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Increased cooperation between supply chain partners and information technology are enabling the availability of advance order
information for contract suppliers. Control mechanisms that take into account this availability are necessary in order to achieve the
potential improvements in performance. We investigate the structure of optimal control policies for a discrete-time make-to-stock
queue with advance order information. Since the optimal policy does not have a simple structure, we then propose a heuristic
policy which is an extension of the base stock system that incorporates advance order information through a release lead time
parameter. In order to quantify the benefits due to advance order information, we investigate the performance of the proposed
mechanism and benchmark it against against the optimal control policy.

1. Introduction

In most manufacturing and distribution environments,
safety stocks constitute the principal measure in order to
cope with the uncertainties in demand as well as in pro
duction and transportation. An alternative measure of
protection against randomness would be to reduce de
mand uncertainty through increased information sharing
between the partners of a supply chain. In practice, some
information on future demands is usually available for
each partner under varying forms ranging from forecasts
to supply contracts. When used effectively, advance de
mand information serves to reduce the uncertainty in
future demands thereby enabling better inventory and
service performance.

In this paper, we consider a particular type of advance
demand information that we also refer to as advance or
der information: early commitments on orders from cus
tomers (which may themselves be downstream partners of
the same supply chain). As outsourcing of production
becomes more prevalent in several industries, suppliers
are facing a new class of problems where external demand
is still uncertain in the long-run but is not completely
random in the short-term because of early commitments
which are specified by contractual agreements.

In order to motivate the issues that will be investigated,
let us consider two firms, A (an Original Equipment
Manufacturer - OEM) and B (a Contract Manufacturer
CM) that are partners of the same supply chain (Firm B is
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a contract supplier to Firm A). The focus of our inves
tigation will be on the production planning problem that
arises for Firm B. In an outsourcing/contracting type
relationship, collaboration is expected to improve supply
chain performance and is strategically desirable. In such a
case, the OEM may be willing to share early order in
formation with the CM in return for better service levels
or price discounts.

There are several ways through which OEMs could
transmit early order information to its contract manu
facturer. In certain industries, the OEM may itself be re
ceiving advance orders from its external customers. This is
prevalent in electronic retailing where end-clients pur
chase items over the internet and reveal advance demand
information by accepting future delivery dates. In the auto
industry, Firm B may be a contract supplier that delivers
components to the final assembly line of the OEM (Firm
A), an auto manufacturer. In this case, Firm A optimizes
and freezes its assembly schedule several days in advance
and can, in principle, share this information with Firm B.

Despite the contracted relationship, the advance in
formation exchange does not always take place smoothly
in practice. The reason seems to be that both parties have
difficulty in evaluating the benefits that the exchange
would bring. In this context, neither party has a strong
willingness to push forward for the sharing of this in
formation. Without an assessment of the expected bene
fits and costs due to advance order information, it is
difficult to achieve cooperation at an operational level.
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Placed within this context, our objective is two-fold:
first, investigating how the supplier (Firm B) should use
advance order information in an effective manner and
second, evaluating the value of this information. A key
question that we would like to answer is the following
one: what arc the potential benefits for Firm B if Firm A
ordered earlier'! In order to respond to these questions,
we first investigate the structure of optimal production
control policies for the supplier and then propose a sim
ple control mechanism that makes usc of advance order
information by integrating a release timing mechanism
with a base stock type inventory control policy. In order
to gain insights into thc performance of the proposed
mechanism and into the potential benefits of advance
order information, we provide a detailed analysis of a
single-stage discrete-time production/inventory system
(i.c., a make-to-stock queue).

An important first step in analyzing how advance de
mand information improves inventory related costs is
understanding how safety stocks relate to controlled
(safety) lead times. Lambrecht et al. (1984) describe how
safety stocks induce safety lead times in multi-stage in
vcntory systems, Yano (1987) considers the problem of
optimizing planned release times. Gong et al. (1994) show
that the problem of planning optimal release times is the
cq uivulcnt of the problem of setting optimal safety stock
levels in serial systems. In a single-period make-to-stock
environment, Milgrom and Roberts (1988) show that
advance demand information is a substitute for safety
stocks in thc single-period newsvendor model.

In the operations management literature, integrating
advance demand information in inventory control
mechanisms has been studied from several different per
spectivcs in recent years. Most of this research focuses on
models with cxogcncous replenishment-type models
which do not model limited production capacity. Hari
hurun and Zipkin (1995) study thc effects of incorporating
advance demand information in inventory control poli
cies. Their results arc highly intuitive: early demand in
formation reduces inventory control costs and this
reduction becomes more important as future uncertainty
is resolved earlier. Axsater and Rosling (1993, 1994),
show that by incorporating a timing mechanism into
classical multi-stage inventory control systems (such as
installation stock and echelon stock control), one can
obtain a new class of control policies that actually dom
inatc the performance of classical systems. Finally, Gal
Icgo and Ozer (2000, 200 I) have recently investigated
optimal replenishment policies for single-echelon and
multi-echelon inventory systems with advance demand
information. The above papers present interesting and
important results on the integration of benefits of ad
vance demand information for uncapacitated systems.
Whilc our analysis of the capacitated system manifests
certain parallels to the above papers, limited production
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capacity and variability playa central role in our analysis
and in the results obtained.

There are fewer papers that discuss or analyze the in
tegration of advance demand information in a manufac
turing setting where limited production capacity cannot
be ignored. A general framework that comprises an ad
vance order information component in this setting is the
multi-stage PAC (Production Authorization Card)
mechanism described in detail by Buzacott and Shan
thikumar (1992, 1993). The PAC framework takes into
account a particular kind of advance demand informa
tion by the inclusion of a mechanism for delaying the
release of orders.

Buzacott and Shanthikurnar (1994) analyze an analyt
ical model of a single-stage make-to-stock queueing sys
tem with advance demand information coming from a
downstream M RP system. Their analysis provides many
interesting insights for a particular release policy. It is,
however, difficult to extend this framework to investigate
whether other, more effective, control policies can be
designed or not. In fact, the model of this paper can be
viewed as the discrete-time version of the model in
Buzacott and Shanthikumar (1994). The discrete-time
framework enables us not only to provide numerical
performance measures for a given mechanism but also to
address optimality issues within a dynamic control
framework. The optimal control policy is partially char
acterized and the optimality gap (when a simple release
policy is used instead of the optimal one) is quantified.

