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Abstract

This paper investigates a two-stage supply chain consisting of a capacitated supplier and

a retailer that faces a stationary random demand. Both the supplier and the retailer employ

base stock policies for inventory replenishment. All unsatisfied demand is backlogged and

the customer backorder cost is shared between the supplier and the retailer. We investigate

the determination of decentralized inventory decisions when the two parties optimize their

individual inventory-related costs in a non-cooperative manner. We explicitly characterize

the Nash equilibrium inventory strategies and identify the causes of inefficiency in the de-

centralized operation. We then study a set of simple linear contracts to see whether these

inefficiencies can be overcome. Finally, we investigate Stackelberg games where one of the

parties is assumed to be dominating.

1 Introduction

We investigate a simplified model of a supply chain operating in a make-to-stock manner. From

the customer satisfaction perspective, keeping buffer inventories in such a system is inevitable.

In fact, most of the research work on supply chain inventories is devoted to how much optimal

inventory should be kept at different stages of an integrated supply chain. A more recent

stream of research recognizes that most real supply chain operations may not be integrated

and that decentralized decision making takes place in practice. In this perspective, inventory-

replenishment decisions of different players (members of the chain), made in a non-cooperative

and decentralized manner, are modeled and analyzed. In this paper, we pursue this analysis

for a supply chain consisting of a capacitated supplier and a downstream retailer.

The retailer, in our model, faces a stationary random customer demand and replenishes from

its supplier using a base-stock policy. The supplier, who operates a capacitated manufacturing
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facility also uses a base-stock policy for its internal replenishment. In the decentralized setting,

both the supplier and the retailer choose their base stock levels independently in order to mini-

mize their respective inventory-related costs. This decentralized and non-cooperative operation

is inefficient in terms of the total supply chain costs with respect to a fully integrated opera-

tion. In the first part of the paper, we focus on understanding the causes of this inefficiency

and assessing its magnitude. In the second part, we study a number of simple contracts that

can be used to overcome the inefficiency of the decentralized system. Although our main focus

is on Nash games and equilibria, we also briefly investigate the Stackelberg equilbria where one

of the parties is the dominant member of the supply chain.

The paper is structured as follows: Section 2 presents the literature review. The main model

is presented in Section 3. Section 4 focuses on the analysis of the decentralized supply chain in

the framework of a Nash game. In Section 5 we present and analyze contracts and investigate

related coordination issues. Section 6 summarizes our results on Stackelberg games and Section

7 presents the conclusions.

2 Literature Review

The effects of decentralized decision making in supply chains have been investigated in several

papers in the recent years. In particular, a number of these papers study supply chains with

random demand in a single-period setting based on generalizations of the newsvendor frame-

work. Review papers by Tsay, Nahmias and Agrawal (1999), Lariviere (1999), Cachon (2002)

and Cachon and Netessine (2002) provide comprehensive pointers to this literature.

The papers that investigate decentralized supply chains employing stochastic models in an

infinite horizon setting are relatively fewer. A number of these papers study the uncapacitated

multi-echelon system (the Clark and Scarf model). Lee and Whang (1999) and Chen (1999)

focus on coordination mechanisms that use non-linear pricing schemes. Cachon and Zipkin

(1999) study the two-stage decentralized supply chain in detail and look into coordination

issues through linear transfer payments. Cachon (2001) extends this analysis to the single

supplier and multi-retailer system.

There are also a few recent papers that study capacitated supply systems in a decentralized

setting. The underlying models in this framework are built on the make-to-stock queue where

the supplier’s capacity is modeled by the server of a queueing system (see Buzacott and Shan-

thikumar, 1993). Cachon (1999) studies a supplier-retailer system with lost sales where each

party controls its own inventories. Caldentey and Wein (2003) study a similar system with

backorders where the customer backorder cost is shared by both parties. In this paper, the

supplier sets the capacity level and the retailer controls the inventories in the system. Gupta
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and Weerawat (2003) study a supplier-manufacturer system in a manufacture-to-order envi-

ronment and focus on coordination issues through revenue sharing contracts. Elahi, Benjaafar

and Donohue (2003) investigate a model where multiple capacitated suppliers compete for the

demand coming from a single buyer (manufacturer).

Our paper is closely related to Cachon and Zipkin (1999), Cachon (1999), and Caldentey

and Wein (2003). All of these papers study two-stage systems, analyze the decentralized chain

and its performance and investigate coordination by linear transfer payments and we follow the

same general path. As in Cachon and Zipkin (1999), in our two-stage system, both parties are

responsible for their own inventory costs and a portion of the total customer backorder cost.

Our cost structure is identical, but the supplier in our case is capacitated. As in Cachon (1999),

in our model the transportation times between the supplier’s inventories and the retailer are

assumed negligible. This makes the analysis of the centralized system tractable and enables us

to obtain analytical results even on the decentralized system. In contrast with Cachon (1999)

our system experiences backorders and the capacity/queueing effects are manifested in a much

sharper manner. Finally, as in Caldentey and Wein (2003) our supplier is capacitated and both

parties share the backorder cost but both parties may keep inventory in our setting. We also

employ a discrete-state space model (i.e. with integer inventory levels) as opposed to working

with a continuous approximation as in Caldentey and Wein (2003).

The positioning of our paper with respect to the above three papers can be summarized

as follows: for the two-stage system with a capacitated supplier we obtain explicit analytical

results on the decentralized system. The corresponding analysis in Cachon (1999) for the

identical system with lost sales mostly relies on numerical calculations essentially due to the

difficulty of the centralized system therein (i.e there is no explicit analytical expression for

the optimal base stock level, or the optimal supply chain profit in the system with lost sales).

