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Abstract

We consider a finite buffered queue in which the queue length is controlled by dy-
namically selecting between two possible service rates (low and high). Using the faster
service rate requires higher operating costs which may justify using the slower rate from
time to time. Moreover, the system incurs holding costs for customers waiting to be
processed and setup costs for each service rate change. When both service rates are
close to the arrival rate, a heavy traffic (diffusion) approximation is valid for the ex-
pected queue length for this system. Furthermore, the approximating dynamic control
problem has an explicit solution for a special case of the parameters which leads to an
approximate solution for the general case. We present numerical examples that analyze

the validity of the heavy traffic approach.

1 Introduction

Consider a finite buffered queue with two possible service rates (fast and slow). Using the
faster server has the obvious advantage of keeping the queue lengths shorter. However, it
may be less costly to use the slower server. This motivates a dynamic optimization problem
of selecting between the two servers. In particular, we are interested in a case of this problem
in which setup costs are incurred each time the service rate is switched.

Service control problems for queueing systems have been studied extensively for many
particular cases. An important class of problems was introduced by Yadin and Naor [24]
where the server may be controlled by turning it off. Yadin and Naor studied the queue
lengths under an operating policy termed N-policy. Under this operating policy, the server
is turned off when the queue length is zero and turned back on when the queue length
reaches a threshold level N. Later, Heyman [11] and Sobel [21] proved that N-policy is the
optimal operating policy for a variety of dynamic control problems.

For the problem with two positive service rates (viz. a fast server and a slow server), it
is known that a single threshold type policy is optimal in the absence of setup costs. Using
a threshold policy, it is optimal to switch to the faster server when the queue length reaches
the threshold and switch back to the slower server when the queue length falls below the

threshold. In particular, for the problem of selecting the optimal service rate in the case of



Poisson arrivals and exponential service times, Crabill [5] showed that the optimal service
rate must be increasing in the queue length. On the other hand, when setup costs are taken
into consideration it is likely that the optimal policy is of double band type, similar to the
well known (s, .S) inventory control policies. For our problem, in an (s, S) policy, the faster
server is started when the queue length reaches S and is used until the queue length falls
to s. Similarly, the slower server is used from the time the queue length falls to s until the
queue length reaches S. Gebhard [7] considered a problem with two exponential servers
and a Poisson arrival process and obtained the queue length distribution for a given (s, .S)
policy. Tijms [23] used the framework of Markov decision processes and proposed a policy
iteration algorithm to compute the optimal values of the parameters (s, .S). Federgruen and
Tijms [6] studied the M/G/1 queue with two different service time distributions and gave
a recursive algorithm to compute the performance of a given (s, .S) policy.

The case of finite buffers has been given less attention than the infinite buffer coun-
terpart. Hersh and Brosh, [10] studied the M/M/1/K queue with a removable server and
showed that N-policy is still optimal if holding costs are negligible. Their results were later
extended to the case of general service time distributions by Teghem [22]. Karaesmen and
Gupta [13] studied the effect of non-negligible holding costs for the M/G/1/K case and
reported an efficient computational procedure to compute the performance of a given (s, .S)
policy for removable servers. For the problem with two positive service rates, Neuts and Rao
[16] employed matrix-geometric techniques to compute the performance of a given (s, S)
policy for the M/G/1/K queue (with phase type service time distributions.) Gupta [8],
studied both service and arrival control problems and showed that performance analysis for
both problems are closely related.

The use of diffusion processes for storage/queueing systems in the operations research
literature was pioneered by Bather [2], [3]. As well as being of interest in themselves,
diffusion processes also arise as heavy traffic approximations of queueing systems. These
approximations are particularly attractive as they are supported by formal limit theorems
(see Iglehart and Whitt [12]). More recently, diffusion approximations of queueing models
have been succesfully used to solve difficult dynamic optimization problems. Utilizing this
approach, dynamic decision problems for queues are replaced by stochastic control problems
for diffusion processes which may yield explicit or approximate solutions.

Rath [18] considered the service rate control problem for a queueing system. He showed
that when both service rates are close to the arrival rate (i.e. in heavy traffic), the queue
length process for the system converges to Brownian motion processes with two different

sets of drift and variance parameters corresponding to each server. In addition to the



convergence of queue lengths, it was shown that the costs in the queueing problem also
converge to the costs of the Brownian motion control problem. Later, Rath [19] showed
that the optimal policy for the above diffusion control problem is an (s, S) policy by using
the corresponding controlled random walk and proving that the costs of the random walk
converges to those of the diffusion process. Chernoff and Petkau [4] treated the same
problem as a stochastic control problem and reproduced Rath’s results without using the
convergence from a random walk. Perry and Bar-Lev [17] considered the inventory control
version of the same problem. In their case the contents of a bounded storage system is
controlled by changing the drift of a diffusion process. In addition to holding and setup
costs, Perry and Bar-Lev’s model also includes penalties for hitting the boundaries. They
compute the performance of this system for infinite horizon discounted costs using renewal
arguments.