In other related work on make-to-stock queues with
demand forecast evolution, Giillii (1996) studies a (ca
pacitated) production/inventory system evolving in dis
crete time within a model that integrates the forecast
evolution process. He shows that the forecast information
can be used to reduce safety stocks and overall inventory
related costs. In a recent paper, Toktay and Wein (2001)
also study a discrete-time production/inventory system
along with a similar demand forecast process. Their as
ymptotic analysis reveals that advance information in
terms of demands forecasts enables a reduction in safety
stocks that depends both on the average load on the
system and on demand or forecast variability. Our model
is simpler in its representation of demand, production
capacity and the information evolution structure than
these two papers. In particular, we focus exclusively on
the uncertainty in the timing of demands (and neglect the
uncertainty in quantities). This enables us to obtain sev
eral explicit results and to investigate the important issue
of the value of advance order information as a function of
the duration of the information horizon. We also con
firm, through an exact analysis, some of the earlier results
of Giillii (1996) and Toktay and Wein (2001) for the
model considered here.

Finally, a relevant line of research investigates issues
of how lead times should be quoted to customers. For
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instance, Duenyas and Hopp (1995) study the problem of
optimizing the quoted due-dates to clients for a manu
facturing firm. These issues are not considered in our
framework since due-dates are externally set by contracts
(or by the planning system).

The principal contribution of the paper is the compari
son of a simple policy that integrates advance order in
formation with the overall optimal policy that uses detailed
advance order information. We show, numerically, that
the simple policy can be surprisingly effective and conjec
ture that it is optimal in certain cases that can be identified.
The analysis reveals the importance of setting planned re
lease times and underlines the strong interaction between
planned release times and order information availability.

The paper is structured as follows: Section 2 describes
the problem, introduces an analytical model and presents
results on the structure of the optimal policy with ad
vance order information. Section 3 presents the proposed
control policy followed by its analysis and optimization.
Section 4 reports the numerical results and the observa
tions. Our conclusions are presented in Section 5.

2. The model and its analysis

In this section, we describe a model of a contract supplier
that satisfies the demands of an equipment manufacturer
that places orders in advance. The general modeling
framework is described in Section 2.1 and is further
specified in Section 2.2 which includes the main results on
the structure of optimal policies. Section 2.3 focuses on a
benchmark case of no advance demand information.

2.1. The modeling framework

We consider a single-stage production system, consisting
of a manufacturing stage and a finished goods inventory.
The system operates in a make-to-stock setting and the
output of the manufacturing stage is placed in the finished
goods inventory. In particular, our focus is on a contracted
component supplier to an equipment manufacturer which
may provide advance order information. Since informa
tion about future demands is available, the time at which a
demand is claimed (due-date of the order) may be later
than the arrival time of the order and production may be
initiated by firm orders rather than in anticipation of ex
pected future demands. More precisely, we assume that the
supplier receives all orders exactly H periods in advance of
their due-date. Under this assumption, at time t, the sup
plier has exact information on the timing of all demands to
satisfy between the time window (r, I+- H]. We refer to H
as the horizon of visibility since the supplier has perfect
visibility of demand within this time window.

In order to simplify the analysis, we assume that setup
costs and setup times are negligible so that production lot

srziug issues can be avoided. We assume unit order ar
rivals and assume that orders that are not fulfilled at their
required due-dates are fully backlogged. The production
control problem is to find a part release policy (i.e., to
decide when to release parts to the manufacturing stage)
in order to minimize the sum of the (average) holding and
penalty costs. Further analysis requires the specification
of a model for the order arrival and the production
processes. This will be done in the next section.

2.2. A discrete-time make-to-stock queue with advance
order information

Consider the following single stage make-to-stock system:
time is divided into equal length intervals and X(t)
(t = 1,2, ... ) denotes the finished inventory level (where
negative values of X(t) represent backlogs) at the begin
ning of interval t. In each time interval, the probability of
an order arrival is If (note that orders arrive in single
units) and the probability of a production completion is p
(whenever the facility is allowed to produce).

Since order inter-arrival times and processing times are
geometrically distributed, the basic model is a discrete
time make-to-stock queue with geometric processing
times. Even though this model is too simple to represent
classical periodic review inventory dynamics (where de
mand and production processes can be more general), it
can be viewed as the approximation of a (Markovian)
continuous-time make-to-stock queue. In this regard, it
has an important feature in that, it is well-suited to an
optimal control type formulation (unlike the continuous
time make-to-stoek queue) when advance order informa
tion is integrated. Moreover, just like the MIMI I queue in
continuous time, the GeolGeo/1 queue captures the most
significant effects that arise due to congestion (see Pujolle
et al. (1986) for a discussion of the similarities). We exploit
these features in the following development.

Based on our previous assumption, advance order in
formation is in the form of firm orders placed exactly H
periods in advance. The consequence of this assumption
is that at time t, all demands that have to be satisfied in
the periods t +- I, t +- 2, ... ,1 +- H are known with cer
tainty. This information will be summarized by the vector
0(1) = (D1(t),D2(1), ... ,DH(I)) where an element D,,(I) of
the vector gives the number of demands that will claim
finished items at the end of the period I+- h - I. The
system state will then be (X(t), 0(1)). We denote byv a
particular realization of the random variable X(t) and by
d, a particular realization of the random vector 0(1).

The assumption of H periods in advance order infor
mation combined with geometrically distributed order
inter-arrival times significantly simplifies the structure
of the vector /[)(I). First, under these assumptions, all
components of the vector 0(1) are either zero or one.
Second, the demand inter-arrival time process which is a
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D(I + I) = (D2(1), D3(1), ... , DI/(t),y(t)).

Proposition 2. If it is optimal to produce in state (x, d),
then it is optimal to produce at state (x, d'] where d ~ dl.
Consequently, if d ~ dl then the optimal threshold levels are
such that Sd ~ Sd"

The objective is then to find the optimal production
control policy (a proxy for the optimal release policy) in
order to minimize (I). To facilitate the ensuing develop
ment, let us denote by Ck a vector with one in the kth
entry and zeroes elsewhere, and define the "shifted"
vector d+ = (d2,d3, ... ,dH- 1, 0). The functional equation
for this problem is:

V(x,d) = c(x) + amin{pqV(x - d, + I,d+ +CIl)

+p(l-q)V(x-dl + l,d+)+(I-p)

xqV(x-d1,d++CH)+(I-p)(l-q)

x V(x-dl,d+),qV(x-dl,d++CH)

+(I-q)V(x-dl,d+)}

where V( ) is the value function of the dynamic program.
We will now show that, the optimal production policy

is of threshold type for each demand vector d.

Proposition I. For each demand vector, d, V(x, d) is con
vex in x and the optimal control policy is of threshold type
with a threshold level Sd corresponding to the vector d.

Proof. See Appendix A I.

