that represent sojourn times of customers that find n
and n− 1 customers in the system and closure properties
of the classes of decreasing mean residual life (DMRL)
and increasing mean residual life (IMRL) distributions, we
establish structural properties and uniqueness of the equilib-
rium strategies under natural conditions on the service time
(intervisit time) distributions. This also enables conclusion
on the ATC or FTC joining behavior of the customers.
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The paper is organized as follows. In §2, we describe
the dynamics of the model, the reward-cost structure, and
the information-decision framework. In §3, we deal with the
performance analysis of the observable case, using proba-
bilistic arguments. Subsequently, in §4, we use the results
of this analysis and proceed to determine the equilibrium
joining strategies in the observable case. The analysis of the
unobservable case is carried out in §5. Some special cases,
where the analysis can advance further, are provided in §§6
and 7. Finally, we conclude with §§8 and 9, where we pro-
vide the findings of several numerical experiments, discuss
the theoretical results, and point to some remaining open
issues. There is also an online appendix (available as supple-
mental material at http://dx.doi.org/10.1287/opre.2014.1280)
that includes several technical proofs, including some alter-
native analytic proofs for various results inspired by the
methodology developed by Kerner (2011).

2. The Model
We consider a transportation station with infinite waiting
space, where potential customers (passengers) arrive accord-
ing to a Poisson process 8P4t59 at rate �. Let I11 I21 0 0 0 denote
the successive customer interarrival times. A transportation
facility visits the station according to a renewal process
8M4t59. The times X11X21 0 0 0 between the successive visits
of the facility have an absolutely continuous distribution
with finite moments, distribution function F 4x5, probability
density function f 4x5, and Laplace-Stieltjes transform (LST)
F̃ 4s5=

∫ �

0 e−sx dF 4x5. Moreover, we assume that the succes-
sive capacities C11C21 0 0 0 of the facility at the moments of
its visits to the station are discrete independent identically
distributed random variables with finite moments, probability
mass function 4gk2 k = 1121 0 0 05, and probability generating
function (PGF) G4z5. When a transportation facility with
capacity k visits the station, it serves at most k customers
instantaneously and the waiting customers that cannot be
served, abandon the system. In other words, the facility
serves all present customers, if their number does not exceed
its capacity. Otherwise, it serves as many customers as its
capacity. In any case, the station is left empty after the
departure of the facility. Finally, we assume that all interar-
rival times of the customers, the intervisit times, and the
successive capacities of the facility are mutually independent.

The state of the station at a given time t can be represented
by a pair 4N4t51R4t55, where N4t5 records the number
of customers at the station and R4t5 denotes the residual
service time (i.e., the time till the next visit of the facility).
The stochastic process 84N 4t51R4t552 t ¾ 09 is a continuous
time Markov process with state space S = 84n1 r52 n ∈�1 r ∈

601+�59.
We are interested in the behavior of the customers, when

they have the option to decide whether to join or balk.
We assume that a customer receives a reward of R units, if
he gets the service (i.e., if he joins the system and the next
arriving facility accomodates him). Moreover, a customer

accumulates costs at a rate of K units per time unit that he
remains in the system. We also assume that customers are
risk neutral and wish to maximize their net benefit. Finally,
their decisions are assumed irrevocable, in the sense that
neither reneging of entering customers nor retrials of balking
customers are allowed.

Since all customers are assumed indistinguishable, we can
consider the situation as a symmetric game among them.
Denote the common set of strategies (set of available actions)
and the utility (payoff) function by S and U , respectively.
More concretely, let U4stagged1 sothers5 be the utility for a
tagged customer who follows strategy stagged, when all other
customers follow sothers. A strategy s1 is said to dominate
strategy s2 if U4s11 s5¾U4s21 s5, for every s ∈S and the
inequality is strict for at least one s. A strategy s∗ is said
to be dominant if it dominates all other strategies in S.
A strategy s̃ is said to be a best response against a strategy
sothers, if U4s̃1 sothers5¾ U4s1 sothers5, for every s ∈S. Finally, a
strategy se is said to be a (symmetric) Nash equilibrium, if
it is a best response against itself, i.e., U4se1 se5¾U4s1 se5,
for every s ∈ S. The intuitive interpretation of a Nash
equilibrium is that it is a stable point of the game in the
sense that if all customers follow it, then no one has an
incentive to deviate from it. We remark that the notion of
a dominant strategy is stronger than the notion of a Nash
equilibrium strategy. In fact, every dominant strategy is
a Nash equilibrium strategy, but the converse is not true.
Moreover, Nash equilibrium strategies do exist in most
situations, whereas dominant strategies rarely do.

In the next sections we will determine the customer
equilibrium joining strategies. We assume that the customers
do not have information on R4t5. However, the information
about N4t5 may be available, so we distinguish two cases
depending on the information that the customers receive at
their arrival instants, before the decisions are made:

• Observable case: Customers observe N4t5.
• Unobservable case: Customers do not observe N4t5.
Note that in the observable case, an arriving customer

bases his join/balk decision on the number of waiting
customers N4t5, which serves as a signal for the time elapsed
since the last service instant (similar to Whitt 1986, Altman
and Hassin 2002, Haviv and Kerner 2007, and Kerner 2011).
We study the observable case in §§3 and 4, whereas §5 is
dedicated to the unobservable case.

3. The Observable Case:
Performance Analysis

In this section we consider the observable case of our
model. In this case, the customers, upon arrival and before
making their decisions about whether to join or balk, observe
the number of present customers in the system. Thus, a
general joining strategy is specified by a vector of joining
probabilities q= 4q01 q11 q21 0 0 05, where qi denotes the joining
probability when a customer finds i customers in the system
upon arrival (excluding himself). Moreover, we denote by
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qn the vector 4q01 q11 q21 0 0 0 1 qn5, which includes the n+ 1
initial components of q. Thus, the vector qn describes a
customer’s strategic behavior when he sees up to n present
customers.

The first step in the search for the equilibrium joining
strategies of the customers is the study of the best response
of a tagged customer against a given strategy of the others.
However, for determining a customer’s best response against
a strategy q followed by the other customers, it is first
necessary to compute the conditional mean sojourn time
of the customer, given that he finds n present customers in
the system, for all possible values of n. Of course, such a
conditional mean sojourn time depends both on the number
of customers n and the strategy q. The study of the social
benefit function per time unit, under a given strategy q
of the customers requires also to compute the equilibrium
distribution of the number of customers in the system
at arbitrary instants, given that the customers follow the
strategy q.

In this section, we compute the conditional mean sojourn
times of a customer and the equilibrium distribution of the
number of customers in the system, using a probabilistic
approach. The results can be alternatively derived using
the analytic approach introduced by Kerner (2008), who
determined the conditional distributions of the residual
service time in an Mn/G/1 queue. As the latter approach
is completely different and has independent interest, we
provide the detailed derivations of the results using it in the
online appendix.

Let Rq4t5 be the residual service time at time t, when
the customers follow a strategy q and denote by Rq its
equilibrium (stationary, limiting) version. Moreover, let Rn1q

represent the equilibrium conditional residual service time
(at arbitrary instants), given that there are n present customers
in the system, when the customers follow the strategy q.
We also consider the equilibrium conditional residual service
time at arrivals that find n customers in the system and
at arrivals that find n customers in the system and decide
to join. We denote them by Ra

n1q and Rj
n1q, respectively.

Similarly, let Nq4t5 denote the number of customers in the
system at time t, given that the customers follow a strategy q
and denote by Nq, N a

q and N j
q , respectively, the equilibrium

versions at arbitrary instants, at arrivals, and at arrivals that
decide to join.

Suppose, now, that the customers follow a strategy q=

4q01 q11 q21 0 0 05 and denote by n̄4q5 the first index for which
qn becomes 0, i.e.,

n̄4q5= inf8n¾ 02 qi > 0 for i < n and qn = 090 (1)

Then, Rj
n̄4q51q is not defined, since, whenever Nq = n̄4q5,

there is no stream of arrivals who join the system. On the
other hand, Rn̄4q51q and Ra

n̄4q51q are defined, since it is possible
to observe n̄4q5 customers at an arbitrary or an arrival instant,
under strategy q. Note, also, that for n> n̄4q5, Rj

n1q, Ra
n1q,

and Rn1q are not defined, since the system can never have

more than n̄4q5 customers. We can now easily argue that
Rj

n1q, Ra
n1q, and Rn1q are identically distributed, whenever

they are defined, i.e.,

Rn1q
d
=Ra

n1q1 0 ¶ n¶ n̄4q51 (2)

Rn1q
d
=Rj

n1q1 0 ¶ n< n̄4q50 (3)

Indeed, if 8P4t51 t ¾ 09 denotes the Poisson process, at rate �,
that generates the customer arrivals in the system, we have
that 8P4t+u5−P4t51 u¾ 09 and 84Nq4u51Rq4u551 0 ¶ u¶ t9
are independent. So, the lack of anticipation assumption is
satisfied and the PASTA property is applicable (see, e.g.,
Tijms 1994, Section 1.7) and we deduce (2). For justifying
(3), let 8Pn4t51 t ¾ 09, be independent Poisson processes
with respective rates �qn, n= 0111 0 0 0 1 n̄4q5− 1. We can
think of 8Pn4t51 t ¾ 09 as the process that generates the
arrivals of customers who join the transportation station,
whenever Nq4t5= n. We have that 8Pn4t+u5−Pn4t51 u¾ 09
and 84Nq4u51Rq4u551 0 ¶ u¶ t9 are independent for n=

0111 0 0 0 1 n̄4q5− 1. Again the lack of anticipation assumption
is valid and we obtain (3), using the conditional PASTA
property of van Doorn and Regterschot (1988) (see also the
same type of argument in the proof of Theorem 2.2.2 in
Kerner 2008).

