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Abstract

Variability, in general, has a deteriorating effect on the performance of stochastic inventory systems. In particular,

previous results indicate that demand variability causes a performance degradation in terms of inventory related costs

when production capacity is unlimited. In order to investigate the effects of demand variability in capacitated pro-

duction settings, we analyze a make-to-stock queue with general demand arrival times operated according to a base-

stock policy. We show that when demand inter-arrival distributions are ordered in a stochastic sense, increased arrival

time variability indeed leads to an augmentation of optimal base-stock levels and to a corresponding increase in optimal

inventory related costs. We quantify these effects through several numerical examples.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

We consider a single-item, single-stage produc-

tion/inventory system operating in a make-

to-stock mode. A plausible production control

policy in this setting is a base-stock policy which

drives the inventories to a predetermined base-

stock (target inventory) level. Policy optimization,

in order to minimize inventory holding and back-

ordering costs for example, then reduces to the
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optimization of the base-stock level. Depending

on the complexity of the underlying modeling
assumptions, this optimization can be performed

analytically, numerically or through simulation.

While simulation or numerical analysis may enable

a case-by-case comparison of different systems in

terms of their optimal performance (inventory

levels, costs etc.), it is impossible to state general

structural properties through these approaches. In

this paper, we pursue an analytical approach that
leads to a structural comparison related to the

variability of the demand inter-arrival times.

It is known that variability, in general, has a

deteriorating effect on the performance of sto-

chastic inventory systems. There are, however,

relatively few papers that investigate variability
ed.
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from an analytical point of view. Most of this re-
search has focused on uncapacitated systems

(exogenous lead times). Gerchak and Mossman [4]

showed that, in a single-period newsvendor set-

ting, the optimal replenishment quantity and the

optimal cost are both increasing (under reasonable

conditions) in the demand variability when de-

mand is transformed using a mean-preserving

transformation. Ridder et al. [10] presented com-
parison results based on demand variability in the

identical setting emphasizing at the same time that

depending on the definition of variability, some

counter-examples can be found. For a continuous

review single-item inventory system with exoge-

nous lead times, Song [12,13] proved that in-

creased lead time variability causes an increase in

the optimal base-stock levels and the optimal
costs. It is important to underline that all of these

previous results hold under precise definitions of

variability and that simple measures of variability

such as ‘‘the coefficient of variation of lead time

demand’’ may not suffice for an ordering of opti-

mal base-stock levels or optimal costs.

Inter-arrival time variability has a negative effect

on the performance of queueing systems as well
(see for example, [1] for some analytical evidence

through approximations and [8] for a numerical

investigation). There are also some supporting

numerical results for this negative effect on capac-

itated inventory systems – also called ‘‘production/

inventory systems’’ – (e.g. for instance [9]). On the

other hand, there are few purely analytical results

on the effects of variability in capacitated systems.
Such a result is presented in G€ull€u [6] where a

single-item, periodic-review production/inventory

problem under a base-stock policy is investigated

and appropriate conditions on the demand distri-

bution under which the optimal performance

measures can be ordered are presented.

In this paper, we study a continuous review

single-item single-stage make-to-stock type pro-
duction system where demand inter-arrival times

and processing times are random. Production

capacity is explicitly modeled as a limited resource

represented as the server of a queue (a detailed

treatment of such models can be found in [1]).

Unlike [6], our underlying system is a continuous

review capacitated production/inventory system.
In order to capture some the effects of variability
on the two key performance measures (base-stock

levels and costs), the arrival process is modeled by

a general renewal process. The system lends itself

to almost-explicit analysis when processing times

are exponentially distributed. The resulting model

is a GI/M/1 make-to-stock queue.

Our contributions can be summarized as fol-

lows: we compare the optimal base-stock levels and
optimal costs of two GI/M/1 make-to-stock queues

with identical demand arrival and processing rates.

We show that, if the demand inter-arrival times are

ordered according to the (stochastic) convex order,

then the optimal base-stock levels and the optimal

average costs are ordered in the same direction. At

the same time, our analysis indicates that, in either

case, the convex order is essential for the results,
and that weaker comparisons of variability (such as

the coefficient of variation) do not suffice in gen-

eral. Finally, we complement the theoretical results

with a numerical investigation which enables us

to quantify the effects of inter-arrival time vari-

ability.

