
DEDICATION VERSUS FLEXIBILITY

IN FIELD SERVICE OPERATIONS

Fikri Karaesmen†

Frank Van der Duyn Schouten ††

and

Luk N. Van Wassenhove†††

† Laboratoire d’Informatique de Paris 6 (LIP6-CNRS)
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Abstract

Field service is gaining importance as after sales service is starting to be

recognized as a major source of revenue. This motivates planning problems

for companies that employ mobile technicians who provide service on clients’

sites. These planning problems share the common characteristic that service

levels corresponding to technician response times are explicitly expressed in

contracts. Moreover, lately, there is strong pressure from clients to have a single

dedicated technician who takes full responsibility of the field service. In this

paper, we provide models that enable the analysis of various trade-offs between

service levels and operational costs under the dedicated service structure. We

also investigate the tradeoffs between strict dedicated service and more flexible

structures to understand the settings for which strict dedication is appropriate.

1 Introduction

The importance of field service is rapidly growing as after sales service quality

has become a significant portion of product offerings. In their benchmarking

study of after-sales service logistics systems in the computer industry, Cohen,

Zheng and Agrawal (1997) state: ”Customer expectations for product reliability

have increased. As a result, the provision of superior after-sales service, at a

competitive price, has become an important qualifier for competitive survival”.

Increasingly, companies take a life cycle approach to their products realizing

that lower sales margins can often be more than compensated by lucrative long

term service contracts. From our personal contacts, we know that companies

like Otis, Xerox, ABB, SKF, GE and GEC-Alsthom make a significant and

rapidly increasing part of their total revenues in after sales activities. In Cohen

et al.’s sample of the computer industry after sales revenues were, on average,

equal to 30 % of product sales (Cohen, Zheng and Agrawal, 1997).

In this paper, we consider operational level planning problems for companies

that provide repair and maintenance to clients’ equipment via mobile techni-

cians. Typically the clients that are considered in our framework are holders

of multiple equipment at a single site to be serviced by the firm. Although
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the application that has motivated this research is the case of automated vend-

ing machines, problems of similar nature are abundant in after sales service

by manufacturers of high-technology equipment (photocopy machines, print-

ers, computers, etc.). As an example, Cohen, Zheng and Agrawal (1997) report

that the average computer firm in their sample had about 100000 installed

machines, 300 service engineers and 65000 service calls per year.

Firms compete in field services through quality of the service they provide.

Unfortunately, service quality depends heavily on the perceptions of the client

and objective service level measures are difficult to set. In the field service

support setting, a critical measure that shapes the perception of the client is the

response time of the firm in the case of unforeseen breakdowns of equipment.

Hence, one can argue that clients have a preference for firms that provide

shorter average response times in the long run. In addition, in the shorter term,

to establish their competitive advantage, firms provide contractual agreements

with their clients that specify guarantees based on response time measures.

However, these guarantees are in terms of response time limits rather than

average response times. For example, the contract may specify that 90 % of

the service requests are met within 8 hours of the request. For example, many

companies in the computer industry set their service target by specifying the

percentage of customer demands that are met within 24 hours. For critical

applications, service providers are required to guarantee service within two

hours of product failure. Some companies offer service guarantees between the

two-hour and the 24-hour standard (i.e., 8 or 12 hours) (Cohen, Zheng and

Agrawal, 1997).

A second important aspect that defines service quality from the clients’

side is the interaction with the firm. A common request from the client side

is to have a technician assigned to the client who is entirely responsible for

the repair and maintenance of the equipment at that site. In other words,

clients have a strong preference to deal with a unique account representative

rather than having service provided by a different technician each time. This

is a burdensome request for the service firm; it is well known that to minimize

costs, each client has to be served by a pool of technicians rather than a single
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account representative.

In this paper, we provide planning models that combine the two impor-

tant issues mentioned above: response time guarantees and unique account

representatives. We first provide a framework to measure the performance of a

single account representative assigned to a number of client sites. We then de-

termine the number of account representatives required to handle the servicing

of a number of sites with response time constraints under the account repre-

sentative setting. Finally, we provide a model that measures the performance

difference between a strict account representative setting and a more flexible

setting in which clients are served by their representatives most (but not all)

of the time.

We are aware of only a few papers that directly study field service design

issues. Smith (1979) presents a queueing model to estimate the territory size

that can be covered by a single service representative when service requests are

distributed uniformly within the territory. He shows that the response time

performance measures in the model are equivalent to those in a corresponding

M/G/1 queue. Hill et al. (1992a) consider the case of Smith’s model with

multiple servers per territory and give an approximating M/G/c type queueing

model. A key observation is that response times deteriorate as the number

of busy servers increase (due to a larger distance between the available server

and the place from which the service request originates), hence the appropri-

ate approximating model is an M/G/c queue with service rates dependent on

the number of busy servers. Hill (1992b) studies dispatching rules for multiple

technicians responding to service requests in a territory. Through extensive

simulation experiments he shows that a first come first serve dispatching rule

performs poorly and proposes dispatching rules that combine travel time con-

siderations with delay limit considerations.

From a more practical perspective, Hambleton (1982) describes the issues

that have to be considered for a field service firm that maintains vending ma-

chines in England. A hierarchy of problems is described. At the highest level,

the size of each separate service region and its approximate capacity is de-

termined. At the medium level, within each region, a patch of customers is
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allocated to each technician. Finally, at the lower level, detailed scheduling

decisions take place.