Since, Rn1q, Ra
n1q and Rj

n1q are equidistributed, whenever
they are defined, we can determine their common distri-
bution by studying any one of them. We will refer to this
distribution as the (equilibrium) conditional residual service
time distribution, given that there are n customers in the
system.

Proposition 3.1. Consider the observable model of a trans-
portation station, where the customers join the system
according to a strategy q= 4q01 q11 q21 0 0 05. Then, we have
the following cases for a distributional representation of
Rn1q in terms of Rn−11q ( for n= 0 we have a representation
of Rn1q in terms of a service time random variable X, as
Rn−11q is not defined).

Case 1. 0 = n= n̄4q5. Let R4X5 be a random variable
having the equilibrium residual renewal time distribution
of a renewal process with interrenewal times distributed
as X, a generic intervisit time of the transportation facility.
Then, the distribution of the conditional residual service
time Rn1q =R01q coincides with the distribution of R4X5.
Symbolically, we have

Rn1q =R01q
d
=R4X51 0 = n= n̄4q50 (4)

Case 2. 0 = n < n̄4q5. Let X and T�q0
be independent

random variables, where X has the distribution of the inter-
visit times of the transportation facility and T�q0

has an
exponential distribution with parameter �q0. Then, the dis-
tribution of the conditional residual service time Rn1q =R01q

coincides with the conditional distribution of the difference
X − T�q0

, given that X ¾ T�q0
. Symbolically, we have

Rn1q =R01q
d
= 4X − T�q0

�X ¾ T�q0
51 0 = n< n̄4q50 (5)
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Case 3. 1 ¶ n= n̄4q5. Let R4Rn−11q5 be a random vari-
able having the equilibrium residual renewal time distribution
of a renewal process with interrenewal times distributed as
Rn−11q. Then, the distribution of the conditional residual
service time Rn1q coincides with the distribution of R4Rn−11q5.
Symbolically, we have

Rn1q
d
=R4Rn−11q51 1 ¶ n= n̄4q50 (6)

Case 4. 1 ¶ n< n̄4q5. Let Rn−11q and T�qn
be indepen-

dent random variables, where Rn−11q has the conditional
residual service time distribution given that there are n− 1
customers in the system and T�qn has an exponential dis-
tribution with parameter �qn. Then, the distribution of the
conditional residual service time Rn1q coincides with the
conditional distribution of the difference Rn−11q − T�qn , given
that Rn−11q ¾ T�qn . Symbolically, we have

Rn1q
d
=4Rn−11q−T�qn �Rn−11q¾T�qn51 1¶n<n̄4q50 (7)

Proof. Case 1. Suppose that the customers follow a strategy
q= 4q01 q11 q21 0 0 05 with n̄4q5= 0. Then no customer joins
the station. Consider now a tagged customer that arrives
to the system. This customer will necessarily find n = 0
customers in it and, because of the PASTA property, his
residual service time coincides with the residual renewal time
at an arbitrary epoch of the renewal process that generates the
visits of the facility to the station. Therefore, we obtain (4).

Case 2. Suppose that the customers follow a strategy q =

4q01 q11 q21 0 0 05 with n̄4q5¾ 1. We consider the transportation
station just after a visit of the facility. Then, the station is
empty and the time till the arrival of the first customer who
decides to join is exponentially distributed with parameter
�q0. Denote this time by T�q0

. Then, the residual service
time of that customer will be the current intervisit time X
of the transportation facility minus T�q0

, given that the
intervisit time X exceeds T�q0

(so that such a customer
exists). Therefore, we obtain (5).

Case 3. Suppose that the customers follow a strategy
q = 4q01 q11 q21 0 0 05 with n̄4q5 ¾ 1. Then, the arrivals of
customers that find in the system n= n̄4q5 customers and so
do not join (since qn = 0 by the definition of n̄4q5) occur
only during the residual service times of customers that
find n− 1 customers in the system and decide to join. By
“gluing” all time intervals that correspond to residual service
times of customers that find n− 1 customers in the system
and decide to join, we construct a renewal process 8M̂4t59.
Moreover, we observe that the arrivals of customers that
find in the system n customers occur only during the time
intervals of 8M̂4t59 and constitute a Poisson process. Then,
because of the PASTA property, the residual service time of
a customer that finds n customers upon arrival coincides with
the residual renewal time at an arbitrary epoch of the renewal
process 8M̂4t59. But the process 8M̂4t59 has interrenewal
times distributed as Rn−11q. Therefore, we obtain (6).

Case 4. Suppose that the customers follow a strategy
q = 4q01 q11 q21 0 0 05 with n̄4q5¾ 2 and consider a tagged

customer that finds n present customers at his arrival instant,
with 1 ¶ n< n̄4q5 and decides to join the system. Then, his
residual service time Rn1q equals the residual service time of
the customer who joined the system just before him minus
the time between their arrivals, given that the facility has
not visited the station during this interarrival time. Note
that the customer who joined the system just before the
tagged customer found n− 1 customers upon arrival and that
the interarrival time between his arrival and the arrival of
the tagged customer is an exponentially distributed random
variable T�qn

with parameter �qn, independent of Rn−11q.
Therefore, we obtain (7). �

To translate the recursive scheme (4)–(7) for the random
variables Rn1q in a scheme for the corresponding LSTs we
will use the following Lemma 3.1.

Lemma 3.1. Let T1, T2, and Y be independent random
variables, with T1 and T2 being exponentially distributed
with parameters �1 and �2, respectively, and Y being a
nonnegative generally distributed random variable with LST
F̃Y 4s5. Then we have the following formulas:

Pr6Y ¶ T17= F̃Y 4�151 (8)

Pr6Y ¶ T1 + T27=
�2

�2 −�1

F̃Y 4�15+
�1

�1 −�2

F̃Y 4�251

�1 6= �21 (9)

Pr6Y ¶ T1 + T27= F̃Y 4�15−�1F̃
′

Y 4�151 �1 = �20 (10)

Proof. Let FY 4y5 be the distribution function of Y . Con-
sidering the left side of (8) and conditioning on Y , we
obtain

Pr6Y ¶ T17=
∫ �

0
Pr6T1 ¾ y7dFY 4y5=

∫ �

0
e−�1y dFY 4y5

= F̃Y 4�150

Equations (9) and (10) are proved similarly by using the
formulas

Pr6T1 + T2 ¾ y7=
�2

�2 −�1

e−�1y +
�1

�1 −�2

e−�2y1

y ¾ 01 �1 6= �21

Pr6T1 + T2 ¾ y7= e−�1y +�1ye
−�1y1 y ¾ 01 �1 = �21

respectively. �

In Proposition 3.2 we provide the recursive scheme for
the LSTs of the conditional residual service times.