The paper is structured as follows. In Section 2,

we introduce the model, the employed notation,
and some definitions that will be used later. Sec-

tion 3 presents our main results on the effects of

variability on optimal base-stock levels and opti-

mal costs in GI/M/1 make-to-stock queues. A

short numerical investigation is presented in Sec-

tion 4 and the concluding remarks in Section 5.
2. Model and preliminaries

2.1. The model and notations

We consider a single-stage production system

where demands arrive in single units (we discuss a

special case related to batch arrivals later). De-

mand inter-arrival times are independent and
identically distributed random variables. The

production stage is modeled by a single server

whose processing times are exponentially distrib-

uted. We denote by T the demand inter-arrival

time, k ¼ 1=E½T � the demand arrival rate, l the

(exponential) processing rate of the server and

define q ¼ k=l.
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The production system is controlled according
to a base-stock policy with a base-stock (or target

inventory) level S (see [2] for a detailed description

in the context of production/inventory systems).

The server produces whenever the inventory level

is under the target level S and stops when the

inventory level reaches S. We assume that demand

is backlogged whenever inventory is not available

and assume the standard cost structure: h is the
inventory holding cost per part per unit time and b
is the backorder cost per backorder per unit time.

Let X ðtÞ denote the inventory level at time t, X be

the corresponding stationary random variable and

let px ¼Probability fX ¼ xg. Under the above cost

structure, the optimization problem is to select the

base-stock parameter S which minimizes the ex-

pected average cost

min
S

CðSÞ
(

¼
XS

x¼0

hxpx þ
X0

x¼	1
	 bxpx

)
: ð1Þ

Let us now define NðtÞ ¼ S 	 X ðtÞ, the shortfall

with respect to the base-stock level S at time t. NðtÞ
is the underlying queueing process in the produc-

tion stage. In particular with general demand in-

ter-arrival times and exponential processing times,

the process NðtÞ is equivalent to the number of

customers at time t in a GI/M/1 queue. The anal-

ysis of the production/inventory system can then
be performed through the corresponding queueing

system. To this end, let pn ¼ProbabilityfN ¼ ng,

be the stationary probability that there are n cus-

tomers in this queue. The objective function (1)

can then be expressed as

min
S

CðSÞ
(

¼
XS

n¼0

hðS 	 nÞpn þ
X1
n¼Sþ1

bðn	 SÞpn

)
:

ð2Þ

Minimizing the above expression with respect to S
leads to the discrete version of the familiar critical-

fractile formula for the optimal base-stock level. In

particular, let FN be the cumulative distribution

function of N , then the optimal base-stock level S�

is given by (see [15] for example)

FN ðeS � 	 1Þ ¼ b
hþ b

and S� ¼ beS �c; ð3Þ
where byc denotes the greatest integer that is less

than or equal to y (a real number).

Note that in (3), eS � is the value where the

first-order optimality condition (i.e. the first

equation) is satisfied with equality. eS � itself is, in

general, not an integer but the integer base-stock

level is easily obtained from eS � by the second

equation in (3). Since eS � subsumes all important
qualitative characteristics of the system, we refer

to it frequently in the rest of the paper as the

continuous approximation of the optimal base-stock

level.
2.2. Definitions and properties of stochastic

comparisons

The principal tool of analysis in the rest of the

paper will be stochastic comparisons of random

variables. We provide below the definitions and

properties of these comparisons that are used
in the paper. These definitions and further details

on stochastic comparison methods can be found

in Stoyan [14] and Shaked and Shanthikumar

[11].

Let X1 and X2 two random variables, F1 and F2

their cumulative distribution functions, f1 and f2

their probability density functions, and L1, L2 their

Laplace transforms.

Definition 1 (stochastic order). The random vari-

able X1 is stochastically greater than a random

variable X2, denoted X1 Pst X2, if 1 	 F1ðxÞP 1	
F2ðxÞ8x.

Definition 2 (convex order). For two random

variables X1 and X2, X1 Pc X2 ðX1 Pic X2Þ if and
only if E½f ðx1Þ�PE½f ðx2Þ� 8f convex (non-

decreasing and convex).

