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A model of a single-item make-to-stock production system is presented. The item is demanded by several classes of customers arriving
according to Poisson processes with different backorder costs. Item processing times have an Erlang distribution. It is shown that
certain structural properties of optimal stock and capacity allocation policies exist for the case where production may be interrupted
and restarted. Also, a complete characterization of the optimal policy in the case of uninterrupted production when excess production
can be diverted to a salvage market is presented. A heuristic policy is developed and assessed based on the results obtained in the
analysis. Finally the value of production status information and the effects of processing time variability are investigated.
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1. Introduction

A stock and capacity allocation problem occurs when a
common stock and the production capacity of a supplier
must be shared among different markets/customers. Such
problems arise in a number of supply chain settings. For
instance, delayed product differentiation often results in
maintaining a stock of generic components for multiple
end-products (De Véricourt et al., 2002). Spare parts in-
ventory management, as in Deshpande et al. (2003) for
instance, is another situation where inventory allocation is
critical. The design of supply contracts in the settings with
different retailers can also entail a stock allocation problem
at the supplier (Cachon and Lariviere, 1999).

Stock and capacity allocation problems are very chal-
lenging and are sometimes considered intractable, as ex-
plained by Tsay et al. (1999), especially when customer
demands can be backordered. Even when optimal alloca-
tion strategies can be characterized, they are typically hard
to implement. Indeed, the supplier needs to take many di-
mensions into account when deciding to allocate stock: The
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inventory level, the number of waiting demands in the sys-
tem, the current status of the production process, etc. The
complexity of such problems depends on the number of
customers sharing the common stock (Ha, 1997a), and on
the nature of the production cycle time (Ha, 2000).

In this paper, we consider the model of a supplier that
produces a standard item in a make-to-stock environment
for several classes of customers. Demands for each class are
Poisson processes and item processing times have an Erlang
distribution. The supplier has a finite production capac-
ity and has some information on the status of the current
production. Different customer classes generate different
backorder penalties for the supplier. The objective is to
find the stock and capacity allocation policies to minimize
the expected discounted (or average) holding and backo-
rder costs over an infinite horizon. At each time instant,
the optimal decision depends on the inventory level, the
number of waiting demands of each class and the current
production stage.

We provide a partial characterization of the optimal
stock and production policy for the above described system
which is an M/Er/1 make-to-stock queue with backo-
rders. While this characterization yields some basic prop-
erties of the optimal policy, the model turns out to be too
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Stock rationing with Erlang processing times 1097

challenging for a finer characterization. In order to further
enhance the understanding of this model, we then focus on
a related problem where production cannot be interrupted
but excess inventory can be diverted to an ample market at
no cost. For this auxiliary problem, it is shown that the opti-
mal stock and capacity allocation policy can be completely
characterized: there exist work-storage thresholds for each
class that determine how production and inventory should
be allocated in a simple way. In addition, these threshold
parameters are easily computable. To our knowledge, this
is the first such characterization for a multi-dimensional
make-to-stock queue problem with non-exponential pro-
duction times. Finally, it turns out that similar threshold
policies lead to extremely effective heuristics for the stan-
dard problem.

The ample salvage market that allows absorption of pro-
duction excess can be considered an approximation for the
original model where production is stopped whenever re-
quired. The approximate model is more amenable to analy-
sis than the original model. Furthermore, the approximate
model may be of interest in itself if the salvage market
assumption is justified. One example of this may be the
situation where the supplier can divert inventory to a spec-
ulative (spot) market. In recent years, speculative markets
for non-commodity items have developed rapidly. For in-
stance, Milner and Kouvelis (2007) mention that 80% of
electronic component parts (e.g., memory chips) are sold
through contract purchasing while the rest are diverted to a
spot market. In particular, suppliers may still conduct their
main business through long-term contracts with established
customers but can also easily get rid of excess inventories
in the speculative market (for which no backorder cost ex-
ists). The assumption that the system never stops working
is also relevant when the production setup cost is very high.
Gupta and Wang (2007) present a model motivated by an
integrated steel mill where primary processes remain con-
tinuously operational but production has to be allocated
between contract and spot (i.e., transactional) customers.
Of course, such spot markets may manifest other complica-
tions such as different lead time requirements or fluctuating
prices that are not taken into account in our approximate
model.

