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Abstract

We consider a finite buffered queue in which the queue length is controlled by dy-

namically selecting between two possible service rates (low and high). Using the faster

service rate requires higher operating costs which may justify using the slower rate from

time to time. Moreover, the system incurs holding costs for customers waiting to be

processed and setup costs for each service rate change. When both service rates are

close to the arrival rate, a heavy traffic (diffusion) approximation is valid for the ex-

pected queue length for this system. Furthermore, the approximating dynamic control

problem has an explicit solution for a special case of the parameters which leads to an

approximate solution for the general case. We present numerical examples that analyze

the validity of the heavy traffic approach.

1 Introduction

Consider a finite buffered queue with two possible service rates (fast and slow). Using the

faster server has the obvious advantage of keeping the queue lengths shorter. However, it

may be less costly to use the slower server. This motivates a dynamic optimization problem

of selecting between the two servers. In particular, we are interested in a case of this problem

in which setup costs are incurred each time the service rate is switched.

Service control problems for queueing systems have been studied extensively for many

particular cases. An important class of problems was introduced by Yadin and Naor [24]

where the server may be controlled by turning it off. Yadin and Naor studied the queue

lengths under an operating policy termed N-policy. Under this operating policy, the server

is turned off when the queue length is zero and turned back on when the queue length

reaches a threshold level N . Later, Heyman [11] and Sobel [21] proved that N-policy is the

optimal operating policy for a variety of dynamic control problems.

For the problem with two positive service rates (viz. a fast server and a slow server), it

is known that a single threshold type policy is optimal in the absence of setup costs. Using

a threshold policy, it is optimal to switch to the faster server when the queue length reaches

the threshold and switch back to the slower server when the queue length falls below the

threshold. In particular, for the problem of selecting the optimal service rate in the case of
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Poisson arrivals and exponential service times, Crabill [5] showed that the optimal service

rate must be increasing in the queue length. On the other hand, when setup costs are taken

into consideration it is likely that the optimal policy is of double band type, similar to the

well known (s, S) inventory control policies. For our problem, in an (s, S) policy, the faster

server is started when the queue length reaches S and is used until the queue length falls

to s. Similarly, the slower server is used from the time the queue length falls to s until the

queue length reaches S. Gebhard [7] considered a problem with two exponential servers

and a Poisson arrival process and obtained the queue length distribution for a given (s, S)

policy. Tijms [23] used the framework of Markov decision processes and proposed a policy

iteration algorithm to compute the optimal values of the parameters (s, S). Federgruen and

Tijms [6] studied the M/G/1 queue with two different service time distributions and gave

a recursive algorithm to compute the performance of a given (s, S) policy.

The case of finite buffers has been given less attention than the infinite buffer coun-

terpart. Hersh and Brosh, [10] studied the M/M/1/K queue with a removable server and

showed that N-policy is still optimal if holding costs are negligible. Their results were later

extended to the case of general service time distributions by Teghem [22]. Karaesmen and

Gupta [13] studied the effect of non-negligible holding costs for the M/G/1/K case and

reported an efficient computational procedure to compute the performance of a given (s, S)

policy for removable servers. For the problem with two positive service rates, Neuts and Rao

[16] employed matrix-geometric techniques to compute the performance of a given (s, S)

policy for the M/G/1/K queue (with phase type service time distributions.) Gupta [8],

studied both service and arrival control problems and showed that performance analysis for

both problems are closely related.

The use of diffusion processes for storage/queueing systems in the operations research

literature was pioneered by Bather [2], [3]. As well as being of interest in themselves,

diffusion processes also arise as heavy traffic approximations of queueing systems. These

approximations are particularly attractive as they are supported by formal limit theorems

(see Iglehart and Whitt [12]). More recently, diffusion approximations of queueing models

have been succesfully used to solve difficult dynamic optimization problems. Utilizing this

approach, dynamic decision problems for queues are replaced by stochastic control problems

for diffusion processes which may yield explicit or approximate solutions.

Rath [18] considered the service rate control problem for a queueing system. He showed

that when both service rates are close to the arrival rate (i.e. in heavy traffic), the queue

length process for the system converges to Brownian motion processes with two different

sets of drift and variance parameters corresponding to each server. In addition to the
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convergence of queue lengths, it was shown that the costs in the queueing problem also

converge to the costs of the Brownian motion control problem. Later, Rath [19] showed

that the optimal policy for the above diffusion control problem is an (s, S) policy by using

the corresponding controlled random walk and proving that the costs of the random walk

converges to those of the diffusion process. Chernoff and Petkau [4] treated the same

problem as a stochastic control problem and reproduced Rath’s results without using the

convergence from a random walk. Perry and Bar-Lev [17] considered the inventory control

version of the same problem. In their case the contents of a bounded storage system is

controlled by changing the drift of a diffusion process. In addition to holding and setup

costs, Perry and Bar-Lev’s model also includes penalties for hitting the boundaries. They

compute the performance of this system for infinite horizon discounted costs using renewal

arguments.

In a recent paper, Avram and Karaesmen [1] introduced a new method to solve the

above drift control problems for the (long run) average cost optimization case. The method

reveals the relationship between the problem without setup costs and the one with setup

costs and is computationally very efficient.

