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Abstract. Advance demand information, when used effectively, improves the performance of produc-
tion/inventory systems. In this paper, we investigate the value of advance demand information in pro-
duction/inventory systems. For a single-stage make-to-stock queue, we assess the value of using advance
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1. Introduction

Advance demand information, when used effectively, leads to a performance improve-
ment in supply systems. Intuitively, better information on future demands leads to lower
inventory levels for the same service level. The precise nature of this information–
inventory interaction, however, is in general difficult to assess. This difficulty is even
more pertinent for a production system than for an external replenishment system, be-
cause in the former case production capacity also enters the interaction in a non-trivial
manner.

In this paper, we investigate the value of advance demand information on capaci-
tated supply systems. Our model is that of a single-stage manufacturing system operat-
ing in a make-to-stock mode. The manufacturing capacity is modelled by a single-server
queueing system that places finished items into a finished goods inventory after process-
ing. The demand process generates the arrivals to this queueing system. In the absence
of advance demand information, the model is a single-stage make-to-stock queue. As
for the advance order mechanism, we assume that each customer, upon arrival, provides
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a due-date for the item requested. The demand and its due-date are assumed to comprise
a firm order that can be neither cancelled nor modified. We attempt to respond to two
basic questions in this setting: (1) how much advance demand information is sufficient,
if information is obtained free-of-charge, and (2) what is the optimal amount of advance
information that would minimize costs, if it has a price (e.g., a unit discount on the
selling price) associated with it?

The above setting is particularly attractive for gaining insights into system perfor-
mance as a function of demand lead times (the difference between the due-date of an
order and the arrival time of the order). For an M/M/1 make-to-stock queue, system
performance and the value of advance demand information is characterized exactly for
two different models: (1) the case where the customer does not accept deliveries earlier
than the due-date and (2) the case where the customer accepts deliveries earlier than the
due-date. For the first model, the system performance is characterized by Buzacott and
Shanthikumar (1989, 1994). We extend their results to explore in detail the value of
advance demand information. We also present new results on the optimization of release
times that lead to a more precise characterization than that in the above papers. The
second model, to our knowledge, has not been investigated before. The conclusions in
this case provide an interesting contrast to the findings from the first model.

The paper is structured as follows: a literature review is presented in section 2. In
section 3 we present a model where the customers order in advance of their required
delivery dates with the assumption that both earliness and lateness with respect to the re-
quired delivery date is penalized. Section 4 focuses on a model where only lateness with
respect to the required delivery date is penalized. Section 5 comprises our conclusions.

2. Literature review

There are several papers that investigate the value of advance demand information and its
interactions with inventories, using analytical models. One possible classification of this
research can be based on the way the underlying supply system is modelled. Supply sys-
tems with exogenous lead times (pure inventory systems) behave significantly differently
than supply systems with endogenously determined lead times (production/inventory
systems).

For supply systems with exogenous lead times, Lambrecht, Muckstadt, and Luyten
(1984) do not explicitly consider advance demand information but remark that in a
standard multi-stage system, safety times are interchangeable with safety stocks. Mil-
grom and Roberts (1988) present a stylized analysis of advance demand information in
a single-period newsvendor setting, where demand information can be obtained using
market surveys at a cost. Hariharan and Zipkin (1995) model advance demand infor-
mation through orders placed in advance and present a thorough study on the benefits
of early information on demand for continuous-time, exogenous-replenishment inven-
tory systems. Their analysis reveals that early information is a substitute for supply
lead times and can reduce safety stock levels and costs significantly when used effec-
tively. Bourland, Powel, and Pyke (1996) investigate a two-stage supply system where
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demand information from the downstream stage can be interpreted as advance demand
information for the upstream stage (if transmitted in a timely manner). They show that
timely demand information transmission can lead to significant supply chain savings.
Gullu (1997) demonstrates that the value of forecast information can be significant in a
two-echelon allocation problem consisting of a single depot and multiple retailers. De-
Croix and Mookerjee (1997) analyze a periodic-review system where the supplier has
the option to purchase advance demand information. They characterize the optimal in-
formation purchase policy and the value of dynamically purchasing advance demand
information. Gallego and Ozer (2001) investigate optimal replenishment policies for a
single stage periodic-review inventory system with advance demand information. Their
numerical results show that under the optimal replenishment policy, advance demand in-
formation can lead to important cost reductions. The extension of the single-stage model
to the multi-stage case is analyzed in Gallego and Ozer (2000). Chen (2001) models
and investigates a market segmentation problem where customers get price discounts
as a function of the advance demand information they provide. Finally, van Donselaar,
Kopczak, and Wouters (2001) investigate the benefits of advance demand information in
a project-based (i.e., a pure make-to-order) setting.

For capacitated supply systems which generate endogenous lead times due to con-
gestion effects, Buzacott and Shanthikumar (1989, 1994) present a detailed analysis of a
single-stage make-to-stock queue with advance demand information in the form of firm
orders placed a fixed amount of time in advance of their due-dates. They then investi-
gate how the optimal safety stock varies as a function of the lead time parameter which
determines how advance demand information is utilized. Part of our work is based on
the same basic model but extends the analysis to shed light onto the stock-information-
capacity interactions and the value of advance demand information.