Stock and capacity allocation problems were first intro-
duced in the context of inventory control. Topkis (1968)
provides one of the earliest formulations of an optimal
stock rationing problem for an uncapacitated system in
discrete time. He analyzes a system with two classes of
customers and shortage costs. Since then, there has been
considerable research on similar systems under the assump-
tion of exogenous lead times (uncapacitated replenishment)
problems. Deshpande et al. (2003) present a brief review of
this literature.

In the case of endogenous replenishment lead times or
limited production capacity, queuing-based models provide
a powerful framework which allows explicit modeling of
the production capacity and the randomness of the supply

process (see, Buzacott and Shanthikumar (1993)). We fol-
low this approach and model our system as a single server,
single-product, make-to-stock queue with multiple demand
classes as introduced by Ha (1997a, 1997b) in the stock ra-
tioning context.

Rationing strategies also appear in inventory transship-
ment problems, which have attracted a lot of attention from
researchers and practitioners recently. Zhao et al. (2008)
characterize the structure of the optimal stock allocation
and production policies for a problem with two make-
to-stock queues. In this system, each processor primarily
serves its own class of customers but is also allowed to
serve the other class at an additional cost. Hu et al. (2008)
study a similar problem in discrete time where production
capacity in each period is uncertain. They characterize op-
timal transhipment and rationing policies.

Ha (1997b) characterizes the optimal rationing and pro-
duction policy of a multi-class M/M/1 make-to-stock
queue with lost sales. He shows that there are thresholds for
each customer class such that it is optimal to reject an ar-
riving demand from a customer if the on-hand inventory is
below the threshold for that customer (and to satisfy the de-
mand with the stock otherwise). Carr and Duenyas (2000)
analyze the structure of the optimal admission/sequencing
policy for a related problem where demands from one class
can be rejected. Lee and Hong (2003) numerically study the
performance of a lost-sales system with Coxian process-
ing times operating under critical level rationing policies.
Huang and Iravani (2007) investigate rationing decisions
for a two-echelon supply chain with batch ordering and
characterize the optimal policy. Gayon et al. (2009) inves-
tigate a rationing problem with imperfect advance demand
information. Cil et al. (2009) present some structural re-
sults for batch demand arrivals in the lost-sales case with
exponential processing times.

When backorders are allowed, the problem of charac-
terizing the optimal policy becomes significantly more dif-
ficult because the number of waiting demands has to be
tracked for each customer class. For the backorder case,
Ha (1997a) shows that the optimal stock and capacity allo-
cation for two customer classes has a monotone structure.
De Véricourt et al. (2002) generalize this result and provide
a full characterization of the optimal stock and capacity
allocation for n customer classes. The optimal policy spec-
ifies threshold levels such that it is optimal to satisfy an
arriving demand from a customer if the on-hand inventory
is above the threshold for that customer and to backorder
the demand otherwise. These threshold levels also deter-
mine production priority for waiting demands in a simple
way.

The models in Ha (1997a, 1997b) and De Véricourt et al.
(2002) assume exponential processing times. Because of the
memoryless property of the exponential distribution, the
supplier does not need the current production status (i.e.,
elapsed processing time) in that case. Information tech-
nologies in real production systems, however, can provide
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1098 Gayon et al.

constant access to information on the status of the produc-
tion process which would be needed with non-exponential
processing times. In this paper, we consider a multi-class
M/Er/1 make-to-stock queue (with an Erlang-r process-
ing time). We assume the supplier knows the current stage
(phase) of the Erlang distribution exactly. This allows us to
model the information on the production status. In addi-
tion, Erlang distributions provide some flexibility in mod-
eling the production process variability. De Véricourt et al.
(2001) provide insights about the benefit of stock alloca-
tion policies when the utilization rate and the relative im-
portance of the customer classes vary. Because of the expo-
nential assumption therein, the impact of production time
variability in this comparison is not addressed. In this pa-
per, we evaluate the performance of optimal stock rationing
policies when the production time variability increases and
the mean stays constant. These two features of the Erlang
distribution (information on the production status and pro-
duction time variability) yield insights that cannot be ob-
tained under the exponential distribution assumption.