Apart from the models that directly deal with field services, another re-

lated class of problems are those based on dynamic vehicle routing. Bertsimas

and Van Ryzin (1993) study a dynamic vehicle routing problem with multiple

vehicles. In particular for demands uniformly distributed in a region, they ana-

lyze routing policies to minimize expected waiting time costs. Dynamic vehicle

routing models are appropriate for services where transportation times are sig-

nificant in comparison to actual on-site service times. Our models fall outside

of this category as we consider cases with significant on-site service times. In

fact, we do not attempt to analyze the effects of sequencing of service (the

routing of technicians) in our model. One can argue that there is not much

room for sequencing with tight response time limits and a dense geographical

region, so, the effects of sequencing are not as critical for the models that we

consider.

The account representative-client site assignment problem has the flavor of

other assignment problems for service system design. For example, the garbage

truck-dump site assignment problem studied by Agnihothri, Narasimhan and

Pirkul (1990) considers a service system design problem where clients have

to be assigned to servers with expected waiting time considerations. Amiri

(1997) extends this model to include servers with different capacity levels and

provides a solution methodology. Melachrinoudis (1994) considers a version of

the discrete location assignment problem with queueing effects.

Our model differs from those considered in the above papers in several ways.

First of all, the starting point of all of the above models is that the service re-

quests are uniformly distributed in a geographical region. In our case, we con-

sider client sites that are fixed in location and that contain multiple machines.

Secondly, we handle delay limits directly rather than considering average re-

sponse times or variances of response times as in Smith (1979). This requires

the use of more sophisticated tools recently developed for the analysis of multi-

class queues. Thirdly, we focus on utilizing multiple technicians as account

representatives assigned to sites rather than a pool as in Hill (1992a, 1992b).
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The final difference between the above papers and ours is that they provide a

formulation for a particular problem and develop a solution methodology for

it, whereas we formulate a number of plausible problems to demonstrate how

response time limit constraints can be incorporated in assignment formulations.

In section 2, we introduce the general framework by modeling a single ac-

count representative who serves a given set of clients. Section 3 uses the frame-

work to develop tractable formulations for a variety of design problems that

arise under the dedicated setting , i.e. when each client site is assigned a unique

representative. In section 4 we develop a simple model to analyze the effects

of dedication with a degree of flexibility. Using the model, we compute the

difference in performance for different degrees of flexibility and under different

service structures. Finally, we present our conclusions in section 5.

2 A Single Account Representative

In this section, we introduce basic models of a single account representative

who serves a patch of clients. We first define the processes that describe client

repair times. The travel times are more complicated as they are dependent

on the service strategy of the representative, hence we discuss the modeling

assumptions under different service strategies.

In our models a client is a site that contains multiple machines which are ser-

viced by the firm. In general, a client is a single company which has a contract

with the service provider. Naturally, one can lump a number of closely located

small clients into a single client for modeling purposes. Under this assumption

each client has a fixed site to which the associated account representative has

to travel to perform the repair. As each client may have a different number

and mix of equipment, the breakdown rates and repair times have to be client

dependent.

To capture the above characteristics, we assume that an account represen-

tative services call requests from I sites in a region. A client i generates a call

request (which corresponds to an equipment breakdown) at rate λi according

to a Poisson process. Each on-site repair takes an amount of time that depends
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on the characteristics of the mix of equipment at the site. We denote by Ri

the random variable that models the on-site repair times. Next we discuss the

travel strategies of the server and outline different models for different travel

strategies.

First, we consider an account representative who has a fixed base location

to which he has to return after each serviced call. We define by di the distance

from site i to the base. Travel times of the server from the base to a site i are

random variables Ti that depend on the distance di. For clarity, assume that

trips from the base to a site i have the same distribution as return trips from

site i to the base. Figure 1 displays this setup.
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Figure 1: The setup for n sites assigned to a representative

Letting Si denote the total service time requirement of site i, we have that Si

is composed of a travel time to site i, Ti, a repair time Ri at site i, and a return

travel time, T̂i (where Ti and T̂i are independent and identically distributed

random variables). Hence

Si = Ti + Ri + T̂i (1)

To complete the analogy to an M/G/1 queue let λ =
∑I

i=1 λi denote the

total call rate for service requests and let pi define the long run proportion of
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the total call rate that is initiated by site i, i.e:

pi =
λi

λ
(2)

Finally letting S be the mixture of the Si with mixture weights pi (i.e.

the probability distribution function of S is a weighted sum of the probability

distribution functions of Si with respective weights pi), the representative is

the server in an M/G/1 queue with arrival rate λ and service time S. Hence,

for this model, we can compute performance measures of interest by analyzing

the corresponding M/G/1 queue.

In many field service environments, the representatives do not return to the

base after each service completion but travel from one site to another sequen-

tially. Consider a small geographical region that covers a large number of sites.

A typical example of this case is a district in a large city. As the region is small

and the number of sites is large, travel times are almost independent of the

sequence of sites to be served within a trip of the technician and hence they

can be modeled as independent and identically distributed random variables.

Let T be this random variable that represents the common travel time.

When an account representative is assigned to this group of sites, we have

the M/G/1 analogy, with total arrival rate λ =
∑n

i=1 λi, and with service time

which is the mixture of T + Ri with mixing weights pi.

When the travel times are significantly different between sites, using a

unique site-independent travel time random variable would be too crude an

approximation.

Let dij denote the distance between site i and site j and Tij denote the

corresponding travel time random variable (with the understanding that Tii =

0, for all i = 1, 2, ..., I). We assume that if there are no calls to be served at the

end of a service completion, the representative stays at the last site and that

calls are served according to a first-in-first-out discipline.

Let Ti denote the travel time to a site i conditioning on the site which

generated the previous call, we obtain Ti as the mixture of Tji with mixing

weights pj .

The total service time in this case consists of a travel time from the previous
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site and a repair time and is given by:

Si = Ti + Ri (3)

Once again the representative is the server of an M/G/1 queue with arrival

rate λ and service time S where the probability distribution function of S is a

weighted sum (with weights pi) of the probability distribution functions of Si’s.