Definition 3 (Laplace transform order). For two

random variables X1 and X2, X1 PL X2 if E½e	sX1 � 6
E½e	sX2 �. In what follows, we summarize some

properties of the comparisons previously defined

X1 Pst X2 ) X1 Pic X2 ) X1 PL X2:

Note: In the increasing convex comparison, for

two non-negative random variables having identical
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means, the condition ‘‘non-decreasing’’ is not

necessary.

Finally, in addition to the comparisons pre-

sented above, we frequently refer to a simple

aggregate measure of variability: the coefficient of

variation (CV) which is the ratio of the standard

deviation to the mean of a random variable.
3. The influence of variability

3.1. The optimal base-stock level

Our objective in this section is to analyze the

effects of demand inter-arrival variability on opti-

mal base-stock levels. Song [12] studied uncapaci-
tated systems where the corresponding variable of

interest is the lead time demand. Song shows that

under a so called ‘‘variability’’ ordering of the lead

time demand, the optimal base-stock levels are

ordered. We compare two GI/M/1 type make-

to-stock queues that are identical except for their

demand arrival processes with associated station-

ary inter-arrival time random variables A1 and A2.
In order to isolate the effects of variability from

those of utilization rate, we focus on the case

where E½A1� ¼ E½A2� (the systems compared are

then equivalent in their utilization rates). For a

different (capacitated but periodic-review) model,

G€ull€u [6] presents a comparison result which holds

under a regular stochastic order (Definition 1).

This order is, however, rather strong and does not
allow, for instance, comparing two inter-arrival

time distributions with the same mean.

Recall that the optimal base-stock level is ob-

tained through the distribution function of the

shortfall queue from the equation: FNðeS �	
1Þ ¼ b=ðhþ bÞ, S� ¼ beS �c . Let us note that, for G/

M/1 queues, the distribution function is a function

of the parameter r, the root of the characteristic
equation: r ¼ LAðð1 	 rÞlÞ, where LA is the Laplace

transform of the inter-arrival time distribution FA
(see [5]). This leads to the following expression for

the distribution function of N , the number of

customers in the queue

FNðxÞ ¼ P ½N 6 x� ¼ ð1 	 qÞ þ qð1 	 rxÞ
¼ 1 	 qrx x ¼ 0; 1; 2 . . . ð4Þ
Lemma 1. Consider two GI/M/1 queues with iden-
tical arrival and processing rates and with respective
parameters r1 and r2 such that r1 P r2, then
N1 P st N2 where N1 and N2 are the number of cus-
tomers in the queues 1 and 2 respectively.
Proof. Let the function GxðrÞ ¼ F ðxÞ ¼ ð1	 q � rxÞ,
with parameter r defined on ð0; 1Þ. GxðrÞ is decreasing
and concave, then for all x, r1 P r2 ) Gxðr1Þ6
Gxðr2Þ. This implies: F1ðxÞ6 F2ðxÞ () N1 Pst N2.

Consequently, r1 P r2 ) N1 Pst N2. h
Lemma 2. Consider two GI/M/1 make-to-stock
queues such that N1 Pst N2, then S�

1 P S�
2 where S�

1

(respectively S�
2 ) is the optimal base-stock level of

queue 1 (2).

Proof. The optimality condition is such that:

F1ðeS �
1 	 1Þ ¼ F2ðeS �

2 	 1Þ ¼ b=ðhþ bÞ. By definition

of a the stochastic order, N1 Pst N2 implies that

F1ðnÞ6 F2ðnÞ, for all n, which implies that eS �
1 P eS �

2

and consequently that S�
1 P S�

2 . h

The next lemma is taken from Wolff [19].

Lemma 3. Consider two GI/M/1 queues with

identical service rates and with respective inter-

arrival time random variables A1 and A2 such that
E½A1� ¼ E½A2� and A1 6 c A2, then A1 PL A2 and
consequently r1 6 r2.

Putting together Lemmas 1–3, the following

property is established for two GI/M/1 queues
with respective inter-arrival times A1 and A2 such

that E½A1� ¼ E½A2�.
Proposition 1. Consider two GI/M/1 make-to-stock
queues with identical cost parameters, service rates,
and with respective demand inter-arrival-times A1

and A2 such that E½A1� ¼ E½A2� and A1 6 c A2, then
S�

1 6 S�
2 where S�

1 (respectively S�
2 ) is the optimal

base-stock level of system 1 (system 2).
Proof. Let r1 and r2 be the respective parameters of

systems 1 and 2. Using Lemma 3 we have:

A1 6 ic A2 ) r1 6 r2. Lemma 1 states that r1 6 r2 )
N1 6 st N2, and finally employing Lemma 2, we

have the desired result. h
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This result states the effect of the demand dis-
tribution on the base-stock level S� via the

parameter r. The optimal base-stock levels are

increasing in with respect to the convex order of

inter-arrival time distributions when all other

parameters are held constant.

