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T he problem of estimating delays experienced by customers with different priorities, and the determination of the appro-
priate delay announcement to these customers, in a multi-class call center with time varying parameters, abandon-

ments, and retrials is considered. The system is approximately modeled as an M(t)/M/s(t) queue with priorities, thus
ignoring some of the real features like abandonments and retrials. Two delay estimators are proposed and tested in a series
of simulation experiments. Making use of actual state-dependent waiting time data from this call center, the delay
announcements from the estimated delay distributions that minimize a newsvendor-like cost function are considered. The
performance of these announcements is also compared to announcing the mean delay. We find that an Erlang distribution-
based estimator performs well for a range of different under-announcement penalty to over-announcement penalty ratios.
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1. Introduction

The interest in prediction and announcement of
delays in service systems has intensified as the call
center industry has grown and become technologi-
cally sophisticated. Managers have several objectives
in providing such information; modulating demand
by signaling times of high congestion, enhancing
satisfaction with inevitable waiting, or both. These
objectives bring with them several challenges: (1)
estimating real-time delays for each customer in a sto-
chastic environment and (2) deciding on what to
announce, given customer preferences regarding
waiting times and announcements made. This study
presents an analysis of these two issues in a real call
center setting.
Starting with the analyses in Whitt (1999a, b), most

existing models have considered single-class systems
(Allon et al. 2011, Armony et al. 2009, Guo and
Zipkin 2007, Ibrahim and Whitt 2009, Jouini et al.
2011). Jouini et al. (2009) extends the model by Whitt

(1999a) to one with multiple customer classes having
different priorities. Nakibly (2002) considers several
different models with multiple customer types having
priorities, and with service times that may depend on
the customer. The problem analyzed in this paper is
similar to those analyzed in Jouini et al. (2009) and
Nakibly (2002), in that there are several customer
types with different priorities, having similar service
times. However, calls are routed to different centers,
rather than servers, and due to technological con-
straints, state information pertaining to the number of
servers available at each site is not known in real time.
This precludes the adaptation of earlier results, and
leads us to pursue an approximation-based approach.
Strategic customers in queues react to waiting situa-

tions, as first modeled in a stream of literature starting
with Naor (1969). This literature developed substan-
tially over the years, as surveyed by Hassin and
Haviv (2003). Models motivated by call center delay
announcements, can be distinguished by whether
they only consider prediction and announcement
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(Ibrahim and Whitt 2009, Whitt 1999b), or if customer
reactions to these announcements are endogenized in
the analysis (Aksin et al. 2013, Allon et al. 2011,
Armony et al. 2009, Guo and Zipkin 2007, Jouini et al.
2011, Whitt 1999a). While most of the literature con-
siders systems where customers react to delay infor-
mation by balking only, a stream of recent work has
incorporated the possibility of reactions in the form of
abandonments from the queue as well (Armony et al.
2009, Ibrahim and Whitt 2009, Jouini et al. 2011). Even
though the setting we study also experiences aban-
donments, our approximations will ignore these. Sim-
ilarly, retrials and time-varying arrivals are features
which will be approximated away, as done in all of
the earlier studies. The possibility of customer call
backs as described and modeled by Armony and
Maglaras (2004) is not present in this setting. Since the
existing operation at the call center did not have delay
announcements at the time of study, there are no data
on customer reactions to such announcements. Thus,
customer reactions will not be part of the analysis in
this study.
Two different types of analysis have been pursued

in papers that deal with prediction and announce-
ment in queueing systems: the first predicts and
announces the delays based on transient queueing
analysis (Jouini, et al. 2011, 2009, Whitt, 1999a, b),
whereas the second considers announcing real-time
delay estimators under a fluid model applicable in
large and overloaded systems (Armony et al. 2009,
Ibrahim and Whitt 2009). The approach herein is clo-
ser to the first. Like in the second approach, it employs
a real-time estimation idea, however not directly for
the delays but rather for the underlying model param-
eters. Since model parameters are unknown, an
approximation that makes use of real-time estimators
for the number of servers is employed. We take the
approach of providing simple approximations that
are easy to implement in practice. An extensive simu-
lation experiment as well as real state-dependent
waiting time data are subsequently used to test the
quality of the developed delay estimators.
Various announcement forms are considered in the

literature: delay announcements of the type “you will
wait x minutes,“ derived from distributions (Jouini
et al. 2011, Whitt 1999b); delays based on real-time
estimators (Armony et al. 2009, Ibrahim and Whitt
2009); state occupancy or length of queue information
as indirect waiting time announcements (Aksin et al.
2013, Guo and Zipkin 2007, Xu et al. 2007); or more
general, possibly vague and non-quantitative announ-
cements (Allon et al. 2011). In this study, we focus on
delay announcements derived from state-dependent
waiting time distributions. More importantly, we
propose a new framework making use of a news-
vendor-like performance criterion to pick the value to

announce from the estimated delay distribution. This
framework enables incorporating asymmetric under
and over-announcement penalties that, compared
to symmetric ones, are more consistent with behav-
ioral evidence. Within this framework, we further
propose and test a robust estimator obtained from a
robust optimization formulation of the newsvendor
problem.
Delay announcements that are optimal under the

newsvendor framework are tested making use of real
state-dependent waiting time data from the call center
being studied. The current study is among the first to
study delay announcements in a service setting com-
bining modeling analysis with empirical validation.
Most empirical work to date comes from experiments
in psychology and marketing that analyze people’s
reactions to waiting situations, with and without
information, in call centers and elsewhere (see for
example Munichor and Rafaeli 2007, Pazgal and
Radas 2008). The papers by Brown et al. (2005) and
Feigin (2005) analyze call center data where delay
announcements are present, however pursue a more
descriptive analysis than the one in this study. The
recent study Aksin et al. (2013) is an exception that
combines modeling and empirical analysis in an
analysis of delay announcements in a call center.
We describe the operations of the call center in

detail in section 2 and propose the newsvendor frame-
work for delay announcement from an approximated
delay distribution. The delay estimator for the high-
priority class is developed in section 3 and for the
lower priority classes in section 4. Section 5 explores
the performance of these approximations in a series of
simulation experiments, the details of which are pro-
vided in the online supplement (OS) and the supple-
mentary results (SR) document available from the
authors. The simulation experiments analyze the pro-
posed approximations in a controlled environment,
thus enabling a clear understanding of how various
system features may affect their performance. In sec-
tion 6, we determine what value to announce from the
approximated distributions. The proposed announce-
ments are tested making use of waiting time data
from the field in section 7. This provides a real test of
the cost effectiveness of the proposed delay announce-
ments. The study ends with concluding remarks.

2. The Setting

The setting is that of a large multi-site call center han-
dling more than 50,000 calls daily. Calls are handled
at several sites, differentiated by their size but of iden-
tical capability in terms of the types of calls that can
be handled. This multi-site system is not equipped
with networked routing capabilities implying that
each site has its own queue. An important objective of
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the real-time delay estimation is to use these estimates
in routing calls to the various sites. The delay estima-
tors we propose below and subsequently analyze for
the purpose of delay announcement, have indeed
been implemented for real-time routing decisions of
calls at this call center. The use for routing purposes is
not explored any further in this study. At the time of
study, the call center was highly congested as mani-
fested by periods with high call retrial. Abandonment
probabilities of around 5% were experienced.

2.1. Operational Features and Approximations
The center responds to three types of calls A, B, and
C, distinguished by customer relationship-based
criteria (customer valuation-based differentiation).
A-type calls are the most valuable. Calls of different
types are considered to be statistically similar from a
service time perspective. Strict priority rules are
implemented with class A having non-preemptive
priority over B who in turn have non-preemptive pri-
ority over C-type calls.
An important result of the multi-site with no net-

worked routing feature is that the number of servers at
a site is not known in real time. While this feature is a
result of the technology in place, even in a setting with
networked queues, absenteeism (Whitt 2006) and lack
of discipline or motivation on the part of the servers in
properly displaying their availability status, results in
the number of servers in real time to be unknown
exactly. A different reason for lack of knowledge about
system capacity is documented in Hasija et al. (2010).
In the e-mail contact center being studied, work rules
and incentives motivate servers to slow down such
that work expands to fill the time available for its com-
pletion, thus making it difficult to determine capacity.
The system studied herein can, however, track the
number of clients of each class waiting in queue, as
well as the average rate of calls routed toward each site
within a specified time window, and the calls arriving
to service within a specified time window. Our first
level of approximation results from this feature.
We approximate the total service rate of s servers

sl, by the mean arrival rate of calls to service. Since
arrivals are time varying, the mean arrival rate in turn
is estimated over a rolling time window, as explained
in more detail in section 3. The approximation results
from the use of a real-time estimator for a basic model
parameter, and is different from the standard
approach where all parameters are known or distribu-
tions of parameters can be derived.
The real system is complex. Capturing this com-

plexity through corresponding model features, and
performing an exact analysis through queueing mod-
els or simulation may be possible, but leads to exces-
sive complexity which is not desired from a practical

point of view. Instead, we propose to analyze the
system as an M(t)/M/s(t) queue with three classes
having strict priorities. This model ignores abandon-
ments and retrials, and assumes non-homogeneous
Poisson arrivals and exponential service times.
The final layer of complexity results from the prior-

ity system in place. Waiting times have to be estimated
for the different types of calls having different priori-
ties. For this analysis as well, we will prefer the simple
and approximate over the exact analysis of the under-
lying models. We will propose approximating the
delay distribution of especially the lower priority cus-
tomers by a normal distribution with an appropriately
chosen mean and variance or an Erlang distribution
with corresponding parameters, as detailed below.