Proposition I establishes that optimal policies have to
be of the threshold type in inventory levels for each ad
vance information vector. It is also reasonable that these
threshold levels exhibit certain monotonicity properties as
a function of the advance demand information vector. In
particular, more demands in the foreseeable future should
intuitively imply increased production in advance
through higher optimal threshold levels. In order to
strengthen Proposition I in this direction, let us define a
partial order of the demand vectors. We will say that
d~dl if di~d:, Vi, i=I,2, ... ,H or if d=dl+

d~ej - d~Ck (2 ~ j ~ k ~ H). This order is slightly weaker
than a lexicographic order but it has the property that it is
preserved under the shift operation: if d ~ dl then
d+ ~ (dl)+.

Proof. See Appendix A2.

Propositions I and 2 shed light onto the structure of
the optimal policy. The optimal policy has a threshold
type structure but the optimal threshold levels fluctuate as
a function of actual advance demand information. More
(and closer) demands in the future imply higher threshold
levels in correspondence with the intuition that future
peaks may be absorbed with building inventories in ad
vance. Indeed, the optimal policy seems to confirm most
basic intuitive properties but the exact structure is diffi-

( I )

y(l) = {~ with probability q,
otherwise.

The evolution of the advance demand information vector
Ihen becomes:

Note thaI this is a particular case of advance demand
information evolution. More general advance demand
information evolution structures can be represented by
using a vector summarizing future demand or forecast
information over the planning horizon (see Giillii (1996),
Gallego and Ozcr (2001) and Toktay and Wein (2001) for
more general representations). The advance demand in
formation vector can also be viewed as a vector repre
senting the state of the demand process as in Song and
Zipkin (1993).

In order to describe the inventory level dynamics of the
system, let us describe the sequence of events that take
place within a period: the controller observes the inven
lory level and the information vector (X(t), D(t)) at the
beginning of the period and decides whether to produce
or not. If the "produce" decision is taken, a production
completion takes place with probability p at the end of
the period. As for the demands, exactly D1(t) demands
have to be fulfilled at the end of the period. At the same
time, a new demand order arrives to the system with
probability q and

DI/ (I + I) = { ~

translation by H units of the order process and is itself
geometrically distributed. The order queue in front of the
manufacturing facility is then precisely the Geo/Geo/I
queue in discrete-time and can be viewed as the limiting
version of the MIM/I queue as the unit time interval
/).1 -+ 0 and the transition probabilities p -+ (I - e-/'6')
and q -+ (I - e-i.61) .

Let y(l) be a Bernoulli random variable corresponding
10 an order arrival at time t where

with probability q,
otherwise.

Let aCt) denote the production decision where aCt) = 1(0)
corresponds to production (non-production) at time t.
II/(t) is Bernoulli random variable corresponding to a
production completion (with probability pl. The evolu
tion of the stock level, X(t), can be expressed by:

X(I + I) = X(t) - D1(I) + a(t)m(t).

For optimization purposes, let us consider the classieal
formulation, with a linear holding cost, h, and a linear
backorder cost, b. We would then like to obtain the
control policy that minimizes the infinite horizon dis
counted costs (with discount factor a, 0 ~ a < I):

11~~ E [~aIC(X(I)' D(t»],
where c(x, d) = hx when x ~ 0 and c(x, d) = <bx when
x < O.
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cult to express in a few parameters. In particular, the
optimal threshold level depends not only on the number
of demands within the visible horizon but also on the
timing of future demands.

2.3. The case without advance order information

This section focuses on a special case of the model where
there is no advance order information (H = 0). This case
constitutes a benchmark in order to quantify the gains
that can be obtained through advance order information.

Since H = 0, orders correspond to demands to be ful
filled immediately. Hence, y(t) now represents the ran
dom variable representing the demand arrival (with
probability q). The system then evolves according to the
equation:

X(I + I) = X(I) + a(t)m(l) - Y(I). (2)

By Proposition I, a base stock (i.e., single threshold)
policy is optimal. The facility should produce when the
inventory level is below the base stock level S and should
stop otherwise.

The only step that remains is the computation of the
optimal base stock level. This computation can be done
using standard methods and is presented in Appendix B.
It turns out that, the optimal base stock level is:

S* = lIn [(II ~ b) (I : fil] / In[mJ.

3. A base stock policy with a release lead time parameter

In Section 2 some results on the structure of the optimal
control policy under advance order information were
presented. In an outsourcing context, this structure sheds
certain light onto how the contract manufacturer (Firm
B) should coordinate its production decisions when ad
vance order information is available. There are, however,
several difficulties in following the exact optimal policy.
For instance, production decisions depend on very de
tailed order information comprising not only the number
of future orders but also their precise timings. It is of
interest to investigate whether a simpler control policy
can be sufficiently effective.

In this section, we describe and analyze a dynamic
control policy which is an extension of the well-known
base stock control policy that integrates demand lead time
information in a simple and natural way. Section 3.1
introduces the policy and Section 3.2 presents the analysis.

3.1. Description of the policy

For a single-stage system, a base stock policy is com
pletely described by a single parameter S (which corre
sponds to the produce-up-to-level), In order to

incorporate advance demand information in this policy,
we associate with the production stage an additional
parameter L. The control parameter L is called the release
lead lime since it will be used to regulate the timing of
material release into the manufacturing stage. We start
with a general description of the policy before describing
its implications lor the fixed demand lead time model of
Section 2. Consider the instant when the nth demand d;
arrives to the system. Under a standard base stock policy,
this arrival would trigger the release of a part to the
manufacturing stage at its time of arrival I". The objective
in the case where advance demand information is avail
able is then to drive the release mechanism of parts using
demand lead time information rather than arrival times
(or due-dates) of demands.

In order to understand how the release lead time pa
rameter L regulates the release timing, let us assume first
that a demand arrives with a sufficient demand lead time,
i.e., I" 2': L. Releasing a part too early in the manufac
turing stage leads to excess finished goods inventory (we
are assuming that early deliveries to customers are not
authorized) and is costly. It is then logical 10 delay this
release by I" - L units of time (so that the part is released
exactly L units of time in advance). Alternatively, the
demand lead time of an arrival may not be sufficient with
respect to the pa.rameter L (i.e., I" < L). In this case, the
part should be released immediately into the manufac
turing stage without a further delay. Within this logic, the
timing of part releases into manufacturing is entirely
driven by the respective values of L and I". The requested
release time of a part to the stage is, hence, I" +
max(O, I" - L). Note that, except in special cases, demand
11 is satisfied by the existing (or in-process) inventories and
not by the corresponding release. In general, the para
meter L regulates the inventory replenishment process
but some randomness remains and safety stocks are still
needed. Note that the release lead time L clearly has to be
related to the production lead time, W. The exact rela
tionship between Land W, however, is not immediately
obvious since W is a random variable that is endogenous
to the system.