In this paper, we analyze the validity of diffusion approximations as alternative perfor-

mance analysis and optimization tools for a finite buffered queue with two different sets

of arrival/service rates. Diffusion approximations have the attractive property that they

capture the means and variances of the service and arrival processes which are critical for

the performance of a system. This enables the approximate analysis of GI/G/1 type queues

for which no efficient analytical techniques exist.

The arrangement of the paper is as follows. In section 2, we introduce some of the

notations used and give a formal definition of the problem. Section 3 considers the Markov-

ian case in detail. In section 4, we discuss diffusion approximations to compute the average

queue length and the expected cost for a given (s, S) policy. We also summarize the method

in [1] and describe how it can be used to compute the optimal average cost and the optimal

values of the parameters (s, S). In section 5, we give numerical examples to demonstrate the

behaviour of the proposed methodology for different cost and traffic parameters. Section 6

includes the conclusions and future research.

2 Definitions

We study a queueing system with two different sets of arrival and service time distributions.

We denote by A1 and B1 the random variables denoting the times between arrival and service
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times respectively for the first set and the analogous random variables A2 and B2 for the

second set. We will use λi and µi for the average arrival and service rates respectively when

the ith (i = 1, 2) set of distributions is used. Holding costs are incurred at rate h dollars

per customer and operating the queue costs c1 and c2 dollars using the set of distributions 1

and 2 respectively. Switching from the first set to the second set costs k1 dollars per switch

and switching from the second set to the first set costs k2 dollars per switch. Finally we let

the total switching (or setup) cost, k = k1 + k2.

In order to compute the long run average cost, we denote the expected queue length for

a given (s, S) policy by L(s, S). We also denote by π(i, s, S) the proportion of time the ith

set of parameters is used. Finally, we denote by K(t) the total switching cost incurred until

time t. Then the long run average cost per unit time, γ(s, S), is:

γ(s, S) = hL(s, S) + c1π(1, s, S) + c2π(2, s, S) + lim
t−>∞

K(t)
t

(1)

Our goal is to obtain the optimal cost γ∗, and the corresponding (s∗, S∗) pair.

3 The Markovian Case

In this section, we concentrate on the special case of Poisson arrival distributions and expo-

nential service times. It will be seen that in this case, the computation of the performance

of measures for given threshold levels (s, S) is straightforward. Thus, the results of this

section are useful benchmarks for comparison purposes.

3.1 The Stationary Queue Length Distribution

Consider the finite (K) capacity Markovian queueing system with an arrival rate λ and two

service rates µ1 and µ2 (where µ1 < µ2). An (s, S) policy is used to control the operation

of the servers. Hence the service rate is switched to µ1 whenever rate µ2 is used and the

queue length drops to s and is switched back to µ2 when the queue length builds up to S

while rate µ1 is used.

In the next lemma, we obtain the stationary distribution of the service control problem

described above in closed form.

Lemma 1 Consider the system subject to service rate control described above. If, ρ1 =
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λ/µ1 and ρ2 = λ/µ2, then:

πK
0 = κ

[
1

1−ρ1
− (S−s)ρS−1

1 (ρ1−ρ2)

(1−ρS−s
1 )(1−ρ2)

]−1

πK
i = ρi

1π
K
0 for i = 1, 2, .., s− 1

πK
i = ρs

1(1−ρ1)

(1−ρ
(S−s)
1

πK
0

[
(ρ

(i−s)
1 −ρ

(S−s)
1

(1−ρ1) + ρ
(S−s−1)
1 ρ2(1−ρ

(i−s)
2 )

(1−ρ2)

]
for i = s, s + 1, ..., S − 1

πK
i = (1−ρS−s

2 )(1−ρ1)ρS−1
1 ρi−S+1

2

(1−ρS−s
1 )(1−ρ2)

πK
0 for i = S, S + 1, ...K

(2)

where

κ =
1

1− α(K + 1)
(3)

and

α(K + 1) =
(1− ρS−s

2 )(1− ρ1)ρS−1
1

(1− ρS−s
1 )(1− ρ2)

[
1

1− ρ1
− (S − s)ρS−1

1 (ρ1 − ρ2)
(1− ρS−s

1 )(1− ρ2)

]−1
ρ2+K−S
2

1− ρ2
(4)

Proof: Let π∞i denote the stationary probability of having i customers in the identical

infinite buffered queue. The underlying Markov Chain for this system is reversible (see

Kelly [15]) when K ≥ S. Reversibility implies that the stationary distribution under a

state space restriction is proportional to the stationary distribution for the unrestricted

state space case. Hence:

πK
i = κπ∞i for i = 0, 1, 2, ..., K (5)

where κ is a normalizing constant given by:

κ = 1/(
K∑

i=0

π∞i ) (6)

To obtain equation (3), we use the tail probability:

α(K + 1) =
∞∑

i=K+1

π∞i (7)

along with the identity:
K∑

i=0

π∞i = 1− α(K + 1) (8)

Therefore, we are able to describe πK
i ’s completely in terms of π∞i ’s. Using the stationary

distribution, π∞i obtained in Gebhard [7], we immediately get equations (2) and (4).

2
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Remarks: 1. The expression in (2) for the states from s to S − 1 is slightly different than

that in [7] which has a typographical error.

2. The stationary distribution in (2) is a function of ρ1 and ρ2 and not the service rates µ1

and µ2. This implies that lemma 1 also covers the case where both service and arrival rates

vary.