Proposition 3.2. Consider the observable model of a trans-
portation station, where the customers join the system
according to a strategy q= 4q01 q11 q21 0 0 05. Then, the LSTs
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F̃n1q4s5= E6e−sRn1q 7 of the conditional residual service times
are given by the recursive scheme

F̃n1q4s5=
−41 − F̃n−11q4s55

sF̃ ′
n−11q405

1 1 ¶ n= n̄4q51 (11)

F̃n1q4s5=
�qn4F̃n−11q4�qn5− F̃n−11q4s55

4s −�qn541 − F̃n−11q4�qn55
1

1 ¶ n< n̄4q51 s 6= �qn1 (12)

F̃n1q4�qn5=
−�qnF̃

′
n−11q4�qn5

1 − F̃n−11q4�qn5
1 1 ¶ n< n̄4q51 (13)

with initial conditions

F̃01q4s5=
−41− F̃ 4s55

sF̃ ′405
1 n̄4q5=01 (14)

F̃01q4s5=
�q04F̃ 4�q05− F̃ 4s55

4s−�q0541− F̃ 4�q055
1 n̄4q5>01 s 6=�q01 (15)

F̃01q4�q05=
−�q0F̃

′4�q05

1− F̃ 4�q05
1 n̄4q5>00 (16)

Proof. It is known that if the LST of the interrenewal time
distribution of a renewal process is F̃Y 4s5, then the LST of
the equilibrium residual renewal time distribution F̃R4Y 54s5 is
given by

F̃R4Y 54s5=
−41 − F̃Y 4s55

sF̃ ′
Y 405

0 (17)

Therefore, (4) and (6) imply immediately (14) and (11).
Now, let Ts be an exponentially distributed random variable
with parameter s. Then, using (8) and (7) we have

F̃n1q4s5= Pr6Ts ¾Rn1q7

= Pr6Ts ¾Rn−11q − T�qn �Rn−11q ¾ T�qn 7

=
Pr6Rn−11q ¶ T�qn + Ts7− Pr6Rn−11q <T�qn 7

Pr6Rn−11q ¾ T�qn 7
0 (18)

If s 6= �qn, then we can use (8) and (9) in (18) and we
obtain that

F̃n1q4s5=

(

�qn
�qn − s

F̃n−11q4s5+
s

s −�qn
F̃n−11q4�qn5

− F̃n−11q4�qn5

)

· 41 − F̃n−11q4�qn55
−11

which reduces, after some simplifications, to (12). On the
other hand, if s = �qn, we can use (8) and (10) in (18) and
we obtain that

F̃n1q4s5=
F̃n−11q4�qn5−�qnF̃

′
n−11q4�qn5− F̃n−11q4�qn5

1 − F̃n−11q4�qn5
1

which yields (13). The Equations (15) and (16) are proved
similarly starting from (5) and using (8)–(10). �

Remark 3.1. Because of (14)–(16), we have that F̃01q4s5
depends on q only through q0. Therefore, we can write
F̃01q4s5= F̃01 q0

4s5. Also, for n¾ 1, Equations (11)–(13) show
that F̃n1q4s5 is a function of F̃n−11q4s5 and qn. Inductively, we
deduce that F̃n1q4s5 depends on q only through qn and we
can write F̃n1q4s5= F̃n1qn4s5. We will also write Rn1q as Rn1qn

.
Note also that (11) can be seen as a limiting case of (12).

Indeed, taking the limit in the right side of (12) as qn → 0+

gives (11). Similarly, taking the limit in the right side of
(15) as q0 → 0+ yields (14).

Now, by differentiating (11)–(12) and (14)–(15) with
respect to s and evaluating at s = 0, we obtain recursive
formulas for the expected conditional residual service times.
We state the result as Corollary 3.1.

Corollary 3.1. Consider the observable model of a trans-
portation station, where customers join the system according
to a strategy q= 4q01 q11 q21 0 0 05. For the expected condi-
tional residual service times, E6Rn1qn

7, we have the following
recursive scheme:

E6Rn1qn
7=

E6R2
n−11qn−1

7

2E6Rn−11qn−1
7
1

qi 6= 01 0 ¶ i¶ n− 11 qn = 01 n¾ 11 (19)

E6Rn1qn
7=

E6Rn−11qn−1
7

1 − F̃n−11qn−1
4�qn5

−
1

�qn
1

qi 6= 01 0 ¶ i¶ n1 n¾ 11 (20)

with initial conditions

E6R01 q0
7=

E6X27

2E6X7
1 q0 = 01 (21)

E6R01 q0
7=

E6X7

1 − F̃ 4�q05
−

1
�q0

1 q0 6= 00 (22)

We will now determine the equilibrium distribution of the
number of customers in the transportation station, when the
customers follow a strategy q= 4q01 q11 q21 0 0 05. We begin
with Proposition 3.3, where we provide some recursive
formulas for the equilibrium probabilities.

Proposition 3.3. Consider the observable model of a trans-
portation station, where the customers join the system
according to a strategy q = 4q01 q11 q21 0 0 05. Then, the equilib-
rium probabilities �n1q = Pr6Nq = n7, n¾ 0, for the number
of customers in the station are given by the recursive scheme

�n1q = �qn−1E6Rn−11qn−1
7�n−11q1

qi 6= 01 0 ¶ i¶ n− 11 qn = 01 n¾ 11 (23)

�n1q =
qn−141 − F̃n−11qn−1

4�qn55

qn
�n−11q1

qi 6= 01 0 ¶ i¶ n1 n¾ 11 (24)
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with initial conditions

�01q = 11 q0 = 01 (25)

�01q =
1 − F̃ 4�q05

�q0E6X7
1 q0 6= 00 (26)

Proof. The proof can be found in the online appendix. �
Using the recursive relations of Proposition 3.3, we obtain

a product-form formula for the equilibrium distribution of
the number of customers in the station. More specifically we
have the following Proposition 3.4.

Proposition 3.4. Consider the observable model of a trans-
portation station, where the customers join the system
according to a strategy q= 4q01 q11 q21 0 0 05. Then, the equi-
librium probabilities �n1q are given by the formulas

�01q = 11 q0 = 01 (27)

�n1q =
41 − F̃ 4�q055E6Rn−11qn−1

7

E6X7

n−1
∏

i=1

41 − F̃i−11qi−1
4�qi551

qi 6= 01 0 ¶ i¶ n− 11 qn = 01 (28)

�n1q =
1 − F̃ 4�q05

�qnE6X7

n
∏

i=1

41 − F̃i−11qi−1
4�qi551

qi 6= 01 0 ¶ i¶ n1 (29)

�n1q = 01 if qi = 0 for some i¶ n− 10 (30)

Remark 3.2. In light of (28)–(30) it is obvious that �n1q

depends on q only through qn. So, we can write �n1q as �n1qn
.

4. The Observable Case:
Equilibrium Strategies

In this section we will determine the equilibrium joining
strategies in the observable case. We have already mentioned
that a strategy is said to be an equilibrium if it is a best
response against itself. So, in order to find the best responses
of a tagged customer against a strategy of the other customers
we have to compute his expected net benefit given that the
other customers follow a given strategy q= 4q01 q11 q21 0 0 05.
Hence, we begin the study by determining the expected net
benefit functions.

Proposition 4.1. Consider the observable model of a trans-
portation station, where the customers join the system accord-
ing to a strategy q = 4q01 q11 q21 0 0 05. Then, the expected net
benefit Sobs

n 4q5 of an arriving customer, who finds n present
customers in the system and decides to join, is given by the
formulas

Sobs
0 4q5=R−K

E6X27

2E6X7
1 q0 = 01 (31)

Sobs
0 4q5=R−K

[

E6X7

1 − F̃ 4�q05
−

1
�q0

]

1 q0 6= 01 (32)

Sobs
n 4q5=R

�
∑

k=n+1

gk −K
E6R2

n−11qn−1
7

2E6Rn−11qn−1
7
1

qi 6= 01 0 ¶ i¶ n− 11 qn = 01 n¾ 11 (33)

Sobs
n 4q5=R

�
∑

k=n+1

gk −K

[

E6Rn−11qn−1
7

1 − F̃n−11qn−1
4�qn5

−
1

�qn

]

1

qi 6= 01 0 ¶ i¶ n1 n¾ 10 (34)

Proof. We assume that the customers follow a strategy
q = 4q01 q11 q21 0 0 05 and we consider a tagged customer who
finds n present customers at his arrival instant and decides
to join. Then, his expected net benefit will be equal to
the difference of his expected reward from service and his
expected waiting cost. So, we have

Sobs
n 4q5=RP obs

n −KE6Rn1qn
71 (35)

where P obs
n is the probability that the tagged customer receives

service, given that there are n customers in front of him.
We have clearly that

P obs
n =

�
∑

k=n+1

gk1 (36)

since a tagged customer who occupies the n+ 1th wait-
ing position of the station will be accommodated by the
next transportation facility, only if its capacity is at least
n + 1. By plugging (36) and the formulas for E6Rn1qn

7
of Corollary 3.1 in (35) we obtain immediately formulas
(31)–(34). �

Remark 4.1. It is obvious that Sobs
n 4q5 depends on q only

through qn. So, we can write Sobs
n 4q5= Sobs

n 4qn5.

Remark 4.2. Using Hospital’s rule, we can prove that
limqn→0 S

obs
n 4q01 q11 q21 0 0 0 1 qn−11 qn5 = Sobs

n 4q01 q11 q21 0 0 0 1
qn−1105 and that limq0→0 S

obs
0 4q05 = Sobs

0 405. We can then
easily see that the functions Sobs

n 4q5 are continuous.