Remark. Note that, one can alternatively directly

compute the optimal base-stock level using Eqs.
(3) and (4). This leads to
S� ¼
log r 1 	 a	ð1	qÞ

q

� �h i
log r

6664 7775; ð5Þ
where a ¼ b=ðbþ hÞ. The effect of the coefficient r
on S� can also be inferred from expression (5): S� is

increasing in r. However, this direct computation
does not give any insights on the underlying con-

ditions. For instance, we can observe from Lemma

2 that the desired result imposes a strong sto-

chastic order condition on the variable N . The key

point is that the inter-arrival time comparison

should induce a stochastic order of the queue

lengths (a rather strong and non-trivial condition).

Unfortunately, there are few existing comparison
results for the queue length process based on

weaker orders – such as the convex order – of

arrival or service processes (see [18] for some

known cases). This implies that immediate exten-

sion of the above approach to more general make-

to-stock queues is difficult.
3.2. The optimal cost

The previous section focused on the relation-

ship between the base-stock level and the de-

mand variability. In this section, we study the

influence of this variability on the optimal cost.

For that, we start by pointing out the expression

of the cost as well as the results previously ob-

tained.
Let us note that, in uncapacitated systems,

corresponding comparison results are usually ex-

pressed in terms of the demand distribution (for

single-period models) and in terms of the distri-

bution of lead-time demand (infinite-horizon
models). Song [12] shows that, for an (infinite-
horizon) uncapacitated continuous-time system,

the ordering of the demand during lead time (or

the ordering of the lead time itself) induces an

ordering of the corresponding costs: D1 6 ic D2 )
C1ðS�

1ÞPC2ðS�
2Þ. Ridder et al. [10] use a weaker

condition called ‘‘2_variability’’ (see [10]), showing

for a single-period model that D1 P2 D2 )
C1ðS�

1Þ6C2ðS�
2Þ (where D is the demand random

variable).

As in the corresponding uncapacitated model

[12], the comparison of the optimal cost function is

more delicate than the comparison of optimal base-

stock levels. In particular, our main result will

require a continuous relaxation of the base-stock

level. This is a frequently made assumption (see [12]

or [13]) in the literature. To outline the procedure,
recall from Section 2.1 that, the optimal cost

function is given by Eq. (2) where the base-stock

level is taken to be S� ¼ eS �
j k

. We ignore the inte-

grality correction temporarily and first focus on the

continuous variable eS �. Based on Proposition 1, we

can then obtain the following lemma:

Lemma 4. Let eS � be the continuous approximation
of the optimal base-stock level (see the remark fol-
lowing Eq. (3)), the corresponding optimal cost (de-
fined in Eq. (2)) CðeS �Þ is equal to hðeS �	ððq 	 rÞ=
ð1 	 rÞÞÞ.

Proof. Using the explicit form of the stationary

queue length distribution, we can express the ex-

pected cost as a function of the base-stock level

as

CðSÞ ¼ h S
�

	 q 	 qr
1 	 rS	2

1 	 r
	 qrS	1

�
þ b q

rS

1 	 r

� �
: ð6Þ

The proof follows by a direct insertion of eS � in the

above cost function. h

It now follows from Proposition 1 and Lemma
4 that, for GI/M/1-type make-to-stock queues,

the parameter r induces an order on the optimal

cost.
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Proposition 2. Consider two GI/M/1 make-to-stock
queues with identical service rates and cost param-
eters, and with inter-arrival-times A1 and A2 such
that E½A1� ¼ E½A2� and A1 6 c A2, then C1ðeS �

1Þ6
C2ðeS �

2Þ, where C1ðeS �
1Þ (respectively C2ðeS�

2 )) is the
optimal cost under the base-stock policy of system 1
(respectively system 2).