2.2. Choosing What to Announce
In making announcements, the firm has different
objectives for the different call types. The main con-
cern is to explore announcements to A-type custom-
ers and potentially to B-type callers. Announcements
to C-type callers are not considered, as this is deemed
unnecessary by managers at the time of study. The
objective for A-type calls is maximizing service expe-
rience and satisfaction, given their high value pre-
mium nature. In terms of announcements, ex-post
precision, that is, correctness of the announced delay
viz-a-viz the real delay is important. Announced
delays can shorten or lengthen both a customer’s
expectations regarding waiting and his/her percep-
tions of the actual wait (Hui and Tse 1996, Hui and
Zhou 1996, Kumar et al. 1997). As such, over- or
under-announcement of actual delays may result in a
gap between expectations and perceptions, thus lead-
ing to dissatisfaction whenever expected waits are
perceived to be exceeded (Anderson 1973, Parasur-
aman et al. 1985). This possibility for dissatisfaction
implies that for these high-value customers over- or
under-announcement is undesirable.
In choosing a value to announce from the delay dis-

tribution, there seem to be a number of simple
options. Throughout the study, delay distributions as
well as chosen values for announcements are condi-
tional on the state in terms of number of callers in the
system, as well as the current time (determining the
corresponding arrival rate used in the approxima-
tions). To keep notation more manageable, we will
not make these explicit in the notation, however,
throughout the study all delay distributions and
delay announcements should be interpreted as such.
Labeling the announced delay as da (single value), the
realized delay as Dr (random variable), one may wish
to choose da to minimize

E½ðDr � daÞ2�: ð1Þ
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This would result in d�a ¼ E½Dr� and estimators for
the mean delay can be readily used.
Another alternative is to choose da to minimize

E½jDr � daj�. The optimal announcement corresponds
then to the median of Dr. If the delay distribution is
approximated by a symmetrical distribution such as a
normal distribution, d�a would then be selected as the
estimator of mean delay. For non-symmetrical distri-
butions, however, the median must be obtained.
The above approaches penalize under-announce-

ments and over-announcements similarly and ignore
the fact that under-announcements and over-announ-
cements are perceived differently. Our proposed
announcement scheme lets the manager choose asym-
metric penalties for under announcing (a per unit
time), and over announcing (b per unit time). In this
case, the manager’s decision of what to announce to
an A-type customer can be formulated as

Min aE½ðDr � daÞþ� þ bE½ðda �DrÞþ�: ð2Þ
Letting c = a/(a+b), this leads to the following well-
known newsvendor problem’s critical fractile solu-
tion (Zipkin 2000) for the optimal announcement:

d�a ¼ F�1
Dr
ðcÞ; ð3Þ

where FDrð:Þ is the cumulative distribution function
(cdf) of the random variable Dr. Of course, FDr in
the above expression is unknown, and will be
replaced by the approximations in sections 3 and 4
to obtain approximately optimal values for da.

3. Predicting Delays for Type A
Customers

Consider an M/M/s queue where s denotes the num-
ber of servers. Under the assumption that the service
times are exponential and there are s servers, the
delay distribution of a customer who arrives with n
waiting customers in front corresponds to the sum of
n+1 independent exponential random variables with
rate sl. This is an Erlang distribution with n+1 stages
and rate per stage sl. Thus, for such an M/M/s sys-
tem where the number of servers is known, the delay
of the high-priority customers will have an Erlang
distribution.
In our context, the number of active servers is not

known. To approximate the delay distribution, we
propose to approximate the aggregate service rate sl
by the total arrival rate of all customers k(t). In rele-
vant applications, however, both the arrival rate k(t)
and the number of servers s(t) may be time varying.
In order to obtain a simple point estimate for the arri-
val rate at time t, we focus on R(t � s), the total num-
ber of arrivals to service (i.e., from all customer types)
in a time window of (t � s,t] and propose:

�̂ðtÞ ¼ Rðt� sÞ
s

: ð4Þ

In the proposed analysis, we take a rolling time win-
dow of ten minutes for s, as proposed by managers
at the call center. This quantity was determined
through earlier experiments with time windows of
different lengths. In section 5.2.1, we further explore
the role of s in balancing the tradeoff between sta-
tionarity and sensitivity to changes in time. The
resulting approximation for the delay distribution is
then an Erlang distribution with n+1 stages and a
rate per stage of �̂ðtÞ. We denote by D̂erl the result-
ing random variable.
We recognize that at times �̂ðtÞ may differ from s(t)

l but we think that the most relevant cases from a
delay announcement perspective are those where
�̂ðtÞ � sðtÞl. In particular, if �̂ðtÞ is significantly smal-
ler than s(t)l, it is unlikely to see any waiting custom-
ers, therefore waiting time announcement is not an
issue. Since �̂ðtÞ is based on arrivals to service, it will
be lower than s(t)l most of the time, except at estima-
tion points with high variations in the number of serv-
ers. For a more detailed discussion, we refer the
reader to the explanations in section 5.2.2.
The Erlang approximation requires a numerical

inversion to compute its fractiles. These will be
needed when choosing a delay to announce from the
distribution in section 6. Instead of the Erlang, a nor-
mal distribution with the same mean and standard
deviation can be employed to yield a simple formula.

The resulting random variable D̂norm has a normal

distribution with mean ðn þ 1Þ=�̂ðtÞ and standard

deviation
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
=�̂ðtÞ.

4. Predicting Delays for Type B and C
Customers

The delay prediction for type B and C customers is
more challenging since those customers not only wait
for customers ahead of them at their time of arrival
but also have to wait for higher class customers who
arrive during their wait. To outline the approach, let
us focus on a type B customer who arrives to a busy
system with no customers in front of her in the queue.
Since type A calls have priority, she has to wait until
all future type A customers that arrive during her
delay have cleared. This corresponds to the busy per-
iod duration in an M/M/s queue with arrival rate kA
and service rate l per server. Consider now anM/M/
1 queue with arrival rate kA and service rate sl. The
duration between two successive service completions
in either the M/M/s queue with service rate l or this
M/M/1 queue is exponentially distributed with
rate sl. Thus, these two busy periods coincide. In
summary, the waiting time of a type B customer is
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equivalent to the busy period duration in an M/M/1
queue with arrival rate kA and service rate sl. The
Laplace Transform of this busy period (see Kleinrock
(1975)) is given by

G�ðzÞ ¼ B�ðzþ �A � �AG
�ðzÞÞ;

where B*(z) is the Laplace Transform of the service

time distribution, for z 2 Rþ. The moments of the
distribution can now be easily found. Denoting by
E[X] and Var[X] the expected value and the variance
of a given random variable X, respectively, we
obtain for the conditional waiting time denoted by
DB of a new customer B, given a busy system and
empty queues:

E½DBjnA ¼ 0; nB ¼ 0; nC ¼ 0� ¼ 1

sl� �A
;

and

Var½DBjnA ¼ 0; nB ¼ 0; nC ¼ 0� ¼ slþ �A

ðsl� �AÞ3
:

It is easy to generalize the above to a type B cus-
tomer who arrives with n1 type A customers and n2
type B customers already in queue (note that her
wait is not affected by the n3 type C customers in
queue). This customer now has to wait for
n1 + n2 + 1 busy periods in the corresponding M/
M/1 queue with arrival rate kA and service rate sl.
This leads to

E½DBjnA ¼ n1; nB ¼ n2; nC� ¼ n1 þ n2 þ 1

sl� �A
; ð5Þ

and

Var½DBjnA ¼ n1; nB ¼ n2; nC� ¼ ðn1 þ n2 þ 1Þðslþ �AÞ
ðsl� �AÞ3

:

ð6Þ
As in the previous section since the number of serv-
ers and the arrival rates are unknown, we approxi-
mate sl by �̂ðtÞ and similarly kA by

�̂AðtÞ ¼ RAðt� sÞ
s

;

where RA(t � s) represents the arrivals to the system
for type A calls in the time interval (t � s). Note
that the call center technology allows to compute
the number of arrivals from any type to the system
or to service. We then adapt the definition of R(.)
such that it leads to the best results. We use the
number to service in order to estimate the system
capacity sl, while we use the number to the system
in order to estimate the arrival rate kA. The resulting
estimators have the following form:

Ê½DBjnA ¼ n1; nB ¼ n2; nC� ¼ n1 þ n2 þ 1

�̂ðtÞ � �̂AðtÞ
; ð7Þ

and

dVar½DBjnA ¼ n1; nB ¼ n2; nC�
¼ ðn1 þ n2 þ 1Þð�̂ðtÞ þ �̂AðtÞÞ

ð�̂ðtÞ � �̂AðtÞÞ3
:

The results for type C customers are similar. The
waiting time of a type C customer arriving with n1, n2,
and n3 customers of classes A, B, and C, respectively,
already waiting in queue is the equivalent of
n1 + n2 + n3 + 1 busy periods in an M/M/1 queue
that receives both type A and B arrivals. As before,

we approximate kB by �̂BðtÞ ¼ RBðt�sÞ
s where RB(t � s)

is the number of arrivals to the system of type B calls
in a time interval (t � s). The resulting estimators, for
the conditional waiting time denoted by DC of a new
customer C, given n1, n2, and n3, are

Ê½DCjnA ¼ n1; nB ¼ n2; nC ¼ n3�
¼ n1 þ n2 þ n3 þ 1

�̂ðtÞ � �̂AðtÞ � �̂BðtÞ
;

and

dVar½DCjnA ¼ n1; nB ¼ n2; nC ¼ n3�
¼ ðn1 þ n2 þ n3 þ 1Þð�̂ðtÞ þ �̂AðtÞ þ �̂BðtÞÞ

ð�̂ðtÞ � �̂AðtÞ � �̂BðtÞÞ3
:

Beyond the moments, the waiting time distribution
is difficult to approximate in a simple way. We pro-
pose two approximations. One is a normal approxi-
mation with the estimated means and standard
deviations. The other is for the B-type calls and is an
Erlang approximation (an analogous approximation
can be given for the C-type, see subsection 2.3 of the
SR document). In choosing the Erlang distribution,
we are approximating each busy period by an expo-
nential random variable with rate (sl�kA). In particu-
lar, we observe that an Erlang distribution with
n1 + n2 + 1 stages with rate per stage equal to
sl � kA, has a mean as given by Equation (5) and a
variance given by

n1 þ n2 þ 1

ðsl� �AÞ2
: ð8Þ

Since the variance of the delay (sum of n1 + n2 + 1
i.i.d. busy periods) given in Equation (6) is simply

the constant factor slþ�A

sl��A
times the expression in

Equation (8), it gives an additional support to
approximate the waiting time by this Erlang distri-
bution. The approximation underestimates the vari-

ance, since ðslþ�AÞ
ðsl��AÞ [ 1.
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5. Validating the Delay
Approximations Via Simulation

To assess the validity and robustness of the proposed
delay estimators, an extensive simulation experiment
is performed, testing for the different layers of
approximation in isolation. The simulation environ-
ment allows us to do controlled experiments where
we vary one feature or parameter at a time. In particu-
lar, the experiments focus on the following three
approximations made in the analysis:

• Approximation �iðtÞ � �̂iðtÞ
• Approximation sðtÞl � �̂ðtÞ
• Approximate delay distributions.

Some numerical illustrations are given herein.
Detailed results can be found in the Online Supple-
ment (OS). We further provide a Supplementary
Results (SR) document, where analysis with a more
extensive set of parameters and further results are
reported (Jouini et al. 2014). We refer to Tables
and Figures in these documents with an OS or SR
extension.

5.1. Description of the Simulation Model
Recall that our original call center is a complex system
with balking, abandonments, retrials, and time vary-
ing inter-arrival times and number of agents. More-
over, most of the parameters are unknown.
In the simulation, the call center is modeled as a 3-

class M(t)/M/s(t) + M non-preemptive priority
queue with customer balking and retrials. We focus
on the delay prediction, without considering any
information announcement or customer reaction to
announcement. For simplicity, we choose the same
probability of balking for all customer types, denoted
by b. This means that a customer who arrives to a
busy system leaves the system without service with
probability b, independently of any other event.
Abandonment times are assumed to be independent
and identically distributed (i.i.d.) for all customer
types. They are exponentially distributed with rate h.
We allow some of the customers who balk or abandon
to call back the call center. We denote by r the proba-
bility (same probability for all types) that one cus-
tomer will call back, independently of any other
event. Delays before customer call backs are random.
They are assumed to be i.i.d. for all types and follow
an exponential distribution with rate g. We choose
1
g ¼ 15 minutes. Service times for all types are

assumed to be i.i.d. and follow an exponential distri-
bution with rate l = 1 per minute (we measure time
in units of mean service time).
We divide a 24-hour working day into P identical

periods of 10 minutes each (P = 144). The day starts at

time 0 and period j corresponds to the time window
[10(j�1),10j), for j = 1,. . .,P. As commonly done in
practice, we assume that the mean arrival rate for
each customer type and the number of agents is con-
stant over a given period. Here, we are not assuming
a piecewise constant arrival rate but are approximat-
ing the continuous arrival rate by a piecewise con-
stant function. As in (Ibrahim and Whitt 2011), we
consider sinusoidal arrival rate intensity functions.
For t 2 [10(j�1),10j) (period j), the mean arrival rate
of customers type i, for i 2 {A,B,C}, is given by

�iðtÞ ¼ �i;j ¼ ��i þ a sinðfjÞ; ð9Þ
where ��i is the average arrival rate, a is the ampli-
tude, and f is the frequency. Again, we choose for
simplicity customer-type-independent amplitude
and frequency. For t 2 [10(j�1),10j) (period j), the
number of agents is s(t) = sj. We define the server

utilization in period j as qj ¼ �A;jþ�B;jþ�C;j

sjl
, for j = 1,. . .,

P. In the experiments, we consider two different sys-
tem staffing choices, namely one where staffing is
synchronized with arrival rates, and another one
where staffing is asynchronous.

5.2. Experiments with Synchronized Staffing
The first set of experiments is for the case where staff-
ing is synchronized with the arrival rates. We vary
the staffing level such that the server utilization
remains unchanged over the day. Since the call center
parameters are unknown in advance, synchronized
situations are not likely to happen in practice. How-
ever, unlike the asynchronous staffing experiments
that follow, synchronized staffing enables an under-
standing of the effect of each factor in isolation. The
understanding gained from this section is then used
to interpret the more realistic asynchronous staffing
experiments in section 5.3.

5.2.1. Approximation �iðtÞ � �̂iðtÞ. In our approx-
imations, we use the time varying arrival rates ki(t),
for i 2 {A, B}. They are, however, not known by the
real call center. In order to obtain a point estimate for

them, we propose �̂iðtÞ ¼ Riðt�sÞ
s , where Ri(t�s) is the

number of arrivals of type i to the system during a

time window of (t � s, t]. Note that �̂iðtÞ is estimated
at time t, which is the arrival epoch of a new customer
type i, i 2 {A, B}.
It is clear that this approximation mainly depends

on the length of the time window s, the length of a
period, and the arrival rates frequency f. It also
depends on the position of the time estimate t within
the current period of arrival. The approximation is
likely to be better when t is at the end of a given per-
iod than at a previous moment in this period. Note
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that the effect of the other system features (balking,
abandonment, and congestion) is captured through
their effect on retrials. More retrials mean more arriv-
als, but this would not affect the approximation.
Consider the call center as described in section 1.

We choose ��A ¼ 10; ��B ¼ 8; ��C ¼ 6; a ¼ 2; h ¼0:5;
b ¼ 0:2, and qj = 120% for j=1,. . .,P. The staffing level

for a period j is sj ¼ b�A;jþ�B;jþ�C;j

lqj
c þ 1, for j = 1,. . .,P,

where ⌊x⌋ denotes the greatest integer not exceeding
x, for x 2 R. Because of the integer character of sj, the
actual server utilization is slightly lower than its ini-
tially chosen value. We vary the length of the time
window, s = 5, 10, 20, 30, 40, and the frequency of
the mean arrival rates, f = 0.1, 0.2, 0.5. A low value of
frequency means that the mean arrival rates vary
slowly over the day’s periods, and vice versa. Note
that the estimation times are those of arrivals from all
types to a busy system, which occur at arbitrary
moments over a period. We then consider 3-represen-
tative estimation time points within each period j
(j = 1,. . .,P): the beginning t = 10(j � 1), the middle
t = 10j � 5, and the end 10j.
For each set of parameters, we run 1000 replica-

tions. For each one of the three estimation times in
each period and for each customer type i 2 {A, B},

we compute from simulation �̂iðtÞ by averaging over
all replications. We then compare the estimate value

�̂iðtÞ to the exact one ki(t) (given in Figure 1). An illus-
tration of the results for the case with no retrials is
shown in Table 1. The complete results for different
retrial levels are given in Table 1-SR. Each value in the
table is an average of the relative error over all peri-
ods. The relative error in a given period is computed

as 100� j�̂iðtÞ� �iðtÞj
�iðtÞ , where |x| is the absolute value of x,

for x 2 R.
Table 1 reveals, for our case with a 10-minute per-

iod length, that time windows of 5 or 10 minutes are
appropriate for the approximation. A slight prefer-
ence is for s = 10, since it leads to a sufficient number
of arrivals allowing to better reach the expected
values of the arrival rates. It is also not too large in
order not to cover too many previous periods where
the mean arrival rate can be different. We also see, as
expected, that the quality of the approximation is bet-
ter for customers who arrive at the end of a period
than those who arrive earlier within the same period.
For the former, the time window is indeed included
in the corresponding period, whereas for the latter it
overlaps between the period in question and the
previous one where the arrival rate is different.