The advantage of setting representative assignments as M/G/1 type models

is the availability of tools for performance analysis. We discuss the tools for

two performance measures that are of key interest to us: average delays and

tail distributions for the delays.

Let S be the random variable denoting the service time, S(x) its cumula-

tive distribution function and Wq the delay (before service). The well-known

Pollaczek-Khinchine formula gives the expected value of Wq:

E[Wq] =
λE[S2]
2(1− ρ)

(4)

with ρ:=λE[S] < 1

The tail probabilities of Wq are much more difficult to obtain than its ex-

pected value. Using asymptotic expansions, Tijms (1994) provides:

P{Wq > w} ≈ γe−δw (5)

where δ > 0 is the unique root of:

λ

∫ ∞

0
eδx(1− S(x))dx = 1 (6)

and

γ = (1− ρ)
[
λδ

∫ ∞

0
xeδx(1− S(x))dx

]−1

(7)

Recently, Abate, Choudhury and Whitt (1995) have given further theoret-

ical and experimental support for the accuracy of the above approximation to

compute tail probabilities in GI/G/1 queues.

The waiting time distribution approximation in (5) is also the basis of useful

bounds. In fact, Kingman’s bound (Kingman, 1970) is closely related to (5).

Kingman proves that setting γ = 1 in (5) gives a bound, i.e.:

P{Wq > w} ≤ e−δw (8)

8



Kelly (1991) presents a useful interpretation of Kingman’s bound for multi-

class queues. Consider a queueing system with I classes of customers where

the customers of class i arrive according to a Poisson process with rate λi and

have service time requirements Si. As in the previous subsections, the resulting

system may be analyzed as an M/G/1 queue with arrival rate λ =
∑I

i=1 λi and

service time distribution S(x) where

S(x) =
I∑

i=1

piSi(x)

with pi = λi/λ.

Now consider a constraint of the form:

P{Wq > w} ≤ e−γ (9)

From (8) it is apparent that the bound is satisfied when δw ≥ γ which implies:

λ

∫ ∞

0
eγx/w(1− S(x))dx ≤ 1

or equivalently
I∑

i=1

λi

∫ ∞

0
eγx/w(1− Si(x))dx ≤ 1.

Letting:

αi := λi

∫ ∞

0
eγx/w(1− Si(x))dx (10)

This can be summarized by the condition:

I∑

i=1

αi ≤ 1 (11)

where αi is known as the effective bandwidth of customer type i and in this case

can be considered as a measure of the amount of workload a type i customer

brings to the system with respect to the performance constraint (9).

Note that αi as given in (10) is not dependent on the total arrival rate at

the server. This property will prove to be very useful in developing assignment

models for multiple servers. Cohen (1994) provides an alternative expression

leading to a tighter bound. Unfortunately, in this case αi’s are dependent on the

total arrival rate at the server which disables their utility in server assignment

type models.
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Kelly (1991) proves the existence of similar linear constraints (effective

bandwidths) for other performance measures as well. Of particular interest

to us is a bound on the average delay. Kelly shows that if the constraint:

E[W ] ≤ W̄ (12)

is satisfied, then there exist parameters βi where:

βi = λi

[
E[Si] +

1
2W̄

(E[Si]2 + Var[Si])
]

(13)

such that the performance constraint can be written as the linear constraint:

E[W ] ≤ W̄ ⇔
I∑

i=1

βi ≤ 1. (14)

In the next section, we will utilize the linear constraints (11) and (14) to

formulate account representative assignments under various criteria. But even

before that, to motivate the utility of the αi’s, consider the situation in which

I sites are served by a single representative designed to give a certain service

level guarantee for a response time limit of w. Assume also that when the

response time limit is exceeded, a certain penalty is paid. To rank the clients

in terms of the penalty cost that they cause, one can simply rank the αi’s

(the most costly client is the one with the highest αi value, since that client

consumes the highest proportion of the resource). This way one can determine

a standardized cost for each client that depends on the service request rates,

repair and transportation times and the service level, thus providing a tool that

may assist in pricing decisions.

3 Assigning Multiple Account Representa-

tives to Different Sites

In this section, we consider the model of a field service providing firm that

utilizes strict account representative-client assignments as a strategy. Under

this strategy each client has its own account representative who attends to all

the service requests from this client. Two of the main concerns for the managers
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of the firm are probability of exceeding the response time limit as specified in

the contract and average response times. Below, we present various models

for optimal assignment of representatives to sites under the condition that the

response time guarantees will be met with a certain probability and that the

average response time does not exceed a certain desired level. Our main purpose

in this section is to demonstrate how service level guarantees can be handled

in a variety of problem settings. We do not provide solution methodologies for

particular formulations since the appropriateness of a formulation depends on

the situation. Instead, we give references that include solution methodologies

when available and we stay within the framework of linear integer programming

formulations, for which at least small sized problems can easily be solved by

standard software.

Consider a region with I sites, repair requests from each location arrive

according to a Poisson process with rate λi. We assume that when a repre-

sentative j is assigned to a location i each repair takes a random amount of

time Sij with distribution Sij(x). Note that the service time distribution allows

technicians to have different base to location distances if the round-trips to base

type travel model is considered.

Initially, assume that the firm gives identical delay limits, w, to each client

as well as requiring that the delay limits are met with probability determined

by a parameter γ; i.e., it is required that P{Wi > w} ≤ e−γ where Wi is

the random variable that denotes the waiting time in the ith site. As in the

previous section, we can define an effective bandwidth, αij for the assignment

of representative j to client site i:

αij = λi

∫ ∞

0
eγx/w(1− Sij(x))dx (15)

To gain insight into the meaning of αij , once again consider that the delay

constraint is a constraint on the utilization of a resource, where the resource in

this case is an account representative that should provide a certain service level.

Then, αij can be interpreted as the proportion of resource j that is consumed

by site i (with respect to the allowable utilization level).