Proof. Referring to Lemmas 3, 2, and 1, we obtain:

A1 6 c A2 ) r1 6 r2 (by Lemma 3), r1 6 r2 )
N1 6 st N2 (by Lemma 1) and N1 6 st N2 ) eS �

1 6
eS �

2

(by Lemma 2). Finally, by virtue of Lemma 4,eS �
1 6

eS �
2 implies that C1ðeS �

1Þ6C2ðeS �
2Þ. h

3.3. Comparisons of some commonly used arrival

processes

Below, we present some probability distribu-

tions that are frequently used in modeling inven-

tory and queueing processes. Stochastic convex

order results for some of these distributions are

also presented. Whenever this type of order is

available, the ordering of optimal inventory levels

and costs follow directly from Propositions 1 and
2. Detailed definitions of the distributions and

their parameters can be found in Appendix A.

3.3.1. Gamma/Weibull distributions

For certain frequently used probability distri-

butions, convex stochastic order has been estab-

lished in terms of the parameters of the

distribution. The gamma distribution frequently
used in queueing applications is such a case. The

following result is taken from Stoyan [14]. Con-

sider two gamma distributions G1ðk; a; xÞ and

G2ðl; b; xÞ with respective densities g1ðxÞ and g2ðxÞ
(see Appendix A), if a > b and a=k6b=l, then

G1 6 ic G2. Propositions 1 and 2 then imply the

following: for two GI/M/1 make-to-stock queues

with identical service rates and cost parameters,
and with inter-arrival-times A1 (with distribution

G1ðk; a; xÞ) and A2 (with distribution G2ðl; b; xÞ)
such that E½A1� ¼ E½A2�, if a > b and a=k6 b=l we

have the following ordering of the optimal base-

stock levels and the optimal costs: S�
1 6 S�

2 and

C1ðeS �
1Þ6C2ðeS�

2Þ.
As an important special case of the above re-

sult, if we have two Erlang-distributed random
variables, A1 and A2 with identical means and
respectively with k1 (k2) stages such that k1 > k2

then A1 6 c A2. Propositions 1 and 2 then lead to

the following result: for two GI/M/1 make-

to-stock queues with identical service rates and

cost parameters, and with inter-arrival-times A1

(with an Erlang distribution of k1 stages) and A2

(with an Erlang distribution of k2 stages) such that

E½A1� ¼ E½A2�, if k1 > k2 we have the following
ordering of the optimal base-stock levels and the

optimal costs: S�
1 6 S�

2 and C1ðeS �
1Þ6C2ðeS�

2Þ.
Weibull distributions are frequently used in

reliability/maintenance applications and are perti-

nent for spare parts inventory management. From

[14] we have the following comparison result: let

two Weibull distributions W1ðk; a; xÞ and W2ðl;
b; xÞ with respective density functions f1ðxÞ and
f2ðxÞ (see Appendix A) and respective means mf1

and mf2
, if a > b and mf1

6mf2
, then W1 6 ic W2.

Using Propositions 1 and 2, we then have then

following result: consider two GI/M/1 make-

to-stock queues with identical service rates and

cost parameters, and with inter-arrival-times A1

(with distribution W1ðk; a; xÞ) and A2 (with distri-

bution W2ðl; b; xÞ) such that E½A1� ¼ E½A2�. If
a > b, then: S�

1 6 S�
2 and C1ðeS �

1Þ6C2ðeS �
2Þ.

3.3.2. Erlang distributions with unidentical stages

In this section, we consider Erlang distributions

consisting of k different stages with different

means. This class of distributions can cover coef-

ficients of variation ranging between 1=
ffiffiffi
k

p
and 1.

Because of the rational form of Laplace transform
LAðSÞ ¼

Qk
i¼1 ðki=ðki þ SÞÞ (with ki the rate of stage

i), the calculation of r for the Erlang distributions

with k stages amounts to solving a ðk þ 1Þth degree

equation.

Even though numerical analysis is relatively

easy, explicit results of stochastic comparisons do

not seem to exist for this class of distributions.

Hereon, we concentrate on two-stage generalized-
Erlang distributions and thus cover CV�s ranging

from 1=
ffiffiffi
2

p
to 1. In this case, the calculation of r

requires solving a third degree equation (see

Appendix B).