Karaesmen, Buzacott, and Dallery (2002) investigate the structure of optimal re-
lease timing and inventory control decisions, based on a discrete-time make-to-stock
queue. Even though the exact optimal policy turns out to be complicated, there is a sim-
ple class of policies that are near-optimal. These policies, which are called BSADI (Base
Stock policies with Advance Demand Information), require, in addition to the base-stock
level, a parameter that sets the release lead time. The close-to-optimal performance of
BSADI policies justifies their use as a benchmark to assess the value of advance de-
mand information. Our paper presents this assessment for a continuous-time make-to-
stock queue with advance demand information. In parallel to the current paper Karaes-
men, Buzacott, and Dallery (2003) propose approximations for make-to-stock queues
with general processing times. For a corresponding two-stage system, Liberopoulos
and Koukoumialos (2003) present a simulation-based investigation of WIP-controlled
BSADI policies for single-stage and two-stage make-to-stock systems. Liberopoulos
and Tsikis (2003) present a modeling framework for multi-stage systems with advance
demand information. Their framework also addresses lot sizing issues in this context.
Benjaafar and Kim (2001) investigate advance demand information for a make-to-stock
queue in the context of demand variability. Ozer and Wei (2001) analyze the structure
of optimal policies for a capacitated periodic-review system. Finally, Wijngaard (2002)
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investigates the value of advance demand information for a production/inventory sys-
tem where production capacity is modeled by a single resource with constant processing
speed.

In other articles that investigate production/inventory systems from a slightly
different perspective, Gullu (1996) and Toktay and Wein (2001) model the effects
of forecast evolution on system performance for discrete-time make-to-stock queues.
Specifically, Gullu (1996) investigates the structure of optimal policies and shows
that using forecast information leads to inventory and cost reductions. Toktay and
Wein (2001) extend and quantify these findings through an approximate heavy-traffic
analysis. Our modelling framework is too simple to capture the subtleties of fore-
cast evolution, but the simplicity of the basic model enables us to obtain explicit and
intuitively appealing results on the performance-related effects of advance demand in-
formation.

Finally, in other related work on production/inventory systems, Gilbert and Ballou
(1999) investigate the capacity planning problem of a make-to-order supplier that can
receive advance demand commitments through a pricing policy. Gavirneni, Kapuscin-
ski, and Tayur (1999) consider a two-stage supply chain with a capacitated production
system upstream. Using simulation, they provide a comparison of the case where the
only information transmitted to the upstream stage is through downstream orders and
the case where the upstream stage has access to end-client demand information. The
simulation results confirm the benefits of early demand information.

3. Production/inventory systems with advance demand information and timely
delivery requirements

In most models of production/inventory systems, demand is a random variable (or
process), for which statistical information exists, and suppliers determine their inven-
tory policies in order to deal with the uncertainty in the demand. Below, we consider a
different situation where the medium/long term demand is still assumed to be random but
there is more than statistical information about the timing of short term demand. The sit-
uation that we have mind is that of downstream customers who place orders with a future
due-date. Because our objective is to gain basic insights on the value of advance demand
information, we consider a simple model of advance demand information. Namely, all
customers order exactly τ periods in advance of their required delivery date. This re-
strictive assumption is justified when the downstream customer plans his/her production
according to an MRP-type system. In the auto industry, for example, manufacturers
can transmit their orders to their suppliers several days in advance because their final
assembly line schedule is determined in advance for optimization (line balancing) pur-
poses.

The other complication in modelling the effects of advance demand information on
inventories is determining the policy that will be employed. It is known that the exact
optimal inventory policy can be complicated and may require very detailed informa-
tion on the timing of future due-dates (see Karaesmen, Buzacott, and Dallery (2002)).
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On the other hand, simple adaptations of base-stock policies usually have close-to-
optimal performance. In this section, our analysis is based on such a policy, which
we refer to as the base stock policy with advance demand information (BSADI). Recall
that the simple base stock policy has a single parameter, S, the target inventory (or base
stock) level. The BSADI policy has two parameters, S, the target inventory level, and L,
the planned release lead time. As in the simple base stock system, a BSADI policy ini-
tially has S items in stock. The difference between the two systems comes from the
production order release mechanism. In the simple case, a production order is released
at each demand arrival. In other words, the release mechanism is triggered by an actual
demand. In BSADI, a production order is released exactly L units before the due-date of
an order. In this case, production orders are triggered by information signals rather than
by actual demands. It is important to note that the release lead time L is a parameter of
the policy which has to be optimized just like the base stock level. Finally, it has to be
stressed that the release lead time is not unrestricted as it is constrained by the demand
lead time. Namely, L has to be less than or equal to τ .

We are now ready to completely specify the modelling assumptions. The basic
model is a make-to-stock queue where orders arrive according to a Poisson process with
rate λ and the facility is modelled by an exponential server with processing rate µ. An
order arriving at time t has a due-date equal to t + τ . Inventory costs are incurred at
rate h (per item per unit time) for items held in stock, and demands that are not satisfied
at their due-dates are backlogged at cost rate b (per item per unit time). A BSADI policy
is employed and the optimization problem is to determine the parameters S∗ (S∗ � 0)
and L∗ (0 � L � τ ).

Before moving on to the analysis of the make-to-stock queue, we will first look
into a make-to-order system.

3.1. Analysis of make-to-order systems with timely delivery requirements

Consider the following make-to-order production system: All customers transmit their
orders exactly τ periods in advance of the required delivery date. Following Hariharan
and Zipkin (1995), we refer to τ as the demand lead time. The delivery date is firm and
customers do not accept early deliveries. If the order is late with respect to its delivery
date, a lateness (shortage) charge of b is applied (per order per unit time). Orders that
are completed in advance of their due-dates incur a holding cost of h (per order per unit
time). The supplier has random supply lead times W that are assumed to be unknown
in advance. Let FW(·) denote the probability distribution function of the random vari-
able W . In particular, we assume that the supplier has (or uses) no information about the
state of the replenishment process.