We are now ready to determine the equilibrium joining
strategies qe = 4qe

01 q
e
11 q

e
21 0 0 05 for the customers. More

specifically, we will see that the equilibrium joining prob-
abilities qe

n can be computed recursively, using an idea
inspired by Kerner (2011). In Theorem 4.1 we determine all
possible equilibrium joining probabilities qe

0 . Subsequently,
in Theorem 4.2, assuming that we have an equilibrium
joining probability vector qe

n−1 at hand, for some n¾ 1, we
determine all possible equilibrium joining probabilities qe

n.

Theorem 4.1. Consider the observable model of a trans-
portation station. Then, an equilibrium probability qe

0 for
joining when finding the system empty exists. Specifically,
we have the following comprehensive (but not necessarily
mutually exclusive) cases:

Case I. R/K ¶ E6X27/42E6X75. Then, 0 is an equilibrium
joining probability qe

0 .
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Case II. E6X27/42E6X75 < R/K <E6X7/41− F̃ 4�55−1/�.
Then, the equation E6X7/41 − F̃ 4�x55− 1/4�x5=R/K has
a solution in 40115. Every such solution is an equilibrium
joining probability qe

0 .
Case III. R/K ¾E6X7/41 − F̃ 4�55− 1/�. Then, 1 is an

equilibrium joining probability qe
0 .

Proof. Case I. Assume that all customers balk and con-
sider a tagged customer at his arrival instant. Then, his
expected net benefit, if he decides to join, is Sobs

0 405 =

R−K4E6X27/42E6X755¶ 0. So, a best response is to balk.
Thus, 0 is an equilibrium joining probability qe

0 .
Case II. In this case, we have that Sobs

0 405 > 0 and
Sobs

0 415 < 0. Since Sobs
0 4q05 is continuous in q0, using

Bolzano’s Theorem we have that there exists an x, such that
0 < x < 1 and Sobs

0 4x5= 0. If the customers join the system
with probability x, when it is empty, then the expected net
benefit of a tagged customer, who finds the system empty at
his arrival instant and decides to join, is Sobs

0 4x5= 0. So, he
is indifferent between joining and balking. In particular, x
is a best response. More generally, any solution x ∈ 40115
of the equation Sobs

0 4x5= 0 (which is written equivalently
as E6X7/41− F̃ 4�x55−1/4�x5=R/K) is an equilibrium
joining probability qe

0 .
Case III. Now, consider a tagged customer at his arrival

instant, who finds the system empty, and assume that all
other customers join the system when they find it empty.
Then, the expected net benefit of the tagged customer, if he
decides to join is Sobs

0 415=R−K6E6X7/41− F̃ 4�55−1/�7¾
0. In this case, joining the system is a best response for
the tagged customer. Thus, 1 is an equilibrium joining
probability qe

0 . �
Theorem 4.2. Consider the observable model of a trans-
portation station. Then, assuming that an equilibrium joining
probability vector qe

n−1 is known, an equilibrium probability
qe
n for joining when finding n present customers in the system

exists. Specifically, we have the following cases:
Case I. 4R

∑�

k=n+1gk5/K¶E6R2
n−11qen−1

7/42E6Rn−11qen−1
75.

Then, 0 is an equilibrium joining probability qe
n.

Case II. E6R2
n−11qen−1

7/42E6Rn−11qen−1
75 < 4R

∑�

k=n+1 gk5/

K < E6Rn−11qen−1
7/41 − F̃n−11qen−1

4�55 − 1/�. Then, the
equation E6Rn−11qen−1

7/41 − F̃n−11qen−1
4�x55 − 1/4�x5 =

4R
∑�

k=n+1 gk5/K has a solution in 40115. Every such solution
is an equilibrium joining probability qe

n.
Case III. 4R

∑�

k=n+1 gk5/K ¾E6Rn−11qen−1
7/41 − F̃n−11qen−1

4�55
−1/�. Then, 1 is an equilibrium joining probability qe

n.

Proof. Case I. Assume that the customers follow a strategy
qe with initial part 4qe

n−1105= 4qe
01 q

e
11 q

e
21 0 0 0 1 q

e
n−1105 and

consider a tagged customer, who finds n present customers
at his arrival instant. Then, his expected net benefit, if he
decides to join, is

Sobs
n 4qe

01 q
e
11 q

e
21 0 0 0 1 q

e
n−1105

=R
�
∑

k=n+1

gk −K
E6R2

n−11qen−1
7

2E6Rn−11qen−1
7
¶ 00

Then, a best response is to balk and 0 is an equilibrium
joining probability qe

n.
Case II. Now, we have that Sobs

n 4qe
01q

e
11q

e
210001q

e
n−1105>0

and Sobs
n 4qe

01q
e
11q

e
210001q

e
n−1115<0. Since Sobs

n 4qe
01q

e
11q

e
210001

qe
n−11qn5 is continuous in qn, we apply Bolzano’s Theo-

rem and we have that there exists an x∈40115, such that
Sobs
n 4qe

01q
e
11q

e
210001q

e
n−11x5= 0. If the customers join the

system with a strategy qe with initial part 4qe
n−11x5, then

the expected net benefit of a tagged customer, who finds
n present customers at his arrival instant and decides to
join, is Sobs

n 4qe
01q

e
11q

e
210001q

e
n−11x5=0. Therefore, the tagged

customer is indifferent between joining and balking. In par-
ticular, x is a best response, i.e., it is an equilibrium joining
probability qe

n.
Case III. Consider a tagged customer at his arrival instant,

who finds n present customers, and assume that the other
customers join the system according to a strategy qe with
initial part 4qe

n−1115. Then, the expected net benefit of the
tagged customer, if he decides to join, is

Sobs
n 4qe

01q
e
11q

e
210001q

e
n−1115

=R
�
∑

k=n+1

gk−K

[

E6Rn−11qen−1
7

1− F̃n−11qen−1
4�5

−
1
�

]

¾00

In this case, joining the system is a best response for
the tagged customer. Thus, 1 is an equilibrium joining
probability qe

n. �
We comment now on the associated social optimization

problem.

Remark 4.3. In the observable model of a transportation
station, where the customers join the system according to a
strategy q=4q01q110005, the expected social benefit per time
unit is given by

Sobs
soc 4q5=�

�
∑

n=0

�n1qqnS
obs
n 4q5 (37)

=R�
�
∑

n=0

�n1qqn

�
∑

k=n+1

gk−KE6Nq70 (38)

The complexity of the terms �n1q and E6Nq7=
∑�

n=0n�n1q

does not allow the analytic determination of a strategy q that
maximizes Ssoc

obs4q5. However, in §6, we determine such a
socially optimal strategy in the case where the times between
successive visits of the transportation facility follow the
exponential distribution.

5. The Unobservable Case
In this section we consider the unobservable model of
a transportation station. First, we compute the expected
net benefit of a customer, if he decides to join, and then
we determine the equilibrium joining strategies. A general
joining strategy in this case is specified by a single joining
probability q. In Proposition 5.1 we provide the expected
net benefit of a customer that decides to join.
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Proposition 5.1. Consider the unobservable model of a
transportation station, where the customers join the system
according to a strategy q. Then, the expected net benefit
Sun4q5 of an arriving customer who decides to join is given
by the formula

Sun4q5=R
E6C18C¶ Iq9+Iq18C>Iq97

�qE6X7
−K

E6X27

2E6X7
(39)

=R

[

�
∑

k=1

gk

k−1
∑

j=0

∫ �

0
e−�qt 4�qt5

j

j!

1−F 4t5

E6X7
dt

]

−K
E6X27

2E6X7
1 (40)

where C , X, and Iq are independent random variables; C is
a discrete random variable with probability mass function
4gk2 k=11210005 (the capacity probability mass function);
X is a continuous random variable with probability density
function f 4x5 (the service time density); and Iq is a discrete
random variable with probability mass function

Pr6Iq = i7=
∫ �

0
e−�qx 4�qx5

i

i!
dF 4x51 i¾00 (41)

The function Sun4q5 is decreasing in q, so the customers
adopt an ATC behavior.

Proof. We assume that the customers follow a strategy q
and we consider a tagged customer at his arrival instant who
decides to join. Then, his expected net benefit is given by

Sun4q5=RP un4q5−KE6Run71 (42)

where P un4q5 is the probability that the tagged customer
receives service, given that the other customers follow the
strategy q and Run is the sojourn time of the tagged customer
in the system, which coincides with the residual service
time at his arrival instant. Using the PASTA property, we
have that it is also equal to the residual service time at an
arbitrary instant. Therefore,

E6Run7=
E6X27

2E6X7
1 (43)

where X represents a generic service time. Now, because of
the regenerative nature of the process, the elementary renewal
theorem is applicable and therefore, the probability P un4q5
equals to the ratio of the expected number of customers
served in a service cycle over the expected number of
customers that join in a service cycle.