To our knowledge Ha (2000) is the only paper that ad-
dresses optimality issues in a stock allocation problem for
the make-to-stock queue where the processing time has
an Erlang distribution. He assumes lost sales and shows
that a single state variable, the work storage level, can fully
capture the inventory level and the status of the current
production of the system. This reduces the problem to a
single-dimensional Markov Decision Process model. The
optimal stock allocation policy is then fully characterized:
for each customer class there exists a work–storage thresh-
old level at which it is optimal to reject a demand of this
class. More recently, Abouee-Mehrizi et al. (2008) inves-
tigate the rationing problem for an M/G/1 make-to-stock
queue from a performance evaluation perspective and com-
pare different policies.

Our model differs from that of Ha (2000) in the assump-
tion that demands are backordered. The backordering as-
sumption is fundamental from an inventory management
perspective and merits attention but it makes the analy-
sis much more challenging for two reasons. First, as men-
tioned earlier, we deal with an (n + 1)-dimensional state
space since we need to keep track of the waiting demands
of each class. Second, backorders require addressing a new
type of decision which corresponds to the production allo-
cation in the presence of waiting demands from different
classes. This issue does not exist when demands are lost.

When the production surplus cannot be sold in a salvage
market, we obtain some partial structural results for the
optimal stock allocation policy. Although these results un-
cover certain useful properties of the optimal policy, they
are not sharp enough to completely define this policy. Un-
fortunately, a full characterization seems intractable. The
approaches that have been successful so far in analyzing
optimal policies for make-to-stock queues are all based on
the propagation of convexity properties by iterating on the
value function. When the state space has more than one

dimension (typically two), this approach always requires
the introduction of modularity properties (see for instance
Ha (1997a), De Véricourt et al. (2000, 2002) or Zhao et al.
(2004)). It turns out that the optimal value function of the
problem without a salvage market does not satisfy some of
these modularity properties.

On the other hand, when the production surplus can be
sold in an ample salvage market, we show that these mod-
ularity properties hold for the optimal control policy. In
this case, the production decision is replaced by the simpler
decision of diverting inventory to the salvage market. Our
analysis of this problem follows a decomposition technique
introduced by De Véricourt et al. (2002), which consists of
relating an n-dimensional control problem to an (n − 1)-
dimensional subproblem and then iterating on the number
of demand classes n. The adaptation of this double induc-
tion (on time and on the dimension of the problem) to our
case necessitates many subtleties and adjustments, and the
introduction of more complex modularity conditions. As a
result, the analysis of an n-dimensional problem makes use
of the optimal structures of the k-dimensional subproblems,
k < n. In De Véricourt et al. (2002), on the other hand, the
iteration is mainly based on a single (n − 1)-dimensional
subproblem.

More precisely, we show that the optimal allocation pol-
icy of the multi-class problem with a salvage market is
characterized by n work-storage rationing thresholds cor-
responding to the n demand classes. The work-storage level
is the total number of completed production stages that are
required to produce the current on-hand inventory plus the
work in progress. The optimal policy backorders an arriv-
ing demand when the current work-storage level is below or
at the corresponding threshold. This characterization leads
to the construction of a heuristic using a queueing-based
approximation. It is observed in a numerical study that
this heuristic is extremely effective for the problem with-
out a salvage market. In fact, our numerical results lead
us to conjecture that the original problem has the identi-
cal optimal policy structure as the salvage market problem.
The solution of the salvage market problem therefore not
only leads to insights on the optimal policy structure of
the original problem but also yields accurate approxima-
tions. Finally, we investigate the effects of production status
information and processing time variability.