This enables us to obtain simple and explicit characterizations of equilibrium behavior in the

decentralized system even in the case of unequal holding costs (not treated in Cachon (1999).

In this sense, the analytical simplicity and transparency of our results are comparable to those

of Caldentey and Wein (2003) whose focus is different. Apart from reaching simple and exact

analytical characterizations, there is another important reason for looking at the backorder

version of the model in Cachon (1999)). The effect of limited capacity and its consequences

in terms of replenishment delays are dampened for the lost sales system because some arrivals

are lost. These effects usually appear in a more distinguishing manner in the backorder system

where the average cost per unit time goes to infinity as the utilization rate approaches 1.

Finally, it should be noted that our assumption of negligible transportation times (as in

Cachon, 1999) between the supplier’s inventories and the retailer is crucial for the tractability

of the analysis. The corresponding system with two capacitated suppliers in tandem cannot be
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analyzed exactly even in the centralized case (see Buzacott, Price and Shanthikumar, 1992 for

approximations). The other problem for this system is the lack of a complete characterization

of the optimal inventory policy. It is known that base-stock policies are not optimal and only

a partial characterization of the optimal inventory control policy is available (see Veatch and

Wein, 1994 or Karaesmen and Dallery, 2000). Jemäı (2003) presents a numerical investigation

of the Nash game when both parties use base stock policies.

3 Modeling Assumptions and Notations

We consider a two-stage supply chain consisting of a manufacturing stage (Stage 1) and a retail

stage (Stage 2) which satisfies end-customer demand. Both stages have their own separate

inventories. In addition, the manufacturing stage has a limited capacity of production. The

retail stage is replenished from the manufacturer’s inventory. End-customer demand arrives

in single units according to a Poisson process with rate λ. The manufacturer processes items

one-by-one using a single-resource. Item processing times have an exponential distribution with

rate µ. Let ρ = λ/µ be the utilization rate of the manufacturer.

All customer demand that cannot be satisfied from inventory can be backordered. Both the

retailer and the manufacturer manage their own inventories according to base-stock policies

(see Buzacott et Shanthikumar, 1993 for a formal definition of a multi-stage base stock policy).

Under these assumptions, each demand generates a replenishment order for the retailer, and

simultaneously a manufacturing order for the manufacturer. Moreover as in Cachon (1999),

the replenishment lead time from the manufacturer’s inventory to the retailer’s inventory is

assumed negligible.

Items incur holding costs of hs (per item per unit time) in the manufacturer’s inventory and

hr (per item per unit time) in the retailer’s inventory (where we assume hr ≥ hs). Backorders

generate a penalty of b (per item per unit time) for the system. As in Cachon and Zipkin

(1999) and Caldentey and Wein (2003) we assume that the system backorder cost is shared

between the supplier and the retailer as part of an exogenous arrangement. According to this

arrangement, the retailer and the supplier are charged respectively br and bs (where br +bs = b)

for each system backorder per unit time.

Let Is and Ir denote the random variables corresponding to the stationary inventory lev-

els respectively at the manufacturer, and the retailer. B denotes the (stationary) number of

backorders (unsatisfied customer orders).

The average cost per unit time for the manufacturer is given by:

Cs = hsE[Is] + bsE[B]
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and for the retailer by:

Cr = hrE[Ir] + brE[B].

4 Centralized and Decentralized Inventory Control

4.1 The Centralized System

Our performance benchmark for the decentralized supply chain is the integrated/centralized

system where both the supplier and the retailer belong to the same firm and their inventories

are managed by a centralized planning mechanism.

Since replenishments from the supplier to the retailer are assumed to be instantaneous,

customer demand can be satisfied from the retailer’s inventory or the supplier’s inventory. The

centralized planner is therefore indifferent in the positioning of inventory from the customer

demand satisfaction point of view but because it is less costly to keep inventory at the supplier,

it is clear that it is optimal to keep all inventory at the supplier (except in the case of hr = hs. In

that particular case, any partition of the same total inventory would generate the same inventory

cost). In order to optimize the centralized system we can then assume that all inventory is held

at the supplier and the retailer is only a transition point. The resulting model is a single-stage

make-to-stock queue (see Buzacott et Shanthikumar, 1993). Let the supplier’s (or the system’s)

base stock level be S (where S is a non-negative integer).

Following Buzacott and Shanthikumar, let N be the stationary number of manufacturing

orders waiting at the supplier’s facility. Under base stock policies, N has the same distribution

as the stationary queue length of the M/M/1 queue. This leads to the following expressions for

the expected inventory level and the expected number of orders as a function of the base-stock

level S:

E[I] = S − ρ(1− ρS)
1− ρ

(1)

and

E[B] =
ρS+1

1− ρ

The total average inventory-related cost of the centralized system can then be expressed as :

C(S) = hsE[I] + bE[B]

As for the optimal base stock level, let FN () be the cumulative distribution function of N ,

it is well known that: S∗ = min
{
S : FN (S) ≥ b

hs+b

}
where FN () is the cumulative probability

distribution of N . This leads to the following expression under exponential assumptions:

S∗ =

 ln
(

hs
hs+b

)

ln ρ

 (2)

where bxc denotes the largest integer that is less than or equal to x.
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4.2 The Decentralized System

In the decentralized system, the supplier and the retailer select their individual base stock levels

Ss and Sr in order to minimize their own cost functions. To analyze this system, we first obtain

the average costs for the two players for any given pair of base stock levels (Ss,Sr). We then

investigate the best response of each player to the choice of a given base stock level by the other

player. Finally, we investigate the equilibrium strategies.