As far as the replenishment process is concerned, we follow the assumption that
Haji and Newell (1971) make in a pioneering paper in which they address the issue of
relating the distribution of the number of outstanding orders and the supply lead time in
a queueing setting. This assumption is:
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Assumption 1.

• All arriving orders enter to the supply system one at a time, remain in the system until
they are fulfilled (there is no blocking, balking or reneging) and leave one at a time.

• Orders leave the system in the order of arrival (FIFO).

• New orders do not affect the supply lead time of previous orders (lack of anticipation).

The above assumption would typically hold for a capacitated system, but would
not hold for an uncapacitated system (with random lead times).

Clearly, the supplier has to start the replenishment process earlier than the due-
date. The question is, when exactly should the supplier start the replenishment process
in order to minimize expected costs? Suppose that he starts it a fixed amount of time
before the due-date. Specifically, let us define the parameter L, which determines the
release lead time. Using this parameter, and assuming that an order arrives at time t for a
delivery date of (t + τ ), the replenishment process is started at time (t + max{0, τ −L}).
The optimization question posed above can now be recast in the following form: what is
the value of L that minimizes expected costs? Proposition 1 answers this question.

Proposition 1. Under assumption 1, the optimal release lead time for a make-to-order
system with constant demand lead times τ is given by

L∗ = min
{
L∗

∞, τ
}
, (1)

where L∗∞ is called the optimal unconstrained release lead time and is given by

FW

(
L∗

∞
) = b

h + b
. (2)

Proof. Suppose that the supplier uses an unconstrained release lead time L∞, where
L∞ is unconstrained in the sense that it does not take into account the constraint L � τ ,
which ensures that a release cannot take place before the order that triggered it arrives.
Let λ be the order arrival rate, then, the expected cost per unit time can be expressed as

C[L∞] = λ

[
h

∫ L∞

0
(L∞ − w) dFW(w) + b

∫ ∞

L∞
(w − L∞) dFW (w)

]
. (3)

The above formulation is similar to the formulation of the standard news-vendor
problem, and its solution is obtained by the first order optimality condition that leads to
expression (2). Note that the optimal unconstrained release lead time is set according to
the well-known critical fractile rule (equation (2)).

Using the convexity of the cost function (3) and the constraint L � τ , the optimal
constrained value of L is then found to be the minimum of τ and the optimal uncon-
strained release lead time, which satisfies (2). �

Before moving on to capacitated make-to-stock systems, it is worth noting a par-
ticular application of proposition 1 in a queueing setting. Specifically, let us assume
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that the underlying supply system is modelled by the sole server of a queueing system.
Then, an interesting question that arises is the determination of the release lead time, L.
Using proposition 1, the optimal release lead time is given by a fractile of the supply
lead time (waiting time in the queueing system). This leads to an explicit formula for
the optimal release lead time if the underlying model of the make-to-order system is an
M/M/1 queue.

Corollary 1. Consider a make-to-order system where the customer orders arrive ac-
cording to a Poisson process with rate λ and the supply system is a single-server with
exponential processing times with rate µ. If the demand lead time is τ , then

L∗ = min
{
L∗

∞, τ
}
,

where

L∗
∞ = − log(h/(h + b))

µ(1 − ρ)
. (4)

Proof. The result is a direct application of proposition 1, after noting that the customer
waiting time distribution of an M/M/1 queue is given by FW(w) = 1 − e−µ(1−ρ)w. �

Corollary 1 characterizes the optimal unconstrained release lead time for an M/M/1
queue. It suggests a rolling-horizon-based part release policy, where all orders are re-
leased to the manufacturing stage L∗∞ time units before their due-dates. This leads to
an alternative interpretation of L∗∞. Namely, L∗∞ can be viewed as the optimal planning
horizon for this class of part release policies.

It is important to note that no claims are made for the overall optimality of a release
policy that plans releases according to corollary 1. The main advantage of a fixed release
time policy is its simplicity. On the other hand, one may envision a more general class
of policies where the release timing depends on the actual load of the system (so that
the parameter L is updated dynamically as a function of the actual system load). This
class of policies is considerably more difficult to analyze and is beyond the scope of this
paper. A recent paper by Denton and Gupta (2000) presents an overview of resource
scheduling problems with due-dates and investigates a special case of this latter class of
problems.

3.2. Analysis of an M/M/1 make-to-stock queue with timely delivery requirements

This section presents the analysis of the BSADI policy for an M/M/1 make-to-stock
queue and is based on the model of Buzacott and Shanthikumar (1994). The optimization
of the parameters parallels the analysis in Karaesmen, Buzacott, and Dallery (2002).
The base-stock level S is restricted to be a non-negative integer variable. It will be seen,
however, that it is easier to operate in a continuous state space for optimization purposes.
To this end, we denote by Ŝ the unrestricted base stock level, a non-negative continuous
variable.



142 KARAESMEN, LIBEROPOULOS AND DALLERY

Similarly to the analysis of the make-to-order system, it is helpful, at first, to rein-
troduce the unconstrained release lead time L∞. L∞ is unconstrained in the sense that it
does not take into account the constraint L � τ . For fixed S and L∞, the total expected
average inventory and backorder related cost can be expressed as

C(S,L∞) = h

(
S + λL∞ − ρ

1 − ρ

)
+ (h + b)

ρS+1

1 − ρ
e−µL∞(1−ρ).

One can then optimize the expected average cost with respect to the parameters S and
L∞ to gain insights into the behaviour of the system under the optimal selection of
parameters.