In a recent paper, Avram and Karaesmen [1] introduced a new method to solve the
above drift control problems for the (long run) average cost optimization case. The method
reveals the relationship between the problem without setup costs and the one with setup
costs and is computationally very efficient.

In this paper, we analyze the validity of diffusion approximations as alternative perfor-
mance analysis and optimization tools for a finite buffered queue with two different sets
of arrival/service rates. Diffusion approximations have the attractive property that they
capture the means and variances of the service and arrival processes which are critical for
the performance of a system. This enables the approximate analysis of GI/G/1 type queues
for which no efficient analytical techniques exist.

The arrangement of the paper is as follows. In section 2, we introduce some of the
notations used and give a formal definition of the problem. Section 3 considers the Markov-
ian case in detail. In section 4, we discuss diffusion approximations to compute the average
queue length and the expected cost for a given (s, .S) policy. We also summarize the method
in [1] and describe how it can be used to compute the optimal average cost and the optimal
values of the parameters (s,.5). In section 5, we give numerical examples to demonstrate the
behaviour of the proposed methodology for different cost and traffic parameters. Section 6

includes the conclusions and future research.

2 Definitions

We study a queueing system with two different sets of arrival and service time distributions.

We denote by A1 and By the random variables denoting the times between arrival and service



times respectively for the first set and the analogous random variables As and B for the
second set. We will use A; and p; for the average arrival and service rates respectively when
the ith (i = 1,2) set of distributions is used. Holding costs are incurred at rate h dollars
per customer and operating the queue costs ¢; and ¢ dollars using the set of distributions 1
and 2 respectively. Switching from the first set to the second set costs k1 dollars per switch
and switching from the second set to the first set costs ko dollars per switch. Finally we let
the total switching (or setup) cost, k = k1 + ka.

In order to compute the long run average cost, we denote the expected queue length for
a given (s,S) policy by L(s,S). We also denote by (i, s,.5) the proportion of time the ith
set of parameters is used. Finally, we denote by K(t) the total switching cost incurred until

time t. Then the long run average cost per unit time, (s, S), is:

v(s,S) = hL(s,S) + c1m(1,s,5) + com(2,5,5) + tlim /Cit) (1)

—>00

Our goal is to obtain the optimal cost v*, and the corresponding (s*, S*) pair.

3 The Markovian Case

In this section, we concentrate on the special case of Poisson arrival distributions and expo-
nential service times. It will be seen that in this case, the computation of the performance
of measures for given threshold levels (s,.S) is straightforward. Thus, the results of this

section are useful benchmarks for comparison purposes.

3.1 The Stationary Queue Length Distribution

Consider the finite (K) capacity Markovian queueing system with an arrival rate A and two
service rates puy and po (where gy < pg). An (s, 5) policy is used to control the operation
of the servers. Hence the service rate is switched to p; whenever rate uo is used and the
queue length drops to s and is switched back to uo when the queue length builds up to S
while rate w7 is used.

In the next lemma, we obtain the stationary distribution of the service control problem

described above in closed form.

Lemma 1 Consider the system subject to service rate control described above. If, p; =



A/p1 and pa = A/ g, then:
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Proof: Let m7° denote the stationary probability of having ¢ customers in the identical
infinite buffered queue. The underlying Markov Chain for this system is reversible (see
Kelly [15]) when K > S. Reversibility implies that the stationary distribution under a
state space restriction is proportional to the stationary distribution for the unrestricted
state space case. Hence:

T = ka® for i =0,1,2,.. . K (5)

K3 7

where k is a normalizing constant given by:

To obtain equation (3), we use the tail probability:

oo
a(K+1)= > =7° (7)
i=K+1
along with the identity:
K
waozlfa(KJrl) (8)
i=0

Therefore, we are able to describe 7riK ’s completely in terms of 77°’s. Using the stationary
distribution, 7f° obtained in Gebhard [7], we immediately get equations (2) and (4).
O



Remarks: 1. The expression in (2) for the states from s to S — 1 is slightly different than
that in [7] which has a typographical error.

2. The stationary distribution in (2) is a function of p; and py and not the service rates p;
and po. This implies that lemma 1 also covers the case where both service and arrival rates

vary.

3.2 Computation of the Cost Function

The cost function (1) for our problem consists of three components, viz., the holding cost,
the operating cost and the setup cost. We have already dealt with the computation of the
holding cost implicitly as we have obtained the stationary queue length distribution. The

expected holding cost per unit time is:
K
hL =h> il (9)
i=1
Next, we obtain the operating and setup costs per unit time in closed form.