Lemma 1 The expected inventory level, E[Is], of the supplier, the expected inventory level,

E[Ir], of the retailer, and E[B(Ss, Sr)] be the average backorder level in the decentralized system

are functions of the base stock levels Ss and Sr which can be expressed as:

E[Is(Ss, Sr)] = Ss − ρ(1− ρSs)
1− ρ

(3)

E[Ir(Ss, Sr)] = Sr − ρSs+1(1− ρSr)
1− ρ

(4)

and

E[B(Ss, Sr)] =
ρSs+Sr+1

1− ρ
(5)

Proof: All proofs can be found in the Appendix. 2

Let us also note that E[Is(Ss, Sr)], E[Ir(Ss, Sr)], and E[B(Ss, Sr)] are all (integer) convex

functions in Ss and in Sr.

Next, we investigate the cost structure of the two parties. Using Lemma 1, we can express

the supplier’s average cost as:

Cs (Ss, Sr) = hs

(
Ss − ρ− ρSs+1

1− ρ

)
+ bs

ρSs+Sr+1

1− ρ
(6)

and the retailer’s average cost as:

Cr(Ss, Sr) = hr

(
Sr − ρSs+1(1− ρSr)

1− ρ

)
+ br

ρSs+Sr+1

1− ρ
(7)

We now turn to the best responses of each player to the selection of any base stock level by

the other player.

The best responses S∗r (Ss) and S∗s (Sr) are defined as follows:

S∗r (Ss) = arg min
x

Cr(Ss, x)

and

S∗s (Sr) = arg min
x

Cs(x, Sr).

where x is a non-negative integer.
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Proposition 1 The best response of the supplier to the choice of a base stock level of Sr by the

retailer, S∗s (Sr) and the best response of the retailer to the choice of a base stock level of Ss by

the supplier, S∗r (Ss), are given by:

S∗s (Sr) =

 ln
(

hs

hs+bsρSr

)

ln ρ

 . (8)

and

S∗r (Ss) =

 ln
(

hr
hr+br

)

ln ρ
− Ss


+

(9)

where the operator (x)+ is defined as: max(x,0).

An immediate consequence of Proposition 1 is that both S∗r (Ss) and S∗s (Sr) are less than

or equal to the base stock level of the centralized system S∗. This enables us to consider only

a finite set of strategies (bounded by S∗) for both players: ΩS={0,..,S ∗} and ΩR={0,..,S ∗}.
The best response functions only depend on the parameters of the problem but the equi-

librium pair of strategies depend on the assumptions on the game. Next, we analyze the

equilibrium behaviour of the inventory strategies under different assumptions.

4.3 The Nash game and the Nash equilibrium

In the Nash game the supplier and the retailer simultaneously choose their base stock levels

with the objective of minimizing their respective costs per unit time. We assume that this is

a one-shot game: the players select the base stock levels at time zero and maintain them over

an infinite horizon. The strategies of the players are their base stock levels Ss and Sr. As

discussed in the previous section, it is sufficient to consider finite sets of strategies for both

players: ΩS={0,..,S ∗} and ΩR={0,..,S ∗}.
A pair of base stock levels (S∗s , S∗r ) is a Nash equilibrium if neither the supplier nor the

retailer can gain from a unilateral deviation from these base stock levels (i.e. S∗s = S∗s (S∗r ) and

S∗r = S∗r (S∗s )).

There are two important issues regarding the determination of the Nash equilibrium: exis-

tence and uniqueness. The existence issue is addressed in the appendix, where we show that a

Nash equilibrium always exists in this game. On the other hand, it turns out that the unique-

ness of the equilibrium is not always guaranteed. This is not surprising since the strategy space

is discrete. In order to have a concrete example of multiple Nash equilibria, consider the follow-

ing set of parameters: ρ = 0.9, h = 1,b = 10 and br = 6. There are two Nash equilibria in this

case: (7,11) and (8,10). The respective costs are: for the first equilibrium Cs(7, 11) = 7.708,

Cr(7, 11) = 16.151, and for the second equilibrium Cs(8, 10) = 8.278, Cr(8, 10) = 15.581. The
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expected total cost generated by the decentralized system is then 23.959 regardless of the equi-

librium selected (since the total inventory level is identical in both cases). Let us also note for

completeness that, the corresponding centralized system has an optimal base stock level of 22,

and generates an expected cost of 22.749. Fortunately, as also reported in Cachon (1999), the

occurrence of multiple Nash equilibria is rare and when multiple equilibria exist the difference

in respective payoffs between different equilibria seem to be relatively small as in the previous

example. Since the qualitative results seem to be robust, we avoid the rather complicated de-

bate on which of the equilibria may be realized. For reporting purposes however, we report the

equilibrium that minimizes the total supply chain cost.

Next, we look into the structure of the Nash equilibria. The structure of the Nash equilib-

rium strategy depends on the ratios br/hr and bs/hs as outlined in the following proposition:

Proposition 2 The Nash equilibrium pair of strategies (S∗s , S∗r ) has the following properties:

i. if br/hr ≤ bs/hs then:

S∗r = 0, S∗s =

 ln
(

hs
hs+bs

)

ln ρ

 ,

ii. if br/hr > bs/hs then S∗s and S∗r are such that:

S∗r + S∗s =

 ln
(

hr
hr+br

)

ln ρ



.