It can be seen that for a fixed value of L∞, the optimal base stock level is given by

S∗(L∞) =
{ ⌊

Ŝ∗(L∞)
⌋
, if L∞ � L∗∞,

0, if L∞ � L∗∞,

where

Ŝ∗(L∞) = log(h/(h + b))

log ρ
+ µ(1 − ρ)

log ρ
L∞,

and

L∗
∞ = − log(h/(h + b))

µ(1 − ρ)
. (5)

It is important to note that the optimal base stock level behaves differently depend-
ing on whether L∞ is greater or smaller than the critical value L∗∞. When L∞ � L∗∞,
S∗(L∞) is linearly decreasing in L∞. At L∞ = L∗∞, S∗(L∞) = 0, and any further
increase in L∞ beyond L∗∞ is useless in terms of base stock level reduction.

Setting the release lead time to L∗∞ enables then a zero base-stock level, which
means that the system becomes equivalent to the make-to-order system described in the
previous section. Moreover, the above piece-wise definition for the optimal base stock
level reflects into the cost function as well. It turns out that for a fixed unconstrained
release lead time L∞, the optimal cost (obtained by optimizing the base stock level) is
given by

C
(
Ŝ∗(L∞), L∞

)=



h

[
log(h/(h + b))

log ρ
+

(
µ(1 − ρ)

log ρ
+ λ

)
L∞

]
, if L∞ � L∗∞,

h

[
λL∞ − ρ

1 − ρ

]
+ (h + b)

ρ

1 − ρ
e−µL∞(1−ρ), if L∞ � L∗∞.

It can easily be checked that C(Ŝ∗(L∞), L∞) is decreasing in L∞ when L∞ � L∗∞,
and is increasing in L∞ when L∞ � L∗∞. Hence, C(Ŝ∗(L∞), L∞) is minimized at
L∞ = L∗∞. The optimal (S, L∞) values are then (0, L∗∞). At these values, the system
operates in a make-to-order mode and all production orders are released exactly L∗∞
periods before their due-dates.
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We will hence refer to L∗∞ as the optimal unconstrained release lead time. We
would ideally like to have enough forward visibility (i.e., sufficient demand lead time)
so that all orders can be released according to this parameter. In reality, the offered
demand lead time τ may not be sufficient to reach this ideal situation. In this case,
similarly to proposition 1, the optimal policy parameters are simply (S∗(L∗), L∗) where
L∗ = min{L∗∞, τ }. At the other extreme, more demand lead time than what is required
may be offered. In this case, the production order can be released exactly L∗∞ time units
before its due-date. This requires delaying the production release order by τ − L∗∞ from
the time of arrival of a customer order (see (Karaesmen, Buzacott, and Dallery, 2002)).

In summary, the optimal parameters and the overall system behavior can be ex-
pressed in terms of the optimal unconstrained release lead time as follows:

1. When τ � L∗∞, L∗ = τ and S∗ = S∗(τ ). In this region, the optimal cost is linearly
decreasing in τ .

2. When τ � L∗∞, S∗ = 0 and L∗ = L∗∞. In this region, increasing the demand lead
time τ does not have any effect on the optimal cost (if the ideal optimal unconstrained
release lead time L∗∞ is employed).

The above properties implicitly comprise the answers to the question how do op-
timal information requirements change as a function of capacity? Clearly, if advance
demand information were free and available, the length of the horizon would be deter-
mined by L∗∞, since the cost function is strictly decreasing in τ for values of τ less than
L∗∞, and is constant for values of τ greater than L∗∞. Because L∗∞ is an increasing func-
tion of ρ, more advance demand information is required when the average system load
is high.

It is interesting to note that the make-to-stock queueing system has the identical
optimal unconstrained release lead time and consequently the identical release lead time
as the corresponding make-to-order queueing system (see corollary 1). Although a for-
mal proof is lacking, we conjecture that in general (under assumption 1), the optimal
unconstrained release time of any make-to-stock queueing system is identical to the op-
timal unconstrained release time of the corresponding make-to-order system, which is
given by proposition 1.

We can then interpret L∗∞, similarly to the make-to-order case, as the optimal plan-
ning horizon for BSADI policies. By corollary 1, this planning horizon is determined by
the critical fractile of the supply lead time. This interpretation is different than the one
in Buzacott and Shanthikumar (1994), where the optimal planning horizon is expressed
as a safety factor times the mean supply lead time. Incidentally, for the M/M/1 make-to-
stock queue the two interpretations lead to the same result. It should be noted, however,
that the critical fractile interpretation holds for the discrete-time make-to-stock queue in
Karaesmen, Liberopoulos, and Dallery (2002), whereas the other interpretation fails.

In exploring the value of advance demand information, it is helpful to express the
optimal cost as a function of the offered demand lead time τ . Returning to the the cost
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Figure 1. The optimal average cost with immediate (non-optimal) and optimal release for a BSADI policy
with parameter values: λ = 0.85, µ = 1, h = 1, b = 10.

function, based on the above principles, the optimal (using the optimal pair (S∗, L∗))
expected average cost can be expressed, in terms of τ , as follows:

C∗(τ ) =




h

[
log(h/(h + b))

log ρ
+

(
µ(1 − ρ)

log ρ
+ λ

)
τ

]
, if τ � L∗∞,

h log

(
h + b

h

)
ρ

1 − ρ
, if τ � L∗∞.