Lemma 2 The operating cost per unit time in the system subject to service rate controlled

system descrived in Section 3.1 is:

(c1 — c2) [ﬁ (1 G $)p7tpa(l — P1)7T8°>
k(1= p?™*)(1 = p2)

+ ¢ (10)

Proof: Gebhard [7] gives the probability of using the high rate server in the infinite capacity

queue as:
(S = s)pi " pall — p)7Ee
(1= p{™*)(1 = p2)

Thus, the proportion of time the low rate server is used (in the infinite capacity queue) is:

(11)

L (8=9)p7 a1 = p)me (12)

(L—py )1 p)

which can also be written as:

S—1
> o (13)
=0



By reversibility, the long run proportion of time that the low rate server is used in the

corresponding finite capacity queue is:

S—1 S—1
Yomy o= Y wmy (14)
=0 =0

S—1
= /@Z 71'{7’({ (15)
i=0

= =(l,s,S) (16)

where 7(1,s,S) was defined in Section 2. Noting that 7(2,s,5) =1 —7(1,s,5), the oper-
ating cost per unit time of the queue subject to service control given in (10) follows.

a

Lemma 3 The setup cost per unit time in the system subject to service rate control de-

scribed in Section 3.1 is: 51
(7~ (1 = p1)m°)
(1—p7™*)

kA (17)

Proof: The setup rate is the rate at which the process jumps from the state of low rate
to the state of high rate or vice versa. Using the probabilities given in [7] for the infinite
buffer case and by reversibility, the result in (17) is obtained.
O

As a consequence of lemmas 2 and 3, we can compute the performance of the M/M/1/K
queue with two different traffic rates when (s, S) are given. However, computing the optimal

(s,5) values still requires a search over the parameter space.

4 Diffusion Approximations

4.1 Diffusion Approximations for the GI/G/1 Queue

Performance analysis of queueing systems for arbitrary service and arrival time distributions
usually defies exact analysis. Among the approximation methods, diffusion (heavy traffic)
approximations are particularly attractive as their (limiting) convergence can be proved.
Furthermore, diffusion approximations replace discrete state space queueing processes by
continuous state space processes for which many analytical tools are available.

In this section, we present the performance evaluation tools obtained through diffusion

approximations. Consider a GI/G/1 queue where customers arrive according to a renewal



process with mean rate A and the service times have a general distribution with mean 1/p.
We denote by Var(A) and Var(B), the variances of the interarrival times and service times
respectively. As usual, p = A\/u denotes the traffic intensity. To obtain the approximation,
one needs a sequence of the above GI/G/1 queues indexed by a parameter n, called a
heavy traffic scaling parameter. The queueing process converges to the diffusion process
as n — oo and p — 1 under a certain scaling of time and space. In particular, let L(t)
denote the queue length at time ¢. The approximation is valid for the scaled queue length

process, Z(t), defined by:

(18)

Although, the selection of the scaling parameter n appears to be critical, for performance
analysis, a large integer value is sufficient. In the numerical examples, it will suffice to fix
n to a value of 1000.

Iglehart and Whitt [12] have shown that (in the limit) the scaled queue length, Z(¢), is
a reflected (or regulated) Brownian motion with drift coefficient -e (where e = \/n(1 — p))
and variance, o2, given by:

o? = \3Var(A) 4 p*Var(B) (19)

One can then evaluate the performance of the queueing system by evaluating the corre-
sponding performance measures for the above regulated Brownian motion and going back
to the original scale using (18).

For the GI/G/1 queue (with infinite buffers), one can write Z(¢) in terms of a standard

Brownian motion X (¢) (with identical drift and variance) and another process, i.e:
Z(t)=X(t)+ L(t) (20)

with the convention that X (0) = 0. £ is a process with the following properties:
1. L is increasing and continuous with £(0) =0
2. L increases only when Z =0
(This property is due to the regulation principle, see Harrison [9] for more details).

Finite buffer capacity of the queueing system can also be taken into account in the
approximation. For the buffer capacity of K, we can denote the scaled buffer capacity by
K (= K/\/n). Then the scaled queue length, Z(t), is regulated at K in addition to 0, i.e.:

Z(t) = X () + L(t) — U(t) (21)

where X (0) = 0, £ is the lower regulating process described above and U has the following

properties:



1. U is increasing and continuous with #(0) = 0

2. U increases only when Z = K

Hence, most performance analysis questions for GI/G/1 queues in heavy traffic reduce
to the performance analysis questions of one-dimensional regulated Brownian motion, a well

studied process.

4.2 Expected Queue Lengths

Consider a queueing system with two sets of traffic parameters (4;, B;), i = 1,2 where A;
and B; are random variables denoting the interarrival and service times of set i. We also
denote the mean arrival and service rates by (\;, ;) (i = 1,2). Parameter set 1 is employed
from the time the queue length falls to s until the time it increases to S. Similarly, parameter
set 2 is used from the time the queue length increases to S until the time it falls to s. Let

L(t) be the queue length process for this system. Rath [18], proves the following result:

Theorem 1 Under heavy traffic conditions (i.e. A\; & p; and Ay &~ pg) and infinite buffer
capacity, the scaled version of the queue length process Z(t) converges to a controlled
diffusion process that moves according to two Brownian motions with parameter sets (&;, 0;),
i = 1,2 (with drift ¢; and variance o; for set i) with a lower barrier (regulation) at zero.
Thus,

gi=—vn(l—p;) for i=1,2 (22)

for a large integer n and
0? = X3Var(A;) + piVar(B;) for i=1,2 (23)

The selection of the parameter set is performed dynamically according to a (8, 57) policy
where § = s/y/n and S = S/\/n are the scaled versions of the thresholds in the queueing
system. Hence, (e1,01) will be used in the region [0,5) and (e2,09) will be used in the

region [8, 00).