In the next section, we introduce the models and formu-
late the stock rationing problems with or without a sal-
vage market. Some properties of the optimal policy for the
problem without a salvage market are presented in Sec-
tion 3. The structure of the optimal policy for the system
with a salvage market is then characterized in Section 4.
Based on this result, we suggest a heuristic for the prob-
lem without a salvage market in Section 5. In Section 6,
we evaluate the performance of this heuristic, compare the
optimal policies of both models and investigate the effects
of processing time variability. We conclude the paper in
Section 7.
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Stock rationing with Erlang processing times 1099

2. Model formulation

2.1. The problem without a salvage market

Consider a supplier who produces a single item at a produc-
tion facility for n different classes of customers. The finished
items are placed in a common stock. When the inventory is
empty, demands are backordered. When it is not, an arriv-
ing demand can be either satisfied by the on-hand inventory
or be backordered. Items held in stock induce holding costs
at rate h (per item per unit of time). It is assumed that there
are no holding costs for the jobs in process. Demands of
Class i , 1 ≤ i ≤ n, arrive according to a Poisson process
with rate λi and have a unit backorder cost of bi (per item
per unit of time). Suppose without loss of generality that the
backorder costs are ordered such that b1 > . . . > bn, that is
customer classes are ordered from the most valuable to the
least valuable one. We denote by b = (b1, . . . , bn) the vector
of backorder costs and by λ = (λ1, . . . , λn) the vector of de-
mand rates. We will also use the notations λk = (λ1, . . . , λk)
and bk = (b1, . . . , bk) for 1 ≤ k ≤ n.

The production process consists of r identical stages in
series. The processing time of each stage is exponentially
distributed with mean 1/rµ, and the manager of the system
can observe the current stage of the production process. The
supplier’s facility is thus modeled by a single server whose
processing time has an r -stage Erlang distribution with
mean 1/µ. In order to ensure stability of the system, we
assume that ρ = ∑n

i=1 λi/µ < 1 where ρ is the utilization
rate of the system. This condition is crucial when an average
cost criterion is considered.

When the processor becomes idle, the manager of the
system must decide whether or not to continue produc-
tion. When a production stage is completed and if there is
at least one part on hand, he/she can choose to satisfy a
backordered demand, if any. Finally, when the demand of a
customer arrives to the system, the manager has to choose
between satisfying it with the on-hand inventory or back-
ordering it in order to reserve the stock for future (more
valuable) customers.

Let i (t) be the number of stages completed by the part
under current production at time t and s(t) be the on-hand
inventory at time t. We can aggregate s(t) and i (t) in a single
variable x0(t) = s(t) + i (t)/r . In the following, x0(t) will be
referred to as the work-storage level. Furthermore, i (t) and
s(t) can be inferred from x0(t) in the following way:

s(t) = �x0(t)� and i (t) = r (x0(t) − �x0(t)�),

where �y� denotes the largest integer that is less than or
equal to y. For example, if r = 5 and x0 = 2.6, the inven-
tory consists of two parts (s(t) = 2) and the third stage
of production is completed (i (t) = 3). The work-storage
level x0(t) takes its values in the set INr = {x0|r x0 ∈ IN},
where IN represents the set of non-negative integers. Let
−xi (t), 1 ≤ i ≤ n, be the number of backorders of Class i ,
1 ≤ i ≤ n, at time t. Hence, we can exhaustively describe

the system state with x(t) = (x0(t), x1(t), . . . , xn(t)) and the
state space is Sn = INr × (Z−)n, where Z− represents the
set of non-positive integers. We will also use the notation
xk = (x0, . . . , xk) when 0 ≤ k ≤ n.

A control policy describes the action to take at any
time given the current state x(t). We restrict the analysis
to stationary Markovian policies since the optimal policy
is known to belong to this class (Puterman, 1994). Let
aπ (x) = (aπ

0 (x), . . . , aπ
n (x)) be the control (action) corre-

sponding to a policy π where aπ
0 (x) is the action taken

when an event occurs (arrival or end of production):

aπ
0 (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 to allocate the produced item to the
on-hand inventory (possible only
when (x0 + 1/r ) ∈ IN),

k 1 ≤ k ≤ n, to satisfy a backordered
demand of Class k (possible only
when xk < 0 and x0 ≥ 1 − 1/r ),

n + 1 not to produce
(possible only when x0 ∈ IN).