Figure I depicts the base stock mechanism with a lead
time parameter. In the figure, M F I is the manufacturing
stage, and PI and P2 are the buffers corresponding re
spectively to raw materials (where infinite supply is as
sumed) and finished items. D I and D2 correspond to
demands that pull items respectively from PI and P2. The
round nodes that regulate the input into DI and D2 are
delay nodes through which demand information is
transmitted. Nore also the synchronization of buffers PI
with D I and P2 with D2. A part is delivered to a customer
if and only if there is a demand in D2 and a finished part
available in P2 . Similarly, a raw part is released into the
manufacturing stage if and only if there is a demand in D,
and a raw part available in PI (note that this is a special
case; since unlimited raw part supply is assumed, a raw
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Parts to customers
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orders

Fig. I. The single stage busc stock system with a release lead time parameter.

a(/) = {~

part is always released as soon as there is an arrival to
/)1 ).

Initially. there arc S finished items in P2, and both 0 1

and /)2 arc empty (PI is assumed to have an infinite
supply of raw material). Consider the arrival of the nth
demand to the system with a demand lead time of I". This
information is transmitted to buffer O2 after a delay of I".
The delay node before 02 hence ensures that a finished
part will be claimed exactly at the due-date of the arrival.
The delay node before 0 1 drives the release of parts. This
node ensures that part release is regulated through the
parameter L. A part will be released immediately if I" :::::: L
and will bc delayed by thc required amount if I" > L.

In thc cusc where there is no advance demand infor
mation (i.e., I" = 0, VII), the delay nodes of Fig. I be
come inactive and a new part is released at the instant of
each demand arrival. The two-parameter policy thus re
duces to the classical base stock policy with parameter S.

The focus of Section 2 was in the special case where all
demand lead times arc constant (i.e., I" = H, V11). In this
case, thc above policy reduces to the M RP interpretation
of thc PAC system as described in detail by Buzacott and
Shanthikumar (1993). In the PAC system arriving de
mand signals are delayed by an amount of H (H ~ 0).
Recall that in our system, demand signals are delayed by
an amount of max{H - L,O}. Apart from its generality
(under more general advance demand information
structures), the description above emphasizes the dis
tinction between the tWO parameters Land H. L is an
internally set parameter whereas H is the visibility avail
able and H acts a constraint on L.

Policies of similar nature have also been proposed by
Hurihuran and Zipkin (1995) for uncapacitated supply
systems. In fact, Hariharan and Zipkin show that for
uncapacitatcd supply systems these simple policies can
sometimes be optimal. Our results in Section 2 indicate
that, with endogenous supply lead times, the optimal
policies are more complicated.

3.2. Analysis of the base stock policy with a release lead
time parameter

The two-parameter-per-stage policy introduced in Section
3.1 is conceptually fairly simple. It would be interesting to
verify whether this simple way of integrating advance
demand information in the coordination of the system
leads to significant cost savings. This section focuses on
the optimization and performance evaluation of the two
parameter policy for the Geometric/Geometric/l make
to-stock queue.

Let us denote by 0(/), the orders that arrive in period I
(which is, in general, different than d(/), the demands that
have their due-dates in period I). Once again, our focus is
on the case where the demand lead time is a constant H
(I" = H, VII). Letting X(/) the inventory position at the
beginning of period I, the dynamics of the system can be
described by:

X(t + I) = X(t) + a(/)m(/) - 0(1 - H),

where a(/) is the indicator variable and

if production takes place at time t,
otherwise.

Note however that a(/) is indirectly controlled by the part
release policy and 0(/) = I if there are items waiting to be
processed in the manufacturing queue.

The objective is then to select the values of the pa
rameters Land S (where S, L ~ 0) in order to optimize
the inventory-related cost of the system. This will be done
in two steps. First, let us assume that the horizon of
visibility, H, is infinite. This implies that all orders are
known in advance with certainty. Under this assumption,
let us denote the corresponding release lead time pa
rameter by Loo where 0 :::::: Loo :::::: 00 (note that under the
assumption of infinite visibility, there is no restriction on
the planned release time). In the first step, we focus on the
optimization of the pair (S, Loo) . It will be seen later that,
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once the optimal value of Loo is obtained, the passage
to any finite horizon of visibility - a more realistic
assumption - is not difficult.

Let us denote by R(t) and J(I) respectively, the number
of items produced (i.e., delivered to buffer P2 of Fig. I) up
to time I, and the number of demands that have due-dates
(number of demands transmitted to buffer D2 of Fig. I)
before I. We can then define the underlying (unrestricted)
queueing-type process N*(I) = R(I) - J(t). Note that
N*(I) can also be expressed in terms of the inventory
process X(I) (N'(I) = S - X(I)). It should be remarked
that, due to overshoots, X(t) can exceed the base stock
level S and the process N*(I) can take negative values.

The ensuing analysis then follows along the lines of
Buzacotl and Shanthikumar (1994) for a continuous-time
make-to-stock queue. Let us denote by N(t) = S - X(t)
the difference between cumulative production and de
mand for a system without advance information. The
stationary distribution of N(I) is presented in Appendix B.

Note then that:

N*(t) = N(I - Loo) - J(I - Loo, I),

where J(t - Loo , I) denotes the number of departures from
the queue during the interval (I - Loo,I].

We can then write:
00

P{N*(I) = n} = LP{J(t- Loo,l) = k -nIN(1 - Loo ) = k}
k=n

x P{N(I - Loo) = k},

when n 2: I.
Because processing times are geometrically distributed:

and

P{N*(t) = n} = ~ (/.:'n)/-n(1- doo-(k-n)

X P{N(I - Loo ) = k}.

Denoting by n*(n) and n(n) the respective stationary
distributions of N*(t), and N(t), we get:

n*(n) = ~ (/.:'n)/-n(1- p)Loo-(k-n)n(k) for n 2: 1.

Replacing the stationary probability n(k) in right-hand
side of the above equation using the expression in (A2) in
Appendix B, we obtain after some manipulation:

n*(n) = C=:)L

oo
n(n) for n :~ I.

Let us denote the multiplicative factor on the right
hand side of the above expression by i'o (y == (I - p)1

(I - q)). In other words, as in Buzacott and Shanthikumar
(1994), the advance release mechanism causes the sta
tionary distribution of the underlying queue to be re
scaled by the factor loo (when n 2: I).