It can be verified that for two Erlang distribu-

tions with the same mean and different coefficients

of variation such that CV1 P CV2, we have r1 P r2.
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Using Propositions 1 and 2 (along with Lemmas 1
and 2) then leads to on ordering of the optimal

base-stock levels and costs in the corresponding

GI/M/1 make-to-stock queues. In addition, when

A1 (an Erlang random variable) is compared with

A2 (an exponential random variable) having the

identical mean, we obtain: r1 6 r2 (in fact, it is

known that r2 ¼ q , see [19]). Using Propositions 1

and 2, it is immediately seen that an Erlang inter-
arrival time distribution induces lower optimal

base-stock levels and costs than an exponential

inter-arrival time distribution with the same mean

(in the GI/M/1 make-to-stock queue setting).
3.3.3. Two-stage hyper-exponential distributions

Two-stage hyper-exponential distributions

cover the domain CV P 1 and are frequently used
to model high-variability arrival processes. For

this class of distributions the parameter r can be

explicitly obtained.

The Laplace transform of a H2 distributed

random variable with parameter q and rates k1 and

k2 (see Appendix A) is

LAðsÞ ¼
qk1

k1 þ s
þ ð1 	 qÞk2

k2 þ s
;

therefore

r ¼ qk1

k1 þ lð1 	 rÞ þ
ð1 	 qÞk2

k2 þ lð1 	 rÞ

leading to

r ¼ 0:5 þ k1 þ k2

2l

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25 þ k1 	 k2

2l

� �2

þ ðq	 0:5Þ k2 	 k1

l

� �s

with the stability condition: q=q1 þ ð1 	 qÞ=q2 > 1.

It can easily be verified that, that r1 of an H2/M/
1 queue is always greater than r2 (¼ q) of a cor-

responding M/M/1 queue. Using Propositions 1

and 2, we can then establish that the optimal base-

stock levels and the costs are higher in H2/M/1

make-to-stock queues than in a corresponding M/

M/1 make-to-stock queue (with the identical mean

inter-arrival time).
3.3.4. Modeling batch arrivals: The general-

exponential distribution

For high-variability ðCV P 1Þ arrival processes

the general-exponential distribution (see Appendix

A for a precise definition) constitutes a modeling

tool which covers all ranges of the coefficient of

variation.

A useful feature of this distribution is that as
a model, it is equivalent to a batch-arrival pro-

cess where batches arrive according a Poisson

distribution with rate k and where the batch

size X is geometrically distributed with parame-

ter q.

The Laplace transform of a GE distribution

of parameter q and rate k is LAðsÞ ¼ 1 	 qþ
qk=ðk þ sÞ, therefore:

r ¼ 1 	 qþ qk
k þ lð1 	 rÞ then r ¼ k

l
þ 1 	 q

with the stability condition q > k=l.

The comparison of an M/M/1 and a GE/M/1

with the same mean yields that r1 (of the GE/M/1)
is always greater than r2 (¼ q) of the correspond-

ing M/M/1 system. Therefore, by Propositions 1

and 2 a batch-arrival demand process requires a

higher optimal base-stock level and generates

higher costs than the unit-arrival demand process

with the identical arrival rate.

Similarly, the comparison of two GE/M/1

queues with the same mean q1=k1 ¼ q2=k2 and with
different CV�s (where CV1 P CV2) implies that

r1 P r2, thereby leading to an ordering to of the

optimal costs and the base-stock levels.
4. Numerical examples

In this section, we investigate some numerical
examples of different GI/M/1 make-to-stock

queues in order to quantify the effects of vari-

ability. Our theoretical results in the previous

sections are based on a precise definition of vari-

ability that stems from the convex stochastic

order. Because this order is not easily quantifiable,

we present the numerical results based on a simple

aggregate measure of variability: the coefficient of
variation (CV). It is important to note that, as a
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comparison, the ordering of CVs is weaker than
the convex order (in fact, it is implied by the

convex order for identical means). This allows us

to numerically verify whether the convex order

condition can be relaxed.

Our investigation then consists of studying S�

and CðS�Þ as functions of the coefficient of varia-

tion for given distributions. For this purpose, we

take a fixed value of q and compute the para-
meters of the different inter-arrival time distribu-

tions in order to obtain the same average arrival

rate. We then compute the parameter r and the

optimal base-stock level S� and the associated cost

CðS�Þ using formulas (5) and (6). We then plot

these values as a function of the coefficient of

variation of the inter-arrival time distribution.