Management may also consider upper bounds on the average delay that will

be experienced for all of the clients. For an upper bound of W̄ we can introduce
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the following bandwidth:

βij = λi

[
E[Sij ] +

1
2W̄

(E[Sij ]2 + Var[Sij ])
]

(16)

To introduce a mathematical formulation of the assignment problem con-

sider the following decision variables:

aij =





1 if representative j is assigned to site i

0 otherwise

for 1 ≤ i ≤ I and 1 ≤ j ≤ J .

The first problem that will be formulated is that of a minimum cost as-

signment. Assume J representatives are available and assigning the jth repre-

sentative to the ith site has an associated cost of cij . This cost may include

preferences with respect to each assignment, which may depend on locations of

the residences of representatives, past client interactions and so on.

The following integer program finds the minimum cost assignment while

satisfying the service level requests:

Min
∑I

i=1

∑J
j=1 cij aij

s.t
∑I

i=1 αijaij ≤ 1 for j = 1, 2, ...J
∑I

i=1 βijaij ≤ 1 for j = 1, 2, ...J
∑J

j=1 aij = 1 for i = 1, 2, ..I

aij = 0 or 1 for i = 1, 2, ..., I, j = 1, 2, ..., J

Note that the above formulation is a multiple constraint general assignment

problem (studied in depth by Gavish and Pirkul, 1991).

It is not uncommon that multiple response time limits are specified in service

time contracts. For example, a contract may specify that 90 % of all service

requests will be attended to within 4 hours and 99% of all service requests will

be attended to within 12 hours. This is easy to handle in the above formulation

by defining new bandwidths using the new delay limit in (15) and adding a

corresponding constraint.

Next, we consider a class of staffing problems in which the objective is to

find the optimal size of a representative crew under the condition that the
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service level constraints are met. This time J is the maximum number of

representatives that the firm would be willing to use. Let zj (j = 1, 2, ..., J) be

one if representative j is utilized and zero otherwise. The problem can now be

formulated as follows:

Min
∑J

j=1 zj

s.t
∑I

i=1 αijaij ≤ 1 for j = 1, 2, ...J
∑I

i=1 βijaij ≤ 1 for j = 1, 2, ...J
∑J

j=1 aij = 1 for i = 1, 2, ..I

zj ≥ aij for i = 1, 2, ..., I, j = 1, 2..., J

zj = 0 or 1 for j = 1, 2, ..., J

aij = 0 or 1 for i = 1, 2, ..., I, j = 1, 2, ..., J

(17)

If each representative has a different cost cj depending on experience and

skill level, one can alternatively formulate a problem to find the minimum cost

crew.

Now consider the special case of the staffing problem in a dense geographical

region with uniform representatives. In this case, the repair time distributions

do not depend on the particular assignment. This implies that the parameters

αij and βij do not depend on j, i.e: we have for all i:

αij = αi and βij = βi for j = 1, 2, .., J (18)

Under the above assumptions, one can bound (from below) the number, z∗,

of representatives required to attain the performance requirement. This can

easily be seen as follows. The first two constraints of the above problem under

the new assumptions:

∑I
i=1 αiaij ≤ 1 for j = 1, 2, ...J

∑I
i=1 βiaij ≤ 1 for j = 1, 2, ...J

(19)

can equivalently be expressed as:

∑I
i=1 αiaij ≤ zj for j = 1, 2, ...J

∑I
i=1 βiaij ≤ zj for j = 1, 2, ...J

(20)
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Now summing up both equations over j, exchanging summations on the left

hand side of the inequality and using
∑J

j=1 aij = 1 for all i (i = 1, 2, .., I) we

obtain the bound as:

z∗ ≥ max



d

J∑

j=1

βje, d
J∑

j=1

αje


 (21)

where dxe denotes the smallest integer greater than x.

To demonstrate the utilization of the staffing type formulations, we present

the following numerical examples.

Example 1: Consider 7 sites with breakdown rates (per hour) λ1 = 0.5,

λ2 = 0.2, λ3 = 0.4, λ4 = 0.3, λ5 = 0.25, λ6 = 0.25, λ7 = 0.7. Assume

that the firm gives a response time guarantee of 8 working hours and it is

desired that the guarantee is met at least 90% of the time and the maximum

number of repair people that could be employed is 5. Consider the case where

all Si,j (i = 1, 2, .., 7, j = 1, 2, .., 5) are exponentially distributed with mean

1/µ = 1 hour. (This corresponds to the case where all clients’ requests have

identical statistical characteristics independent of the particular representative

assignment.)

To set the integer programming formulation, the bandwidths have to be

computed. Using equation (15), it is found that: α1 = 0.70, α2 = 0.28, α3 =

0.56, α4 = 0.42, α5 = 0.35, α6 = 0.35, α7 = 0.28.

The solution of the integer program yields that 3 servers are necessary to

meet the response time requirements in this case. The following assignments

are obtained: repair person 1 to sites 1 and 7, repair person 2 to sites 2,5 and

6, and repair person 3 to sites 3 and 4 (this is not a unique optimum). In this

case, the lower bound according to (21) d∑7
j=1 αje is also equal to 3.

We can also measure the actual performance of the system under the above

assignment since each repair person operates as an M/M/1 queue for which the

response time distribution is:

W (x) = 1− ρe−µ(1−ρ)x

where ρ = λ/µ.
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For the above example ρ1 = λ1+λ7 = ρ2 = λ2+λ5+λ6 = ρ3 = λ3+λ4 = 0.7

which implies that the probability of meeting the service guarantee is 0.94.

Example 2: It would be interesting to quantify the costs that are imposed

by using the fixed assignment of representatives in comparison to a fully flex-

ible scheme where a pool of technicians is used to deal with incoming service

requests. In a fully flexible scheme any technician can be assigned to any client

which makes the system a single M/M/c queue for which the waiting time

distribution is explicitly available (see Gross and Harris 1985, for example).