The number of customers that get service in a service
cycle equals to the capacity of the bus, if the number of the
customers who join is equal to or exceeds the capacity C.
Otherwise, it is equal to the number of customers who join
the station. Denoting by Iq the number of customers that
decide to join in a service cycle, we have that the probability
mass function of Iq is given by (41), since the conditional
distribution of Iq given that the service time has length x

is Poisson with rate �qx. It is now clear that the expected
number of customers that get service in a service cycle
equals to E6C18C¶Iq9+Iq18C>Iq97. On the other hand,
the expected number of arrivals who decide to join in a
service cycle is E6Iq7=�qE6X7. Hence,

P un4q5=
E6C18C¶ Iq9+I18C>Iq97

�qE6X7
0 (44)

Plugging (43) and (44) into (42), we obtain (39). Using (44)
and conditioning successively on X, Iq , and C yields

P un4q5=

∫ �

0

∑�

i=1e
−�qu 4�qu5i

i!

∑�

k=1gkmin4k1i5dF 4u5

�qE6X7
0 (45)

After a bit of algebraic manipulations, (45) reduces to

P un4q5=
�
∑

k=1

gk

k−1
∑

j=0

∫ �

0
e−�qt 4�qt5

j

j!

1−F 4t5

E6X7
dt0 (46)

Plugging (43) and (46) into (42) yields (40).
We can now see that

d4
∑k−1

j=0 e
−�qt4�qt5j/4j!55

dq
=−�te−�qt 4�qt5

k−1

4k−15!
<00

Therefore, differentiating (40) with respect to q yields

dSun4q5

dq
=R

�
∑

k=1

gk

∫ �

0

(

−�te−�qt 4�qt5
k−1

4k−15!

)

1−F 4t5

E6X7
dt<00

Thus, Sun4q5 is seen to be decreasing in q. �
Remark 5.1. Formula (46) can be derived alternatively
by noting that P un4q5= Pr6N j

q <C7, where N j
q has the

equilibrium distribution of the number of customers in
the system at arrival instants of customers who join the
system, given that the customers follow the strategy q
and C has the capacity distribution 4gk5. Indeed, a joining
customer gets served, if and only if the capacity of the
next transportation facility exceeds the number of customers
that finds upon arrival. Using the PASTA property, we have
that the elapsed time from the most recent arrival of the
transportation facility till the arrival of a customer that joins
has the equilibrium distribution of the age of a renewal
process with interarrival times distributed according to F 4t5;
thus, its probability density function is 41−F 4t55/E6X7, t¾0.
Now, by conditioning, we have that the probability mass
function of N j

q is given by

Pr6N j
q = i7=

∫ �

0
e−�qx 4�qx5

i

i!

1−F 4x5

E6X7
dx1 i¾01 (47)

and we easily obtain (46).

Now, we can determine the equilibrium joining strategies
in the unobservable case. We have the following Theorem 5.1.
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Theorem 5.1. Consider the unobservable model of a trans-
portation station. Then a unique equilibrium joining strategy
exists. In particular, we have the following cases:

Case I. R/K¶E6X27/42E6X75. Then, a unique equilib-
rium joining strategy exists that prescribes to balk. Further-
more, it is a dominant strategy.

Case II. E6X27/42E6X75 < R/K < 4E6X27/42E6X755/
4
∑�

k=1gk
∑k−1

j=0

∫ �

0 e−�t44�t5j/4j!55441−F 4t55/E6X75dt5. Then,
a unique equilibrium joining strategy exists that prescribes
to join with probability qe, where qe is the unique root of
Sun4q5 in 40115.

Case III. R/K¾4E6X27/42E6X755/4
∑�

k=1gk
∑k−1

j=0

∫ �

0 e−�t·

44�t5j/4j!55441−F 4t55/E6X75dt5. Then, a unique equilibrium
joining strategy exists that prescribes to join. Furthermore,
it is a dominant strategy.

Proof. Case I. Consider a tagged customer at his arrival
instant and assume that the other customers follow a
strategy q. If q = 0, the expected net benefit of the
tagged customer, if he decides to join is Sun405=R−

K4E6X27/42E6X755¶0. Moreover, the monotonicity of Sun4q5
implies that Sun4q5<01q∈40117. Thus, the best response of
the tagged customer is to balk, against any strategy of the
other customers. Hence, the strategy of balking is the unique
dominant strategy.

Case II. In this case, we have that Sun405>0, whereas
Sun415<0. Thus, by appealing to Bolzano’s theorem and to
the monotonicity of Sun4q5, we have that Sun4q5 has a unique
root qe ∈40115. Now, if the customers follow a strategy q,
with q∈ 601qe5, the expected net benefit of a tagged customer
is positive, so his best response is to join the system. Thus,
no q∈ 601qe5 can be an equilibrium strategy. Similarly for
any q∈4qe117, the only best response is to balk so such a q
cannot be an equilibrium strategy. Finally, if the customers
follow the strategy qe, the expected net benefit of a tagged
customer is Sun4qe5=0, so he is indifferent between joining
and balking. In particular, the strategy qe is a best response
against itself. We deduce that qe constitutes the unique
equilibrium joining strategy.

Case III. Suppose that the customers follow the strategy
of joining, q=1. Then the expected net benefit of a tagged
customer, if he decides to join, is

Sun415=R

(

�
∑

k=1

gk

k−1
∑

j=0

∫ �

0
e−�t 4�t5

j

j!

1−F 4t5

E6X7
dt

)

−K
E6X27

2E6X7
¾00

Moreover, the monotonicity of Sun4q5 implies that Sun4q5>01
q∈ 60115. So, if q∈ 60115, the best response of the tagged
customer is to join. Thus, the best response of the tagged
customer is to join, against any strategy of the other cus-
tomers. Hence, the strategy of joining is the unique dominant
strategy. �

We comment now on the associated social optimization
problem.

Remark 5.2. In the unobservable model of a transportation
station, where the customers join the system according to
a strategy q, the expected social benefit per time unit is
given by

Sun
soc4q5=�qSun4q5=�q4RP un4q5−KE6Run751 (48)

where P un4q5 and E6Run7 are given by (46) and (43), respec-
tively. The complexity of the term P un4q5 as a function
of q does not allow the analytic derivation of a strategy
q that maximizes Sun

soc4q5. However, in §6 we determine
the socially optimal strategy in the case where the times
between successive visits of the transportation facility follow
the exponential distribution.

6. The Exponential Case
In this section, we study in some more detail the special
case where the distribution F 4x5 is exponential, i.e., when
the visits of the transportation facility occur according
to a Poisson process. More specifically, we assume that
F 4x5=1−e−�x, for x>0. This special case is amenable
to further analysis and we can determine the equilibrium
and socially optimal strategies in both information cases
(observable and unobservable).

First, we consider the observable model. Because of the
memoryless property of the exponential distribution, we
can easily see that the conditional residual service times
Rn1q are all exponentially distributed. Therefore, F̃n1q4s5=
F̃ 4s5=�/4�+s5 and E6Rn1q7=E6X7=1/�. Using (35) and
(36), we can easily see that the expected net benefit function
Sobs
n 4q5 assumes the form

Sobs
n 4q5=R

�
∑

k=n+1

gk−K
1
�
0 (49)

Therefore, we observe that Sobs
n 4q5 is decreasing in n and

does not depend on q. We conclude that a dominant threshold
equilibrium strategy exists. More concretely, we have the
following Theorem 6.1.

Theorem 6.1. Consider the exponential observable case of
a transportation station. Then, a dominant threshold strategy
exists that prescribes to join when you see upon arrival less
than ne present customers, with ne given by

ne
=min

{

n∈�02 R
�
∑

k=n+1

gk−K
1
�
<0

}

0 (50)

We now move to the social optimization problem. Again,
because of the memoryless property of the exponential
distribution, substituting F̃n1q4s5=�/4�+s5 and E6Rn1q7=
1/� in Proposition 3.4 yields

�n1q =41−�n5
n−1
∏

i=0

�i1 n¾01 (51)
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with

�i =
�qi

�+�qi
1 i¾00 (52)

We can then easily see that the mean number of customers
in the station is given by

E6Nq7=
�
∑

n=0

�0�1 000�n0 (53)

Plugging (51) and (53) into (38) gives

Sobs
soc 4q5=�

�
∑

n=0

�0�1 000�n

[

R
�
∑

k=n+1

gk−K
1
�

]

0 (54)

Our objective is to find a socially optimal strategy q that
maximizes the right side of (54). To this end, for n¾0,
note that �n is increasing in qn and does not depend on
qi1 i 6=n. Note also that the quantity R

∑�

k=n+1gk−K41/�5 is
decreasing in n; thus R

∑�

k=n+1gk−K41/�5¾0 for n<ne−1,
whereas R

∑�

k=n+1gk −K41/�5< 0 for n¾ne. It is now
clear that a socially optimal strategy q should assign the
maximum possible coefficient �0�1 000�n to every n<ne−1
and �0�1 000�n=0 for n¾ne. This occurs when qi =1, for
n<ne−1, and qi=0, for n¾ne. Thus, we have the following
Theorem 6.2.