Note that, if the buffer capacity is finite (K), the process Z(t) will have an upper
barrier at K (= K/y/n). Next, we show that, the expected value of the process Z(t) can

be computed in closed form.

Theorem 2 Let E[Z]) be the expected value of the process Z(t), then:

B[Z] = f1(3) + f2(5) (24)
t1(8) + t2(S)



where

A~

52 _ §2 O.%(g _ S) O.il(e—Qalé/U% _ 6—2813/0%)

5) = 25
fi8) 2u1 + 2e? + 43 (25)
S’ — 3§ O'%(G_QEIS/U% _ €—2€1§/0%)
t1(8) = 2
I(S) €1 + 25% ( )
Q _SQ 0'251+§(€2§—O'2)
S) = 2 2
P8 = gt 23
02(2K ey + 262 — o2)(e22(K=9)/05 _ ¢2e2(K=5)/3)
* 3 (27)
des
e (K—38)/0% (K—-5)/o2
. ~ 8 9e.8 2 2e0(K—3)/02 _ 2e0(K—8)/o
tQ(S) = 75 + €28 + 02(6 2 —e 2) (28)

€9 22’5%

Proof: By renewal theory, we can consider a regenerative cycle of the process that starts
at the time parameter set 1 is initiated and ends the next time the buffer level drops to
§ when parameter set 2 is in use. Let T denote the first time after the start of the cycle
the process reaches S. Similarly, let T3 denote the time process reaches § starting from S,

Obviously, the cycle time is Tg + T3. Furthermore, let

fw) =E | [ 26)120) = 2 (29)

and

fe) =B | [ 2e1200) = 2 (30)

Hence, f; and fy denote the expected total inventory levels when the parameter sets 1 and
2 are used in a cycle, respectively. By renewal theory, the expected value of the inventory
level in a cycle is the ratio of the expected total inventory level in a cycle to the expected
duration of a cycle, i.e:
R (OES 1)
E[T;] + E[T¢]
letting ¢1(5) = E[Tg] and t2(S) = E[Ts], we obtain (24). Furthermore, fi, fo, t; and 5
are solutions of the systems of ordinary differential equations by Ito’s lemma given below
(see Karlin and Taylor [14]). Note that the boundary conditions f}(0) = f}(K) = ,(0) =
th(K) = 0 correspond to regulation at the boundaries 0 and K (see Harrison [9]).

o fi (x)

(31)

F— tefilz) = —x
£1(0) = 0 (32)
£1(S) = 0

10



aft’l’(x)

+eti(x) = -1

t1(0) = 0 (33)
t1(9) = 0

f()+5f/() .
f3(K) = 0 (34)
f2(38) = 0

20 4 coth(z) = —a
t(K) ~ 0 (35)
t2(8) = 0

4.3 Expected Performance of a Given Policy

An advantage of replacing the discrete queueing processes by diffusion processes is in com-
puting cost functionals associated with the control of the original process. By Rath’s results
[18], it is known that the cost functionals defined in section 2 converge to the corresponding
cost functions for the diffusion process.

As mentioned before, the diffusion problem is obtained from the queueing problem by a
rescaling of time and space. For example, the holding cost of the system is proportional to
the average buffer level which is L in the queueing system but L=1L /+/n in the diffusion
system. To solve the original optimization problem, costs have to be on the same scale in
the rescaled problem. To achieve this, we scale the operating cost such that ¢; = ¢1/y/n,
¢y = ¢/y/n and the (total) setup cost such that k = k/n but leave the holding cost, h,
unchanged (see [20] for a similar argument). If boundary costs exist in the original queueing
sytem (i.e. ag dollars for unit idle time and ax dollars for the time the buffer is full), the
approximating diffusion system will have the rescaled boundary costs dyp = «ap/+/n and
ax = ag/y/n.

With the rescaled costs, we can compute the performance of a given (s,S) policy for

the queueing system as showm in the following corollary:

Corollary 3 Let k denote the total setup cost in a cycle (i.e. k=K1 + ko) and let dp and
ap denote the boundary costs at the lower and upper boundaries respectively. Then, the

optimal cost of an (8, S”) policy, (8, S’), is given by:

3(3,8) = A1)

T
t1(8) +t (36)

11



where

—hg? " §(2€1€1 + hO’%) — S’(QCA1€1 — h€1g + hO‘%)

Al = 2e1 23
U%(QCAIEI + 20206% + ho’%)(€*251§/0% _ 672515‘/0%)
! 3 (37)
4ey
& —hs%2 S 26969 + ho2) — §(2é4e9 — heo§ + ho?
p2(S) = + ( 3) ( . 3)
22 2e3

+a§(—26252 +2hKeg + 207k e3 — hgg)(ekg(}(_g)/gg B e2€2(K—§)/0§) )

4¢3
and t1(8), t2(S) are given in (26) and (28) respectively.