3.2 Computation of the Cost Function

The cost function (1) for our problem consists of three components, viz., the holding cost,

the operating cost and the setup cost. We have already dealt with the computation of the

holding cost implicitly as we have obtained the stationary queue length distribution. The

expected holding cost per unit time is:

hL = h
K∑

i=1

iπK
i (9)

Next, we obtain the operating and setup costs per unit time in closed form.

Lemma 2 The operating cost per unit time in the system subject to service rate controlled

system descrived in Section 3.1 is:

(c1 − c2)

[
κ

(
1− (S − s)ρS−1

1 ρ2(1− ρ1)π∞0
κ(1− ρS−s

1 )(1− ρ2)

)]
+ c2 (10)

Proof: Gebhard [7] gives the probability of using the high rate server in the infinite capacity

queue as:
(S − s)ρS−1

1 ρ2(1− ρ1)π∞0
(1− ρS−s

1 )(1− ρ2)
(11)

Thus, the proportion of time the low rate server is used (in the infinite capacity queue) is:

1− (S − s)ρS−1
1 ρ2(1− ρ1)π∞0

(1− ρS−s
1 )(1− ρ2)

(12)

which can also be written as:
S−1∑

i=0

π∞i,1. (13)
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By reversibility, the long run proportion of time that the low rate server is used in the

corresponding finite capacity queue is:

S−1∑

i=0

πK
i,1 =

S−1∑

i=0

κπ∞i,1 (14)

= κ
S−1∑

i=0

π∞i,1 (15)

= π(1, s, S) (16)

where π(1, s, S) was defined in Section 2. Noting that π(2, s, S) = 1− π(1, s, S), the oper-

ating cost per unit time of the queue subject to service control given in (10) follows.

2

Lemma 3 The setup cost per unit time in the system subject to service rate control de-

scribed in Section 3.1 is:

kλ1
(ρS−1

1 (1− ρ1)π∞0 )
(1− ρS−s

1 )
(17)

Proof: The setup rate is the rate at which the process jumps from the state of low rate

to the state of high rate or vice versa. Using the probabilities given in [7] for the infinite

buffer case and by reversibility, the result in (17) is obtained.

2

As a consequence of lemmas 2 and 3, we can compute the performance of the M/M/1/K

queue with two different traffic rates when (s, S) are given. However, computing the optimal

(s, S) values still requires a search over the parameter space.

4 Diffusion Approximations

4.1 Diffusion Approximations for the GI/G/1 Queue

Performance analysis of queueing systems for arbitrary service and arrival time distributions

usually defies exact analysis. Among the approximation methods, diffusion (heavy traffic)

approximations are particularly attractive as their (limiting) convergence can be proved.

Furthermore, diffusion approximations replace discrete state space queueing processes by

continuous state space processes for which many analytical tools are available.

In this section, we present the performance evaluation tools obtained through diffusion

approximations. Consider a GI/G/1 queue where customers arrive according to a renewal
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process with mean rate λ and the service times have a general distribution with mean 1/µ.

We denote by Var(A) and Var(B), the variances of the interarrival times and service times

respectively. As usual, ρ = λ/µ denotes the traffic intensity. To obtain the approximation,

one needs a sequence of the above GI/G/1 queues indexed by a parameter n, called a

heavy traffic scaling parameter. The queueing process converges to the diffusion process

as n −→ ∞ and ρ −→ 1 under a certain scaling of time and space. In particular, let L(t)

denote the queue length at time t. The approximation is valid for the scaled queue length

process, Z(t), defined by:

Z(t) =
L(nt)√

n
(18)

Although, the selection of the scaling parameter n appears to be critical, for performance

analysis, a large integer value is sufficient. In the numerical examples, it will suffice to fix

n to a value of 1000.

Iglehart and Whitt [12] have shown that (in the limit) the scaled queue length, Z(t), is

a reflected (or regulated) Brownian motion with drift coefficient -ε (where ε =
√

n(1 − ρ))

and variance, σ2, given by:

σ2 = λ3Var(A) + µ3Var(B) (19)

One can then evaluate the performance of the queueing system by evaluating the corre-

sponding performance measures for the above regulated Brownian motion and going back

to the original scale using (18).

For the GI/G/1 queue (with infinite buffers), one can write Z(t) in terms of a standard

Brownian motion X(t) (with identical drift and variance) and another process, i.e:

Z(t) = X(t) + L(t) (20)

with the convention that X(0) = 0. L is a process with the following properties:

1. L is increasing and continuous with L(0) = 0

2. L increases only when Z = 0

(This property is due to the regulation principle, see Harrison [9] for more details).

Finite buffer capacity of the queueing system can also be taken into account in the

approximation. For the buffer capacity of K, we can denote the scaled buffer capacity by

K̂ (= K/
√

n). Then the scaled queue length, Z(t), is regulated at K̂ in addition to 0, i.e.:

Z(t) = X(t) + L(t)− U(t) (21)

where X(0) = 0, L is the lower regulating process described above and U has the following

properties:
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1. U is increasing and continuous with U(0) = 0

2. U increases only when Z = K̂

Hence, most performance analysis questions for GI/G/1 queues in heavy traffic reduce

to the performance analysis questions of one-dimensional regulated Brownian motion, a well

studied process.