(a) (b)

(c)

Figure 1 The Time-Varying Parameters (�kA ¼ 10, �kB ¼ 8, �kC ¼ 6, a = 2)
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For the same reason of overlap, we see that the
approximation is a bit better for arrivals in the middle
of the periods with s = 5 than those with s = 10. For
arrivals in the beginning or the middle of a period,
the approximation deteriorates in the frequency. The
reason is again related to the overlap of the time win-
dow with previous periods where the mean arrival
rate can be considerably different for high frequen-
cies. Finally, we find as expected that retrials have no
impact on the approximation.
In summary, the experiments confirm that it is

appropriate to use the approximation �iðtÞ � �̂iðtÞ
with a time window length similar to that of a period,
when t is at the end of the period, and arrival rate fre-
quencies that are not too high, leading to average rela-
tive errors of around 1%. Retrials do not have an
effect on the approximation.

5.2.2. Approximation sðtÞl � �̂ðtÞ. We investigate
the effects of balking, abandonment, retrials, frequen-
cies of the time-varying arrival rates, the call center
size, and the server utilization on the quality of the

approximation sðtÞl � �̂ðtÞ. Recall that �̂ðtÞ ¼ Rðt�sÞ
s ,

where R(t � s) is the number of arrivals from all
types to service during a time window of (t�s,t]. Note

that �̂ðtÞ is estimated at time t, which is the arrival
epoch of a new customer from one of the 3 types.
We consider the call center described in section 2

(1l ¼ 1; 1g ¼ 15; s ¼ 10 and P = 144 periods of 10 min-

utes each) and run simulations with various sets of
parameters. We assess the quality of the approxima-
tion at the arrival epochs of customers from all types.
For each set of parameters, we run as many replica-
tions as needed (with a warm-up period of 40 minutes
at the beginning of each replication) in order to collect

3000 conditional realizations of �̂ðtÞ, given a busy sys-
tem and a given number of waiting customers with
higher priority in the queue. More specifically for
arrivals type A: for each nA 2 {0,1,. . .,10}, we collect

3000 realizations of �̂ðtÞ and compare them to their
corresponding 3000 realizations of s(t)l. We do the
same for type B (type C) arrivals for nA+nB
2 {0,1,. . .,10}(nA+nB+nC 2 {0,1,. . .,10}). An illustra-
tion of the results pertaining to the effect of abandon-
ments is shown in Table 2. The detailed results are
given in Tables 1-6-OS, and in Tables 2-14-SR. Each
value in the tables corresponds to the average of
the relative error over 3000 realizations. The relative
error for a given realization is computed as

100� j�̂ðtÞ�sðtÞlj
sðtÞl . To simplify the presentation in the

Table 1 Average Relative Error for the Approximation λi(t) ≈ λ̂i(t) Under Synchronized Staffing and No Retrials (λ�A = 10, λ�B = 8, λ�C = 6, a = 2,
h = 0.5, b = 0.2, r = 0, and qj = 120% for j = 1,. . .,P)

Frequency
Time in
the period

s = 5 s = 10 s = 20 s = 30

A (%) B (%) A (%) B (%) A (%) B (%) A (%) B (%)

f = 0.1 Beginning 1.88 2.13 1.72 1.92 2.48 2.86 3.37 3.92
Middle 0.78 0.97 0.94 1.14 1.66 1.91 2.52 2.91
End 0.78 0.97 0.00 0.00 0.86 0.96 1.66 1.91

f = 0.2 Beginning 2.84 3.37 2.72 3.38 4.28 5.25 5.81 7.09
Middle 0.83 0.96 1.44 1.76 2.83 3.47 4.33 5.31
End 0.83 0.96 0.00 0.00 1.36 1.69 2.85 3.50

f = 0.5 Beginning 6.36 8.00 6.39 8.00 9.55 11.91 12.45 15.51
Middle 0.80 0.87 3.25 4.06 6.35 7.97 9.37 11.72
End 0.80 0.87 0.00 0.00 3.19 4.00 6.36 7.94

Table 2 Effect of Abandonment Under Synchronized Staffing (qj = 100% for j = 1, . . ., P, λ�A = 50, λ�B = 40, λ�C = 30, a = 10, f = 0.2, b = 0)

h

n = 0 n = 2 n = 4 n = 10

A (%) B (%) C (%) A (%) B (%) C (%) A (%) B (%) C (%) A (%) B (%) C (%)

No retrials, r = 0
0.1 2.30 2.88 2.63 2.74 2.74 2.63 3.01 2.91 2.54 3.08 3.15 2.63
0.5 3.00 3.45 3.20 3.98 3.74 3.17 3.49 3.65 3.25 3.69 3.64 3.26
1 3.76 3.99 3.64 4.18 4.25 3.71 4.06 4.08 3.76 4.19 4.33 3.79
3 4.51 4.92 4.55 4.58 4.64 4.40 4.69 4.52 4.52 4.68 4.86 4.60
With retrials, r = 0.5
0.1 2.12 2.63 2.62 2.83 2.82 2.59 2.91 3.10 2.49 3.37 3.08 2.59
0.5 3.19 3.21 2.96 3.32 3.24 3.05 3.49 3.27 3.09 3.70 3.70 3.14
1 3.55 3.80 3.67 4.24 4.12 3.70 4.05 3.92 3.75 4.42 4.26 3.84
3 5.23 4.67 4.49 4.64 4.50 4.34 4.76 4.63 4.53 4.98 4.87 4.70
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tables, n denotes nA,nA+nB, and nA+nB+nC for types A,
B, and C, respectively. Finally, note that we choose a
given value for qj for the whole day (same value for

all j) and deduce sj from sj ¼ b�A;jþ�B;jþ�C;j

lqj
c þ 1, for

j = 1,. . .,P.
Table 1-OS reveals that the approximation deterio-

rates in the frequency of arrival rates. A high fre-
quency leads to a strong variation in the arrival rates
from one period to the next one. Therefore, a mean
arrival rate computed within a time window that
overlaps with two successive periods, that is, com-
puted at an estimation time at the beginning of a per-
iod, may lead to considerable error. A very small
improvement of the approximation can be seen for
the case with retrials. The reason is related to the
increase of the arrival load that allows to counterbal-
ance the negative effect of abandonments as explored
below. To see the effect of the queue lengths on the
approximation, we consider high values of n (20, 30,
40 and 50) in Table 3-SR. This analysis reveals that
there is no change in the approximation behavior for
very high queue lengths compared to the results for
n = 0,1,. . .,10. Irrespective of small or high n, what
matters for the approximation sðtÞl � �̂ðtÞ is the sys-
tem busyness during the rolling time window and the
arrival rate frequency.
From Table 2, we see that the approximation deteri-

orates as the abandonment rate increases. The reason
is that arrivals to service decrease in the abandonment
rate, or equivalently the probability to abandon. The
higher the abandonments, the less busy are the

servers. Therefore, the more severely �̂ðtÞ is underesti-
mating s(t)l. However for heavily loaded systems as
in Table 2-OS (Tables 5-6-SR), even with a high cus-
tomer abandonment, the system is busy almost all the
time such that the approximation becomes insensitive
to an increase in abandonment. Having a busy system

almost all the time, brings �̂ðtÞ close to its upper
bound s(t)l. Further confirmation for the result on
abandonment rate insensitivity under heavy loads is
provided in Table 7-SR.
In Table 3-OS, although we considerably vary cus-

tomer balking, we observe that it has no significant
effect on the quality of the approximation. The reason
is that increasing b increases the probability to balk,
which in turn decreases the probability to abandon,
leading to a relatively stable probability to enter ser-
vice. Customer balking is substituting abandonments
to some extent (see Table 9-SR). Therefore, �̂ðtÞ is
almost insensitive to balking, and so is the quality of
the approximation sðtÞl � �̂ðtÞ.
In Table 5-OS, we focus on the effect of the call cen-

ter size on the quality of the approximation. The
description of the simulated examples is shown in
Table 4-OS. Table 5-OS reveals that pooling improves

the quality of the approximation. The reason is that
the pooling effect decreases the probability to aban-
don (see Table 12-SR), which increases the number of
arrivals to service, and brings as a consequence �̂ðtÞ
closer to s(t)l.
From Table 6-OS, we see that the quality of the