(1)

Notice that, when x0 = 1 − 1/r , there is no inventory
(s(t) = 0) and r − 1 stages of production are completed
(i (t) = r − 1). Thus, there remains one more stage of pro-
duction to be performed before one item is available. This
item can then be used to satisfy a backordered demand or
to increase the inventory by one unit.

aπ
k (x), 1 ≤ k ≤ n, is a rationing action to be taken each

time a demand of Class k arrives:

aπ
k (x) =

⎧⎪⎨
⎪⎩

0 to satisfy an arriving demand of Class k
(possible only when x0 ≥ 1),

k to backorder an arriving demand of Class k.
(2)

In state x, the system incurs a cost rate:

c(x) = h�x0� −
n∑

i=1

bi xi .

The objective is to find a control policy that minimizes the
expected discounted costs over an infinite horizon. This
problem will be denoted Pn(µ, λ, h, b, r, α). We will also be
interested in the closely related average cost problem.

Let α be the discount rate. Without loss of generality,
we can rescale time by taking rµ + ∑n

i=1 λi + α = 1. Then
using uniformization (see Lippman (1975)), the optimal
value function v∗ can be shown to satisfy the following
optimality equations:

v∗(x) = c(x) + rµT0v
∗(x) +

n∑
k=1

λkTkv
∗(x),
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1100 Gayon et al.

where the operators T0 and Tk, 1 ≤ k ≤ n, are

T0v(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min[v(x + e0/r ), min
1≤i≤n:xi <0

v(x + e0/r − e0 + ei )]

if x0 /∈ IN x0 ≥ 1 − 1/r ,

min[v(x), v(x + e0/r ), min
1≤i≤n:xi <0

v(x + e0/

r − e0 + ei )] if x0 ∈ IN and x0 > 0,

min[v(x), v(x + e0/r )] if x0 = 0,

v(x + e0/r ) if 0 < x0 < 1 − 1/r .

Tkv(x) =
{

min [v(x − e0), v(x − ek)] if x0 ≥ 1,

v(x − ek) if x0 < 1,

and ei , 0 ≤ i ≤ n, is the i th unit vector. For example, e1
denotes the (n + 1)-dimensional vector (0, 1, 0, . . . , 0). Op-
erator T0 corresponds to the production action aπ

0 and Tk,
1 ≤ k ≤ n, is associated with the rationing action aπ

k . We
also define the operator T such that Tv = c + rµT0v +∑n

k=1 λkTkv. Notice that x + e0 corresponds to x increased
by one unit of stock whereas x + e0/r corresponds to x
increased by one stage of production.

In addition, by introducing the change of variable w =
x + e0/r − e0, operator T0 can be simplified as follows:

T0v(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min[v(w + e0), min
1≤i≤n:xi <0

v(w + ei )]

if x0 /∈ IN and x0 ≥ 1 − 1/r ,

min[v(x), v(w + e0), min
1≤i≤n:xi <0

v(w + ei )]

if x0 ∈ IN and x0 > 0,

min[v(x), v(x + e0/r )] if x0 = 0,

v(x + e0/r ) if 0 < x0 < 1 − 1/r .

It is also convenient to define the operators �i , 0 ≤ i ≤
n + 1, for the real-valued function v such that �iv(x) =
v(x + ei ) − v(x). We also define the operators �i j , 0 ≤
i, j ≤ n + 1, such that �i jv(x) = �iv(x) − � jv(x) = v(x +
ei ) − v(x + e j ). When j > n, we take �i jv(x) = �iv(x) (for
instance �i (n+1)v = �iv). To simplify the notation, we will
implicitly assume that xi < 0 for 1 ≤ i ≤ n and xj < 0 for
1 ≤ j ≤ n when we consider �i jv(x) or �iv(x) (otherwise
these quantities are not defined). The number of customer
classes of the underlying problem will also be implicit unless
stated otherwise.

In what follows, we will frequently refer to the class with
the highest backorder cost among all classes that have back-
ordered demands. This class is given by the following func-
tion m:

∀x ∈ Sn, m(x) =
{

min
i∈{1,...,n}:xi <0

(i ) if ∃i ∈ {1, . . . , n}, xi < 0,

n + 1 otherwise.