4.2 Expected Queue Lengths

Consider a queueing system with two sets of traffic parameters (Ai, Bi), i = 1, 2 where Ai

and Bi are random variables denoting the interarrival and service times of set i. We also

denote the mean arrival and service rates by (λi, µi) (i = 1, 2). Parameter set 1 is employed

from the time the queue length falls to s until the time it increases to S. Similarly, parameter

set 2 is used from the time the queue length increases to S until the time it falls to s. Let

L(t) be the queue length process for this system. Rath [18], proves the following result:

Theorem 1 Under heavy traffic conditions (i.e. λ1 ≈ µ1 and λ2 ≈ µ2) and infinite buffer

capacity, the scaled version of the queue length process Z(t) converges to a controlled

diffusion process that moves according to two Brownian motions with parameter sets (εi, σi),

i = 1, 2 (with drift εi and variance σi for set i) with a lower barrier (regulation) at zero.

Thus,

εi = −√n(1− ρi) for i = 1, 2 (22)

for a large integer n and

σ2
i = λ3

i Var(Ai) + µ3
i Var(Bi) for i = 1, 2 (23)

The selection of the parameter set is performed dynamically according to a (ŝ, Ŝ) policy

where ŝ = s/
√

n and Ŝ = S/
√

n are the scaled versions of the thresholds in the queueing

system. Hence, (ε1, σ1) will be used in the region [0, Ŝ) and (ε2, σ2) will be used in the

region [ŝ,∞).

Note that, if the buffer capacity is finite (K), the process Z(t) will have an upper

barrier at K̂ (= K/
√

n). Next, we show that, the expected value of the process Z(t) can

be computed in closed form.

Theorem 2 Let E[Z]) be the expected value of the process Z(t), then:

E[Z] =
f1(ŝ) + f2(Ŝ)
t1(ŝ) + t2(Ŝ)

(24)
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where

f1(ŝ) =
Ŝ2 − ŝ2

2µ1
+

σ2
1(ŝ− Ŝ)

2ε2
1

+
σ4

1(e
−2ε1ŝ/σ2

1 − e−2ε1Ŝ/σ2
1 )

4ε3
1

(25)

t1(ŝ) =
Ŝ − ŝ

ε1
+

σ2
1(e

−2ε1Ŝ/σ2
1 − e−2ε1ŝ/σ2

1 )
2ε2

1

(26)

f2(Ŝ) =
−Ŝ2

2ε2
+

σ2
2Ŝ + ŝ(ε2ŝ− σ2

2)
2ε2

2

+
σ2

2(2K̂ε2 + 2ε2
2 − σ2

2)(e
2ε2(K̂−ŝ)/σ2

2 − e2ε2(K̂−Ŝ)/σ2
2 )

4ε3
2

(27)

and

t2(Ŝ) =
−Ŝ

ε2
+

2ε2ŝ + σ2
2(e

2ε2(K̂−ŝ)/σ2
2 − e2ε2(K̂−Ŝ)/σ2

2 )
2ε2

2

(28)

Proof: By renewal theory, we can consider a regenerative cycle of the process that starts

at the time parameter set 1 is initiated and ends the next time the buffer level drops to

ŝ when parameter set 2 is in use. Let TŜ denote the first time after the start of the cycle

the process reaches Ŝ. Similarly, let Tŝ denote the time process reaches ŝ starting from Ŝ.

Obviously, the cycle time is TŜ + Tŝ. Furthermore, let

f1(x) = E

[∫ TŜ

0
Z(z)dz|Z(0) = x

]
(29)

and

f2(x) = E

[∫ Tŝ

0
Z(z)dz|Z(0) = x

]
(30)

Hence, f1 and f2 denote the expected total inventory levels when the parameter sets 1 and

2 are used in a cycle, respectively. By renewal theory, the expected value of the inventory

level in a cycle is the ratio of the expected total inventory level in a cycle to the expected

duration of a cycle, i.e:

E[Z] =
f1(ŝ) + f2(Ŝ)
E[Tŝ] + E[TŜ ]

(31)

letting t1(ŝ) = E[TŜ ] and t2(Ŝ) = E[Tŝ], we obtain (24). Furthermore, f1, f2, t1 and t2

are solutions of the systems of ordinary differential equations by Ito’s lemma given below

(see Karlin and Taylor [14]). Note that the boundary conditions f ′1(0) = f ′2(K̂) = t′1(0) =

t′2(K̂) = 0 correspond to regulation at the boundaries 0 and K̂ (see Harrison [9]).




σ2
1f ′′1 (x)

2 + ε1f
′
1(x) = −x

f ′1(0) = 0

f1(Ŝ) = 0

(32)
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σ2
1t′′1 (x)

2 + ε1t
′
1(x) = −1

t′1(0) = 0

t1(Ŝ) = 0

(33)





σ2
2f ′′2 (x)

2 + ε2f
′
2(x) = −x

f ′2(K̂) = 0

f2(ŝ) = 0

(34)





σ2
2t′′2 (x)

2 + ε2t
′
2(x) = −x

t′2(K̂) = 0

t2(ŝ) = 0

(35)

2

4.3 Expected Performance of a Given Policy

An advantage of replacing the discrete queueing processes by diffusion processes is in com-

puting cost functionals associated with the control of the original process. By Rath’s results

[18], it is known that the cost functionals defined in section 2 converge to the corresponding

cost functions for the diffusion process.