Remark: An explicit formula for the second case of the lemma (br/hr > bs/hs) can be ob-

tained if the condition that the base stock levels have to be integers are relaxed. The resulting

continuous approximation is:

S∗s =
ln

(
1− hrbs

hs(hr+br)

)

ln ρ
, S∗r =

ln
(

hshr
hs(hr+br)−hrbs

)

ln ρ
.

Let us discuss some of the qualitative consequences of Proposition 2. When br/hr < bs/hs,

the supplier is the more concerned party in terms of backorder to holding cost ratios. The

proposition then establishes that under this condition, the supplier holds all the inventory

while the retailer operates in a replenish-to-order mode. In addition, the equilibrium base stock

level only depends on bs/hs (and ρ) but not on br/hr. When br/hr > bs/hs, in general both

parties end up holding some inventory in the equilibrium but the total supply chain inventory

is determined only by the ratio br/hr. Finally, let us note that the total equilibrium base stock

level can be expressed as the maximum of two quantities as follows:

S∗r + S∗s = max




 ln
(

hr
hr+br

)

ln ρ

 ,

 ln
(

hs
hs+bs

)

ln ρ



 . (10)
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From equation (10), it immediately follows that, at equilibrium, the total base stock level

in the decentralized supply chain is always less than or equal to optimal base stock level of

the corresponding centralized system. In fact, if we disregard the discrete nature of the base

stock levels momentarily, it can be seen that when hs < hr the equality only takes place if the

supplier pays the full backorder cost of the system (bs = b). For hs = hr = h, the equality of

the base stock levels can only take place when either one of the parties pays the full backorder

cost (i.e. bs = b or br = b). When both parties take some but not all of the responsibility of

backorder costs (0 < bs, br < b), the supply chain is understocked with respect to its optimal

level. These conclusions extend to the total supply chain costs. The decentralized system

incurs a higher total cost per unit time than the centralized system unless bs = b (respectively

bs = b or br = b when hs = hr = h). To summarize these qualitative conclusions, in the Nash

equilibrium, the decentralized system is not coordinated except under special cases (one party

taking full responsibility of the backorder costs or due to the discrete nature of the optimal

base stock levels especially if these levels are low). Finally, the lack of coordination is always

due to understocking with respect to the optimal stocking levels of the centralized system.

4.4 The Performance of the Decentralized System

The preceding subsection established that the decentralized system is not coordinated except in

particular circumstances. In this section, we investigate the loss of efficiency in the decentralized

system with respect to the corresponding centralized system. Let us define the competition

penalty as follows:

CP =
(Cs(S∗s , S∗r ) + Cr(S∗s , S∗r ))− C(S∗)

C(S∗)

Below, we denote by CP (br) the competition penalty as a function of the retailer’s backorder

cost br, when all other parameters are held fixed.

Proposition 3 If hs = hr = h then:

i. CP(br) is symmetrical with respect to br = bs = b/2 in the interval [0, b]

ii. CP(br) is non-decreasing in the interval [0, b/2] (and non-increasing in the interval [b/2, b]).

Proposition 3 establishes that the highest CP occurs when each party is partially (50%)

responsible from the backorder costs. This is in accord with the results in Cachon for the lost

sales system but in contrast with the results in Cachon and Zipkin (1999) and Caldentey and

Wein (2003) where the worst CP occurs at extreme backorder cost allocations. The explanation

for this discrepancy is as follows: in our setting the positioning of the inventory is irrelevant as

long as the total inventory in the supply chain is sufficient. This makes extreme backorder cost

allocations efficient in our setting because the more responsible party can always compensate
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for the other. However, in an equal backorder cost allocation, both parties tend to understock

with respect to ideal levels which turns out to be the worst situation for the supply chain.

Figures 1 and 2 depict the result of Proposition 3 on numerical examples. In particular,

Figure 1 presents the competition penalty curves for three different systems differing in their

total backorder costs (b = 10, 100 or 1000). While the total supply chain cost is increasing b,

the competition penalty seems to be decreasing. Increasing backorder cost to holding cost ratios

makes both parties more responsible about total inventory levels in the supply chain. This is

also in accord with a corresponding observation in Cachon (1999) where increasing profit margin

to holding cost ratios decrease inefficiency. It should be noted that, in our setting, only major

increases in b/h have a notable effect on the CP since inventories are roughly proportional to

log(b/h)
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Figure 1: The competition penalty as a function of br/b for different values of b (hs = hr = 1)

Figure 2 presents the competition penalty curves for three different systems differing in

utilization levels (ρ = 0.8, 0.9 or 0.98). Although the total supply chain cost is increasing in

ρ (is roughly proportional to −1/ ln ρ), the competition penalty does not seem to be strongly

affected by ρ. Regardless of the utilization rate, the parties respond in similar ways in terms

of relative inventories in a decentralized setting. This is in contrast with the observations in

Cachon (1999) where the utilization rate has a significant impact. Proposition 2 sheds some

light onto this interesting behaviour. A close examination of the equilibrium structure reveals

that the total base stock level in the supply chain is always proportional −1/ ln ρ. This implies

that the ratio of the total inventory in the decentralized system to the total inventory in the

centralized system (i.e. (S∗s + S∗r )/S∗) does not depend on ρ.
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Figure 2: The competition penalty as a function of br/b for different utilization rates(hs = hr =

1)

Figures 1 and 2 also indicate that the competition penalty is relatively modest when hs = hr

(less than 10% in the worst situation in these figures). This seems to be the general pattern

in other examples as well. There are nevertheless some special extreme cases in which the

competition penalty can be more significant. For instance, let λ = 0.1, µ = 1, b = 20 − ε

(ε > 0), hs = hr = 1 and br = bs = (1/2)b. In this particular case, it can be observed that the

competition penalty approaches 100% as ε goes to zero. The reason for this is as follows: the

optimal centralized base stock level is one unit whereas the decentralized supply chain has an

optimal base stock level of zero. This small difference in the base stock levels reflects into a

significant relative difference for optimal costs. Having mentioned this special case, we maintain

our focus on systems with relatively high base stock levels in the rest of the analysis.