Consider the following case: there are four different client classes classified ac-

cording to repair request rates. There are 30 clients of type 1, 20 of type 2, 10

of type 3 and 10 of type 4 with respective service request rates of 0.05, 0.1, 0.2

and 0.3 per hour for each class (where each client’s request arrives according

to an independent Poisson process). One can then use (21) to obtain the min-

imum crew size to achieve given service levels. The results are summarized in

Figure 2.
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Figure 2: Required Crew Sizes for Different Service Levels

Even these simple examples demonstrate that dedicated service has a con-

siderable cost. On the other hand, it is obvious that complete resource pooling

is both hard to implement and will meet with strong opposition from the clients.

In section 4 we investigate this issue in further detail to understand the condi-
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tions under which dedication is a viable alternative.

In previous formulations a fixed service level was assigned to all customers

in the service network. Since service warranties are usually individual contract

based, it is also of interest to model the case in which the service levels of

different customers can be selected individually depending on cost and revenue

considerations.

To remain within the realm of assignment models we have to assume that

in this situation each client can be offered only one of k (k = 1, 2, ..., K) dif-

ferent classes of service level and target response time combinations. A type

k combination is determined by a pair (wk, γk) where wk specifies the target

response time and e−γk specifies the service level probability such that :

P{W > wk} ≤ e−γk

This immediately leads to a bandwidth:

αijk = λi

∫ ∞

0
eγkx/wk(1− Sij(x))dx (22)

As a shortcoming of this type of formulation, note that, αijk’s are meaningful

only if all clients assigned to a representative have identical target response

times and service levels. Hence in the formulation we add the constraint that

each representative is assigned a single service level/response time combination.

As a specific instance of this model, consider the case where assigning client

i service level k brings an associated revenue of rik which reflects the direct

revenue specified by the contract as well as perhaps future considerations such

as client retention.

Define the following decision variables:

aijk =





1 if representative j is assigned to site i, while site i is served at level k

0 otherwise

for 1 ≤ i ≤ I, 1 ≤ j ≤ J , 1 ≤ k ≤ K, and:

zjk =





1 if representative j is designated as a type k service level provider

0 otherwise

for 1 ≤ j ≤ J and 1 ≤ k ≤ K.
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Max
∑I

i=1

∑J
j=1

∑K
k=1 rikaijk

s.t
∑K

k=1

∑I
i=1 αijkaijk ≤ 1 for j = 1, 2, ...J

∑J
j=1

∑K
k=1 aijk = 1 for i = 1, 2, ..I

zjk ≥ aijk for i = 1, 2, ..., I, j = 1, 2..., J,

k = 1, 2, .., K
∑K

k=1 zjk = 1 for j = 1, 2, ..., J

zjk = 0 or 1 for j = 1, 2, ..., J, k = 1, 2, .., K

aijk = 0 or 1 for i = 1, 2, ..., I, j = 1, 2, ..., J,

k = 1, 2, ..., K

4 Almost Fixed Assignments

In the previous section, we discussed performance and optimization issues when

each client is assigned to a unique account representative who handles all ser-

vice requests. Simple numerical examples have shown that additional cost of

dedication over complete pooling can be very high. On the other hand, it is ev-

ident that clients’ requests for dedication eliminate the possibility of complete

resource pooling. Therefore, a compromise may be necessary. In this section,

we investigate the effects of including some degree of flexibility in the fixed

account representative system. In particular, we are interested in measuring

the performance of a system in which account representatives are responsible

to handle most (but not all) requests from their clients. Our purpose here is

not to provide a detailed scheduling analysis but to extract guidelines for de-

sign. Hence, we introduce a simple model that nevertheless captures the essence

of various tradeoffs between fixed client-representative assignments and more

flexible ones.
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4.1 Dynamic Assignment of Service Requests with

Flexibility Constraints

Consider two representatives that each have their unique patch of clients. Under

a fixed assignment scheme, the two servers form two parallel queues each with

the customer requests forming the arrival streams. Let λ1 (λ2) denote arrival

rate of customers that are in the patch of representative 1 (2). Furthermore, let

µ1 and µ2 be the average service rates of representatives 1 and 2. For simplicity,

we also make the assumption that arrivals occur according to Poisson processes

and service times are exponentially distributed. One way to introduce flexibility

in this system, is by routing a customer that is in the patch of representative

1 (a type 1 customer) towards representative 2 or vice versa. Moreover, if we

assume that once a client is assigned, there will be no jockeying between queues,

we can measure the number of mismatched customers by counting the number

of customers that are assigned to the not-preferred representative. We can then

quantify the flexibility of the service system by the following ratio:

Flexibility Ratio =
Expected number of mismatches per unit time

Expected number of arrivals per unit time
(23)

This way zero flexibility corresponds to a fixed assignment scheme, but

by constraining the flexibility ratio we can also obtain almost fixed assign-

ment schemes. However, note that system performance with a flexibility ratio

constraint depends on the particular assignment policy used. Therefore, to

compare the performance of the system under different flexibility constraints

one should be consistent in the assignment policy used. To this end, we will

formulate a dynamic control problem that can be solved to yield the optimal

dynamic routing policy for a given flexibility ratio constraint. This will allow

us to make fair comparisons between different flexibility levels.