As mentioned before, the diffusion problem is obtained from the queueing problem by a

rescaling of time and space. For example, the holding cost of the system is proportional to

the average buffer level which is L in the queueing system but L̂ = L/
√

n in the diffusion

system. To solve the original optimization problem, costs have to be on the same scale in

the rescaled problem. To achieve this, we scale the operating cost such that ĉ1 = c1/
√

n,

ĉ2 = c2/
√

n and the (total) setup cost such that k̂ = k/n but leave the holding cost, h,

unchanged (see [20] for a similar argument). If boundary costs exist in the original queueing

sytem (i.e. α0 dollars for unit idle time and αK dollars for the time the buffer is full), the

approximating diffusion system will have the rescaled boundary costs α̂0 = α0/
√

n and

α̂K = αK/
√

n.

With the rescaled costs, we can compute the performance of a given (s, S) policy for

the queueing system as showm in the following corollary:

Corollary 3 Let k̂ denote the total setup cost in a cycle (i.e. k = k1 + k2) and let α̂0 and

αK̂ denote the boundary costs at the lower and upper boundaries respectively. Then, the

optimal cost of an (ŝ, Ŝ) policy, γ(ŝ, Ŝ), is given by:

γ(ŝ, Ŝ) =
ϕ1(ŝ) + ϕ2(ŝ) + k̂

t1(ŝ) + t2(Ŝ)
(36)
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where

ϕ1(ŝ) =
−hŝ2

2ε1
+

ŝ(2ĉ1ε1 + hσ2
1)− Ŝ(2ĉ1ε1 − hε1Ŝ + hσ2

1)
2ε2

1

+
σ2

1(2ĉ1ε1 + 2α̂0ε
2
1 + hσ2

1)(e
−2ε1ŝ/σ2

1 − e−2ε1Ŝ/σ2
1 )

4ε3
1

(37)

ϕ2(Ŝ) =
−hŜ2

2µ2
+

Ŝ(2ĉ2ε2 + hσ2
2)− ŝ(2ĉ2ε2 − hε2ŝ + hσ2

2)
2ε2

2

+
σ2

2(−2ĉ2ε2 + 2hKε2 + 2α̂Kε2
2 − hσ2

2)(e
2ε2(K−ŝ)/σ2

2 − e2ε2(K−Ŝ)/σ2
2 )

4ε3
2

(38)

and t1(ŝ), t2(Ŝ) are given in (26) and (28) respectively.

Proof: The proof is similar to that of theorem 2. We will define a cycle that starts at ŝ

(at an instance of switch from parameter set 2 to parameter set 1) and ends at level ŝ at

the next switch instance from parameter set 2 to set 1. Using TŜ and Tŝ to denote the time

the process takes from the start of the cycle to reach level Ŝ and from TŜ to the end of the

cycle respectively and letting C define the total cost incurred during this cycle, we obtain:

γ(ŝ, Ŝ) =
E[C]

E[Tŝ] + E[TŜ ]
(39)

The expected total cycle cost E[C] can be written as the sum of the holding, boundary and

setup costs in a cycle. Defining:

ϕ1(x) = E

[∫ TŜ

0
(hZ(z) + ĉ1)dz + α̂0L(TŜ)

]
(40)

and

ϕ2(x) = E

[∫ Tŝ

0
(hZ(z) + ĉ2)dz + α̂KL(Tŝ)

]
, (41)

where x is any starting point between 0 and K̂, we can write (36) for γ(ŝ, Ŝ). Finally, ϕ1

and ϕ2 can be obtained as the solution of following ordinary differential equations:




σ2
1ϕ′′1 (x)

2 + ε1ϕ
′
1(x) = −hx− ĉ1

ϕ′1(0) = −α̂0

ϕ1(Ŝ) = 0

(42)

and 



s2
2ϕ′′2 (x)

2 + ε2ϕ
′
2(x) = −hx− ĉ2

ϕ′2(K̂) = α̂K

ϕ2(ŝ) = 0

(43)

2
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4.4 An Algorithm for the Computing the Optimal (s, S)

In section 3.2, we mentioned that the optimal parameters s and S for the Markovian case can

be computed by a search procedure. In fact, the same type of computation can be done for

general arrival or service time distributions as in Neuts and Rao [16]. In general, numerical

methods are necessary and the computation is lengthy. In this section, we summarize how

to use a result from [1] to compute the optimal threshold values s and S when the queueing

process in question is approximated by a diffusion process.

Consider a heavy traffic approximation, for the G/G/1/K queue with two traffic para-

meters used according to an (ŝ, Ŝ) policy. As the main results in [1] is proved for the case of

equal variances, in this section we assume that σ1 = σ2 = σ. The state of the buffer (for the

diffusion process), Z(t) can be denoted as (z, i), (0 ≤ z ≤ K̂, i = 1, 2). Let P = (P1,P2)

be a partition of the state space that determines which set of parameters is to be used (if

state (z, i) ∈ Pj then the jth set of parameters will be used). Furthermore, let I· denote

the indicator function, i.e:

I∆(x) =





1 if x ∈ ∆

0 otherwise
(44)

for any set ∆.