Next, we investigate systems with hr > hs. In this case, the structure of the competition

penalty (as a function of br/b) is somewhat different. In fact, the global symmetry of the CP

curve is lost but there is still some local symmetry around br = (hr/hs)bs where the penalty

reaches its maximum. To the left of this point, the curve is similar to the ones in Figures 1

and 2 with zero penalty at br = 0 and then increasing until br = (hr/hs)bs. To the right of this

point, the curve is decreasing as can be seen in Figures 3 and 4.

Other than the structure of the curves, Figures 3 and 4 confirm some of the general results

observed in Figures 1 and 2. For example, the competition penalty is only slightly affected by the

utilization rate as seen in both figures. The effect of total backorder costs (b) when we compare

the two figures (3 and 4) is now more complicated. To the left of the point br = (hr/hs)bs, the

retailer does not hold any inventory. It turns out that in this region the CP is decreasing in

11



b=10

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

br/b (%)

C
om

pe
tit

io
n 

Pe
na

lty
 (%

)

ρ=0.9
ρ=0.98

br/b (%)

Figure 3: The competition penalty as a function of br/b for b = 10 at different utilization rates

(hs = 1 hr = 1.1)

b (when br/b is constant). The maximum CP occurs at br = (hr/hs)bs and does not seem to

depend on b. On the other hand, to the right of br = (hr/hs)bs (where both parties hold some

inventory in general), the CP is increasing in b (when br/b is constant).

5 Coordination of the Supply Chain

It is clear that, in general, the decentralized operation is less efficient in terms of the total

supply chain profit. In this section we investigate contracts which can be used to improve the

decentralized operation. We focus, once again, on the Nash game where the supplier and the

retailer simultaneously select their base stock levels. As in Cachon and Zipkin (1999), Cachon

(1999) and Caldentey and Wein (2003) we focus on contracts with linear transfer payments. An

important starting point comes from the earlier established fact that the decentralized system

always holds less total inventory than the centralized system. Any coordinating contract must

then increase the total amount of inventory in the system. Below we describe a general holding

cost subsidy contract and investigate its properties. We also briefly discuss some interesting

and useful special cases of the holding cost subsidy contract. A more extensive treatment of

these issues can be found in Jemäı and Karaesmen (2004).

Let us investigate a two-parameter contract that we refer to as ”the generalized α” (αG)

contract which allows both way holding cost subsidies between the supplier and the retailer.

The contract has two parameters: αS and αR. For simplicity, we only present the identical

holding costs case (hs = hr = h) but the extension to the general case is straightforward. The
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Figure 4: The competition penalty as a function of br/b for b = 100 at different utilization

rates(hs = 1 hr = 1.1)

corresponding cost functions are:

Cs(Ss, Sr) = h(1− αR)E[Is(Ss, Sr)] + αS hE[Ir(Ss, Sr)] + bsE[B(Ss + Sr)]

and

Cr(Ss, Sr) = h(1− αS)E[Ir(Ss, Sr)] + αRhsE[Is(Ss, Sr)] + brE[B(Ss + Sr)]

The analysis of this contract is similar to the analysis of the decentralized case without a

contract. The response functions can be written as:

S∗s (Sr) =

 ln (1−αR)h
(1−αR)h−αSh+(bs+αS h) ρSr

ln ρ

 (11)

and

S∗r (Ss) =

 ln (1−αS)h
(1−αS)h+br

ln ρ
− Ss


+

(12)

The next question is whether such a contract can coordinate the supply chain and if so for

which values of the contract parameters. To investigate this issue let us start by two special

cases that are of interest on their own. First let us assume that αR = 0. This is the case where

only the supplier subsidizes the retailer’s inventory costs. As pointed out by Cachon (1999),

this is the analogue of a buyback contract that is known to coordinate the supply chain in a

single-period newsvendor setting (see Pasternack 1985).

Then following a similar approach as in Proposition 2, when αR = 0 the Nash equilibrium

strategies are obtained as:
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If br < (1− αS)bs then S∗r = 0 and

S∗s =

 ln
(

h
h+bs

)

ln ρ

 , (13)

and if br ≥ (1− αS)bs then S∗s and S∗r are related by:

S∗r + S∗s =

 ln
(

(1−αS)h
(1−αS)h+br

)

ln ρ

 . (14)

The next proposition establishes a condition for the parameter αS which makes the contract

coordinating.

Proposition 4 Under the αG-contract with αR = 0, when αS = 1−(br/b) then the correspond-

ing Nash equilibrium (S∗s , S∗r ) is such that S∗s + S∗r = S∗.