Theorem 6.2. Consider the exponential observable case of
a transportation station. Then, a socially optimal threshold
joining strategy exists that prescribes to join when you see
less than nsoc present customers, with nsoc =ne given by (50).

It is interesting to emphasize that by Theorem 6.2 individu-
ally and socially optimal policies coincide under exponential
intervisit times.

Now, we consider the unobservable model. After some
straightforward algebraic manipulations, we can see that
(40) reduces to

Sun4q5=R

[

1−

�
∑

k=1

gk

(

�q

�q+�

)k]

−K
1
�

=R

[

1−G

(

�q

�q+�

)]

−
K

�
0 (55)

Now, using Theorem 5.1 and (55), we deduce the following
Theorem 6.3.

Theorem 6.3. Consider the exponential unobservable model
of a transportation station. Then, a unique equilibrium
joining strategy exists. In particular, we have the following
cases:

Case I. R/K¶1/�. Then, a unique equilibrium joining
strategy exists that prescribes to balk. Furthermore, it is a
dominant strategy.

Case II. 1/�<R/K<1/4�61−G4�/4�+�5575. Then, a
unique equilibrium joining strategy exists that prescribes to
join with probability qe, given by

qe
=

�G−141−K/4R�55

�61−G−141−K/4R�557
0 (56)

Case III. R/K¾1/4�61−G4�/4�+�5575. Then, a unique
equilibrium joining strategy exists that prescribes to join.
Furthermore, it is a dominant strategy.

Now, we consider the social optimization problem for
the unobservable model. Using (48) and (55), the expected
social benefit per time unit, when the customers follow a
strategy q, is given by

Sun
soc4q5=�q

[

R

(

1−

�
∑

k=1

gk

(

�q

�q+�

)k)

−K
1
�

]

=�q

[

R

[

1−G

(

�q

�q+�

)]

−
K

�

]

0 (57)

We can now determine the socially optimal strategy for the
exponential unobservable model. We have the following
Theorem 6.4.

Theorem 6.4. Consider the exponential unobservable model
of a transportation station. Then, a unique socially optimal
joining strategy exists. In particular, we have the following
cases:

Case I. R/K ¶ 1/�. Then, a unique socially optimal
joining strategy exists that prescribes to balk.

Case II. 1/� < R/K < 1/4�61 − G4�/4� + �55 −

44��5/4�+�525G′4�/4�+�5575. Then, a unique socially
optimal joining strategy exists that prescribes to join with
probability qsoc, where qsoc is the unique root in 40115 of the
equation

G

(

�q

�q+�

)

+
�q�

4�q+�52
G′

(

�q

�q+�

)

=1−
K

�R
0 (58)

Case III. R/K¾1/4�61−G4�/4�+�55−44��5/4�+�525·
G′4�/4�+�5575. Then, a unique socially optimal joining
strategy exists that prescribes to join.

Proof. The first and the second derivative of Sun
soc4q5 with

respect to q are

dSun
soc4q5

dq
=�

[

R−
K

�

]

−�R
�
∑

k=1

gk

(

1+
k�

�q+�

)(

�q

�q+�

)k

=�

[

R−
K

�

]

−�R

[

G

(

�q

�q+�

)

+
�q�

4�q+�52

·G′

(

�q

�q+�

)]

(59)

and

d2Sun
soc4q5

dq2
=�R

�
∑

k=1

gk
k��

4�q+�52

(

�q

�q+�

)k−1

·
6−4k+15�7

�q+�
0 (60)

It is evident from (60) that d2Sun
soc4q5/dq

2 <0, for q∈ 60117,
i.e., dSun

soc4q5/dq is strictly decreasing in q. Moreover,
[

dSun
soc4q5

dq

]

q=0

=�

[

R−
K

�

]

(61)
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and
[

dSun
soc4q5

dq

]

q=1

=�

[

R−
K

�

]

−�R

[

G

(

�

�+�

)

+
��

4�+�52
G′

(

�

�+�

)]

0 (62)

Now, we use these quantities in combination with the
monotonicity of dSun

soc4q5/dq to identify the socially optimal
joining strategies in the three cases of the theorem.

Case I. In this case we have, 6dSun
soc4q5/dq7q=0¶0. So, the

monotonicity of dSun
soc4q5/dq implies that dSun

soc4q5/dq<0,
for q∈40117. Then, Sun

soc4q5 is strictly decreasing for q∈ 60117.
So, the unique socially optimal joining strategy is to balk.

Case II. Now, the inequality 6dSun
soc4q5/dq7q=1 < 0 <

6dSun
soc4q5/dq7q=0 holds and the monotonicity of dSun

soc4q5/dq
implies that there exists a unique qsoc ∈ 40115, such that
6dSun

soc4q5/dq7q=qsoc = 0. In this case, the unique socially
optimal joining strategy is qsoc, which is given as the unique
solution in 40115 of the Equation (58).

Case III. In this case we can easily show that
6dSun

soc4q5/dq7q=1¾0. Then, the monotonicity of dSun
soc4q5/dq

implies that dSun
soc4q5/dq>0 for all q∈ 60115. Then, Sun

soc4q5
is strictly increasing for all q∈ 60117 and the unique socially
optimal joining strategy prescribes to join. �

We now proceed to the comparison of the equilibrium
and the socially optimal joining strategies in the exponential
unobservable model. By considering the various cases of
Theorems 6.3 and 6.4, we have the following four cases:

Case I. R/K¶1/�.
Case II. 1/�<R/K<1/4�61−G4�/4�+�5575.
Case III. 1/4�61−G4�/4�+�5575¶R/K<1/4�61−

G4�/4�+�55−44��5/4�+�525G′4�/4�+�5575.
Case IV. R/K ¾ 1/4�61 − G4�/4� + �55 − 44��5/

4�+�525G′4�/4�+�5575.
In Case I, we have that qe =qsoc =0. In Case II, we have

that qe is the unique root of Sun4q5 in 40115 and qsoc is the
unique root of dSun

soc4q5/dq in 40115. But, by (59), we have
that

[

dSun
soc4q5

dq

]

q=qe
=−�R

�
∑

k=1

gk
k�

�qe+�

(

�qe

�qe+�

)k

<00

Since, dSun
soc4q5/dq is decreasing in q and 6dSun

soc4q5/dq7q=qe

<0, whereas 6dSun
soc4q5/dq7q=qsoc =0, we have that qe>qsoc in

Case II. In Case III, we have that qe=1, whereas qsoc ∈40115.
In Case IV, we have that qe=qsoc =1. Therefore, we conclude
that

qsoc¶qe1

i.e., under individual optimization the customers are more
willing to join than it is socially desirable. This is in contrast
to the observable model, where the equilibrium and socially
optimal joining strategies coincide.

Let us elaborate on the intuition behind these results.
Indeed, in the unobservable model, the strategies of the
customers do not affect the mean sojourn time of a tagged
customer, but affect his probability of receiving service.
Specifically, as q increases, the probability that a tagged
customer receives service decreases. So, in this model the
joining decisions of the customers imply negative externali-
ties for the future customers. This explains why qe¾qsoc.
The customers ignore the negative externalities that their
joining decisions impose on other customers and they tend
to overuse the system. On the other hand, in the observable
model, a joining decision of a tagged customer negatively
affects future customers, but the negative externalities are
easily seen to be smaller than the positive value for the
tagged customer, for any n<ne. Indeed, suppose that the
socially optimal strategy dictates balking to a tagged cus-
tomer for some n<ne. Then the queue length will never
exceed n. But this is suboptimal, because if the customer that
finds the system at state n joins, then he has positive utility
and hence the social utility increases. Note the difference
between the situation of this model and the Naor (1969)
case. There, the negative externalities may exceed the value
of the tagged customer. In Naor’s model, a balking decision
implies that future customers will join at smaller queue
lengths and have greater benefits, whereas here if the tagged
customer balks, future customers (of this service phase) will
not benefit from a smaller queue. Therefore, the equilibrium
and the socially optimal strategies coincide.

7. Different Mean Residual Time
Behaviour: Avoiding or Following
the Crowd

Theorems 4.1 and 4.2 guarantee the existence but not the
uniqueness of equilibrium joining strategies for the customers.
Indeed, depending on the nature of the distribution F 4x5 and
of the probability mass function 4gk2 k=11210005, more than
one equilibrium joining strategies may exist. In what follows,
we state some sufficient conditions for the uniqueness of
equilibrium strategies. These conditions are satisfied, when
the distribution F 4x5 belongs to the family of the decreasing
mean residual life distributions. Similar results hold for the
increasing mean residual life distributions. However, the
latter do not appear frequently in practice, so we summarize
the corresponding results in the online appendix.