Consider the cost function for the diffusion control problem U which is dependent on

the starting point x, the policy P and the time horizon t:

Ux,P,t = Ex,P

[∫ t

0

2∑

i=1

hZ(z) + ciI[Z(z)∈Pi]dz + α̂0L(t) + α̂KU(t) + kN(t)

]
(45)

where Ex,P is the expectation operator which also depends on the starting point x and

the policy P and N(t) is the number of cycles upto time t. The objective is to minimize

the long run average cost

γ = sup
P

lim
t→∞

Ux,P,t

t
. (46)

where sup denotes supremum.

The solution of the above optimization problem requires a decomposition procedure.

To outline the procedure, we first consider the case of a single diffusion with infinitesimal

generator G = σ2d2

2 dx2 + ε d
dx . Using the approach pioneered by Bather [2], we can write:

U(x,P, t) ≈ γt + V (x), (47)

where γ is the long run average cost per time unit and V (x) (called the differential cost

starting at x) measures the relative differences between the various starting points after the
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common long run average γt is subtracted. It can then be shown by dynamic programming

arguments that V (x) satisfies the differential equation

GV = −h + γ (48)

Now, letting v(x) denote the derivative of V we replace the second order equation (48) by

the first order equation

gv = −h + γ, (49)

where g denotes the operator σ2d
2dx + ε. Finally, we decompose v(x) as v = ψ − γτ , where τ

and ψ are solutions of

g ψ = −h and (50)

g τ = −1 (51)

respectively. Thus, (50) is a cost equation and (51) is a time equation and the problem is

decomposed.

The above decomposition procedure can now be applied for the two diffusion processes,

with generators Gi = σ2d2

2 dx2 + εi
d
dx , i = 1, 2 when parameter set i is used. Bather’s approach

for each parameter set, now yields:

GiVi = −hi + γ (52)

V ′
i = (−1)iαi (53)

By letting vi = V ′
i denote the derivatives of Bather’s differential costs, these become:

givi = −hi + γ (54)

vi = (−1)iαi (55)

where gi denote the first order differential operators σ2d
2 dx + εi.

Let now ψi and τi be decompositions of vi in the form vi = γτi − ψi. We choose ψi, τi

as solutions of the following differential equations:




gi ψi = hi

ψi(i) = (−1)i+1αi

(56)

and 



gi τi = 1

τi(i) = 0.
(57)
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Then, γτi − ψi satisfy the equation (54). Finally, let ψ = ψ0 − ψ1 and τ = τ0 − τ1.

The following theorem characterizes the optimal switching levels. A detailed proof can

be found in [1].

Theorem 4 a) The policy of switching between the two diffusions at a fixed point x

achieves the long run average value of

γ(x) =
ψ(x)
τ(x)

. (58)

b) If a double band policy (ŝ, Ŝ) is optimal for some transaction cost k, then the switch

levels (ŝ, Ŝ) and the corresponding long run average γ satisfy:

ψ(Ŝ)
τ(Ŝ)

=
ψ(ŝ)
τ(ŝ)

= γ (conjugacy equation) (59)

and

−
∫ Ŝ

ŝ
(ψ(x)− γτ(x)) dx = k (cost equation) (60)

A graphical interpretation of theorem 4 is provided in Figure 1. γ(a) is the average

reward when switching at a in the absence of switching costs. Note that if γ(a) is uni-

modal, for any value s ∈ [max[γ(0), γ(K̂)], γ(a)], theorem 4 provides a unique switching

cost determined by (60) and a double band [ŝ, Ŝ] which is optimal for that k̂.

s S

k=0

γ = s

x

γ(x)

γ(a)*

a*

Figure 1: Graphical Interpretation of the Theorem
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Theorem 4 suggests the following efficient search algorithm to find the optimal values

of the thresholds ŝ and Ŝ:

Step 0. Set counter i to 0.

Step 1. Compute the optimal swithcing point in the absence of swithcing costs (a∗) by

minimizing the function ψ/τ . If a∗ /∈ [0, K̂], stop a double band policy can not be optimal.

Step 2. Select ŝi such that 0 < ŝ < a∗

Step 3. Find Ŝi using the conjugacy equation (59).

Step 4. Find the corresponding switching cost ki using the cost equation (60).

Step 5. If |ki − k| < δ stop, else if ki < k, select ŝi+1 such that ŝi < ŝ < a∗, else select ŝi+1

such that 0 < ŝ < ŝi.

Step 6. Set i = i + 1, go back to step 3.

Remark: Let ka denote the switching cost for which the corresponding long run average γa

equals min[γ(0), γ(K̂)]. For transaction costs larger than ka the optimal policy is to always

use the parameter set 1 or 2 depending on which of the costs γ(0) or γ(K̂) is smaller.

5 Numerical Examples

5.1 Approximating the Average Queue Length

Neuts and Rao [16] report a numerical study for the M/PH/1/K queue with two service

rates operated according to a (s, S) policy. Matrix-geometric methods are used to com-

pute a variety of exact performance measures. In this section, we compare the diffusion

approximation with the results in [16] for the average queue lengths.