Appendix B outlines the procedure that is used to
modify the CV for different inter-arrival time dis-

tributions.

The first set of results is based on two-stage

generalized-Erlang distributions. Fig. 1 depicts the

variation of optimal base-stock levels and costs as

a function of the coefficient of variation in
Fig. 1. S� and CðS�Þ as a function of CV for q ¼ 0:9, b ¼ 10.

GE/M/1 system

0
100
200
300
400
500
600

1 2 3 4 5 6 7
CV

S*

Optimal
Cost 10

20
30
40
50
60

Fig. 2. S� and CðS�) as a function of th
Er(k1; k2)/M/1 make-to-stock queues with q ¼ 0:9,
b ¼ 10.

The optimal cost as a function of CV shows

that CðS�Þ increasing in the coefficient of variation

even though there are discontinuities due to the

discrete nature of S�. These discontinuities are

more significant when the backlog cost increases.

These first results demonstrate that optimal base-

stock levels and optimal costs are increasing in the
CV of the inter-arrival time distribution. On the

other hand, our analytical results require the sto-

chastic convex order definition of variability which

is much stricter than a simple CV order. The

question then is: are there cases where the simple

CV order fails? This question will be investigated

in the next example.

As a second example, let us investigate GE/M/1
and H2/M/1 make-to-stock queues (both inter-

arrival time distributions have CV�s greater than

1). Indeed, within each class the base-stock level

and the associated cost increase as a function of

the coefficient of variation as shown in Fig. 2 for

q ¼ 0:9, h ¼ 1, b ¼ 10.

We can observe from Fig. 2 that the optimal

base-stock level is almost a linear function of the
CV when GE and H2 distributions are considered

separately.

More interestingly however, note that optimal

base-stock levels and the optimal costs increase

faster in GE/M/1 make-to-stock systems than in

corresponding H2/M/1 systems as shown in Fig. 3.

Fig. 3 underlines the limitations of comparisons

based only on the coefficient of variation. For
identical values of CV, a higher base-stock level is

required for GE/M/1 systems than in H2/M/1

systems. This difference becomes more pro-
S*

Optimal
Cost

H2/M/1 System

0
0
0
0
0
0
0

1 2 3 4 5 6 7
CV

e CV for q ¼ 0:9, h ¼ 1, b ¼ 10.



Hyper_Exp

General_Exp

S*

1 2 3 4
CV

5 6 7

600
500
400

200
300

100
0

Fig. 3. Comparison between the optimal base-stock levels of

the GE/M/1 and the H2/M/1 make-to-stock queues (q ¼ 0:9,

h ¼ 1, b ¼ 10).

Z. Jemaı̈, F. Karaesmen / European Journal of Operational Research 164 (2005) 195–205 203
nounced as the coefficient of variation increases

(for instance when CV > 3). For instance, the H2/

M/1 system with a CV of 4 has a lower optimal

base-stock level than a GE/M/1 system with a CV

of 3.9. Obviously, an increased coefficient of vari-

ation alone does not lead to increased base-stock

levels in this case. Furthermore, by Proposition 2,

the same arguments apply to the optimal costs: an
H2/M/1 system with a higher coefficient of varia-

tion can have lower optimal costs than a less

variable (in terms of CV) GE/M/1 system. In other

words, as in Ridder et al. [10], increased demand

variability (in terms of coefficient of variation) can

lead to lower base-stock levels and to lower costs

in some cases.

Fig. 4 explains why CV alone cannot suffice, in
general, to compare optimal base-stock levels and

costs. Going back to Lemma 1 (which then leads

to Propositions 1 and 2), the key comparison

parameter is r (a higher value of r leads to higher

(in a non-strict sense) optimal base-stock levels

and costs for the same q). As the respective CVs
Hyper_Exp

General_Exp

r

6 71 2 3 4
CV

5

1
0.98
0.96
0.94

0.92
0.9

Fig. 4. The r parameters of the GE/M/1 and the H2/M/1 make-

to-stock queues as a function of the inter-arrival time coefficient

of variation (for q ¼ 0:9).
are varied according to the rule explained in
Appendix A, it can be seen from Fig. 4 that the