Figure 1 depicts the average inventory related cost as a function of the demand
lead time τ for the case where the release is determined in an optimal way (i.e., L =
min{τ, L∗∞}) and for the case where an immediate release takes place (i.e., L = τ ). The
figure shows the importance of optimizing the release lead time, especially if the demand
lead time τ is large.

Figure 2 depicts the evolution of the optimal base stock level and the optimal cost
as a function of the demand lead time τ . It is important to remark the linear decrease
in both the optimal base stock level and the corresponding optimal cost. In terms of
the release policy, we observe two different regimes: to the left of the dotted vertical
line, immediate release is optimal (i.e., L∗ = τ ), whereas to the right of this threshold
releases are delayed with respect to order arrivals (i.e., we set L∗ = L∗∞).

From the above expression, we can see that if τ is not constrained (for example,
τ → ∞), Cmin, the minimum cost that can be attained is given by

Cmin = h log

(
h + b

h

)
ρ

1 − ρ
.
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Figure 2. Optimal base stock level and optimal cost as a function of the demand lead time.

3.3. Value of advance demand information: fixed cost of advance demand information

In the previous section, it was shown that having longer demand lead times decreases
(at least in a non-strict sense) inventory-related costs. It was also shown that extending
demand lead times too much may be unnecessary and that there is an optimal horizon
beyond which we would not be interested in further information on future demand. If we
make the rather simplifying assumption that advance demand information on demands
can be obtained free-of-charge, we would be interested in selecting the optimal length
of the horizon, or in other words the optimal advance demand information requirements.
An interesting question which arises and which has to do with the impact of production
capacity on advance demand information requirements is: when do we need longer hori-
zons of advance demand information? When the average system load is relatively large
or small? How does the value of information change as a function of capacity? In order
to characterize the value of advance demand information, let us define the difference
�C ≡ C(Ŝ∗, 0)−Cmin. �C can be interpreted as the absolute value of advance demand
information (going from zero demand lead time to the optimal demand lead time).

To assess the value of advance demand information we will compare the optimal
inventory related costs between a system that does not use advance demand informa-
tion and a system that uses the optimal amount of advance demand information. Some
straightforward algebra leads to the following expression for the value of advance de-
mand information:

�C = h log

(
h + b

h

)[
1

log(1/ρ)
− ρ

1 − ρ

]
.

The above expression implies that the value of advance demand information is
increasing in ρ. The lower the average system load, the less we would pay to purchase
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the information. Further analysis reveals that the value of advance demand information
diminishes to zero as ρ tends to zero, i.e.,

lim
ρ→0

�C = 0.

More interestingly, the value of this information approches a constant as ρ approaches 1
(from below), i.e.,

lim
ρ→1

�C = h

2
log

(
h + b

h

)
.

From the above results, it seems, at first, that advance demand information is highly
beneficial when the average load is high (production capacity close to demand rate) but
not very useful otherwise. However, before concluding hastily, it is interesting to verify
the value of advance demand information relative to the initial costs. To this end, let us
define the relative difference �rC ≡ �C/C∗(S∗, 0). In this case, some manipulation of
the cost function leads to

�rC = 1 − ρ log(1/ρ)

1 − ρ
. (6)

The relative value of information is then decreasing in ρ. In particular

lim
ρ→0

�rC = 1 and lim
ρ→1

�rC = 0.

Remark. Expression (6) also appears in a different context in an unpublished technical
report by Buzacott and Shanthikumar (1989).

In summary, although the absolute value of advance demand information increases
as the average load increases, the relative benefits may be insignificant when the average
load is high. A highly simplified conclusion seems difficult to obtain. Nevertheless for
moderate values of ρ (say ρ < 0.8), relative benefits are over 10% of the initial cost
and absolute benefits may be very significant depending on the ratio of b to h. It should
be remarked, however, that optimal demand lead time requirements also increase in the
ratio b/h.

3.4. Value of advance demand information: horizon dependent cost of advance
demand information

In the previous section, we used the idealized setting of free-of-charge advance demand
information (with unrestricted demand lead times) to characterize the maximum value
that can be obtained from this information. In this section, we analyze the more realistic
case where advance demand information is obtained at a cost that depends on the demand
lead time provided. The cost of information is of course a proxy for contractual terms
such as unit price discounts for ordering earlier. We will investigate two cases in detail.
In order to understand the basic interactions, we first study the case of a fixed demand
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rate and production capacity. We then focus on the case where the demand rate may
vary.

Let γ (τ) denote an increasing and differentiable cost function characterizing the
cost (the unit discount offered) of having the customer provide a demand lead time of τ .
The total expected average cost function can now be expressed as

C(S, τ) = h

(
S + λτ − ρ

1 − ρ

)
+ (h + b)

ρS+1

1 − ρ
e−µτ(1−ρ) + γ (τ).

Proposition 2. If the cost of advance demand information is linear (corresponding to a
linear unit price discount schedule), i.e., if γ (τ) = cτ , then the optimal demand lead
time required is:

(i) τ ∗ = 0, if c > −h(µ(1 − ρ)/ log ρ + λ);

(ii) τ ∗ = L∗∞, if c < −h(µ(1 − ρ)/ log ρ + λ);

(iii) τ ∗ = τ , τ : 0 � τ � L∗∞, if c = −h(µ(1 − ρ)/ log ρ + λ).

Proof. First note that

∂C(Ŝ∗, τ )

∂τ
=




h

(
µ(1 − ρ)

log ρ
+ λ

)
+ γ ′(τ ), if τ � L∗∞,

γ ′(τ ), if τ � L∗∞.