Previously, we had underlined two performance measures that are critical

for field service systems. The average response time and the probability of ex-

ceeding a given response time limit. Below, we formulate a stochastic dynamic

program that minimizes the total expected queue lengths (strongly related to

average response times) but also evaluate the probabilities of exceeding a given

response time limit for the optimal policy.
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Let tn denote the time of the n’th event (arrival or departure from the sys-

tem), let Qj(tn) denote the number of clients waiting to be served in queue j

(j = 1, 2) (including the customer being serviced) at time tn and let Ii(tn) (i =

1, 2) be the indicator function corresponding to arrival types, i.e.Ii(tn) = 1 if the

event at time tn is an arrival of type i and Ii(tn) = 0 otherwise. We can now de-

note the state of the system by the vector Xn = (Q1(t−n ), Q2(t−n ), I1(tn), I2(tn))

where the state space is N ×N × {0, 1} × {0, 1}.
The controls correspond to the routing decisions and they depend on the

type of customer that arrives, define Ui(tn) (i = 1, 2) as the routing decision

to be made at the instance of the n’th event. Besides the queue lengths, we

are also interested in the number of mismatches. A mismatch will arise when a

customer of type i is routed to queue j (j 6= i) upon arrival. We set Ui(tn) = 1

to mark a mismatch, hence Ui(tn) = 1 if Ii(tn) = 1 and customer i is routed to

queue j (j 6= i), otherwise Ui(tn) = 0.

Let c(Xn) denote the immediate cost incurred at decision epoch n, then:

c(Xn) = Q1(t−n ) + Q2(t−n ) (24)

The constrained Markov decision problem can be set as:

min limT→∞ inf 1
T E

[∑
n:0≤tn<T c(Xn)|X0 = x

]

subject to

limT→∞ inf
E

[∑
n:0≤tn<T

U1(tn)+U2(tn)|X0=x

]

E
[∑

n:0≤tn<T
I1(tn)+I2(tn)|X0=x

] ≤p

(25)

When the state space is truncated, the above problem can be formulated

as a linear program by standard results in Markov Decision Processes. The

linear programming formulation enables the numerical computation of optimal

routing policies. However, it would also be useful to understand the structure

of good routing policies to see if they can be approximated by simple rules that

are implementable in practice. To this end, we relax the constraint in (25) by

adding it to the objective function. Therefore, we now have the unconstrained

Lagrangean problem with penalties for each mismatch r:

min lim
T→∞

inf
1
T

E


 ∑

n:0≤tn<T

c(Xn) + rU1(tn) + rU2(tn)|X0 = x


 (26)
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The relaxed version of the problem is an unconstrained MDP for which

the optimal policy is stationary and non-randomized. Moreover as will be

shown in the following theorem, the optimal stationary policy has monotonicity

properties that can be exploited to design practically useful control policies.

Theorem 1 Monotone controls separated by increasing switching curves exist

for the dynamic assignment problem with mismatch penalties.

Proof: See Appendix A.

2->2

1-> 2

1->1

2->2

1->1

2->1

Q 1

Q
2

Figure 3: Typical Switching Curves

In Figure 3 we demonstrate a typical optimal assignment policy. In between

the two switching curves no mismatch is necessary. Below the first curve (the

one closer to the Q1 axis), the optimal action routes a customer of type 1

to queue 2. Above the second curve the optimal action is to route a type 2

customer to queue 1.

Although exact optimal policies are difficult to implement practically, the

monotonicity result enables us to recognize the form of ”good” scheduling poli-

cies. For example, a class of policies that give piecewise linear monotone switch-

ing curves is the so-called (n,N) class of policies introduced by van der Duyn

Schouten and Vanneste (1990) under a different setting. As an adaptation of
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this class of policies, we propose using two parameters for each switching curve,

i.e. (n,N) for curve 1 and (m,M) for curve 2, implying:

i) Transfer a customer from queue 1 to queue 2, if Q1(t) > N and Q2(t) < n

ii) Transfer a customer from queue 2 to queue 1, if Q1(t) < m and Q2(t) > M

4.2 Evaluating the Benefits of Flexibility

In this section, we compare the effects of flexibility on account representative-

client assignment strategies. We consider performance enhancements in two

directions: i) the reduction in the average number of clients waiting to be

serviced ii) the proportion of clients who are served later than the given response

time limit. Our test case is the two client two representative model introduced

above. We set both service rates µ1 and µ2 equal to 1 and set the respective

arrival rates λ1 and λ2 equal to each other. This way, changing the arrival rates

is equivalent to changing the traffic load, ρ, for each queue (ρ = λ1/µ1 = λ2/µ2).

This corresponds to a case where the clients have identical service limits and

the initial design assigns an equivalent load on the representatives.

To measure the performance of the system at different flexibility levels,

we use dynamic programming in the following way. For given traffic parame-

ters, we compute the approximately optimal stationary policy using the La-

grangean heuristic described in the previous section. Once the approximately

optimal policy is obtained, we use value iteration to compute the expected

queue lengths, the number of mismatches per unit time and the proportion of

clients who exceed the delay limit under the optimal policy (see Appendix B,

for the details of this computation).

In Table 1, we compare the average queue lengths for queues with traffic

parameters ranging from 0.1 to 0.9 under three flexibility ratio constraints:

0.05, 0.1 and 0.2. We also report the extreme cases. As the extremely rigid

case, we consider the fixed client-representative assignment which leads to two

parallel (and noninteracting) M/M/1 queues (the zero flexibility case). As

the extremely flexible case (no flexibility ratio constraint), we consider the

fully flexible model in which incoming service requests are optimally routed
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Flexibility Ratio Constraint

ρ 0 0.05 0.1 0.2 1

0.1 0.22 0.22 0.20 0.20 0.20

0.2 0.5 0.47 0.47 0.43 0.43

0.3 0.86 0.77 0.77 0.69 0.69

0.4 1.33 1.22 1.13 1.02 1.01

0.5 2 1.74 1.59 1.59 1.43

0.6 3 2.59 2.27 2.23 2.02

0.7 4.67 3.74 3.47 3.05 2.95

0.8 8 6.05 5.38 4.86 4.73

0.9 18 11.73 10.46 10.46 9.83

Table 1: The expected queue lengths as a function of the traffic load and the flexibility

ratio constraint

regardless of representative assignments (which leads to shortest queue routing

in this case). A flexibility ratio constraint of one is used to denote the fully

flexible case even though for balanced traffic loads the constraint will not be

tight with shortest queue routing. Table 2 reports the probability of exceeding

a delay limit of 8, for the given combination of traffic load and flexibility ratio

constraint.