Definition 7.1. A nonnegative random variable X is said to
have a decreasing mean residual life distribution (respectively,
an increasing mean residual life distribution), if the function
E6X−x �X¾x7 is decreasing (respectively, increasing) in x,
for x¾0. When the monotonicity is strict, X is said to have
a strictly DMRL (respectively, strictly IMRL) distribution.

The families of DMRL and IMRL distributions have
been extensively studied in the literature, since they capture
natural notions of aging (see, e.g., Shaked and Shanthikumar
2007). In the context of our transportation model, it seems
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more reasonable to assume that F 4x5 follows a DMRL
distribution. Indeed, in that case, the longer the time elapsed
from the previous visit of the facility, the shorter the expected
time till its next visit. On the other hand IMRL models
the counterintuitive situation in which the longer the time
elapsed from the previous visit of the facility, the longer the
expected time till its next visit.

First, we prove that if X is DMRL, then the expected
net benefit function Sobs

n 4qn5 is decreasing in qn, which
implies the uniqueness of an equilibrium joining strategy. To
prove this monotonicity result, we will need the following
Lemmas 7.1 and 7.2.

Lemma 7.1. Let X be a nonnegative random variable with
a DMRL distribution and T� be an exponentially distributed
random variable with rate �, independent of X. Then, the
conditional distribution of X−T� given that X¾T� has also
a DMRL distribution.

Proof. See the online appendix. �

Lemma 7.2. Let X be a nonnegative random variable with
a DMRL distribution and T� be an exponentially distributed
random variable with rate �, independent of X. Then,
E6X−T� �X¾T�7 is increasing function of �.

Proof. See the online appendix. �

In the following Proposition 7.1, we show that the DMRL
property for the distribution F 4x5 of the times between
successive visits of the transportation facility implies the
monotonicity of E6Rn1qn

7 in qn.

Proposition 7.1. Consider the observable model of a trans-
portation station. If the distribution F 4x5 of the times between
successive visits of the transportation facility is a DMRL,
then Rn1qn

has a DMRL distribution. Moreover, E6Rn1qn
7 is

increasing in qn, for n=0111000 0

Proof. We will prove by induction on n that Rn1qn
has a

DMRL distribution and that E6Rn1qn
7 is increasing in qn.

For n=0, from (5) we have that R01q
d
= 4X−T�q0

�X¾
T�q0

5, where T�q0
is exponentially distributed with parame-

ter �q0. Since X has a DMRL distribution, we can apply
Lemma 7.1 to conclude that R01q has also a DMRL dis-
tribution. Lemma 7.2 shows that E6R01q0

7 is increasing
in q0.

Now, let us assume that Rk1qk
has a DMRL distribu-

tion and that E6Rk1qk
7 is increasing in qk. From (7) we

have that Rk+11qk+1

d
= 4Rk1qk

−T�qk+1
�Rk1qk

¾T�qk+1
5, where

T�qk+1
is exponentially distributed with parameter �qk+1.

Lemma 7.1 and Lemma 7.2 imply, respectively, that Rk+11qk+1

has a DMRL distribution and that E6Rk+11qk+1
7 is increasing

in qk+1. �

In light of (35) and (36), Proposition 7.1 yields the
following Corollary 7.1.

Corollary 7.1. Consider the observable model of a trans-
portation station. If the distribution F 4x5 of the times between

successive visits of the transportation facility is a strictly
DMRL, then the expected net benefit function Sobs

n 4qn5 is
strictly decreasing in qn and consequently there exists a
unique equilibrium joining strategy.

We can go even further and show that, under certain
conditions, the unique equilibrium joining strategy, which
exists when F 4x5 is a strictly DMRL distribution, is of
reverse-threshold type.

Definition 7.2. Consider the observable model of a trans-
portation station. A joining strategy q= 4q01q11q210005 is
said to be of reverse-threshold type, if there exists an n such
that qi =0, for i<n, qn∈ 60117 and qi =1, for i>n.

When F 4x5 is a DMRL distribution, we have the following
Theorem 7.1.

Theorem 7.1. Consider the observable model of a trans-
portation station. If the distribution F 4x5 of the times between
successive visits of the transportation facility is a strictly
DMRL and the transportation facility has unlimited capacity,
then the unique equilibrium joining strategy is of reverse-
threshold type.

Proof. Since F 4x5 is a strictly DMRL distribution, Propo-
sition 7.1 yields that Rn1qn

is also strictly DMRL, for n=

0111000 0 Using Lemma 7.2, we have that

E6Rn1qn
−T�qn+1

�Rn1qn
¾T�qn+1

7

<E6Rn1qn
−T�′ �Rn1qn

¾T�′ 71 �′>�qn+11

where T�qn+1
and T�′ are exponentially distributed distributions

with rates �qn+1 and �′, respectively. Taking �′ →� and
using (7) yields E6Rn+11qn+1

7<E6Rn1qn
7, for qn+1 =4qn1qn+15.

Then, because of the unlimited capacity of the transportation
facility, we have that

Sobs
n 4qn5=R−KE6Rn1qn

7<R−KE6Rn+11qn+1
7

=Sobs
n+14qn+150 (63)

Consider, now, the equilibrium joining strategy qe =

4qe
01q

e
110005. To prove that it is of reverse-threshold type, it

suffices to show that if qe
n ∈40117 for some n, then qe

n+1 =1.
Indeed, qe

n ∈40117 implies that Sobs
n 4qe

n5¾0. Then (63) yields
Sobs
n+14qn+15>0, for any qn+1 =4qe

n1qn+15, qn+1 ∈ 60117 and we
conclude that qe

n+1 =1. Therefore, qe is a reverse-threshold
strategy. �

The intuition behind Theorem 7.1 can be described as
follows: In the case where F 4x5 is a DMRL distribution,
the presence of a larger number of customers upon arrival
of a tagged customer has two opposite effects. On the one
hand it makes less probable that the tagged customer will be
accommodated by the next transportation facility. On the
other hand, it gives a signal that some time has passed since
the last visit of the transportation facility, so because of
the DMRL nature of F 4x5, the tagged customer expects a
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shorter remaining service time. Therefore, the net effect
on the tagged customer is dubious. However, under the
additional assumption that the facility has unlimited capacity,
the tagged customer prefers to see upon arrival a larger
number of customers, since this implies less waiting costs
for him. Therefore, the larger the number of customers
upon arrival, the more willing is the tagged customer to
join and therefore, an equilibrium joining strategy is of
reverse-threshold type.

Regarding the ATC/FTC behavior of the customers, we
have seen in Proposition 7.1 that when F 4x5 is DMRL then
E6Rn1qn

7 is increasing in qn. Therefore, if q1
n<q2

n, we have
that Sobs

n 4qn−11q
1
n5¾Sobs

n 4qn−11q
2
n5, which implies that the

best response of a tagged customer who finds n present
customers upon arrival, given that the other customers follow
4qn−11q

1
n5 is greater than or equal to his best response given

that the other customers follow 4qn−11q
2
n5. In a sense, we

have an ATC situation for every fixed observed state n.

8. Numerical Experiments
In this section, we summarize the findings of several numeri-
cal experiments that illustrate the applicability of the theo-
retical results and shed light on several issues that seem
important from a system operator’s point of view. We articu-
late the presentation in three subsections that deal with the
number and form of the equilibrium strategies, the effect of
the interarrival distribution, and the effect of the capacity of
the facility on the behavior of the customers.

8.1. Form and Number of the Equilibrium Strategies

When the reported sufficient conditions for the existence
of reverse-threshold strategies fail, then the form of the
equilibrium strategies may be very irregular. In particular,
this happens when the facility’s interarrival distribution F 4x5
is not unimodal. Below, we present several examples in
the case where the interarrival time X assumes one of two
values. In such cases, the information on the number of
present customers gives a strong signal to a tagged arriving
customer regarding the duration of the interarrival time being
equal to the low or high possible values of X.

In the first experiment, we see that an equilibrium strategy
may have proper probabilities (strictly between 0 and 1) in
multiple states. We consider a numerical scenario with arrival
rate �=001, discrete distribution function F 4x5 for the times
between the successive visits of the facility with possible
values 1 and 50 with corresponding probabilities 0.9 and 0.1,
R=35, K=1 and discrete uniform distribution on 81121000159
for the successive capacities of the facility (i.e., gj =002,
j=112100015). Then, by applying the algorithmic procedure
of Theorems 4.1 and 4.2, we see that an equilibrium joining
strategy in this case is 41100626010059671000566101010005.