By the above expression, when advance demand information is free-of-charge
(γ (τ) = 0), the optimal cost decreases linearly in τ in the region where τ < L∗∞.
The result follows by comparing the rate of decrease in inventory related costs with the
rate of increase in advance demand information costs d(γ (τ))/dτ = c. �

Proposition 2 has interesting managerial implications. Assume that advance de-
mand information can be obtained through a contractual agreement with a customer
through a linear unit price discount schedule. Proposition 2 states that the optimal de-
mand lead time under this assumption is either zero or equal to the optimal unconstrained
release lead time L∗∞ determined by equation (5). In other words, the firm should ne-
gotiate with its customers in order to push the demand lead time as far ahead as L∗∞;
otherwise, the advance demand information is too costly to be of any use.

With linear price discounts, it is seen that advance demand information is interest-
ing only when the cost rate of the discount is below a threshold level that depends on
the holding costs, the average demand and the average capacity levels. Are there other
price-discount schedules which may modify these results? In particular, is it interesting
in certain cases to obtain some advance demand information regardless of its cost? The
next proposition investigates this question.
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Proposition 3. If the cost of advance demand information is γ (τ) = cτp (where 1 <

p < ∞ and 0 < c < ∞), then the optimal demand lead time is:

τ ∗ = min

{
L∗

∞,

[−h

cp

(
µ(1 − ρ)

log ρ
+ λ

)]1/(p−1)}
. (7)

Proof. As in proposition 2, we have to compare the rate of increase in the cost of
advance demand information with the rate of decrease in inventory related costs. The
(candidate) optimal demand lead time τ is then determined as the solution of a simple
equation which gives the second term in (7). At the same time, it is known that inventory
related costs are decreasing in τ in the region where τ < L∗∞, thereby eliminating the
need to go beyond L∗∞. �

Proposition 3 complements the earlier insights in an intuitive way. Under certain
(non-linear) unit price discount schedules, which are increasing and convex in the de-
mand lead time, the proposition states that it is always valuable to obtain some amount
of advance demand information.

3.5. Marginal value of advance demand information and the effects of capacity

In this section, our goal is to investigate the effects of capacitated production on optimal
advance demand information requirements. Assume that the cost of advance demand
information (the unit price discount) does not depend on the average system load. Under
what conditions should a manufacturing firm purchase advance demand information:
when its average load is low or high?

In order to answer the previous question, we will focus on measuring the improve-
ment in cost obtained by a small increase in τ . More precisely, we will investigate the
partial derivative of the function C(Ŝ∗, τ ) as a function of the system load ρ. In order
reduce the number of parameters involved, we will fix the production rate µ at 1 (in other
words, time is measured in units respective to the average processing time) and vary ρ

by varying the demand rate λ.
In the previous subsection, we saw that a determining factor for the optimal amount

of advance demand information is the rate of decrease in inventory related costs. Let us
denote by φ(ρ) the rate of decrease in the optimal cost function. This function manifests
an interesting non-monotonic behavior as summarized in the next proposition.

Proposition 4. Let φ(ρ) be the function that describes the rate of decrease in inventory
related costs for a fixed value of τ (and for µ = 1), where τ < L∗∞. Then,

(i) limρ→0 φ(ρ) = 0;

(ii) limρ→1 φ(ρ) = 0;

(iii) φ(ρ) is a uni-modal function of ρ in the interval (0, 1) and is maximized when
ρ = 0.166413. The maximum value of φ(ρ) is 0.298426h.
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Figure 3. The rate of decrease in the optimal cost function as a function of the system load.

Proof. When µ = 1, we can express φ(ρ) as

φ(ρ) = −∂C(Ŝ∗, τ )

∂τ
= h

(1 − ρ)

log ρ
+ ρ.

The properties (i)–(iii) then follow in a straightforward manner by analyzing the right-
hand side of the above expression. �

The function φ(ρ) is displayed in figure 3 for h = 1. The rate of cost decrease is
insignificant at extreme loads. Clearly, with the “marginal cost decrease” interpretation,
for advance demand information to be of value, the average load has to be somewhat
significant (for instance ρ > 0.1) but not extremely high (i.e., not higher than ρ > 0.9).

3.6. Some effects of processing time variability

Our analytical investigation is based on the M/M/1 make-to-stock queue. This is a re-
strictive setting but is often sufficient in order to develop an understanding of the impor-
tant qualitative properties due to congestion (i.e., limited production capacity). Below,
we present some simulation-based results that explore the effects of less variable (than
the exponential) processing times.

For the simulation study, we consider two processing time distributions: a deter-
ministic distribution and a two-stage Erlang distribution with balanced means. In partic-
ular, we compare three production/inventory systems that are identical in all parameters
(including the mean processing time) except for the distribution of the processing time.
We then compute through a discrete-event simulation the optimal average cost (using the
optimal base stock level and optimal release lead time) as a function the demand lead
time for the two systems and use the analytical results for exponential processing times.
For the experiments, the average processing time is equal to 1. The other parameters
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Figure 4. Effects of variability: the optimal cost as a function of the demand lead time.

are as follows: λ = 0.9, h = 1, b = 10. Below, is a summary of some of the key
observations.

Effects of variability on the average cost for a given lead time. As usual, variability
has a degrading effect on performance. For a given demand lead time, the system with
the lowest processing time variability achieves the lowest cost, and the cost difference
can be significant. Figure 4 depicts the optimal cost for two systems with deterministic
and Erlang-2 processing times respectively (the exponential processing time case which
generates significantly higher optimal costs is not depicted). The system with determin-
istic processing times generates significantly smaller costs regardless of the demand lead
time. The same holds when comparing the Erlang-2 and exponential processing times
(where the Erlang-2 system’s costs are significantly smaller).