For given values of Sand Loo , the expected backorder
level E[8] and the expected inventory level E[I] can be
obtained as follows:

f1S+1
E[8] = KyL

oo I _ (I' (3)

and

Ell] 0= S + E[8] + qLoo _ q(1 - q). (4)
p-q

Let us denote by C(S, Loo) the expected optimal cost for
given values of Sand Loo. Using (3) and (4), C(S, Loo ) can
be expressed as:

(
q(1 - q)) L. (JS+

1
C(S, Loo) = h S + qLoo - + (h + b)KY N ------p'

p-q I-p

It turns out then that for a fixed Loo, the optimal base
stock level is given by:

S*(Loo) = l[ln(_h_(I-{J))/lnfJ+ LoolnY]J, (5)
h + b K In (J

provided that S*(Loo) 2: O. The second term of (5) is
negative and characterizes the reduction of the base stock
level as a function of the release lead time, Loo . It is in
teresting to note that this reduction is approximately
linear (if the integrality correction is ignored). In other
words, base stock levels can be reduced at a linear rate as
a function of Lrx, as long as they stay non-negative.

In addition, minimization of the cost function
C(S*(Loo),Loo) as a function of Loo yields that the optimal
value of Loo is given by:

Equation (6) expresses, in a concise manner, the opti
mal release lead time. Since the corresponding value of S*
is zero, if the horizon of visibility were infinite, it would
be optimal to operate the system in a make-to-order
mode releasing parts exactly L'rx, periods in advance of
their due-date. Another important remark is that visibil
ity beyond L'rx, is unnecessary since releasing parts earlier
does not improve performance. L'rx, hence defines the de
sired horizon of visibility, H*.

Note that L'rx, (and hence H*) is increasing in the average
load, qfp, and in the arrival/processing time variability for
a fixed value of 'lIp. In other words, in order to optimize
performance, more visibility is necessary as the average
load and the variability increase. A second interesting
consequence of (6) is that the optimal release lead time
(and the desired horizon of visibility) cannot be zero. In
other words, if advance order information is available, it is
always optimal to use it for early release of parts.
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Finally, let us address the relationship between L':x, and
W, the random variable representing the actual produc
tion lead time. If we let FIV ( ) denote the cumulative
distribution function of the production lead time, then L':x,
is such that FIV(L':x,) = bl(b + 11). In other words, the
desired horizon of visibility depends on the tail distribu
tion of the production lead time (as well as the holding/
backorder costs).

Up to this point, we have assumed an infinite horizon of
visibility. In order to extend the analysis to any finite
horizon H, it remains to relate the unconstrained value of
the release lead time, Loo to its constrained counterpart L.
Note that, when visibility is unconstrained, the choice of
Loo causes the release of a part exactly Loo periods in ad
vance of its due-date. When the visibility H is greater than
Loo' the same release policy can be implemented for the
constrained problem by setting L = Loo. On the other
hand, when H is less than Loo, the unconstrained release
policy has to be modified taking into account the visibility
constraint. Nevertheless, the optimal unconstrained so
lution can easily be transformed into an optimal solution
for the constrained problem as the next proposition states:

Proposition 3, For a fiuitc horizon of visibility H. the op
timal values of the control parameters (S, L) are given by:

I. S = 0 and L = L':x, (i/ H 2: L':x,);
2. S = S'(H) and L = L:x, (i/H < L:x,).

Proof. The proof follows by checking the properties of
the expected cost function (5). In Part I, the visibility His
greater than the desired release lead time L':x,. It can be
verified that the cost function C(S'(L), L) is increasing in
L when L > L':x, and is decreasing in L when L :S L:x,. It is,
hence, optimal to set the parameter as L = L':x,. The cor
responding optimal value of S is given by: S =
S' (L':x,) = O.

In part 2, the visibility H is less than the desired release
time. However, since C(S'(L), L) is decreasing in L when
L :S L'oo, the optimal choice of the release lead time pa
rameter is any L that is greater than or equal to H so that
the release takes place exactly H periods in advance. Even
though the optimal value of the release lead time pa
rameter is not unique, in the statement of the proof, we
select L = L:x, to underline the fact that the optimal L
is determined by the desired release lead time. The cor
responding optimal S parameter is then given by
S = S'(H). •

Remark. An alternative statement of Proposition 3
would be the following. For a finite horizon of visibility
H, the optimal values of the control parameters (S, L) arc
given by L = minCH, L:x,) and S = S'(L).

Proposition 3 implies that there arc two different re
gimes for the determination of the optimal decisions: If
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the visibility is not sufficient (H < L':x,) it is optimal not to
delay the release and to compensate the remaining vari
ability by holding a positive base stock level. Alterna
tively, if the visibility is sufficient (H 2: L':x,), the optimal
base stock level is zero (the system operates in a make-to
order fashion) and delaying the release of parts reduces
unnecessary holding costs. In this case, the parameter L
should be used to regulate the release such that the release
takes place exactly L'co periods in advance.

In conclusion, the desired release lead time L:x, sub
sumes all the information that is required in order to set
the optimal release parameter L. Further demand visi
bility than L'co does not have any additional value since it
will not be used. With a different interpretation, L:x, de
termines the optimal planning (or forecast) horizon for
the e1ass of (S, L) policies. When these policies are used,
information beyond a horizon of L':x, is not used for
planning purposes.

4. Numerical examples: a comparison of the optimal
policy with the proposed policy

The purpose of the numerical examples that follow is
two-fold. First, we would like to quantify the cost re
duction due to the use of advance order information.
Second, we would like to evaluate the performance of
(S, L) policies with respect to the optimal policy.

In the discrete-time make-to-stock queue that we con
sider here, there are two inherent factors affecting system
performance. The first (and stronger) factor is the system
load summarized by the ratio qIp and the second one is
the overall variability summarized by the value of q (or p)
for a fixed load «t». In order to capture both effects we
vary qIp for two different values of q corresponding to a
system with highly regular production times (p = 0.9) and
moderately variable production times (p = 0.5).

As for the cost parameters, we take 11 = I, and b = 10
and 100. Finally, we vary the horizon of visibility, H,
between 0 and 9. For each of these values, we computed
the average cost of the' optimal policy using dynamic
programming and the cost of the optimal (S, L) policy
using the results of the previous section. Tables 1-4 report
these results.

An overview of the Tables 1-4 leads to two important
observations. First, integrating advance order informa
tion decreases costs in a significant way in general. Sec
ond, (S, L) policies are surprisingly effective. We will
focus on each of the two issues and their implications in
more detai I.