Proof: The proof is similar to that of theorem 2. We will define a cycle that starts at §
(at an instance of switch from parameter set 2 to parameter set 1) and ends at level § at
the next switch instance from parameter set 2 to set 1. Using T¢ and T3 to denote the time
the process takes from the start of the cycle to reach level S and from T to the end of the
cycle respectively and letting C' define the total cost incurred during this cycle, we obtain:
E[C]

168 = B wmy) o

The expected total cycle cost E[C] can be written as the sum of the holding, boundary and

setup costs in a cycle. Defining:

Tg
o1(x) = E l /O (hZ(2) + &1)d= + dOE(TS)] (40)

and

Ts
os(x) = E l /0 (hZ(2) + é)dz + ofKE(Tg)] , (41)

where z is any starting point between 0 and K, we can write (36) for (s, 5”) Finally, o1
and o can be obtained as the solution of following ordinary differential equations:

02!/ ()

=t a9 () = —hx—a
©1(0) = —do (42)
1(9) = 0
and )
%2(93) +eoph(x) = —hx—3é
Ph(K) = ok (43)
©2(3) = 0
O

12



4.4 An Algorithm for the Computing the Optimal (s, S)

In section 3.2, we mentioned that the optimal parameters s and S for the Markovian case can
be computed by a search procedure. In fact, the same type of computation can be done for
general arrival or service time distributions as in Neuts and Rao [16]. In general, numerical
methods are necessary and the computation is lengthy. In this section, we summarize how
to use a result from [1] to compute the optimal threshold values s and S when the queueing
process in question is approximated by a diffusion process.

Consider a heavy traffic approximation, for the G/G/1/K queue with two traffic para-
meters used according to an (8, S ) policy. As the main results in [1] is proved for the case of
equal variances, in this section we assume that o3 = o9 = . The state of the buffer (for the
diffusion process), Z(t) can be denoted as (z,i), (0 < z < K, i =1,2). Let P = (P1,Py)
be a partition of the state space that determines which set of parameters is to be used (if
state (z,i) € P; then the jth set of parameters will be used). Furthermore, let Z. denote

the indicator function, i.e:

1 if reA
Ia(z) = , (44)
0 otherwise
for any set A.
Consider the cost function for the diffusion control problem U which is dependent on

the starting point x, the policy P and the time horizon t¢:
;2
Uw,’P,t = E:):,’P [/ Z hZ(Z) + CiI[Z(z)G’Pi}dZ + doﬁ(t) + Oé}(l/[(?f) + k‘N(t) (45)
0 i=1

where F, p is the expectation operator which also depends on the starting point x and
the policy P and N(t) is the number of cycles upto time t. The objective is to minimize
the long run average cost

U.
v = sup lim %P’t (46)

p 100
where sup denotes supremum.

The solution of the above optimization problem requires a decomposition procedure.
To outline the procedure, we first consider the case of a single diffusion with infinitesimal

o2d?
2 dx?

generator G = + e%. Using the approach pioneered by Bather [2], we can write:

U(z,P,t) = ~t+V(x), (47)

where v is the long run average cost per time unit and V(x) (called the differential cost

starting at ) measures the relative differences between the various starting points after the

13



common long run average <t is subtracted. It can then be shown by dynamic programming

arguments that V' (x) satisfies the differential equation
GV =—h+~ (48)

Now, letting v(z) denote the derivative of V' we replace the second order equation (48) by
the first order equation
gv=—h+7, (49)

where g denotes the operator 52’725 + €. Finally, we decompose v(x) as v = ¢ — y7, where 7

and 1 are solutions of

gy = —h and (50)
gt = -1 (51)

respectively. Thus, (50) is a cost equation and (51) is a time equation and the problem is
decomposed.

The above decomposition procedure can now be applied for the two diffusion processes,
with generators G; = %

for each parameter set, now yields:

+ ei%, i = 1,2 when parameter set ¢ is used. Bather’s approach

GVi = —hi+~vy (52)
Vi = (1o (53)

7

By letting v; = V;/ denote the derivatives of Bather’s differential costs, these become:

givi = —h;+~ (54)
v = (=1)'ey (55)
where g; denote the first order differential operators % + €.

Let now v; and 7; be decompositions of v; in the form v; = 7 — ;. We choose v;, ;

as solutions of the following differential equations:

gi i = h; (56)
ei(i) = (1)

and

{giTz’ i 1 (57)

14



Then, y7; — v; satisfy the equation (54). Finally, let ¢ =g — ¢ and 7 = 79 — 77.
The following theorem characterizes the optimal switching levels. A detailed proof can
be found in [1].