approximation improves in the server utilization up
to a certain point (110%) and then it slowly deterio-
rates. The reason for the improvement (from 90% to
110%) is that the busy periods become longer which
bring �̂ðtÞ closer to s(t)l. Although the busy periods
are even longer for very heavily loaded systems
(120% or 130%), we observe a slow deterioration in
the quality of the approximation. The explanation is
related to the time-varying number of servers. From
the detailed realizations of �̂ðtÞ and s(t)l (that we do
not report here), we see at many points that �̂ðtÞ over-
estimates s(t)l. This typically occurs in the situation
where the number of servers decreases from period j
to period j+1. The system is busy almost all the time,
so the total arrival rate to service is very close to s(t)l
in period j. For the customers who arrive in particular
at the beginning of period j+1, the estimation of �̂ðtÞ is
based on the time window that is mainly belonging to
period j, which leads to an overestimation of s(t)l in
period j+1. In the extreme situation of high-arrival
rate frequencies, the quality of the approximation
deteriorates in such a situation. However, in another
extreme case with zero frequency (constant number
of servers for the whole day), �̂ðtÞ would not diverge
from s(t)l as the server utilization increases. In order
to have a more complete picture on the quality of the
approximation, we run further experiments for small
and moderately loaded call centers (Table 14-SR). We
observe, as expected, that the approximation deterio-
rates with lower load (lower utilization implies
shorter busy periods). The relative error is around
28% for qj = 70% and it decreases to around 8% for
qj = 100%.
In summary, the quality of the approximation

sðtÞl � �̂ðtÞ is quite acceptable for a wide range of
parameters, with a relative error of around 2–3%. It
mainly deteriorates to 8–10% for small or light-loaded
systems. Since one is usually not interested in delay
announcement in a system that is not very congested,
the light-loaded systems are not very relevant for the
application at hand. A lower negative effect is also
present for systems with high abandonments (aban-
donment rate 3 times higher than the service rate,
which is likely to be an extreme situation in practice),
where it deteriorates to around 5%. However, for
heavily loaded systems, even with high customer
abandonment, the system is busy almost all the time
such that the approximation becomes insensitive to
an increase in abandonment. Having a busy system
almost all the time brings �̂ðtÞ close to its upper bound
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s(t)l. Pooling can also counteract the negative effect of
abandonments to some extent. Customer retrials
slightly improve the approximation by increasing the
system load, which counterbalances the negative
effect of abandonment.

5.2.3. Approximation of the Delay Distributions.
We next focus on the assessment of the approx-
imation of the conditional distribution of waiting
times, given the queue length, by the proposed
distributions (Erlang and normal). The empirical
distributions from the simulation experiments are
compared to the proposed Erlang and normal
distributions.
We consider the same simulation experiments as in

section 5.2.2. For a given simulation run, and a given
customer type i 2 {A, B, C}, we proceed as follows.
For customers type A that arrive to a busy system
with a given value of �̂ðtÞ and a given number n = nA
of waiting customers, we collect the actual waiting
times, which represent the conditional empirical
(exact) distribution, given �̂ðtÞ and n. Since �̂ðtÞ is a
real number, it is difficult to obtain a sufficient num-
ber of observations for one single value of �̂ðtÞ. Most
of the values of �̂ðtÞ are sufficiently high so that it is
appropriate to consider for a given n a range of values
of �̂ðtÞ belonging to an interval with a length of 2 or 3
and assume that this coincides with the value in the
middle of the interval. For example for n = nA = 0, we
consider the actual realizations for �̂ðtÞ 2 ½100; 102�
and assume that they correspond to �̂ðtÞ ¼ 101. The
resulting empirical distribution is then compared to
an Erlang and a normal distribution as proposed
herein. The Erlang distribution has n+1 stages with a

rate per stage of �̂ðtÞ. The normal distribution has

mean of ðnþ 1Þ=�̂ðtÞ and standard deviation offfiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
=�̂ðtÞ.

We do the same for customers B and C. For custom-
ers B, we collect the realizations of the conditional
empirical distribution, given n=nA+nB and a given

value of �̂ðtÞ and a given value of �̂AðtÞ (we again

consider an interval of values of �̂AðtÞ with a width of
2 or 3 and make all the values coincide with the mid-
dle of the interval). We compare this distribution with
an Erlang and a normal distribution. The Erlang dis-

tribution has n+1 stages and a rate of �̂ðtÞ � �̂AðtÞ per
stage. The normal distribution has mean and standard

deviation of nþ1
�̂ðtÞ��̂AðtÞ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ1Þð�̂ðtÞþ�̂AðtÞÞ

ð�̂ðtÞ��̂AðtÞÞ3

r
, respectively.

For customers C, we collect the realizations of the con-
ditional empirical distribution, given n=nA+nB+nC and

given values of �̂ðtÞ as well as �̂AðtÞ þ �̂BðtÞ (by again

considering a range of values of �̂AðtÞ þ �̂BðtÞ to
obtain a sufficient number of realizations). We then
compare this empirical distribution with an Erlang
distribution with n+1 stages and a rate of

�̂ðtÞ � �̂AðtÞ � �̂BðtÞ per stage, a normal distribution

with mean and standard deviation of n1þn2þn3þ1

�̂ðtÞ��̂AðtÞ��̂BðtÞ

and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1þn2þn3þ1Þð�̂ðtÞþ�̂AðtÞþ�̂BðtÞÞ

ð�̂ðtÞ��̂AðtÞ��̂BðtÞÞ3

r
, respectively.

An illustration of the results is shown in Table 3.
The complete results are given in Figures 1-6-OS and
Tables 7-12-OS (Further examples are available in Fig-
ures 2-23-SR and Tables 18-39-SR). In the tables, we
provide the means and the standard deviations of the
different distributions, and also the probabilities of
abandonment for each customer type (denoted by
Pab(i), for i 2 {A,B,C}). Note that by construction of
the approximate distributions, their expectations as
well as the standard deviations are identical. We
observe that the approximate distributions are appro-
priate except for some extreme situations for C type
customers. Note that the normal approximate distri-
bution in the figures does not start exactly at t = 0,
since this distribution is also defined for negative real
values.
For A-type customers, the important effects come

from abandonment, server utilization and the call
center size. A comparison of Figures 1-2-OS shows
that the quality of the approximation deteriorates for
a high abandonment rate and a high n. In such a

Table 3 Conditional Delays for Type A Under Synchronized Staffing and No Retrials (qj = 100% for j = 1, . . ., P, λ�A = 50, λ�B = 40, λ�C = 30, a = 10,
f = 0.2, b = 0, r = 0, λ̂(t) = 141.5), Pab (A) = 0.105%, Pab (B) = 0.398%, Pab (C) = 5.524%

n = 0 n = 1 n = 4

Exact Erlang Normal Exact Erlang Normal Exact Erlang Normal

Expectation 0.0075 0.0071 0.0071 0.0131 0.0141 0.0141 0.0352 0.0353 0.0353
Standard deviation 0.0077 0.0071 0.0071 0.0087 0.0100 0.0100 0.0158 0.0158 0.0158

n = 5 n = 7 n = 8

Exact Erlang Normal Exact Erlang Normal Exact Erlang Normal

Expectation 0.0405 0.0424 0.0424 0.0561 0.0565 0.0565 0.0620 0.0636 0.0636
Standard deviation 0.0155 0.0173 0.0173 0.0206 0.0200 0.0200 0.0189 0.0212 0.0212
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situation, some customers ahead of the customer of
interest may abandon, and our approximation then
leads to an overestimation of the waiting time. Fig-
ures 3-4-OS reveal that the approximate distributions
are very accurate for large call centers. For a large call
center, the service capacity is sufficiently high so that
the conditional waiting time, given n, is shorter than
that in the case of a small call center, which leads to
lower abandonments in the former and as a conse-
quence a better approximation.
For customers B and C (see for example Tables 11-

12-OS, Figures 5-6-OS), we find that the same qualita-
tive conclusions hold. However, the quality of the
approximation deteriorates going from A to C type
customers. The reason is related to abandonments.
Because of its lower priority, a newly arriving B call
that finds n = nA+nB in the queue has to wait for those
n customers and also all future arrivals A (that will
arrive to the queue before her service) to clear the
queue. However, a newly arriving A-type caller that
finds the same number n of customers A, has only to
wait for those n customers to clear the queue. For such
a situation, more customers will, therefore, abandon
in front of a new customer B than in front of a new
customer A, which deteriorates the approximation for
type B more than that of type A. The same conclusion
holds for type C, where the approximation seriously
deteriorates for the extreme case of a very high aban-
donment rate (see e.g., Figure 15-SR where the aban-
donment rate is three times the service rate). We also
note that this deterioration is underlined in the chosen
numerical examples; the mean arrival rate is the high-
est for A, then B, and C. The approximation would for
example be better for type C in the case where the
arrival rates of types A and B are lower than those in
the currently chosen numerical experiments. Retrials
improve the approximation results for B and C type
customers. This is because retrials compensate for
abandonments: for a new arrival B, A callbacks com-
pensate A abandonments. For a new arrival C, A and
B callbacks compensate A and B abandonments. (See
Figures 20-23-SR).
In summary and similar to the previous section, we

conclude that the approximate distributions are quite
appropriate for a wide range of parameters. The
approximation deteriorates in the case of small- or
light-loaded call centers, or very high abandonment
rates. The main impact comes from abandonments,
but again, there should really be an extreme situation
of customer abandonments to seriously deteriorate
the approximation. Even in such extreme cases, the
pooling effect in big call centers leads to efficient sys-
tems with low probability to abandon, which allows
to improve the quality of the approximation. By com-
pensating for abandonments, retrials also improve
the approximation for B and C customers.