4.1. Benefits of advance ordei information and the
performance of the (5, L) policy

Figure 2 compares the relative percentage cost reduction
due to using the optimal policy «(C(no. info)- C(opt»1
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Table I. Cost of the optimal policy and the percentage suboptimality of the optimal (S, L) policy (reported in parentheses) if
different than the optimal policy, for II = I, p = 0.5, b = 10

Visibility (H)

sln 0 2 3 4 5 6 7 8 9 L'00

0.1 0.956 0556 0.316 0.214 0.184 o. \84 0.181 (1.66) O. I79 (2.79) 0.179 (2.79) 0.179 (2.79) 4
0.2 1.05 1.028 0.739 0.499 0.411 0.406 0.396 (2.53) 0.387 (4.91) 0.385 (5.45) 0.384 (5.73) 5
0.3 1.343 1.202 1.180 0.901 0.716 0.668 0.668 0.644 (3.73) 0.635 (5.20) 0.631 (5.86) 5
0.4 1.833 1.583 1.440 1.425 1.162 1.026 1.016 0.985 (3.15) 0.954 (6.50) 0.949 (7.06) 6
0.5 2.167 2.11\ 1.972 1.815 1.793 1.586 1.474 1.474 1.41 I (4.46) 1.380 (6.8 I) 6
0.6 2.859 2.765 2.632 2.623 2.439 2.370 2.284 2.146 2.133 2.062 (3.44) 8
0.7 3.886 3.837 3.725 3.719 3.577 3.536 3.445 3.365 3.329 3.207 10
0.8 5.918 5.897 5.814 5.812 5.715 5.696 5.620 5.583 5.529 5.474 14
0.9 I 1.950 11.944 11.900 11.899 I 1.850 11.845 11.800 11.791 \1.751 11.737 26

Table 2. Cost of the optimal policy and the percentage suboptimality of the optimal (S, L) policy (reported in parentheses) if
different than the optimal policy, for II = I, p = 0.9, b = 10

Visibility (H)
qlp 0 I 2 3 4 5 6 7 8 9 L'

00

0.1 0.911 0.111 0.0923 0.0923 0.0923 0.0923 0.0923 0.0923 0.0923 0.0923 2
0.2 0.850 0.250 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 2
0.3 0.829 0.429 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 2
0.4 0.867 0.667 0.408 0.408 0.408 0.408 0.408 0.406 (0.4) 0.406 (0.4) 0.406 (0.4) 2
0.5 1.000 1.000 0.550 0.550 0.550 0.550 0.544 (1.10) 0.540 (1.85) 0.540 (1.85) 0.540 (1.85) 2
0.6 1.300 1.065 0.749 0.749 0.749 0.742 (0.94) 0.716 (4.61) 0.71:, (5.05) 0.713 (5.05) 0.711 (5.34) 2
0.7 1.477 1.252 1.090 1.090 1.060 (2.83) 0.993 (9.77) 0.972 (12.14) 0.972 (12.14) 0.969 (12.49) 0.964 (13.07) 2
0.8 1.886 1.857 1.769 1.601 1.52 I (5.26) 1.495 (7.09) 1.495 (7.09) 1.48 I (8. I 0) 1.448 (10.57) 1.4\7 (12.99) 3
0.9 3.237 3.151 3.079 3.019 2.973 2.948 (0.84) 2.944 (0.99) 2.907 (2.27) 2.834 (4.90) 2.78 I (6.90) 4

Table 3. Cost of the optimal policy and the percentage suboptimulity of the optimal (S, L) policy (reported in parentheses) if
different than the optimal policy, for 11 = I, P = 0.5, b = 100

Visibility (H)

qlJl 0 2 3 4 5 6 7 8 9 L'
00

0.1 1.456 1.240 1.150 1.126 0.913 0.575 0.421 0.364 0.357 0.356 (0.28) 8
0.2 2.056 2.031 1.754 1.508 1.416 1.409 1.043 0.846 0.781 0.781 8
0.3 2.781 2.460 2.332 2.319 2.013 1.843 1.805 1.582 1.363 1.296 9
0.4 3.308 3.193 3.182 2.889 2.780 2.751 2.469 2.368 2.321 2.051 10
0.5 4.185 4.124 3.997 3.831 3.804 3.608 3.489 3.478 3.235 3.157 12
0.6 5.483 5.345 5.332 5.154 5.081 5.002 4859 4.842 4.670 4.593 14
0.7 7.494 7.380 7.373 7.233 7.191 7.101 7.020 6.986 6.862 6.848 18
0.8 11.402 11.336 11.320 11.233 11.228 11.134 I I. 112 11.040 11.000 10.950 26
0.9 22.999 22.998 22.949 22.944 22.899 22.890 22.850 22.836 22.802 22.783 49

C(no. info) x 100) and using the optimal (5,L) policy
«C(no. info) - C(5*,L*))jC(no. info) x 1(0) for differ
ent values of the system load when advance order infor
mation is abundant (H = 9). The figure shows that the
relative cost reduction can be very significant when the
load is low but diminishes rapidly as the load increases.
The figure also shows that (5, L) policies attain almost
all of the potential cost reduction due to advance or
der information. Both of these observations are valid

throughout Tables 1-4. The cost reduction appears in a
sharper manner when the production times are less vari
able or when the backorder costs are higher but the
qualitative behavior is the same. Similarly, even though
the relative suboptimality of (5, L) policies increases for
less variable production times or increased backorder
costs, a significant part of the cost reduction with respect
to the no-information base case can be obtained through
these policies.
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Table 4. Cost of the optimal policy and the percentage suboptimality of the optimal (S, L) policy (reported in parentheses) if
different than the optimal policy, for II = I, P = 0.9, b = 100

Visibility (H)
q/p () 2 3 4 5 6 7 8 9 L'00

0.1 1.0 II 1.001 0.202 0.182 0.182 0.182 0.182 0.182 0.182 0.182 3
0.2 1.300 1.036 0.463 0.373 0.373 0.373 0.373 0.372 0.372 (0.27) 0.372 (0.27) 3
0.3 1.741 1.135 0.820 0.578 0.578 0.578 0.576 (0.35) 0.573 (0.87) 0.573 (0.87) 0.573 (0.87) 3
0.4 1.742 1.354 1.345 0.818 0.818 0.818 0.800 (2.25) 0.796 (2.76) 0.796 (2.76) 0.795 (2.89) 3
0.5 1.909 1.818 1.517 1.134 1.134 1.120 (1.25) 1.063 (6.68) 1.061 (6.68) 1.058 (7.18) 1.056 (7.18) 3
0.6 2.465 2.108 1.820 1.646 1.626 1.462 (11.22) 1.415 (14.91) 1.415 (14.91) 1.406 (15.65) 1.386 (17.32) 4
0.7 2.727 2.610 2.602 2.352 2.122 2.037 (4.17) 2.037 (4.17) 1.988 (6.74) 1.905 (11.391) 1.871 (13.41) 4
0.8 3.634 3.542 3.498 3.461 3.286 3.137 3.039 (3.22) 3.001 (4.53) 2.994 (4.78) 2.905 (7.99) 5
0.9 6.214 6.127 6.051 5.988 5.939 5.905 5.889 5.875 5.787 5.710 (1.35) 8
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Fig. 2. Percentage cost reduction due to advance order information through the optimal policy and the (S,L) policy (p = 0.5, II =
I,b = 10).