Theorem 4 a) The policy of switching between the two diffusions at a fixed point z

achieves the long run average value of

(@) =T (58)

b) If a double band policy (3,5) is optimal for some transaction cost k, then the switch

levels (8, S ) and the corresponding long run average ~y satisfy:

f(f)) - sz((;) =7 (conjugacy equation) (59)
and s
_/§ (Y(xz) —y7(x))dx = k (cost equation) (60)

A graphical interpretation of theorem 4 is provided in Figure 1. ~y(a) is the average
reward when switching at a in the absence of switching costs. Note that if y(a) is uni-
modal, for any value s € [max[y(0),v(K)],7(a)], theorem 4 provides a unique switching

cost determined by (60) and a double band [$, S] which is optimal for that k.

Y(x)

v(a) =0

Figure 1: Graphical Interpretation of the Theorem
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Theorem 4 suggests the following efficient search algorithm to find the optimal values
of the thresholds § and S:
Step 0. Set counter ¢ to 0.
Step 1. Compute the optimal swithcing point in the absence of swithcing costs (a*) by
minimizing the function ¥ /7. If a* ¢ [0, K |, stop a double band policy can not be optimal.
Step 2. Select §; such that 0 < § < a*
Step 3. Find S; using the conjugacy equation (59).
Step 4. Find the corresponding switching cost k; using the cost equation (60).
Step 5. If |k; — k| < J stop, else if k; < k, select ;41 such that §; < § < a*, else select §;41
such that 0 < § < §;.
Step 6. Set ¢ =i + 1, go back to step 3.

Remark: Let k, denote the switching cost for which the corresponding long run average ~,
equals min[y(0), (K )]. For transaction costs larger than k, the optimal policy is to always

use the parameter set 1 or 2 depending on which of the costs v(0) or (k) is smaller.

5 Numerical Examples

5.1 Approximating the Average Queue Length

Neuts and Rao [16] report a numerical study for the M/PH/1/K queue with two service
rates operated according to a (s,S) policy. Matrix-geometric methods are used to com-
pute a variety of exact performance measures. In this section, we compare the diffusion
approximation with the results in [16] for the average queue lengths.

In [16] various performance measures are computed with the following setup: the buffer
size, K is fixed at 50 and the service rate p is fixed at 1, the traffic load p is adjusted by
selecting two arrival rates A1 and Ao. To translate these parameters to the diffusion approx-
imation we select the heavy traffic scaling parameter n as 1000. We scale the parameters
such that: K = 50/y/n, § = s//n and S = S//n. Furthermore, the drift coefficient of
diffusion i is given by ¢; = y/n(1 — p;) and the variances are given by: o; = \; + Var(B)
(where B is the random variable correspoding to service times). For each experiment, we
report the absolute percentage error defined as:

|Approximate Queue Length — Exact Queue Length|
Exact Queue Length

(61)

Table 1 analyzes the quality of the approximation as the service distribution (and its

coefficient of variation changes). It can be seen that the heavy traffic approximation is
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quite good when the coefficient of variation of the service process is less than 1. Table
2 displays the effect of varying the traffic load ratio p;/p2. Note that, the coefficient of
variation of the selected distribution is low and the approximation is remarkably accurate
even when the traffic rates are not close to 1. Table 3 compares the approximate and exact
queue lengths when the thresholds (s,S) vary. Once again, the coefficient of variation of
the service process is less than 1, and the response of the approximation to the changes in

the threshold parameters is excellent.
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5.2 Performance of the Optimization Algorithm

In this section, we provide numerical examples to analyze the performance of the optimiza-
tion algorithm. Our benchmark is the M/M/1/K queue with two traffic rates for which the
optimization can be performed by searching all the possible (s, .S) pairs. We then compute
threshold values by using the algorithm in section 4.4 and compute the cost of using the
thresholds obtained by the algorithm. A relevant measure is the percent suboptimality of

the policy obtained by the algorithm, defined as:

(algorithm’s cost — optimal cost)

Y%suboptimality = (62)

optimal cost

As a first example, consider the case where \; = 1.05, uy = 1, Aa = 1, s = 1.05, h = 0.5,
c1 = 0, co = 5 and the buffer size K = 50. All cost parameters and the buffer size are
scaled (as explained in section 4) to use the algorithm. We compare the exact (s,S) pairs
with those found through the algorithm as the switching cost k varies from 0 to 10. Figure

2 displays the 4 function for the given parameters.

Optimal (s,S) pairs

Y(X) 0.495

0.485

0.475

0.465

Wo.s 0.75 1 1.25 1.5

Figure 2: An Example of the Optimization Algorithm

Table 4 summarizes the results of the first example. The approximation is good for
small values of the setup cost but starts to deteriorate as the setup cost increases. Also,
the (s,S) pairs obtained by the algorithm are very sensitive to the setup cost whereas the
exact (s,.S) pairs do not vary much.