5.3. Experiments with Asynchronous Staffing
In the following experiments, the staffing is not syn-
chronized with the arrival rates. This is more likely to
happen in a real life call center, because most of the
parameters are unknown in advance. We construct
the simulation scenarios by allowing the server utili-
zation to be random. For each period j, we randomly
pick the value of qj from a discrete and finite random
distribution, as shown in Table 4. This results in a
working day where the staffing level is either severely
underestimated or severely overestimated for most of
the periods.
We assess the quality of the different layers of

approximation. For the approximation �iðtÞ � �̂iðtÞ,
an illustration of the results is shown in Table 5 (Table
41-SR). For the approximation sðtÞl � �̂ðtÞ, the results
can be found in Table 6, and Tables 13-14-OS (Tables
42-46-SR). For the approximation of the conditional
waiting time distributions, an illustration of the
results is given in Table 7, Tables 15-19-OS, and Fig-
ures 7-11-OS (Tables 47-54-SR and Figures 24-31-SR).
We observe from Table 5 the same conclusions as

those under synchronized staffing. As one would
expect, the asynchronous staffing does not bring any
new results. What matters for the approximation
�iðtÞ � �̂iðtÞ are the arrival rate frequency f, the length
of the time window s, the length of a period, and the
position of the time estimate in the period. All of these
are unaffected by the staffing.
Table 13-OS reveals again the same qualitative con-

clusions with regard to the impact of the arrival rate
frequency on the approximation sðtÞl � �̂ðtÞ. How-
ever, the relative errors are ranging from 10% to 25%,
whereas they are only ranging from 3% to 15% under
synchronized staffing situations. The reason is related
to the considerable part of the day with severely
under or overstaffed situations. For certain over-
staffed periods, �̂ðtÞ severely underestimates s(t)l.
Also, in the beginning of certain overstaffed periods,
�̂ðtÞ is based on a previous understaffed period,
which makes �̂ðtÞ severely underestimate s(t)l. The
opposite is also true, that is, in the beginning of cer-
tain understaffed periods, �̂ðtÞ is based on a previous
overstaffed period, which makes �̂ðtÞ severely overes-
timate s(t)l. Another new observation is that the
approximation behaves better for types B and C than
for type A. Type A customers are numerous and
moreover have the highest priority. Thus, a new type
B or C customer is more likely to find a busy system
than an A customer does, which makes the approxi-
mation better for the former.

Table 4 Random Values for qj, j = 1,. . .,P

qj 40% 70% 100% 130% 160% 190%

Probability 1/3 1/9 1/18 1/18 1/9 1/3
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Table 6 provides the results about the effect of
abandonment on the approximation sðtÞl � �̂ðtÞ. Sim-
ilar to the effect of f and for the same reasons, we
observe larger errors (mostly ranging between 10-
30%) than those for synchronized staffing, and also
better results for types B and C than for type A. The
same observations still hold for the effect of the sys-
tem size, as shown in Table 14-OS. Tables 6 and 14-OS
reveal also that the effect of abandonment and that of
the system size are no longer as clear as they are
under the synchronized staffing. The effects of these
parameters are mixed with that of utilization leading
to a non-monotonic behavior. This shows that the
effect of utilization is the most important for the
approximation sðtÞl � �̂ðtÞ, especially for the extreme
scenarios as we consider here.
Although the approximation sðtÞl � �̂ðtÞ behaves

worse under asynchronous staffing, the approximate

delay distributions behave as in the best cases of syn-
chronized staffing (see Figures 7-11-OS and Tables 15-
19-OS). The explanation is obvious. Since we focus on
conditional distributions, given all the servers are
busy, what matters for the approximate distributions
are the situations where the system is busy. Under
those situations, the approximation sðtÞl � �̂ðtÞworks
well, which in turn leads to a good quality for the
approximate delay distributions.

6. Announcing a Delay from the
Estimated Delay Distribution

Recall that the manager’s decision of what to
announce to an A-type customer is formulated as

Min aE½ðDr � daÞþ� þ bE½ðda �DrÞþ�; ð10Þ

Table 6 Effect of Abandonment Under Asynchronized Staffing and No Retrials (λ�A = 50, λ�B = 40, λ�C = 30, a = 10, f = 0.2, b = 0.1, r = 0)

h

n = 0 n = 2 n = 4 n = 10

A (%) B (%) C (%) A (%) B (%) C (%) A (%) B (%) C (%) A (%) B (%) C (%)

0.1 27.90 38.88 14.80 18.35 23.47 15.06 19.36 15.33 15.88 23.23 11.89 15.96
0.5 18.49 13.95 10.10 17.94 11.79 9.58 18.41 10.94 9.97 24.43 10.40 11.28
1 20.66 9.48 8.99 17.39 9.54 9.46 20.23 10.39 9.58 26.55 11.70 10.56
3 21.74 12.28 10.25 18.97 13.16 10.18 20.08 15.24 10.37 36.43 19.14 11.22

Table 7 Conditional Delays for Type A Under Asynchronized Staffing and Retrials (λ�A = 50, λ�B = 40, λ�C = 30, a = 10, b = 0.1, f = 0.2, λ̂(t) = 71.5,
r = 0.5), Pab (A) = 0.486%, Pab (B) = 16.854%, Pab (C) = 31.159%

n = 0 n = 1 n = 4

Exact Erlang Normal Exact Erlang Normal Exact Erlang Normal

Expectation 0.0123 0.0140 0.0140 0.0312 0.0280 0.0280 0.0787 0.0699 0.0699
Standard deviation 0.0139 0.0140 0.0140 0.0203 0.0198 0.0198 0.0416 0.0313 0.0313

n = 5 n = 7 n = 8

Exact Erlang Normal Exact Erlang Normal Exact Erlang Normal

Expectation 0.0940 0.0839 0.0839 0.1248 0.1119 0.1119 0.1366 0.1259 0.1259
Standard deviation 0.0439 0.0343 0.0343 0.0512 0.0396 0.0396 0.0607 0.0420 0.0420

Table 5 Average Relative Error for the Approximation λi(t) � λ̂i(t) Under Asynchronized Staffing and No Retrials (λ�A = 50, λ�B = 40, λ�C = 30,
a = 10, h = 0.5, b = 0.1, r = 0)

Frequency Time in the period
s = 5 s = 10 s = 20 s = 30

A (%) B (%) A (%) B (%) A (%) B (%) A (%) B (%)

f = 0.1 Beginning 1.94 2.06 1.68 2.07 2.46 2.91 3.31 3.95
Middle 0.75 0.90 1.01 1.13 1.65 1.96 2.49 2.95
End 0.75 0.90 0.00 0.00 0.84 1.03 1.64 1.94

f = 0.2 Beginning 2.71 3.39 2.75 3.39 4.26 5.19 5.79 7.01
Middle 0.79 0.84 1.46 1.79 2.80 3.45 4.29 5.24
End 0.79 0.84 0.00 0.00 1.37 1.69 2.84 3.46

f = 0.5 Beginning 6.40 8.04 6.36 8.08 9.53 12.05 12.31 15.51
Middle 0.81 0.84 3.24 4.11 6.35 8.09 9.33 11.73
End 0.81 0.84 0.00 0.00 3.18 4.04 6.35 8.03
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leading to the solution for the optimal announce-
ment as

d�a ¼ F�1
Dr
ðcÞ; ð11Þ

where c = a/(a+b) and FDrð:Þ is the cdf of the ran-
dom variable Dr. Of course, FDr in the above expres-
sion is unknown, and will be replaced by the
approximations for A-type customers in section 3 to
obtain approximately optimal values for da. In par-
ticular, the Erlang approximation then leads to

d�a;erl ¼ F�1
D̂erl

ðcÞ; ð12Þ

and the normal approximation results in

d�a;norm ¼ nþ 1

�̂ðtÞ þ z�
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p

�̂ðtÞ ; ð13Þ

where z*=Φ�1(c) and Φ�1(.) denotes the inverse cdf
of a standard normal random variable.
As another benchmark, we propose a robust esti-

mator that finds the optimal announcement for
the worst-case probability distribution with mean
ðnþ 1Þ=�̂ðtÞ and standard deviation