We will hence focus on this class, in order to charac
terize the potential cost reductions due to advance order
information. Let C(S'(O), 0) denote the optimal cost per
unit time of a system that does not use advance order
information and C(O, L'oo) be the optimal cost of a system
that has sufficient advance demand information so that it
can set its lead time parameter using the desired release
lead time L'oo (as in Proposition 3). One possible measure
of the benefits of using advance demand information is
then: [C(S'(O), 0) - C(O, L'oo)J!C(S' (0),0), the relative
cost improvement obtained when advance demand in-

formation is incorporated through the desired release
lead time L'oo.

4.2. The effect of the system load

Figure 3 displays the relative improvement in cost (in
terms of the measure described above) as a function of
the system load q/ p for three different values of p (with
h = I and b = 10). Once again, the significant impact of
the system load is evident from the figure. The second
order effect of variability is also distinguishable. As the
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system becomes less variable (p increases for a given q/p),
the relative cost improvement increases.

There is also a more subtle effect of the system load
that we can observe from Figs. 2 and 3. We remark that,
in both figures, the relative benefit of advance order in
formation disappears as the system load increases. In
addition, Tables 1-4 indicate that at the other extreme
(light system loads), even though the relative benefits are
significant, the absolute benefits are small. In fact, when
the trade-off between absolute versus relative gains is
considered, advance order information is especially de
sirable for systems that are not in extreme load situations
(say in the regime 0.4 :::: q/p :::: 0.9). Figure 2 shows an
additional observation in the same general direction. In
situations of extreme load (light or heavy), the average
performance is not very sensitive to the precise control
policy and the optimal (S, L) policy is almost as good as
the overall optimal policy. Alternatively, in medium load,
the best (S, L) policy can be somewhat inferior to the
overall optimal policy. It seems that in this medium-load
range, detailed demand state information has more rela
tive value.

4.3. The rate of cost savings as a function of visibility

A final observation from Tables 1-4 is that the marginal
cost reductions are diminishing as the horizon of visibility
increases. In fact, we can observe that the marginal cost
reduction approaches zero as expected. It seems likely

that there are finite forecast horizons beyond which ad
vance information does not provide any additional cost
reduction. Although our numerical results cannot provide
an answer to this important issue, we can investigate the
existence of approximate forecast horizons beyond which
advance order information brings little additional value.
Tables 1-4 follow a similar pattern for the optimal costs
as a function of visibility. After an initial steep decrease,
the optimal cost function becomes rather flat after a
threshold visibility level. In fact, it can be observed that
there are two distinct regimes for the cost reduction. In
the first regime (for example visibility between zero and
four for the first four rows in Table I), costs decrease
rapidly as advance information becomes available earlier
until reaching a threshold horizon. In the second regime
(visibility between five and nine for the first four rows in
Table I), further visibility is of little additional value.

4.4. Characterizing approximate planning horizons

An analytical characterization of exact or approximate
forecast horizons is difficult when optimal policies are
considered. On the other hand, from the analysis in the
previous section, we have seen that, when (S, L) policies
are considered, the desired release lead time L~ deter
mines the optimal planning horizon. In addition, Tables
1-4 indicate that (S, L) policies coincide frequently with
the optimal policies. More precisely, it seems that (S, L)
policies are optimal until a threshold horizon of visibility.
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In fact, a more careful investigation of Tables 1--4 reveals
that (5, L) policies are optimal whenever the horizon of
visibility is shorter than or equal to L~. It is highly likely
that this observation reflects a general property that is not
restricted to the examples considered above. The conjec
ture below states this property.

Conjecture I. (I'H ::; L~, the overall optimal policy is an
(5, L) policy whose parameters are: 5 = 5*(H) and L =
L~.

5. Conclusion

Advances in information technology are significantly fa
cilitating data transmission between the partners of a
supply chain. In parallel, long-term contracting relation
ships between various partners generates a relatively co
operative environment. This underlines two fundamental
issues: how should the additional information be used in
order to improve performance and what is the potential
benefit that can be expected. We have investigated these
issues in the context of advance order information. In
regard to the the first issue, we presented a production
control policy that incorporates advance order informa
tion within a base stock mechanism. In regards to the
second issue, we analyzed the potential benefits due to
integration of advance order information in a single-stage
model. The analysis provides qualitative insights into the
benefits that contract suppliers can expect through
downstream order information. Our results indicate that
advance order information can be expected to improve
performance significantly if production capacity is suffi
cient. In general, it is likely that a joint investment in
information technology and in additional capacity is
necessary to reap the full benefits of increased informa
tion sharing.

The control mechanism proposed is simple and natural
which constitutes a significant advantage for its imple
mentation. Interestingly, even though it is a genuine dy
namic control rule, the mechanism follows an M RP-type
logic that combines safety stocks and planned release
times. It should be emphasized however that, in the dy
namic vision, planned lead release times are parameters
that have to be optimized unlike in most MRP imple
mentations.

The analysis of the model also yields other interesting
results that should be investigated under more general
conditions. For instance, the simple M RP-type logic is
surprisingly effective in a single-stage setting if the pa
rameters are chosen optimally. Indeed, the parameter
seleetion issue is critical and non-trivial in general. The
analysis reveals properties that are of interest in this sense
as well. In particular, there are critical planning horizons
(which may be used to determine release time parameters)
that can be obtained as functions of production lead
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times. Longer and more variable production lead times
necessitate longer planning horizons and the benefits that
can be expected are strongly related to the effective visi
bility and the critical planning horizon.

In order to obtain explicit analytical and quantitative
results, we have employed a simple model. It is likely,
however, that most qualitative results obtained in this
paper continue to hold under more general assumptions.
A recent evidence in this direction is the work of Toktay
and Wein (2001) which considers a more general frame
work encompassing forecast evolutions but reaches sim
ilar conclusions on the benefits of advance demand
information through heavy traffic approximations.

There seem to be several interesting directions of future
research. First of all, the findings of the single-stage
model should be investigated under more general condi
tions. Second, the multi-stage case poses several chal
lenges. For instance, it is known that base stock policies
are not optimal for capacitated systems and that work-in
process inventories may have to be bounded. This moti
vates further investigation of Generalized Kanban (or
PAC) type mechanisms (Buzacott and Shanthikumar,
(1993); Dallery and Liberopoulos, 2000). Finally, pa
rameter optimization problems are critical and should
have a major impact on the implementation level.
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Appendices

Appendix A: Proofs of Propositions I and '2

In order to prove Proposi tions I and 2, we use standard
induction-based arguments of stochastic dynamic pro
gramming. As frequently is the case in dynamic pro
gramming problems, for structural results, it is easier to
argue inductively through the discounted formulation (1).
Even though the formulation of the problem and the
proofs below are based on the discounted version of the
problem, it is important to note that, for the make-to
stock queue, the structure under a discounted formula
tion will be preserved under average cost optimization
(see for example Weber and Stidham (1987).)