The second example has the parameters: \y = 1.2, uyy =1, o =1, us = 1.2, h = 0.5,

c1 = 0, co = 10 and the buffer size K = 50. Once again, we keep these parameters fixed and
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’ A1 ‘ A2 ‘ Ccv ‘ s ‘ S ‘L(Exact)‘L(App.)‘%error‘

1 0.83 | 0.447 | 15 | 30 13.500 13.875 2.8
1 0.83 | 0.771 | 15 | 30 13.935 15.248 9.4
1 0.83 1 15| 30 14.592 17.795 21.9
1 083 | 1.5 15| 30 16.046 21.853 36.2
1 0.83 2 15| 30 17.090 23.751 28.1
1 0.71 | 0.447 | 15 | 30 12.654 12.885 1.8
1 0.71 | 0.771 | 15 | 30 12.817 13.631 6.4
1 0.71 1 15| 30 13.004 15.335 17.9
1 0.71 1.5 15| 30 13.735 19.855 44.6
1 0.71 2 15 | 30 14.284 22.841 59.9
1.25 1 0.83 | 0.447 | 15 | 30 21.778 22.773 4.6
1.25 1 0.83 | 0.771 | 15 | 30 21.499 23.370 8.7

1.25 | 0.83 1 15| 30 21.147 24.509 15.9
1.25 1 0.83 | 1.5 15| 30 20.665 25.689 24.3
1.25 | 0.83 2 15 | 30 20.490 25.792 25.9

1.25 | 0.71 | 0.447 | 15 | 30 23.229 21.007 9.6
1.25 1 0.71 | 0.771 | 15 | 30 23.337 20.845 10.7
1.25 | 0.71 1 15| 30 23.493 21.303 9.3
1.25 | 0.71 1.5 15| 30 23.810 23.554 1.1
1.25 | 0.71 2 15 | 30 23.875 24.861 4.1
1.5 | 0.75 | 0447 | 15 | 30 23.234 22.749 2.1
1.5 | 075 | 0.771 | 15 | 30 23.341 23.299 0.2
1.5 | 0.75 1 15| 30 23.495 24.553 4.5
1.5 1075 | 1.5 15| 30 23.850 26.493 11.1
1.5 | 0.75 2 15| 30 24.318 26.702 9.8

CV represents the coefficient of variation of the service process

L (Exact) is the exact average queue length

L (App.) is the approximate average queue length

Table 1: Effect of Service Time Distribution on the Approximation
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’ A1 ‘ Ao ‘ (\Y ‘ s ‘ S ‘ L (Exact) ‘ L (App.) ‘ % error ‘
1 1091|0447 | 15 | 30 15.268 16.026 5.0
1 108310447 | 15 | 30 13.500 13.925 3.1
1 107710447 | 15 | 30 12.929 13.234 2.3
1 0.71 | 0.447 | 15 | 30 12.654 12.905 2.0
1 1067|0447 | 15 | 30 12.494 12.714 2.2
1 1062|0447 | 15 | 30 12.388 12.589 1.6
1 1059|0447 | 15| 30 12.314 12.502 1.5
1 1056|0447 | 15 | 30 12.259 12.437 1.5
1 0.53 | 0.447 | 15 | 30 12.216 12.387 1.4
1 1050|0447 | 15 | 30 12.182 12.348 1.4

1.2 1 0.92 | 0.447 | 15 | 30 26.191 26.263 0.2
1.2 |1 0.86 | 0.447 | 15 | 30 23.231 22.881 1.5
1.2 | 0.80 | 0.447 | 15 | 30 22.085 21.492 2.7
1.2 | 0.75 | 0.447 | 15 | 30 21.505 20.788 3.3
1.2 | 0.71 | 0.447 | 15 | 30 21.157 20.367 3.7
1.2 | 0.67 | 0.447 | 15 | 30 20.924 20.087 4.1
1.2 | 0.63 | 0.447 | 15 | 30 20.759 19.888 4.2
1.2 | 0.60 | 0.447 | 15 | 30 20.634 19.740 4.3
1.2 | 0.57 | 0.447 | 15 | 30 20.538 19.624 4.4
1.2 | 0.55 | 0.447 | 15 | 30 20.460 19.531 4.5
1.5 ] 0.94 | 0.447 | 15 | 30 28.911 29.271 1.2
1.5 | 0.88 | 0.447 | 15 | 30 25.577 25.852 0.3
1.5 | 0.83 | 0.447 | 15 | 30 24.394 24.178 0.9
1.5 0.79 | 0.447 | 15 | 30 23.671 23.287 1.6
1.5 | 0.75 | 0.447 | 15 | 30 23.234 22.749 2.1
1.5 | 0.71 | 0.447 | 15 | 30 22.942 22.390 2.4
1.5 | 0.68 | 0.447 | 15 | 30 22.734 22.133 2.6
1.5 | 0.65 | 0.447 | 15 | 30 22.578 21.941 2.8
1.5 | 0.63 | 0.447 | 15 | 30 22.456 21.795 2.9
1.5 | 0.60 | 0.447 | 15 | 30 22.359 21.671 3.1
CV represents the coefficient of variation of the service process
L (Exact) is the exact average queue length