The results in Table 1 and Table 2 demonstrate that certain setups are un-

suitable for strict fixed assignment schemes. Figure 4 displays the improvements

in performance (average queue lengths) as a percentage of the total possible im-

provement as a function of the flexibility ratio constraint. It is apparent that

the improvement in performance through flexibility becomes more and more

significant at higher traffic loads. In fact, at high traffic loads (ρ ≥ 0.8) even a

small flexibility ratio achieves a performance almost as good as that of the full

flexibility. This is consistent with the heavy traffic results of Kelly and Laws

(1993) who show that in heavy traffic performance is not very dependent on

the particular dynamic routing policy. Tail waiting time probabilities in Table
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Flexibility Ratio Constraint

ρ 0 0.05 0.1 0.2 1

0.1 0.0001 0.0001 0 0 0

0.2 0.0003 0.0002 0.0002 0.0001 0.0001

0.3 0.0011 0.0004 0.0004 0.0003 0.0003

0.4 0.0033 0.0015 0.0010 0.0008 0.0006

0.5 0.0092 0.0034 0.0023 0.0023 0.0016

0.6 0.0244 0.0107 0.0068 0.0059 0.0044

0.7 0.0635 0.0288 0.0220 0.0166 0.0138

0.8 0.1615 0.0887 0.0662 0.0544 0.0498

0.9 0.4044 0.2626 0.2202 0.2045 0.2055

Table 2: Tail waiting time probabilities as a function of the traffic load and the

flexibility ratio constraint

2 confirm this phenomenon even in a sharper manner. For response time limit

considerations, fixed assignments are costly with respect to flexible structures

even at moderate and low traffic loads.

The above results suggest two different approaches for field service design.

In one approach, the system is designed in such a way that representatives will

be at work (traveling or repair) most of the time. In this case, some flexibility

is essential, an ideal approach would be to have service teams of representatives

serving a number of clients. On the other hand, even under this design, it is

possible to designate a single representative that deals with most (say 90%) of

requests from a given client.

The second approach to field service system design is to have representatives

working on clients’ requests (travel+repair) about half of the time. In this case,

the performance improvement attained by flexibility may be less significant than

longer term goals of customer retention and high quality service reputation thus

permitting a fixed representative assignment structure. One can envision many

other longer term benefits in this case. For instance, since the representatives
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Figure 4: Improvement in Performance (Expected Queue Lengths) at Different Traffic

Loads

are not overwhelmed with work, they could work with the clients on a more

customized basis. This is a critical issue for services, as the definition of quality

of service is a function of customer perception and hence is very difficult to

standardize. Another important longer term benefit of fixed assignments is

that it leaves time and motivation to the representatives to cooperate on new

service and product development.

5 Conclusions and Future Research

After sales service becomes increasingly important to many firms in terms of

revenues. In addition, the quality of service affects the competitive position

of the firm. Studies in the automobile sector, for instance, have shown that

better field service leads to increased sales. However, in spite of the increasing

importance of field service, it appears that very little research work has been

done to date.

We provided planning models for a field service firm striving to combine

short term service performance goals with longer term goals of client retention

and satisfaction. Based on a particular example of a field service firm, we
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recognized the unique customer representative assignment as a prior condition

to achieve the longer term goals. We then demonstrated that one can formulate

tractable mathematical models that combine service level guarantees with the

dedicated service scheme. Finally, we introduced a model that investigates the

dedication versus short term performance trade-offs.

It was seen that dedication strongly conflicts with short term performance

goals under certain system configurations. In particular, our model demon-

strated that if service representatives are overwhelmed with clients’ requests

most of the time, the strict dedication framework is too costly in the short

term. Dedication is preferable when service representatives have looser sched-

ules. We noted that, although expensive in the short run, this may have major

advantages for new service/product development and customization.

Many other interesting and important issues for field services cannot be

covered by the models in this paper. For example, we noted the high opera-

tional cost of a dedicated account representative scheme versus flexible service

schemes. One important direction for future research is capturing explicitly

the effects of service customization and the account representative framework

on contract renewal and market extension. This would permit a better under-

standing of the trade-offs between longer term benefits versus the short term

costs.

One can expect that customization would give field service firms richer pric-

ing options in terms of different quality of service levels. We could provide a

partial guideline for the design of a service system under the dedicated service

scheme with multiple quality of service levels. In particular, a complete analysis

in this direction should investigate the effects of assigning clients with differ-

ent service quality levels to one and the same service representative. This also

brings along the issue of detailed scheduling; a challenging task when clients

pay different amounts for services and may have different requirements.

Concluding, we would like to note that a company’s competence in field

service extends beyond the life cycle of a typical product. Surely, better ser-

vice may field more sales as well as more revenues form after-sales activities.

However, dedicated field engineers also allow for better information on how
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the product is used by the customer. This, in turn, may have several spin-

offs. First, when the product returns at the end of its useful life or when the

lease expires, the producer will have valuable information on the condition of

the product and hence on the best recovery option. Second, close attention to

a customer’s needs may increase customer loyalty and allow for economies of

scope through cross-selling. Third, dedicated field engineers can and should be

used as valuable sources for new product ideas and/or improvements to exist-

ing product lines. Incorporating the above ideas into workable models is an

important challenge for future research.
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Appendix A
Proof of theorem:

We first consider the discounted case of the problem, with a discount factor
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of α, i.e:

min lim
T−>∞

inf E


 ∑

n:0≤tn<T

e−αtn(c(Xn) + rU1(tn) + rU2(tn))|X0 = x


 (27)

We uniformize the transition rates such that:

φ = λ1 + λ2 + µ1 + µ2 + α (28)

and choose φ = 1 without loss of generality.