Linear decrease in optimal cost as function of the demand lead time. The linear de-
crease in optimal costs (and optimal base stock levels) that was seen in the M/M/1 sys-
tem is also observed in figure 4 (and in other simulation experiments not reported here).
This linear decrease (until a certain demand lead time) seems to be a general qualitative
property of make-to-stock queues.

Effects of variability on planning horizons. In figure 4, the M/D/1 system reaches its
minimum cost at a demand lead time of 12 while the M/E2/1 system requires a demand
lead time of 18. Note that, the M/M/1 system achieves its minimum cost at a demand
lead time of 24. As other simulation results also confirm, processing time variability
leads to an increase in the planning horizon.

Effects of variability on the relative value of advance demand information. For the ex-
ample in figure 4, the relative cost decrease, �rC, is 9.6%, 6.9%, and 5.1% respectively,
for deterministic, Erlang-2 and exponential processing times. As expected, processing
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time variability diminishes the relative value of advance demand information. It is also
observed that the “less variable” system reduces costs at a higher rate with additional
demand lead time than a corresponding “more variable” system.

4. Production/inventory systems with advance demand information and early
deliveries

In the previous section we investigated a model where each customer announces a future
due-date and requires timely deliveries. In this case, lateness is penalized through the
backorder cost but earliness with respect to the due-date is also implicitly penalized
since a customer does not accept an order earlier than its due-date. The underlying
assumption behind the model is that the “customer” himself/herself is not the end-client
but a downstream member of the supply chain serving the end-customer. In a typical
example, the downstream member assembles components which are delivered directly
to the assembly line by the suppliers. Late deliveries have high penalties since they
disrupt the assembly schedule, but early deliveries are not accepted either since they
generate excess stock.

Let us now take an alternative point of view and assume that the customer who
submits the due-date information accepts early (with respect to the due-date) deliveries.
This is the case where the customer is the end-client of the supply chain. A typical
situation is on-line retail where customers are proposed a particular delivery due-date.
Lateness is still highly undesirable, but most customers would now be content if they
received the ordered articles before the announced due-date. The concept of timeliness
is now asymmetric and earliness does not have a negative effect.

Let us consider the following model. Customer orders arrive according to a Poisson
process λ. Each customer requires a delivery exactly τ periods after the order. The
processing times are exponentially distributed with rate µ. Holding costs are incurred at
rate h and backorder costs at rate b for orders that not fulfilled before their due-dates.

Let us now describe a highly plausible control policy for the manufacturer. If there
is an outstanding order and an item in stock, the item should be delivered immediately
regardless of the due-date of the order, because early deliveries are not costly. This has
the positive effect of reducing holding costs for the manufacturer. The manufacturer
releases a new part to the manufacturing stage with each arriving order, since faster
replenishment is more critical than timely replenishment. The above characteristics sug-
gest an order-based base-stock policy (with an initial base stock level S) where each
arriving order generates the release of a new part to the manufacturing stage. As for
deliveries, each order is immediately fulfilled from stock when possible or fulfilled as
rapidly as possible (in the order of their arrival). Bollon (2001) numerically investigates
the structure of the optimal policy for a two-stage system with exponential processing
times at each stage and early deliveries and exponentially distributed demand lead times.
For this case, he observes that the optimal policy is of the above type.
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4.1. Analysis of an M/M/1 make-to-stock queue with early deliveries

We start by an equivalence result that facilitates the analysis of the model. A direct
sample-path comparison yields the following property.

Property. From the point of view of the manufacturer, the above system (advance
demand information with early deliveries/order base-stock policy) is equivalent to a
standard base-stock system (with arrival rate λ, processing rate µ, holding cost h and
no advance demand information), where the backorder cost starts to incur after a delay
of τ .

We can then analyze the system with advance demand information as an equivalent
standard base-stock system with a modified backorder cost function. We compute below
the average backorder cost for this modified cost function.

Let W be the waiting time of a customer in a standard base-stock system. Let us
denote the cumulative waiting time distribution of an order by FW (FW(t) = P {W �
τ }). The probability that an order waits less than or equal to τ time units (as a function
of the base-stock level S) is given by (see (Buzacott and Shanthikumar, 1993))

FW(τ) = 1 − ρSe−µ(1−ρ)τ .

We can then obtain the average backorder time of an arriving order as

E[backorder time of a customer] =
∫ ∞

τ

(t − τ) dFW (t) = ρS e−µ(1−ρ)τ

µ(1 − ρ)
.

Finally, using Little’s law, we can obtain the expected number of backorders in the
system

Eτ [B] = ρSe−µ(1−ρ)τ ρ

1 − ρ
.

Recall that the expected number of backorders in the standard base stock system (with
base stock level S) without advance demand information is

Eτ=0[B] = ρS ρ

1 − ρ
.

In other words, Eτ [B] is related to Eτ=0[B] in a simple way:

Eτ [B] = e−µ(1−ρ)τEτ=0[B].
Let us define a modified unit backorder cost

bτ = be−µ(1−ρ)τ .