AI: Proof of Proposition I Let l1(x,d) = V(x, d) - V(x
I, d). In order to show that l1(x+ I, d) 2: l1(x, d), we ar
gue that the dynamic programming operator preserves
convexity.

A base stock policy is ensured if the difference:

[pqV(x - d, + I, d+ + ell) +pel - q)vex - d, + I, d+)

+(I-p)qV(x-clt,d++eH)+(I-p)(I-q)V(x-di,d+)]

- [qV(x - di , d+ + eH)+ (I - q)V(x - d, ,d+)],

IS increasing In x.
The above difference can be expressed as:

pql1(x+ I - d., d+ + eft) + p( I - q)l1(x+ I - d" d+),

which is increasing in x as long as l1(x, d) is increasing in x
for a fixed d.

It remains then to check the preservation of convexity
when the dynamic programming operator is applied on a
function that initially satisfies the condition: l1(x, d) is
increasing in x for a fixed d. Let us take three sta tes:
{V(x+ I,d), V(x,d), V(x- I,d)}, with associated con
trols {a(x+ I,d),a(x,d),a(x- I,d)}. Due to monotoni
city (induction assumption), the controls (a(x + I, d),
a(x,d),a(x - Ld) belong to the set {(O,O,O), (I, I, I),
(0, I, I), (0,0, I)}. We can then distinguish three cases:
Case I: (a(x+ I,d), a(x,d), a(x-I,d» E {(O,O,O),
(I, I, I)}.
The difference in this case is:

l1(x+ I, d) - A(x, d) = c(x + I) - 2c(x) + c(x - I)

+ pq(l1(x + I - d., d+ + ell)

-l1(x - d"d+ + ell»

+p(l-q)(l1(x+ I-d"d+)

-l1(x - d"d+»,

which is positive by the assumption.
Case 2: (a(x+ I,d),a(x,d),a(x- Ld) = {CO, I, I)}.
First note that

l1(x+ I, d) ~~ pql1(x - d, + I, d+ + eft)
+p(l -q)l1(x-dt + l,d+)

+ (I - p)ql1(x + I - d., d+ + ell)

+ (I - p)(l - q)l1(x - d, + I,d+),

which in turn implies that:

l1(x+ I, d) - A(x, d) 2: c(x + I) - 2c(x) + c(x - I)

+ pq(l1(x + I - d., d+ + ell)

- l1(x - d" d+ + eft»

+p(l-q)(l1(x+ I-dt,d+)

-l1(x - dt,d+»,

where the right-hand side is non-negative by the as
sumption.
Case 3: (a(x+ l,d),a(x,d),a(x-I,d» = {(O,O, I)}.
As in case 2

l1(x, d) ~; pql1(x - d, + I, d+ + ell)

+p(1 -q)l1(x-d, + I,d+)

+ (1 - p)ql1(x - d"d+ + ell)

+(I-p)(I-q)l1(x-dt,d+),

which in turn implies that:

l1(x+ 1,d) - l1(x, d) 2: c(x + I) - 2c(x) + c(x - I)

+ (1 - p)q(l1(x + I - d., d+ + ell)

- l1(x - d., d+ + elf»

+p(1 -q)(l1(x+ I-dt,d+)

-l1(x - di,d+»,

where the right-hand side is once again non-negative. •
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A2: I'/'(I(!{(!{ Proposition 2 We have to show that
~(.I", d) 2 ~(.I", d'). The convexity condition and the in
duction assumption require that:

((/(.1" + I, d), 0(.1", d), 0(.1" + I, d'), 0(.1', d'))

E {(O,O,O,O),(O,O,O, 1),(0,0, I, I),

(0,1,0,1),(0, I, I, 1),(1, I, I, I)}.

For most cases, the required inequality directly follows
when thc differences arc expressed explicitly through the
optimality equation. In fact there are only two non-trivial
cases to consider: (0(.1" + I, d), 0(.1', d), 0(.1' + I, d'), 0(.1', d'))
= (0,0,0, I) and (0(.1"+ I,d),o(x,d),(/(.I" + I,d'), o(x,d'))
= (0, I, I, I). We focus on the first one (i.e., (0,0,0, I)).
The difference can be expressed as:

1.\(.1", d) - ~(x,d') = ql.\(x - "I,d+ +011) + (I - q)t>(x - dJ,d+)

- ((I - p)qt>(x - "I,d'+ +CII)
+(1 -p)(1 -q)t>(x-dl,d'+)). (AI)

Regrouping the first and third terms of (A I), we note
that:

q~(x - dl,d+ +CII) - (I - p)q6(x - dl,d'+ +CH) 20,

by the induction assumption. Similarly, regrouping the
second and fourth terms of (A I), we obtain, by the in
duction assumption. that:

(I - q)6(x - dl,d+) - (I - p)(1 - q)6(x - dl,d'+) 2 O.

This establishes that 6(.1", d) - ~(x, d') 2 O. All the other
cases follow in a straight-forward manner and are ornit-.
t~. •

Appendix B: The optimal base Mock policy without
advance demand information

In this section, we present the details of the computation
of the optimal base stock policy without advance demand
information for a Geo/Geo/I queue in discrete-time.

Note that under a base stock policy with base stock
level S (20), the process N(I) = S - X(I) is a Geometric/
Gcomct ric/! queue. Let n(lI) denote the sta tionary
probability that there arc 11 customers in this queue. It
turns out that (sec Pujolle et (/1. (1986) for example):

n(O) = I - (q/p),

n(i) = [I -;,] I~I'/l i 2 I
where: 11= [q(1 -p)JI[(I-q)p].

Let I~v denote the cumulative distribution function of
the stationary random variable N. The optimal base
stock level is given by S, S = min{n: FN(n) > b/(h +b)}.

Karaesmen et a I.

Defining the parameter: tc = (p - q)/(P(I - p)), we ob
tain the optimal base stock level, S*, as:

S* = lIn [ h (I - fJ)] /In[{J]J.
(h+b) /{

As expected, S* is increasing in the average load q/p.
Furthermore, keeping q / p constant and varying p (and q)
we can observe the effects of processing (and order inter
arrival) time variability. S* can be seen to be decreasing in
p (or q) for a fixed value of q/p. This reflects the two
significant factors affecting optimal safety stocks: the
capacity utilization and the variability in processing or
order interarrival times.
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