In the second experiment, we see that it is not necessary
that the probabilities of the equilibrium joining strategy
form a monotone sequence. For example, in a numerical
scenario with �=001, discrete distribution function F 4x5 with

possible values 1 and 52 with corresponding probabilities
0.995 and 0.005, R=24, K=1 and unlimited capacity of
the facility at its visits, we obtain an equilibrium joining
strategy 41111006865111009824111110005. Such a situation can
be explained intuitively as follows: When a tagged customer
observes “few” customers in the system, he has evidence to
believe that the current interarrival time has started quite
recently. Then, most probably, it has assumed the low value
1 (whose a priori probability is 0.995) and hence the tagged
customer is willing to join. On the other hand, when a
customer observes “many” customers in the system, he tends
to believe that the interarrival time has assumed the high
value 52, but nevertheless the expected remaining time till
the next facility’s arrival is believed to be small, so he is
again willing to join. However, for intermediate values of
the number of present customers in the system, the situation
is ambiguous for the tagged arriving customer: On the one
hand, he has a moderate signal that the interarrival time has
assumed the high value, and, on the other hand, there is
a considerable probability the remaining time till the next
facility’s arrival to be long. This is the reason why some
intermediate probabilities are less than 1.

In the third experiment, we see that multiple equilibrium
joining strategies may exist. Indeed, considering a numerical
scenario with �=002, discrete distribution function F 4x5 with
possible values 5 and 30 with corresponding probabilities 0.9
and 0.1, R=7, K=1 and unlimited capacity of the facility
at its visits, we obtain three equilibrium joining strategies:
401010005, 4003076101010005 and 41101010005. Indeed, if no
customer joins the system, then the presence of 0 customers
gives no information to a tagged arriving customer about the
current interarrival time X. If he joins he will receive on
average R−KE6R4X57<0 money units, so he prefers to balk.
This yields the equilibrium 401010005. On the other hand, if all
customers join when the system is empty, then the presence
of 0 customers gives a strong signal to a tagged arriving
customer that the facility has visited the station recently.
Therefore, as the a priori probability of the length of the
current interarrival time is 0.9 for the low value 5, he tends
to believe that this is the true value and he becomes willing
to join. This yields the equilibrium 41101010005. However,
if only a portion of the customers join when the system
is empty, then we have a mixed situation that yields the
equilibrium 4003076101010005.

8.2. The Effect of the Mean and Variability of the
Interarrival Times on the Behavior of the
Customers and on System’s Throughput

In this second series of numerical experiments, we investigate
the effect of the mean and variability of the facility’s
interarrival times on the behavior of the customers. Regarding
the effect of the mean, the answer is intuitively clear:
The smaller the mean value of the interarrival times, the
more willing are the customers to join. Indeed, this fact has
been verified by a number of numerical experiments and
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Table 1. The effect of the variability of the facility’s inter-
arrival distribution on the equilibrium joining
strategies of the customers and the throughput.

Equilibrium
Distribution Variance joining strategy Throughput

Erlang(11005) 400000 40101010005 000000
Erlang(21100) 200000 400250011111110005 101666
Erlang(31105) 103333 400672611111110005 107923
Erlang(41200) 100000 400856211111110005 109231
Erlang(51205) 008000 400951711111110005 109761
Erlang(61300) 006667 41111110005 200000

seems to be very robust, independent of the shape of the
underlying distribution.

Regarding the effect of the variability, we have again
a clear situation: the reduction of the variability of the
facility’s interarrival times induces the customers to be more
willing to join the system. To illustrate this point, we present
a numerical scenario in Table 1, for a model with �=2,
Erlang distribution function F 4x5 with n phases and rate
005n, R=106, K=1 and unlimited capacity for the facility
at its visits. We vary n from 1 to 6, so that the mean of
the facility’s interarrival time is kept fixed to 2, but the
variance, which equals to 4/n, decreases from 4 to 4

6 . The
reduction of the variability is seen to have a very important
impact on the behavior of the customers. Indeed, in the
case of the exponential distribution (n=1), no customer
enters in the system, whereas for an Erlang distribution
with six phases and the same mean, all customers do enter.
The observations from Table 1 confirm the significant effects
of variability in service systems with strategic customers.
It is well known that variability has a degrading effect on the
performance measures for most queueing systems without
strategic customers. Our numerical findings indicate that
this negative effect is exacerbated under strategic customer
decisions. From a system design point of view, this implies
that reducing interarrival time variability must be a target for
the system operator.

8.3. The Effect of the Mean and Variability of the
Capacity of the Facility on the Behavior of the
Customers and on System’s Throughput

In this third series of numerical experiments, we discuss
the effect of the facility’s capacity on the behavior of the

Table 2. The effect of the variability of the facility’s capacity on the equilibrium joining strategies of
the customers and the throughput.

Prob. mass function Variance Equilibrium joining strategy Throughput

40101110101010005 000 41111110101010005 103704
4010011008100110101010005 002 41111110101010005 103488
4002100210021002100210101010005 200 4111111110101010005 101360
4003100110021001100310101010005 206 4111111110101010005 100620
4005101010100510101010005 400 411111111110101010005 008925
4008101010101010101010100210101010005 1600 4110101010005 001778

customers. It is intuitively plausible and has been verified
numerically that the larger the mean value of the capacity, the
more willing are the customers to join. So, we concentrate
on the effect of the variability of the capacity, which seems
less clear. In Table 2, we provide numerical results for a
model with �=2, hyperexponential distribution function
F 4x5, which is the mixture of two exponential distributions
with rates 1 and 2 and corresponding mixing probabilities
002 and 008, R=2 and K=1. We consider various proba-
bility mass functions 4gk2 k=11210005 for the capacity of
the facility, all with the same mean ḡ=3 and we derive
the corresponding equilibrium joining strategies and the
throughput. The reduction of the variability is seen again
to have a positive impact on the system, i.e., it increases
the throughput of served customers. Note, however, that the
consideration solely of the equilibrium joining strategies of
the customers may be misleading. For example, a look at the
lines 1–5 of Table 2 shows that as the variance increases, the
customers are willing to enter when they see more customers
in the system. But the throughput is decreasing. This happens
because the reduction of the variability induces equilibrium
distributions for the number of customers in the system that
assign more probability mass at lower states.

For an intuitive explanation, consider a tagged arriving
customer who sees a few customers waiting, increasing the
variance of the capacity implies that there is a probability
that he might be served, which provides him an incentive
to join. However, at the same time the probability that
the capacity is small is also increasing. This causes an
undesirable situation with more customers joining the queue
but also a larger proportion not receiving service eventually.
Again, there seems to be a strong need for providing regular
and dependable service when customers are strategic.

9. Discussion—Open Issues
In this paper, we considered the problem of studying cus-
tomer strategic behavior in a transportation station, where a
transportation facility arrives according to a renewal process.
We studied two cases with respect to the level of information
available to arriving customers and we determined the corre-
sponding equilibrium joining strategies. The study of the
customer strategic behavior in observable queueing systems
with general service times is a quite new endeavor. Indeed,
the paper of Kerner (2011) that determines the equilibrium
joining strategies in an observable M/G/1 queue seems
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to be the first one in this direction. In this sense, our first
objective was to show that such a study is also possible
within the framework of a station with renewal generated
visits of a transportation facility.

A key ingredient for the study of customer strategic
behavior in a non-Markovian observable queueing system
is the computation of the expected conditional residual
service times at arrival instants, given the number of waiting
customers. Under this perspective, a second objective of our
paper was the development of a new probabilistic approach
for this computation. This approach may be also applicable
in other cases and complements and clarifies intuitively the
analytic approach of Kerner (2008).

A third objective of the paper was the study of the exis-
tence/uniqueness issue for the equilibrium joining strategies.
In the unobservable case, the situation is clear and the
existence and uniqueness of an equilibrium joining strategy
has been easily justified. On the other hand, in the observable
case, an equilibrium joining strategy exists, but there may
be multiple equilibrium strategies. However, some natural
distributional conditions (e.g., the DMRL property) for the
interrenewal times of the visits of the transportation facility
are shown to assure the uniqueness of an equilibrium joining
strategy. Furthermore, such conditions imply equilibrium
joining strategies of reverse-threshold type and are associated
with ATC behavior.

Other levels of information would be worth investigating.
For example, assuming that a board in the station informs
customers about the time for the next visit of the facility,
two more levels of information arise. The analytical and
numerical comparisons of the equilibrium and socially
optimal strategies under the various levels of information
will provide further insight on the value of information and
the price of anarchy in this class of systems.

Finally, it would also be interesting to determine the
equilibrium and socially optimal strategies in the same
framework, assuming that the customers who decide to join
the system may remain in the station after the next visit of
the transportation facility (if they cannot be accommodated).
Under this assumption, the model is no longer a clearing
system and the computation of the equilibrium joining
strategies seems more demanding.

Supplemental Material
Supplemental material to this paper is available at http://dx.doi.org/
10.1287/opre.2014.1280.
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