GE distribution always has a higher r value for

the identical CV level. By Propositions 1 and 2, it

follows then that for the same CV, the GE inter-

arrival time distribution will generate higher

optimal base-stock levels and optimal costs. The

difference between the optimal base-stock levels of

the two systems (observed in Fig. 3) becomes
especially pronounced as the CV increases. This

can be explained as follows: from Fig. 4, it can be

seen that as the CV increases both r values ap-

proach 1 while the r value of the GE distribution

continues to stay above that of the HE distribu-

tion. From Eq. (5), it is known that the optimal

base-stock level is very sensitive to small changes

in r when r is close to 1 (note that the denomi-
nator of Eq. 5, logðrÞ, approaches 0 as r ap-

proaches 1). For high CVs (greater than 3.5 in

Fig. 4), the relatively small differences in the

respective r parameters translate into significant

differences in the optimal base-stock levels.

Unfortunately a general relationship between the

CV and the parameter r does not seem to exist (r
is the root of a non-linear equation related to the
Laplace transform of the inter-arrival time dis-

tribution).
5. Conclusion

The degrading effects of variability on the per-

formance of production and inventory systems are
well known. We attempted to provide a precise

and general description of the effects of variability

for make-to-stock queues. Our investigation here

is limited to GI/M/1-type systems. A parallel

technical note [7] extends – approximately – some

of these results to M/G/1 and G/G/1 type systems.

However, even the analysis of these special cases

underline the difficulty of obtaining general con-
ditions for more complicated systems. Results on

increasing optimal base-stock levels and costs re-

quire very strong stochastic order relationships on

queue length distributions as a function of inter-

arrival (or processing) time distributions, which

may not hold under very general circumstances.

On the other hand, a couple of general conclusions
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can be extracted from our analysis. First, the
coefficient of variation alone is not a sufficient

measure of variability for ordering base-stock

levels and optimal costs in general. In certain

cases, increased coefficient of variation can lead to

decreased inventories and costs. Second, the con-

vex order is a valuable condition which guarantees

the ordering of optimal costs and base-stock levels.

Both our analytical and numerical results indicate
that production/inventory systems that have the

same average load can behave completely differ-

ently depending on the second order characteris-

tics of the underlying processes. This implies that

careful modeling of underlying demand and pro-

duction processes is critical in order to capture

finer properties of these systems.

This paper was limited to the analysis of a sin-
gle-class make-to-stock queue. The analysis of

multi-class make-to-stock queues pose several

additional challenges like the scheduling of pro-

duction and the allocation of inventories and is an

on-going investigation (see [16,17]). A recent paper

by Benjaafar and Kim [3] generalizes some of the

results in this paper to a multi-class GI/M/1 make-

to-stock queue (under first come first served order
scheduling). It would be interesting to verify

whether such multi-class results can be extended to

more complicated scheduling/allocation policies as

in [16] or [17].
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Appendix A

This appendix summarizes the parameters of

the probability distributions used as well as the

approach used to vary the coefficient of variation

as a function of the parameters.
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Appendix B. Calculation of r for an Erlang
distribution with two stages

The Laplace transform of an Erlang distribu-

tion with K different stages of rate ki is

LAðSÞ ¼
Yk
i¼1

ki

ki þ S
:

Recall that r ¼ LAðð1 	 rÞ � lÞ, then for the two-

stage Erlang we have

r ¼ k1

k1 þ lð1 	 rÞ
k2

k2 þ lð1 	 rÞ
and finally

r ¼ 1

2
þ q1 þ q2

2
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ q1 þ q2

2

� �2

	 q1q2

s
;

with q1q2=ðq1 þ q2Þ < 1 the stability condition.

Consider two Erlang distributions with the

same mean ðk1 þ k2Þ=k1k2 ¼ ðk0
1 þ k0

2Þ=k
0
1k

0
2 and

different coefficients of variation CV1 P CV2

ðk1k2 6 k0
1k

0
2 et k1 þ k2 6 k0

1 þ k0
2), then we have

r1 P r2.
The calculation leads us to investigate a func-

tion f of the form

f ðx1; x2; y1; y2Þ ¼
x1 	 y1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ y1

2

� �2

	 y2

s

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ x1

2

� �2

	 x2

s
on the domain: x1=x2 ¼ y1=y2 < 1; x1 > y1 and
x2 > y2. We verify numerically that f is always

positive on its domain and consequently that

r1 P r2.
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