Pursuing the findings of Proposition 4, a closer examination of equations (11) and (12)

establishes that (0, S∗) is always a Nash equilibrium for the coordinating αG contract with

αR = 0. This solution, however, may not be unique. By Proposition 4, this contract always

coordinates the supply chain similar to the analogous buyback contract in the newsvendor

setting. Next, we investigate the flexibility of this contract in the allocation of the benefits

of coordination. For any given br, there is a unique value of αS that coordinates the supply

chain allowing only a unique partition of the savings due to coordination. This parallels again

the results for the newsvendor model under the buyback contract: for a fixed wholesale price,

there is a unique coordinating buyback price which results in a unique split of the coordination

benefits. On the other hand, if the wholesale price is varied along with the unit buyback

price, one obtains infinitely many coordinating buyback contracts with different splits of the

coordination benefits. This suggests an alternative interpretation of the contract. Let br be an

additional contract parameter. This, of course, requires renegotiating the initial backorder cost

allocation at the same time with the holding cost subsidy rate αS . In this case, for any αS ,

there always exists a br which leads to coordination, and different coordinating (αS , br) pairs

allow different allocations of the supply chain profit. This contract is very similar to a buyback

contract with the flexibility of negotiating the unit wholesale price. The corresponding (αS , br)

contract is always coordinating and flexible in terms of allocation of savings. Moreover, just

like a coordinating buyback contract, it has the attractive feature that it does not depend on

the demand rate λ.

The αG contract can also coordinate the supply chain with αS = 0 if αR = br/b. This

version of the contract also suffers from the same drawbacks in terms of the allocation of the

supply chain profits.
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Finally, the αG contract coordinates the supply chain for a variety of other parameter

settings requiring two-way monetary transfers. It turns out that the Nash equilibrium always

has the structure: (S∗s , S∗ − S∗s ) for αS = bs/b and αR ≤ br/b or for αR = br/b and αS ≤ bs/b.

For instance, if αS = bs/b, any αR ≤ br/b leads to coordination. Of course unless αR = 0, the

result is a more complicated contract that requires two-way monetary transfers. On the other

hand, this enables a more diverse allocation of the coordination savings through the choice of

the right parameters. Unfortunately, a completely arbitrary allocation of the savings cannot be

achieved unless br is used as a third contract parameter.

6 Stackelberg games and Stackelberg equilibria

In this section, we focus on Stackelberg games where one of the player selects (and announces)

its base stock level before the other one. This gives an advantage to the first-moving player

because its choice takes into account the anticipated best response of the other player. This

provides a coherent framework to model a situation where one of the players dominate the

inventory positioning decisions in the supply chain.

Let us start by the case where the supplier is the Stackelberg leader: in this case, the

supplier selects S∗s that minimizes Cs(Ss, Sr) with the knowledge that the retailer will select S∗r
that minimizes Cr(Ss, Sr). Then:

S∗s = arg min
Ss

(Cs(Ss, S
∗
r (Ss))) and S∗r = S∗r (S∗s ).

Similarly when the retailer is the Stackelberg leader, she will select the optimal base stock

level given by:

S∗r = arg min
Sr

(Cr(S∗s (Sr), Sr)) and S∗s = S∗s (S∗r ).

Analytical expressions for the optimal base stock levels in the Stackelberg games are difficult

to obtain. On the other hand, numerical results easily follow from Proposition 1. Below, we

present a summary of these results focusing on the contrasts with respect to the Nash game.

The CP curves for Stackelberg equilibria manifest certain similarities with the corresponding

CP curves for Nash equilibria. Figure 5 presents the CP as a function of the retailer’s backorder

cost for cases where the Stackelberg leader is respectively the supplier, and the retailer. The CP

for the Nash game can also be observed in the same figure. As seen in these figures, when br < bs

the Stackelberg equilibrium solution led by the supplier is less efficient than the Stackelberg

solution led by the retailer. The situation reverses when br > bs and the Stackelberg equilibrium

solution led by the supplier becomes more efficient. In addition when hs = hr = h, the two
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Figure 5: Comparison of the competition penalty for Stackelberg and Nash equilibria (hr =

hs = 1, ρ = 0.9, b = 10)

different equilibria (the ones led by the supplier and retailer) yield symmetrical competition

penalties.

An important difference, with respect to the Nash case, that can be observed in Figures 5

is that the CP can now be extremely significant (exceeding 30%) for certain cases. The most

significant efficiency seems to take place as the Stackelberg leader gradually decreases its base

stock level to zero while the other player is only moderately (around 30%) responsible for the

total backorder cost. On the other hand, the inefficiency is insignificant if either party is almost

fully (more than 80%) responsible of the total backorder cost, regardless of the dominant player.

It can be seen in Figure 5 that the Nash equilibrium is always more efficient (in a non-strict

sense) than both of the Stackelberg cases. The existence of a dominating player has a non-

positive influence on the supply chain performance. More interestingly, the Nash equilibrium

always coincides with one of the Stackelberg equilibria (supplier led or retailer led) for any br/b

(Jemai (2003) gives a proof of this property under the continuous approximation of the base

stock levels). This implies that for certain cost structures (when the more responsible party

is the Stackelberg leader), the Stackelberg equilibrium coincides with the Nash equilibrium.

Inversely, the worst supply chain efficiency is realized when the less responsible party is the

Stackelberg leader.

In other examples not reported here, similar results (to the Nash case) on the effects of

other parameters (b and ρ) on the CP for Stackelberg games were observed. For instance,

the effect of the utilization rate ρ seems to be insignificant. The effect of the backorder cost

rate b seems more important, and in particular, the maximum CP is increasing in b but the
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overall qualitative behavior of the CP appears to be rather robust with respect to the changes

in parameters.