The corresponding optimality equations read as follows:

Vα(x1, x2) = c(x1, x2) + λ1 min {Vα(x1 + 1, x2), r + Vα(x1, x2 + 1)}
λ2 min {r + Vα(x1 + 1, x2), Vα(x1, x2 + 1)}
+µ1Vα((x1 − 1)+, x2) + µ2Vα(x1, (x2 − 1)+)

(29)

where (x)+ denotes max{0, x}.
Let V k

α (x1, x2) denote the k stage value function, to prove that increasing

switching curves exist, we now define the following difference functions:

∆k
1,α(x1, x2) = V k

α (x1 + 1, x2)− V k
α (x1, x2 + 1) (30)

∆k
2,α(x1, x2) = V k

α (x1, x2 + 1)− V k
α (x1 + 1, x2) (31)

The following lemma implies the existence of increasing switching curves for

the discounted cost case.

Lemma 1 ∆1,α(x1, x2) is monotonically nondecreasing in x1 for fixed x2 and

∆2,α(x1, x2) is monotonically nondecreasing in x2 for fixed x1.

Proof: Using the fact that Vα = limk→∞ V k
α , we argue inductively by value

iteration starting with V 0
α (x1, x2) = 0. We need to show that the desired

property propagates through value iteration. It turns out that the propagation

of the desired property at the boundaries of the state space (i.e. when x1

or x2 equals 0) imposes two additional conditions on the function V k
α . The

first additional condition is that V k
α (x1, x2) is increasing in x1 for fixed x2 and

increasing in x2 for fixed x1. The second condition requires supermodularity of

V k
α , i.e.:

V k
α (x1 + 1, x2) + V k

α (x1, x2 + 1) ≤ V k
α (x1, x2) + V k

α (x1 + 1, x2 + 1) (32)
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At this point, we can refer to Lemma 4.1 of Koole (1996) where it is shown

that the departure operators, µ1V
k
α ((x1 − 1)+, x2) and µ2V

k
α (x1, (x2 − 1)+), as

well as the controlled arrival operators, λ1 min {Vα(x1 + 1, x2), r + Vα(x1, x2 + 1)}
and λ2 min {r + Vα(x1 + 1, x2), Vα(x1, x2 + 1)} propagate the necessary prop-

erties. Since the linear holding cost function c(x1, x2) also propogates these

properties, the result follows.

2

Finally, to complete the proof it is required to show that the monotonicity

property shown in Lemma 1 for the discounted case carries over the average

cost case expressed in (26). Let ∆i(x1, x2) (i=1,2) be the undiscounted version

of ∆k
i,α(x1, x2).

Lemma 2 ∆1(x1, x2) is monotonically nondecreasing in x1 for fixed x2 and

∆2(x1, x2) is monotonically nondecreasing in x2 for fixed x1.

Proof: We first argue that the average cost problem can be treated as the limit

of discounted case problems since the conditions in Weber and Stidham (1987)

are verified. The relative difference function for the average cost case can be

expressed as:

V (x1, x2) = Vα(x1, x2)− Vα(0, 0) (33)

as the discount rate α tends to zero. It is apparent then, that V (x1, x2) also

satisfies all of the conditions that have been mentioned in the proof of Lemma

1. Therefore the monotonocity of ∆1 and ∆2 follow.

2

Appendix B: Let P denote the policy that is obtained through the

Lagrangean heuristic and let Ui(x1, x2,P) denote the (stationary action) cor-

responding to a type i customer arrival under policy P with xi customers of

type i in the system. Note that, Ui(x1, x2,P) = 1 denotes a mismatch.

B1. Expected Queue Lengths

29



To compute the expected queue lengths under the policy P, we apply the

value iteration technique for semi-Markov processes and define the operator,

TP , given by:

TPV k(x1, x2) = x1 + x2 + λ1(1− U1(x1, x2,P)))V k(x1 + 1, x2)

+U1(x1, x2,P)V k(x1, x2 + 1))

+λ2(1− U2(x1, x2,P))V k(x1 + 1, x2)

+U2(x1, x2,P)V k(x1, x2 + 1))

+µ1V
k((x1 − 1)+, x2) + µ2V

k(x1, (x2 − 1)+)

(34)

The expected total queue length L1 +L2 can then be obtained by using the

relation:

V k+1(x1, x2) + (L1 + L2) = TPV k(x1, x2) (35)

and letting k →∞ with V 0 = 0.

B2. Tail Probabilities

Let wj(xj) denote the probability that the waiting time of a client assigned

to queue j will exceed the response time limit when there are xj customers

waiting to be served and let Ad be the number of arrivals per unit time that

exceed the limit.

Define the operator T ′

T ′PV k(x1, x2) = λ1(1− U1(x1, x2,P))(w1(x1 + 1) + V k(x1 + 1, x2))

+U1(x1, x2,P)(w2(x2 + 1)V k(x1, x2 + 1))

+λ2(1− U2(x1, x2,P))(w1(x1 + 1) + V k(x1 + 1, x2))

+U2(x1, x2,P)(w2(x2 + 1) + V k(x1, x2 + 1)))

+µ1V
k((x1 − 1)+, x2) + µ2V

k(x1, (x2 − 1)+)
(36)

Hence, starting from V (0) = 0, Ad can be obtained from the recursive relation:

V k+1(x1, x2) + Ad = T ′PV k(x1, x2) (37)

and letting k →∞.

The probability of exceeding the delay limit is then given by: Ad/(λ1 + λ2)
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