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
=�̂ðtÞ. The

Erlang and normal delay approximations make distri-
butional assumptions as well as assumptions about
the distribution parameters. The distribution-free
robust estimator which we propose below provides a
benchmark where the worst case distributional form
is found for the given mean and standard deviation.
Let DWðdaÞ be the uncertain delay random variable.
Then the penalty maximizing (worst-case) delay dis-
tribution for a given da, is found by solving

max
FDW ðdaÞ

aE½DWðdaÞ � daÞþ� þ bE½ðda �DWðdaÞÞþ�;

subject to the constraints E½DWðdaÞ� ¼ ðnþ 1Þ=�̂ðtÞ
and Var½DWðdaÞ� ¼ ðnþ 1Þ=�̂ðtÞ2. No assumptions are
made regarding FDW ðdaÞ except that it belongs to a

class of cdfs with the specified mean and variance.
Let us denote the worst case delay random variable

for a given da by D�
WðdaÞ. The decision maker then

solves

mindaaE½D�
WðdaÞ � daÞþ� þ bE½ðda �D�

WðdaÞÞþ�:
The above robust optimization formulation is

known as a min-max distribution-free procedure in
the context of the newsvendor problem and leads to a
surprisingly simple solution (Scarf 1958, Gallego and
Moon 1993) for the optimal da. It is given by

d�a;rob ¼
nþ 1

�̂ðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p

2�̂ðtÞ

ffiffiffi
a
b

r
�

ffiffiffi
b
a

r !
:

We follow the same approach for the B-type calls,
where the estimators for the mean and standard
deviation of the delay, and delay distribution
approximations from section 4 are used to obtain
approximately optimal values for da. For the robust
delay announcement of B-type calls we thus obtain

d�a;rob ¼
n1 þ n2 þ 1

�̂ðtÞ � �̂AðtÞ

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 þ n2 þ 1Þð�̂ðtÞ þ �̂AðtÞÞ

ð�̂ðtÞ � �̂AðtÞÞ3

s ffiffiffi
a
b

r
�

ffiffiffi
b
a

r !
:

7. Data-Based Validation of Delay
Announcements

We explore the performance of delay announcements
under the two approximations (Erlang and normal)
for different values of c = a/(a+b), by comparing
them to the corresponding announcements for the
data on state-dependent waiting times. This data-
based validation allows us to assess the value of the
approximations in making delay announcements in a
real call center setting. Thus, we show that under all
complexities of a real operation, the earlier tested sim-
ple approximations perform well also when used in
making delay announcements.
In our numerical examples, we have fixed b = 1

without loss of generality. We measure the perfor-
mance of each estimator with respect to the realized
waiting time distribution. The benchmark cost func-
tion is

C�
r ¼ aE½ðDr � d�a;rÞþ� þ bE½ðd�a;r �DrÞþ�: ð14Þ

For any estimator (e 2 {erl, norm, rob}), we com-
pute

Ce ¼ aE½ðDr � d�a;eÞþ� þ bE½ðd�a;e �DrÞþ�; ð15Þ

and report the percentage relative difference com-
puted as

De ¼ Ce � C�
r

C�
r

� 100%: ð16Þ

In addition to the two estimators, we also consider
the prevalent practice in call centers (and earlier lit-
erature), which is to announce the mean of the delay
distribution. In our analysis, we estimate the mean
making use of the estimators that were proposed in
sections 3 and 4. For the A-type calls, we have
ðnþ 1Þ=�̂ðtÞ where we use the n and �̂ðtÞ value
corresponding to a given data set. Similarly for the
B types, we make use of the expression in Equation
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(7) with the corresponding n, �̂ðtÞ and �̂AðtÞ values
of each data set.
Our data come from one of the sites. Each data set

is for an observed arrival rate and a given queue state.
Thus, samples of queue length-dependent waiting
times when the same local arrival rates (i.e., estimated
by the number of arrivals in the last ten minutes) pre-
vail have been collected within a set. The data set is
relatively small and limited, however, is quite unique
in that such state-dependent call by call data is not
easily extractable from existing call center software.
The data sets were established manually by an analyst
at this call center. For the B-type calls, the separate call
volumes of A-type calls have been estimated by mak-
ing use of the average percent of A-type calls received
during the data collection period in that particular call
center (43% of the calls were generated by the A-type
in the data collection period at this call center). As
such, the B-type data sets are subject to an additional
layer of approximation. For the A-type calls, we make

use of eleven sets, under three different local arrival
rates. For the B-type calls, we have fourteen sets
under different local arrival rates. The number of
observations in each set is tabulated in Tables 8 and 9.
Using the expression in Equation (15) with d�a;e

replaced by the mean delay, we can determine the
cost performance of announcing the mean. The rela-
tive error of announcing a given percentile from the
approximated Erlang distribution vs. the approxi-
mated normal distribution, as well as the robust
benchmark and the relative error of announcing the
mean delay, all grouped by c values, are tabulated in
Tables 10 and 11. We report the mean of the relative
errors as well as the quartile estimates of the relative
error values taken in the data sets we consider. In
Tables 12 and 13, we show results grouped by the
value of nA and nA+nB, respectively, where the mean
and the quartile estimates of relative error values are
reported across different c values.
Recall that the call center from which these data

were collected experienced abandonment probabili-
ties that could reach 5%. The earlier simulation exper-
iments show that as abandonment probabilities
increase, the error in approximated conditional mean
delay (and standard deviations) and thus the error in
delay prediction increases, since abandonments are
ignored in the approximations. However, as utiliza-
tion is high and the call center is large, we expect
some of the errors due to abandonments to be miti-
gated in the data.
For the A-type calls, observe from Table 10 that

while announcing the mean delay does quite well for
a c value that is close to 0.5, its performance deterio-
rates dramatically as the customers attach a higher
penalty to under-announcements. The Erlang approx-
imation performs well across all c values. Comparing
the normal approximation-based announcements to
the robust delay announcement, we observe that
once the mean and standard deviation have been
estimated, it is better to use the robust delay

Table 8 Number of Observations in Data Sets for A-Type Calls, Where
n = nA

n = 2 n = 3 n = 4 n = 5 n = 6

�̂ðtÞ ¼ 2:2 264 128 109 – –
�̂ðtÞ ¼ 3:2 622 251 227 87 102
�̂ðtÞ ¼ 4:2 768 208 228 – –

Table 9 Number of Observations in Data Sets for B-Type Calls, Where
n = nA+nB

n = 2 n = 3 n = 4 n = 6

�̂ðtÞ ¼ 3:4; �B þ �C ¼ 1:4 94 – – –
�̂ðtÞ ¼ 4:0; �B þ �C ¼ 1:4 116 – – –
�̂ðtÞ ¼ 4:0; �B þ �C ¼ 1:8 – – – 83
�̂ðtÞ ¼ 4:2; �B þ �C ¼ 1:8 – – 92 –
�̂ðtÞ ¼ 4:38; �B þ �C ¼ 2:5 843 738 649 –
�̂ðtÞ ¼ 4:4; �B þ �C ¼ 1:8 99 – – –
�̂ðtÞ ¼ 5:26; �B þ �C ¼ 3:0 1020 489 689 –
�̂ðtÞ ¼ 7:0; �B þ �C ¼ 4:0 311 74 208 –

Table 10 Relative Error Mean and Quartiles for A-Type Calls Grouped by c Values

c = 0.6 c = 0.7

Erlang Normal Robust Mean Erlang Normal Robust Mean

Mean 1.46 4.72 2.73 1.17 1.7 3.82 1.96 4.89
25 0.02 1.34 0.19 0.38 0 0.46 0.03 0.43
50 0.27 1.51 0.49 0.91 0.61 0.62 0.36 6.38
75 3.53 7.95 6.01 2 2.53 5.92 2.46 8.51
100 6.4 19.66 12.49 3.2 8.4 18.94 11.57 8.59

c = 0.8 c = 0.9

Mean 2.42 2.96 1.9 19.81 2.71 2.38 2.46 66.5
25 0.15 0.01 0.22 11.68 0.10 0.14 0.20 47.58
50 0.62 0.53 0.77 19.42 0.94 1.15 1.13 60.95
75 2.35 4.98 2.90 24.70 4.45 4.46 5.48 75.11
100 12.98 13.91 9.69 29.02 9.66 7.42 6.74 86.86
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announcement, which performs particularly well for
c values 0.7 and 0.8. When we look at the results in
Table 12 averaging across c values, the superiority of
using the Erlang approximation is further empha-
sized. Note that the mean delay announcement does
uniformly bad when the results are tabulated this
way (due to its bad performance for higher c values),

and once again the robust estimator provides a sec-
ond-best alternative to the Erlang approximation.
Results in Table 12 do not allow us to conclude that
there is a systematic effect of the queue length nA on
the performance of the estimators.
For the B-type calls, the relative errors are higher

compared to the A-type ones. This is not surprising

Table 11 Relative Error Mean and Quartiles for A-Type Calls Grouped By c Values

c = 0.6 c = 0.7

Erlang Normal Robust Mean Erlang Normal Robust Mean

Mean 9.94 23.36 17.54 7.27 7.11 20.82 14.25 2.69
25 0.96 8.55 3.14 0.60 0.35 6.23 1.53 0.07
50 5.83 22.53 10.73 3.54 2.23 17.60 7.93 1.09
75 12.66 26.50 22.10 7.32 10.57 27.58 21.04 2.19
100 43.48 67.92 60.39 37.15 32.03 53.49 46.09 12.06

c = 0.8 c = 0.9

Mean 4.83 17.77 12.17 8.11 3.58 11.58 11.58 38.28
25 0.50 3.62 0.75 1.77 0.06 0.43 0.18 25.70
50 1.83 14.38 7.64 5.43 2.57 7.31 7.05 30.98
75 6.08 25.50 19.57 9.51 4.78 19.83 21.36 44.36
100 22.77 49.13 40.59 29.19 12.23 31.70 31.26 82.71