In [16] various performance measures are computed with the following setup: the buffer

size, K is fixed at 50 and the service rate µ is fixed at 1, the traffic load ρ is adjusted by

selecting two arrival rates λ1 and λ2. To translate these parameters to the diffusion approx-

imation we select the heavy traffic scaling parameter n as 1000. We scale the parameters

such that: K̂ = 50/
√

n, ŝ = s/
√

n and Ŝ = S/
√

n. Furthermore, the drift coefficient of

diffusion i is given by εi =
√

n(1 − ρi) and the variances are given by: σi = λi + V ar(B)

(where B is the random variable correspoding to service times). For each experiment, we

report the absolute percentage error defined as:

|Approximate Queue Length− Exact Queue Length|
Exact Queue Length

(61)

Table 1 analyzes the quality of the approximation as the service distribution (and its

coefficient of variation changes). It can be seen that the heavy traffic approximation is
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quite good when the coefficient of variation of the service process is less than 1. Table

2 displays the effect of varying the traffic load ratio ρ1/ρ2. Note that, the coefficient of

variation of the selected distribution is low and the approximation is remarkably accurate

even when the traffic rates are not close to 1. Table 3 compares the approximate and exact

queue lengths when the thresholds (s, S) vary. Once again, the coefficient of variation of

the service process is less than 1, and the response of the approximation to the changes in

the threshold parameters is excellent.
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5.2 Performance of the Optimization Algorithm

In this section, we provide numerical examples to analyze the performance of the optimiza-

tion algorithm. Our benchmark is the M/M/1/K queue with two traffic rates for which the

optimization can be performed by searching all the possible (s, S) pairs. We then compute

threshold values by using the algorithm in section 4.4 and compute the cost of using the

thresholds obtained by the algorithm. A relevant measure is the percent suboptimality of

the policy obtained by the algorithm, defined as:

%suboptimality =
(algorithm’s cost− optimal cost)

optimal cost
. (62)

As a first example, consider the case where λ1 = 1.05, µ1 = 1, λ2 = 1, µ2 = 1.05, h = 0.5,

c1 = 0, c2 = 5 and the buffer size K = 50. All cost parameters and the buffer size are

scaled (as explained in section 4) to use the algorithm. We compare the exact (s, S) pairs

with those found through the algorithm as the switching cost k varies from 0 to 10. Figure

2 displays the γ̂ function for the given parameters.

0.25 0.5 0.75 1 1.25 1.5

0.465

0.47

0.475

0.48

0.485

0.49

0.495

x

γ(x)

Optimal (s,S) pairs

Figure 2: An Example of the Optimization Algorithm

Table 4 summarizes the results of the first example. The approximation is good for

small values of the setup cost but starts to deteriorate as the setup cost increases. Also,

the (s, S) pairs obtained by the algorithm are very sensitive to the setup cost whereas the

exact (s, S) pairs do not vary much.

The second example has the parameters: λ1 = 1.2, µ1 = 1, λ2 = 1, µ2 = 1.2, h = 0.5,

c1 = 0, c2 = 10 and the buffer size K = 50. Once again, we keep these parameters fixed and
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λ1 λ2 CV s S L (Exact) L (App.) % error

1 0.83 0.447 15 30 13.500 13.875 2.8

1 0.83 0.771 15 30 13.935 15.248 9.4

1 0.83 1 15 30 14.592 17.795 21.9

1 0.83 1.5 15 30 16.046 21.853 36.2

1 0.83 2 15 30 17.090 23.751 28.1

1 0.71 0.447 15 30 12.654 12.885 1.8

1 0.71 0.771 15 30 12.817 13.631 6.4

1 0.71 1 15 30 13.004 15.335 17.9

1 0.71 1.5 15 30 13.735 19.855 44.6

1 0.71 2 15 30 14.284 22.841 59.9

1.25 0.83 0.447 15 30 21.778 22.773 4.6

1.25 0.83 0.771 15 30 21.499 23.370 8.7

1.25 0.83 1 15 30 21.147 24.509 15.9

1.25 0.83 1.5 15 30 20.665 25.689 24.3

1.25 0.83 2 15 30 20.490 25.792 25.9

1.25 0.71 0.447 15 30 23.229 21.007 9.6

1.25 0.71 0.771 15 30 23.337 20.845 10.7

1.25 0.71 1 15 30 23.493 21.303 9.3

1.25 0.71 1.5 15 30 23.810 23.554 1.1

1.25 0.71 2 15 30 23.875 24.861 4.1

1.5 0.75 0.447 15 30 23.234 22.749 2.1

1.5 0.75 0.771 15 30 23.341 23.299 0.2

1.5 0.75 1 15 30 23.495 24.553 4.5

1.5 0.75 1.5 15 30 23.850 26.493 11.1

1.5 0.75 2 15 30 24.318 26.702 9.8

CV represents the coefficient of variation of the service process

L (Exact) is the exact average queue length

L (App.) is the approximate average queue length

Table 1: Effect of Service Time Distribution on the Approximation
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λ1 λ2 CV s S L (Exact) L (App.) % error