L (App.) is the approximate average queue length

Table 2: Effect of the ratio p;/p2 on the Approximation
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’ A1 ‘ Ao ‘ Ccv ‘ s ‘ S ‘ L (Exact) ‘ L (App.) ‘ % error ‘
1.25 1 0.83 | 0.771 | 15 | 20 18.388 18.666 1.5
1.25 | 0.83 | 0.771 | 20 | 25 23.337 23.329 0.03
1.25 | 0.83 | 0.771 | 25 | 30 28.292 28.055 0.84

1.25 1 0.83 | 0.771 | 30 | 35 33.197 32.717 1.4
1.25 1 0.83 | 0.771 | 35 | 40 37.961 37.147 2.1
1.25 1 0.83 | 0.771 | 10 | 20 15.967 16.466 3.1

1.25 1 0.83 | 0.771 | 15 | 25 20.863 21.011 0.71
1.25 1 0.83 | 0.771 | 20 | 30 25.811 25.693 0.46

1.25 1 0.83 | 0.771 | 25 | 35 30.736 30.373 1.2
1.25 1 0.83 | 0.771 | 30 | 40 35.555 34.893 1.9
1.25 1 0.83 | 0.771 | 10 | 25 18.433 18.795 2.0

1.25 |1 0.83 | 0.771 | 15 | 30 23.337 23.370 0.14
1.25 1 0.83 | 0.771 | 20 | 35 28.262 28.018 0.86
1.25 1 0.83 | 0.771 | 25 | 40 33.110 32.571 1.6

CV the represents coefficient of variation of the service process

L (Exact) is the exact average queue length

L (App.) is the approximate average queue length

Table 3: Effect of the Control Limits on the Approximation
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Exact Solution | Approximate Solution
kE|s|S v s S 0% % suboptimality
0 |5] 6| 11.9848 | 10 11 12.3205 2.8
1 |4 7] 12.0098 | 4 18 12.5265 4.3
2 [ 4|7 12.025 3 20 12.6504 5.2
3 3|7 |12.0381 | 2 22 12.7842 6.2
4 1317 (120497 | 1 24 12.927 7.3
5 | 3| 8 [12.0601 | 1 25 13.0119 7.9
6 | 3] 8120692 | 1 26 13.0982 8.5
7 13| 8| 12.0783 | no switch (2) | 12.6904 5.1
8 | 3| 8 | 12.0874 | no switch (2) | 12.6904 5.0
9 | 3| 8 | 12.0966 | no switch (2) | 12.6904 4.9
10 | 3 | 8 | 12.1057 | no switch (2) | 12.6904 4.8
no switch(2) corresponds to always using set 2

Table 4: Comparison of the Algorithm with Exact Results for Example 1

vary the setup cost k from 0 to 10. The results are summarized in Table 5. The algorithm
does not fare well in this case, especially for large values of the switching cost. This can
be explained by a combination of high coefficient of variation for the arrival and service

processes and distance from heavy traffic conditions.

6 Conclusions

We studied performance evaluation and optimization problems for a finite buffered queueing
system with two different types of traffic parameters.

We analyzed the performance of diffusion approximation for the problem as the ap-
proximating diffusion control problem can be solved exactly. The approximations give
encouraging results for both performance evaluation and optimization. In particular, if the
coefficient of variation of the arrival and service processes are small, the average queue
length is approximated very well. As for optimization, the thresholds obtained by solving
the approximating control problem seem to capture the trends of the exact solution but
need more refinement to be useful.

Future research will investigate the applicability of similar ideas to problems with more

than two types of trafic parameters and multiple classes of customers with class dependent
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Exact Solution Approximate Solution
kE|s|S v s S ~y % suboptimality
01415 9.2215 6 7 9.43397 2.3
1 13|6| 930643 | 2 12 9.8402 5.7
2 136 935315 |1 14 10.1382 8.4
3 13]6] 939988 |1 15 10.3032 9.6
4 | 3| 7| 944324 | 1 16 10.4759 10.9
5 | 3| 7| 947752 | no switch (2) | 12.4977 31.8
6 | 2| 7] 950689 | no switch (2) | 12.4977 31.4
7 12| 7] 953511 | no switch (2) | 12.4977 31.1
8 | 2| 7| 9565332 | no switch (2) | 12.4977 30.7
9 [ 2] 7] 9.59153 | no switch (2) | 12.4977 30.3
10 | 2| 7| 9.61975 | no switch (2) | 12.4977 29.9
no switch(2) corresponds to always using set 2

Table 5: Comparison of the Algorithm with Exact Results for Example 2

holding costs.
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