7 Conclusion

We investigated the decentralized operation of a capacitated supplier-retailer supply chain using

stationary base stock policies for inventory control. We showed that the decentralized system

is inefficient because the decentralized supply chain keeps lower base stock levels than what

is required for coordination. If there is little holding cost difference between the stages, the

relative inefficiency reaches its maximum if each of the two parties is responsible from half of

the total backorder cost. The consolation is that the relative inefficiency does not surpass 10%

except in extreme cases (such as extremely low base stock levels). Surprisingly, the utilization

rate of the supply chain, which has a huge impact on the total supply chain performance, has

little influence on the relative inefficiency of decentralized operation. The additional cost due

to increased utilization rate seems to be shared fairly and proportionally between the supplier

and the retailer. With unequal holding costs, the inefficiency of the supply chain can be much

more significant especially if the supplier (who has lower holding costs) is less responsible of the

backorder cost than the retailer. Similarly, if one party is more powerful in leading the inventory

decisions (i.e. is the Stackelberg leader), the inefficiency of the decentralized operation can be

significant.

Our analysis reveals that there are several simple linear contracts that coordinate the supply

chain. For instance, a holding cost subsidy by the retailer to the supplier coordinates the supply

chain even in the case of unequal holding costs. A common shortcoming of all simple single-

parameter contracts is that, unless the backorder cost allocation becomes an additional contract

parameter, coordination results in a unique allocation of the savings. Another downside seems

to be the issue of voluntary compliance. In general, only one of the two parties is better off

with the contract (than without). This implies that additional side payments may be necessary

in order to achieve coordination by contracting.

The model considered in this paper assumes negligible transfer times between the supplier

and the retailer. While this may restrict the scope of its relevance, it has the virtue that pure

inventory ownership (rather than inventory positioning) in the supply chain becomes the focus.

Our analysis then sheds light onto inefficiencies of decentralized operation from this point of

view. It is interesting to note that in this context simple contracts can coordinate the supply

chain.

It would be interesting to investigate the validity of the insights obtained with extensions to

non-negligible transfer times and multiple retailers. Although exact analysis for these extensions

17



seems impossible in the case of a capacitated supplier, approximations and simulation could be

employed to investigate the effects of stock positioning.
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Appendix: Proofs

Proof of Lemma 1: Under a base stock policy, the inventory level of the supplier in the decen-

tralized system is (stochastically) equal to the inventory level in a corresponding single-stage

system with the same base stock level (Ss). Using (1), this leads to expression (3).

Moreover the total (retailer+supplier) inventory level in a decentralized system with base-

stock levels Ss and Sr is stochastically equal to the inventory level in a corresponding single-stage

system whose base stock level is: S = Ss + Sr. Once again, using (1) yields: E[Is(Ss, Sr)] +

E[Ir(Ss, Sr)] = E[I(Ss + Sr)]. Expanding the previous expression enables us to reach (4).

Finally, in the decentralized system with instantaneous replenishments, demands that can-

not be satisfied from the retailer’s inventory can be satisfied from the supplier’s inventory with

an instantaneous transfer through the retailer. In fact, the decentralized system only backorders

an arriving demand when the total inventory in the system runs out. A direct coupling argu-

ment then shows that the number of backorders in the decentralized system is stochastically

equal to the number of backorders in a corresponding single-stage system whose base stock level

is : S = Ss + Sr. This leads to the expression in (5). 2

Proof of Proposition 1: The supplier’s cost function is convex in Ss since the average inventory

level and backorder level are both convex in Ss. A direct investigation of the first order condition

leads to expression (8) (in fact, the supplier’s cost function is very similar to the cost function of

the corresponding single stage system with backorder cost b′ defined as: b′ = bsρ
Sr). Similarly,

the retailer’s cost function is convex in Sr and is similar to the cost function of the corresponding
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single-stage system whose base stock level is given by: S = Ss + Sr. For the corresponding

single-stage system this leads to:

S∗ =

 ln
(

hr
hr+br

)

ln ρ


+

Hence, for a given supplier base stock level Ss, S∗r can be expressed as in (9). 2

Proof of Proposition 2:

In order to prove part i., let us define the function S̃∗r such that :

S̃∗r (Ss) =

 ln
(

hr
hr+br

)

ln ρ
− Ss



Note that S∗r = 0 when S̃∗r < 0 and S∗r = S̃∗r when S̃∗r ≥ 0. In addition, S̃∗r is increasing in br

and S̃∗r = 0 when br = bshr/hs.

Then for br = bshr/hs, S∗r = 0 and

S∗s (Sr) =

 ln
(

hs
hs+bs

)

ln ρ



as given by Proposition 1. This proves part i.

In order to prove part ii., let us note that from proposition 1 it can be seen that

S∗s (Sr) ≤
 ln

(
hs

hs+bs

)

ln ρ



then  ln
(

hr
hr+br

)

ln ρ

− S∗s (Sr) ≥
 ln

(
hr

hr+br

)

ln ρ

−
 ln

(
hs

hs+bs

)

ln ρ



which leads to:

S̃∗r ≥
 ln

(
hr

hr+br

)

ln ρ

−
 ln

(
hs

hs+bs

)

ln ρ

 .

However, for br > bshr/hs, we have:
 ln

(
hr

hr+br

)

ln ρ

−
 ln

(
hs

hs+bs

)

ln ρ

 > 0

which implies that S̃∗r > 0

then

S∗r =

 ln
(

hr
hr+br

)

ln ρ
− Ss


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and finally

S∗r + S∗s =

 ln
(

hr
hr+br

)

ln ρ

 .

which implies the characterization of part ii.

Proof of Proposition 3: Using the definition of the competition penalty, for equal holding costs

we can write:

CP (br) =
C(S∗s + S∗r )

C(S∗)
− 1

but C(S∗s + S∗r ) is given by equation (10) which is symmetrical with respect to br = bs = b/2.