1 0.91 0.447 15 30 15.268 16.026 5.0

1 0.83 0.447 15 30 13.500 13.925 3.1

1 0.77 0.447 15 30 12.929 13.234 2.3

1 0.71 0.447 15 30 12.654 12.905 2.0

1 0.67 0.447 15 30 12.494 12.714 2.2

1 0.62 0.447 15 30 12.388 12.589 1.6

1 0.59 0.447 15 30 12.314 12.502 1.5

1 0.56 0.447 15 30 12.259 12.437 1.5

1 0.53 0.447 15 30 12.216 12.387 1.4

1 0.50 0.447 15 30 12.182 12.348 1.4

1.2 0.92 0.447 15 30 26.191 26.263 0.2

1.2 0.86 0.447 15 30 23.231 22.881 1.5

1.2 0.80 0.447 15 30 22.085 21.492 2.7

1.2 0.75 0.447 15 30 21.505 20.788 3.3

1.2 0.71 0.447 15 30 21.157 20.367 3.7

1.2 0.67 0.447 15 30 20.924 20.087 4.1

1.2 0.63 0.447 15 30 20.759 19.888 4.2

1.2 0.60 0.447 15 30 20.634 19.740 4.3

1.2 0.57 0.447 15 30 20.538 19.624 4.4

1.2 0.55 0.447 15 30 20.460 19.531 4.5

1.5 0.94 0.447 15 30 28.911 29.271 1.2

1.5 0.88 0.447 15 30 25.577 25.852 0.3

1.5 0.83 0.447 15 30 24.394 24.178 0.9

1.5 0.79 0.447 15 30 23.671 23.287 1.6

1.5 0.75 0.447 15 30 23.234 22.749 2.1

1.5 0.71 0.447 15 30 22.942 22.390 2.4

1.5 0.68 0.447 15 30 22.734 22.133 2.6

1.5 0.65 0.447 15 30 22.578 21.941 2.8

1.5 0.63 0.447 15 30 22.456 21.795 2.9

1.5 0.60 0.447 15 30 22.359 21.671 3.1

CV represents the coefficient of variation of the service process

L (Exact) is the exact average queue length

L (App.) is the approximate average queue length

Table 2: Effect of the ratio ρ1/ρ2 on the Approximation
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λ1 λ2 CV s S L (Exact) L (App.) % error

1.25 0.83 0.771 15 20 18.388 18.666 1.5

1.25 0.83 0.771 20 25 23.337 23.329 0.03

1.25 0.83 0.771 25 30 28.292 28.055 0.84

1.25 0.83 0.771 30 35 33.197 32.717 1.4

1.25 0.83 0.771 35 40 37.961 37.147 2.1

1.25 0.83 0.771 10 20 15.967 16.466 3.1

1.25 0.83 0.771 15 25 20.863 21.011 0.71

1.25 0.83 0.771 20 30 25.811 25.693 0.46

1.25 0.83 0.771 25 35 30.736 30.373 1.2

1.25 0.83 0.771 30 40 35.555 34.893 1.9

1.25 0.83 0.771 10 25 18.433 18.795 2.0

1.25 0.83 0.771 15 30 23.337 23.370 0.14

1.25 0.83 0.771 20 35 28.262 28.018 0.86

1.25 0.83 0.771 25 40 33.110 32.571 1.6

CV the represents coefficient of variation of the service process

L (Exact) is the exact average queue length

L (App.) is the approximate average queue length

Table 3: Effect of the Control Limits on the Approximation
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Exact Solution Approximate Solution

k s S γ s S γ % suboptimality

0 5 6 11.9848 10 11 12.3205 2.8

1 4 7 12.0098 4 18 12.5265 4.3

2 4 7 12.025 3 20 12.6504 5.2

3 3 7 12.0381 2 22 12.7842 6.2

4 3 7 12.0497 1 24 12.927 7.3

5 3 8 12.0601 1 25 13.0119 7.9

6 3 8 12.0692 1 26 13.0982 8.5

7 3 8 12.0783 no switch (2) 12.6904 5.1

8 3 8 12.0874 no switch (2) 12.6904 5.0

9 3 8 12.0966 no switch (2) 12.6904 4.9

10 3 8 12.1057 no switch (2) 12.6904 4.8

no switch(2) corresponds to always using set 2

Table 4: Comparison of the Algorithm with Exact Results for Example 1

vary the setup cost k from 0 to 10. The results are summarized in Table 5. The algorithm

does not fare well in this case, especially for large values of the switching cost. This can

be explained by a combination of high coefficient of variation for the arrival and service

processes and distance from heavy traffic conditions.

6 Conclusions

We studied performance evaluation and optimization problems for a finite buffered queueing

system with two different types of traffic parameters.

We analyzed the performance of diffusion approximation for the problem as the ap-

proximating diffusion control problem can be solved exactly. The approximations give

encouraging results for both performance evaluation and optimization. In particular, if the

coefficient of variation of the arrival and service processes are small, the average queue

length is approximated very well. As for optimization, the thresholds obtained by solving

the approximating control problem seem to capture the trends of the exact solution but

need more refinement to be useful.

Future research will investigate the applicability of similar ideas to problems with more

than two types of trafic parameters and multiple classes of customers with class dependent
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Exact Solution Approximate Solution

k s S γ s S γ % suboptimality

0 4 5 9.2215 6 7 9.43397 2.3

1 3 6 9.30643 2 12 9.8402 5.7

2 3 6 9.35315 1 14 10.1382 8.4

3 3 6 9.39988 1 15 10.3032 9.6

4 3 7 9.44324 1 16 10.4759 10.9

5 3 7 9.47752 no switch (2) 12.4977 31.8

6 2 7 9.50689 no switch (2) 12.4977 31.4

7 2 7 9.53511 no switch (2) 12.4977 31.1

8 2 7 9.565332 no switch (2) 12.4977 30.7

9 2 7 9.59153 no switch (2) 12.4977 30.3

10 2 7 9.61975 no switch (2) 12.4977 29.9

no switch(2) corresponds to always using set 2

Table 5: Comparison of the Algorithm with Exact Results for Example 2

holding costs.
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