Then the system with advance demand information and early deliveries allowed is
equivalent to a standard system with no advance demand information and unit backorder
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Figure 5. The difference in the optimal cost for the two delivery modes as a function of the demand lead
time.

cost bτ . The optimal base stock level for such a system is given by (see (Buzacott and
Shanthikumar, 1993))

Ŝ∗
τ = log(h/(h + bτ ))

log ρ
. (8)

The optimal cost then follows as

C
(
Ŝ∗

τ

) = hŜ∗
τ = h

log(h/(h + bτ ))

log ρ
. (9)

Expressions (8) and (9) reveal the effects of advance demand information when
early deliveries are accepted. Increasing the demand lead time has the same effect as
decreasing the backorder cost in a standard base-stock system. This reflects immediately
onto a base-stock level reduction and a cost reduction. It should also be noted that for the
same base-stock level, the average backorder cost with early deliveries is identical to the
average backorder cost in the corresponding system with timely deliveries. Obviously,
for the same base-stock level, the system with timely deliveries holds more average
inventory and is therefore more costly.

Figure 5 underlines the significant difference in optimal inventory cost that is at-
tained in the two delivery modes. When timely delivery requirements are required (i.e.,
early deliveries are not accepted), advance demand information brings somewhat mod-
est benefits. On the other hand, when early deliveries are allowed, the cost reduction
is important. The parameters used in this example are: λ = 0.8, µ = 1, h = 1, and
b = 10.
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4.2. The value of advance demand information: fixed cost of advance demand
information

In order to compare the system with early deliveries with the system with timely deliv-
eries, let us first note that as the demand lead time increases, the early-delivery system
operates in a make-to-order mode and rarely misses a due-date. It can then be shown
that

Cmin = lim
τ→∞ C

(
S∗

τ

) = 0,

which implies that the maximum potential cost decrease is given by

�C = C
(
S∗

0

) ∼= h
log(h/(h + b))

log ρ
.

It should be remarked that, in this case advance demand information can lead to
a zero cost system if demand lead times are sufficiently long. This implies that the
maximum relative difference, �rC is equal to 1, regardless of the system load ρ.

4.3. The value of advance demand information: horizon dependent cost of advance
demand information

As in section 3.4, in this section we investigate the case where a unit price discount is
given to customers as a function of the demand lead time. This leads to the following
proposition (which is a counterpart of proposition 2).

Proposition 5. If the cost of obtaining advance demand information is linear in the de-
mand lead time (i.e., γ (τ) = cτ ), then the optimal demand lead time is given by τ ∗,
where τ ∗ is the solution of

∂C(e)(Ŝ∗, τ )

∂τ
− c = 0,

where

∂C(e)(Ŝ∗, τ )

∂τ
= h

be−µ(1−ρ)τµ(1 − ρ)

(be−µ(1−ρ)τ + h) log ρ
.

Proof. The proof follows along the same lines as the proof of proposition 2 by checking
the optimality conditions. �

Figure 6 depicts τ ∗ as a function of c, the cost (per unit time) of advance demand
information. The parameters taken for this example are: µ = 1, h = 1 and b = 10.
We observe that for the same level of price discount, a manufacturer with lower average
load should negotiate for longer demand lead times. Indeed, from figure 6, we observe
that the optimal demand lead time becomes less sensitive to price discounts as the load
increases. At ρ = 0.9, the optimal demand lead time varies between 16 and 0 as a
function of the price discount, whereas at ρ = 0.7 the variation is between 50 and 0.
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Figure 6. The optimal demand lead time τ∗, when c(τ) = cpτ .

4.4. Marginal value of advance demand information and the effects of capacity

Proposition 4 stated an interesting non-monotonic effect of system load on the cost re-
duction that can be expected for a small increase in the demand lead time. The proposi-
tion below investigates the corresponding issue for the model with early deliveries. As
before, we set µ = 1 so that the variation in ρ implies a variation in the demand rate λ.

Proposition 6. Let φ(ρ) be the function that describes the rate of decrease in inventory
related costs for a fixed value of τ (τ > 0). Then,

(i) limρ→0 φ(ρ) = 0;

(ii) limρ→1 φ(ρ) = hb/(b + h);

(iii) φ(ρ) is increasing in ρ.

Proof. The proof follows by a direct computation using equation (9). �

Proposition 6 implies that with early deliveries, the marginal value of advance de-
mand information is increasing in the system load and is maximized as the system load
goes to 1. Interestingly, from case (ii) of proposition 6, the fraction hb/(h+b) is an upper
bound on the cost reduction that can be attained by a unit demand lead time increase.

5. Conclusion

There is no doubt that advance demand information enhances the performance of pro-
duction/inventory systems. In this paper, in order to refine this intuition, we investigated
the factors that have an impact on the extent of the cost reduction that can be achieved
through advance demand information.
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The first important remark relates to capacitated production. The average system
load is a determining factor for the value of advance demand information. The rela-
tive benefits of advance demand information disappear in extremely high system loads.
Moreover, in heavy load conditions, the cost reduction per additional unit demand lead
time is extremely small and the optimal planning horizon (demand lead time) is ex-
tremely long. The consolation is that the absolute value of advance demand information
can be significant even at high loads given that demand lead times are sufficiently long.

The second important point has to do to with obtaining advance demand informa-
tion through price discounts offered to customers. It was found that if price discounts are
proportional to demand lead times, the optimal demand lead time is either zero or the
optimal unconstrained release time (which depends on the supply lead time), depend-
ing on the price schedule. This implies that if customers have the power to set prices
aggressively, the manufacturer may not be willing to operate using advance demand
information. This clearly creates a supply-chain inefficiency since there are potential
savings to be made by the use of advance demand information.

Finally, the nature of the delivery requirements have a significant impact on the
value of advance demand information. If customers order in advance and accept deliver-
ies earlier than the due-date, the manufacturer decreases costs in a significantly. This is
in contrast with a timely delivery arrangement where early deliveries are not accepted,
in which case the value of advance demand information is relatively modest.
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