In order to prove part ii, we note, using (10), that in the interval [0, b/2] S∗s + S∗r is non-

increasing in br. From proposition 2, S∗s + S∗r ≤ S∗ and the cost function of the centralized

system is convex in S and reaches its minimum at S∗. Then C(S∗s + S∗r ) is increasing in br

implying that CP (br) is non-decreasing. 2

Proof of Proposition 4: From equations (13) and (14), it is seen that for any given αS , there are

two different solution structures depending on the comparison between br and (1− αS)bs. For

αS = 1− (br/b), br is greater than or equal to (1− αS)bs, leading to the equilibrium structure

in (14). It can then be directly verified that S∗s + S∗r = S∗ when αS = 1− (br/b). 2

In this part of the appendix, we prove the existence of a pure-strategy Nash equilibrium for

the Nash game presented in Section 4.3. The proof will be based on a result by Topkis (1998)

which establishes that a pure strategy Nash equilibrium exists in a supermodular game. In the

sequel, we prove that our inventory game is indeed supermodular and satisfies the conditions

of Topkis (1998).

Definition 1 The set S is a lattice of IRm if for all s(x1, .., xm ∈ S and s′(x′1, .., x′m ∈ S,

s ∧ s′ ∈ S and s ∨ s′ ∈ S (where s∧s’≡(min(x1, x
′
1),. . . ,(min(xm, x′m)) and

s∨s’≡(max(x1, x
′
1),. . . ,(max(xm, x′m)).

Definition 2 The function Ui(Ss, Sr) has increasing differences in (Ss, Sr) if for all (Ss, S
′
s) ∈

SS2 and (Sr, S
′
r) ∈ SR2 such that Ss ≥ S′s and Sr ≥ S′r

Ui(Ss, Sr)− Ui(S′s, Sr) ≥ Ui(Ss, S
′
r)− Ui(S′s, S

′
r).

Definition 3 The function Ui(Ss, Sr) is supermodular in Ss if:

Ui(Ss, Sr) + Ui(S′s, Sr) ≤ Ui(Ss ∧ S′s, Sr) + Ui(Ss ∨ S′s, Sr) ∀ (Ss, S
′
s) ∈ SS2.

Let us note that supermodularity is automatically satisfied if SS is one dimensional.
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Definition 4 A game is supermodular if for all players i, Si is a lattice of IRm, Ui has increas-

ing differences in (Si, S−i) and Ui is supermodular Si (where S−i denotes the strategies used by

all other players than i).

Using the above definitions, we will show that our decentralized inventory game is a super-

modular game. To this end, let us introduce an order similar to the one used by Milgrom and

Roberts (1990) and Cachon (2001).

Let SS and SR be the respective strategy sets of the supplier and the retailer, and let

(Ss, S
′
s) ∈ SS2 be two strategies of the supplier. We say Ss is superior to S′s and write Ss≥

o
S′s

if Ss ≥ S′s. Similarly, let (Sr, S
′
r) ∈ SR2 be two strategies of the retailer. We say Sr is superior

to S′r and write Sr ≥
o

S′r if Sr ≥ S′r.

Lemma 2 The Nash inventory game between the supplier and the retailer whose utility func-

tions are given by Us(Ss, Sr) = −Cs(Ss, Sr) and Ur(Ss, Sr) = −Cr(Ss, Sr) is a supermodular

game.

Proof: We need to check that the inventory game satisfies the conditions of a supermodular

game. First, it is easily verified that SS and SR are lattices of R. Second, Us and Ur have

increasing differences in (Ss, Sr) because for all (Ss, S
′
s) ∈ SS2 and (Sr, S

′
r) ∈ SR2 such that

Ss≥
o

S′s and Sr ≥
o

S′r we have:

Us(Ss, Sr)− Us(S′s, Sr) ≥ Us(Ss, S
′
r)− Us(S′s, S

′
r)

since Sr ≤ S′r, and:

Ur(Ss, Sr)− Ur(Ss, S
′
r) ≥ Ur(S′s, Sr)− Ur(S′s, S

′
r)

since Ss ≥ S′s and ρS′r −ρSr ≤ 0. Finally Us(Ss, Sr) (respectively Ur(Ss, Sr)) is supermodular in

Ss (respectively in Sr) because Ss ∧ S′s = min(Ss, Sr) and Ss ∨ S′s = max(Ss, Sr) (respectively

Ss ∧ S′s = min(Ss, Sr) and Ss ∨ S′s = max(Ss, Sr)) hence

Ui(Ss, Sr) + Ui(S′s, Sr) = Ui(Ss ∧ S′s, Sr) + Ui(Ss ∨ S′s, Sr), i = {S,R}

Supermodularity of the game is a critical requirement for our proof of existence of Nash equi-

libria. There are, however, some other technical requirements necessary to complete the proof.

A complete verification of these requirements can be found in Jemai (2003). Below, we outline

the major steps.

Proposition 5 There exists a Nash equilibrium in the supplier-retailer inventory game.
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Proof: Topkis (1979) established that, if, for all players i, the strategy set Si is compact, the

utility functions Ui are upper semi-continuous in Si for all S−i, and if the game is supermodular,

then there exists a Nash equilibrium. These conditions are verified for our inventory game. In

particular, the set of strategies is compact since it is bounded. We have already shown that

SS = {0, .., S∗} and SR = {0, .., S∗} where S∗ is the optimal base stock level of the centralized

system. SS and SR are finite sets hence all series xn that converge to x in SS (respectively

in SR), hence, the utility functions Us and Ur are upper semi-continuous. Finally, the game

is supermodular by Lemma 2.This establishes that a Nash equilibrium exists in the inventory

game. 2
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