Table 12 Relative Error Mean and Quartiles for A-Type Calls Grouped By Queue Length

nA = 2 nA = 3 nA = 4

Erlang Normal Robust Mean Erlang Normal Robust Mean Erlang Normal Robust Mean

Mean 3.43 5.61 3.73 19.68 1.4 2.76 1.57 23.22 1.58 2.47 1.86 24.75
25 0.03 0.51 0.39 1.38 0 0.21 0.21 1.18 0 0.14 0.05 0.99
50 0.68 1.97 0.84 5.35 0.16 1.25 0.24 6.52 0.29 0.65 0.68 8.59
75 6.4 5.76 6.16 29.02 1.83 3.82 0.91 25.15 2.43 4.86 2.68 27.05
100 12.98 19.66 12.49 81.94 7.42 9.41 6.74 80.02 4.86 8.67 6.58 86.86

nA = 5 nA = 6

Mean 2.49 3.74 1.94 28.01 0.74 1.67 1.02 28.06
25 0.09 0.74 0.54 1.22 0.13 0.06 0.08 0.04
50 1.95 1.62 1.23 6.83 0.21 0.44 0.9 3
75 2.76 5.17 2.35 18.76 0.66 0.74 1.23 23.97
100 5.16 7.43 3.64 85.22 1.95 5.45 1.89 85.22

Table 13 Relative Error Mean and Quartiles for B-Type Calls Grouped By Queue Length

nA+nB = 2 nA+nB = 3

Erlang Normal Robust Mean Erlang Normal Robust Mean

Mean 3.43 5.61 3.73 19.68 1.40 2.76 1.57 23.22
25 0.03 0.51 0.39 1.38 0.00 0.21 0.21 1.18
50 0.68 1.97 0.84 5.35 0.16 1.25 0.24 6.52
75 6.40 5.76 6.16 29.02 1.83 3.82 0.91 25.15
100 12.98 19.66 12.49 81.94 7.42 9.41 6.74 80.02

nA+nB = 4 nA+nB = 6

Mean 1.58 2.47 1.86 24.75 2.49 3.74 1.94 28.01
25 0.00 0.14 0.05 0.99 0.09 0.74 0.54 1.22
50 0.29 0.65 0.68 8.59 1.95 1.62 1.23 6.83
75 2.43 4.86 2.68 27.05 2.76 5.17 2.35 18.76
100 4.86 8.67 6.58 86.86 5.16 7.43 3.64 85.22
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due to the increasing level of approximations being
performed both in the data and models. However, the
Erlang-based announcement is still quite good for all
c values, particularly as these are getting higher.
Announcing the mean appears to be the best option
for c values 0.6 and 0.7, but it deteriorates for higher c
values. Thus, without a good understanding of these
penalties, announcing the mean seems risky. This is
confirmed when we look at the results in Table 13,
where excluding the case when the queue is long with
nA+nB=6, the mean announcement is on average out-
performed by the Erlang-based one. Both Tables 11
and 13 show that the normal approximation is not
competitive for the B-type calls. According to Table
13, the robust delay announcement ensures an aver-
age relative error of around 10% except in the case of
nA+nB=6. Excluding the latter case, the robust estima-
tor mostly outperforms the mean and the normal
approximation-based announcements.
In the previous analysis, we compared the perfor-

mance of different delay announcements and con-
cluded that the choice of which announcement to
prefer may depend on the value of c. This parameter

captures the manager’s understanding of the costs
associated with under- or over-announcing the
delays. The meaning of these costs may differ by con-
text and in general estimating these costs may be diffi-
cult. Nevertheless, if the manager believes there is
some asymmetry in these costs, our analysis shows
that it may be worth using the framework proposed
herein to make announcements, by using a c value
that appropriately reflects this asymmetry.
What happens if the perceived c used by the man-

ager is different from the real underlying c? We
explore this question next. In order to analyze the
effect of the misperception of c in isolation, we focus
on the real delay distribution for the A-type calls and
consider the relative cost when the manager
announces the delay that corresponds to the per-
ceived c, yet costs are accrued based on the real
underlying c for the four values of c=0.6, 0.7, 0.8, 0.9
considered. The results are tabulated in Tables 14–16.
From these we observe that for a +/�0.1 mistake in
c the relative error in cost is less than 10% in 90%
of the cases and takes the maximum value of 15%
relative error in cases where 10% error is exceeded.

Table 14 Relative Error Due to Misperceived c for A-Type Calls Under λ̂(t) = 2.2

nA = 2 nA = 3 nA = 4

Real/perceived 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6

0.9 0.00 0.11 0.32 0.52 0.00 0.14 0.38 0.88 0.00 0.15 0.42 0.80
0.8 0.13 0.00 0.05 0.13 0.04 0.00 0.03 0.21 0.15 0.00 0.07 0.22
0.7 0.35 0.05 0.00 0.02 0.23 0.04 0.00 0.05 0.39 0.05 0.00 0.04
0.6 0.62 0.17 0.03 0.00 0.49 0.18 0.06 0.00 0.71 0.18 0.04 0.00

Table 15 Relative Error Due to Misperceived c for A-Type Calls Under λ̂(t) = 3.2

nA = 2 nA = 3 nA = 4

Real/perceived 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6

0.9 0.00 0.15 0.35 0.53 0.00 0.10 0.20 0.56 0.00 0.09 0.36 0.77
0.8 0.14 0.00 0.05 0.13 0.11 0.00 0.05 0.17 0.15 0.00 0.06 0.22
0.7 0.39 0.04 0.00 0.02 0.31 0.04 0.00 0.03 0.35 0.06 0.00 0.05
0.6 0.69 0.15 0.02 0.00 0.58 0.16 0.03 0.00 0.62 0.19 0.04 0.00

nA = 5 nA = 6

0.9 0.00 0.09 0.19 0.37 0.00 0.09 0.44 0.90
0.8 0.07 0.00 0.03 0.11 0.06 0.00 0.09 0.26
0.7 0.21 0.02 0.00 0.03 0.18 0.03 0.00 0.04
0.6 0.37 0.07 0.02 0.00 0.40 0.18 0.05 0.00

Table 16 Relative Error Due to Misperceived c for A-Type Calls Under λ̂(t) = 4.2

nA = 2 nA = 3 nA = 4

Real/perceived 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6

0.9 0.00 0.11 0.31 0.58 0.00 0.10 0.36 0.67 0.00 0.09 0.22 0.58
0.8 0.11 0.00 0.05 0.17 0.11 0.00 0.06 0.19 0.05 0.00 0.02 0.18
0.7 0.29 0.04 0.00 0.03 0.30 0.05 0.00 0.04 0.20 0.04 0.00 0.04
0.6 0.54 0.15 0.04 0.00 0.56 0.18 0.04 0.00 0.41 0.15 0.05 0.00
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The results suggest that unless there is a major
misperception of c, the framework proposed herein
can be used.

8. Concluding Remarks

In conclusion, we can state that despite the many sim-
plifying assumptions we have made in modeling the
actual system, the resulting Erlang distribution
approximation for the delay distribution performs
very well when we announce the optimal delay from
this distribution. Making use of the physical aspects
of the underlying queueing system clearly helps rela-
tive to just estimating the first two moments of the
delay distribution and using it within a normal distri-
bution. The robust delay announcement that makes
use of the moment estimators provides an alternative
that protects against the worst case when such queue-
ing analysis is not available. The idea of a robust
delay announcement is new, and should be explored
further in future practice as well as research, particu-
larly in settings with high complexity and uncertainty
like the one we considered.
Finally, with customers that dislike under-

announcement, the current practice of announcing
the mean of the delay distribution may lead to high
dissatisfaction. For the high-priority calls, both the
Erlang and the robust estimators provide a better
alternative. Nevertheless, our analysis of the lower
priority calls indicates that as long as these customers
are not too sensitive to under-announcement,
announcing the estimated mean can be considered.
To the best of our knowledge, this is the first paper

that acknowledges the possibility of asymmetric pen-
alties for over and under announcing in a delay
announcement context for services. Both industry
practice and earlier literature consider announcing
the mean delay. While the latter is easy to imple-
ment, the former seems more consistent with evi-
dence from the behavioral literature. Further
research that explores this issue empirically needs to
be pursued.
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