2.2. The problem with a salvage market

There are a number of situations where shutting down pro-
duction may be costly and the excess inventory can be sold

relatively easily. A typical example occurs when the sup-
plier can sell the item through a spot market in addition
to its main business with long-term customers who have
specific contracts. This induces a slightly different stock ra-
tioning problem where production never stops but has to
be allocated between inventory for regular customers and
a lower-priority salvage market with ample demand. Mo-
tivated by such a setting, for this model, we assume that
there exists a customer class with zero backorder cost and
ample demand. We also assume that the system produces
all the time.

Given a problem without a salvage market
Pn(µ, λ, h, b, r, α), we denote the corresponding problem
with a salvage market by P̃n(µ, λ, h, b, r, α). For problem
P̃n, the actions corresponding to a policy π are denoted by
ãπ (x) and are defined as in Equations (1) and (2). The only
exception is when ãπ

0 = n + 1 which corresponds to satisfy-
ing a demand from the salvage market (whereas aπ

0 = n + 1
corresponds to not producing in the problem without a
salvage market). The salvage market will be referred to
as the (n + 1)th class of customers with zero backorder
cost bn+1 = 0. The objective is to characterize the optimal
policy which minimizes the expected discounted cost
and the optimal value functions of problem P̃n can
similarly be shown to satisfy the following optimality
equations:

ṽ∗(x) = c(x) + rµT̃0ṽ
∗(x) +

n∑
k=1

λkT̃kṽ
∗(x),

where T̃k = Tk, 1 ≤ k ≤ n, and operator T̃0 is

T̃0v(x) =⎧⎨
⎩

min[v(x + e0/r ), min
1≤i≤n+1:xi <0

v(x + e0/r − e0 + ei )]

if x0 ≥ 1 − 1/r ,

v(x + e0/r ) if x0 < 1 − 1/r ,

and en+1 = 0. Since the system is assumed to always pro-
duce, there is a term v(x) in T0v(x) that corresponds to the
option of not producing in the problem without a salvage
market. This term is not present in T̃0v(x). On the other
hand, the term v(x + e0/r − e0 + en+1) in T̃0v(x) does not
appear in T0v(x) and corresponds to the decision of selling
the produced part on the salvage market.

Once again, by introducing the change of variable w =
x + e0/r − e0, operator T̃0 can be simplified as follows:

T̃0v(x) =

⎧⎪⎨
⎪⎩

min[v(w + e0), min
1≤i≤n+1:xi <0

v(w + ei )]

if x0 ≥ 1 − 1/r ,

v(w + e0) if x0 < 1 − 1/r .

We also define the operator T̃ such that T̃v = c +
rµT̃0v + ∑n

k=1 λkT̃kv.
Finally, the operators �i and �i j as well as the func-

tion m(x) are still well defined. It should be noted that for
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Stock rationing with Erlang processing times 1101

problem P̃n, m(x) = n + 1 designates the salvage market,
whose corresponding backorder cost is zero.

3. A partial characterization of the optimal policy for the
problem without a salvage market

3.1. The single-class problem

We start by studying the problem with a single demand
class. When there is a single class of customers, the problem
is to decide when to satisfy demands of Class 1 and when
to produce. A simple sample path argument (not detailed)
shows that it is always optimal to satisfy a Class 1 demand.
Therefore, we cannot have both inventory and backorders
of Class 1 and the state variable of the system can be de-
scribed by a single variable x0 with �x0�+ = max(0, �x0�)
the inventory level and �x0�− = − min(0, �x0�) the number
of backorders of Class 1. Regardless of the sign of �x0�,
the number of stages completed by the part under current
production is r (x0 − �x0�).

To identify the optimal policy, we introduce the set of
functions, V0, defined with the following property:

�0v(x + e0/r ) ≥ �0v(x). (3)

The following proposition states that operator T pre-
serves V0 for the single-class problem.

Proposition 1. If v ∈ V0, then Tv ∈ V0

The proof of this result and all subsequent proofs,
unless stated otherwise, are included in the online
Appendix.

Using value iteration and Proposition 1, we obtain that
the optimal value function belongs to V0. As a result, the
optimal policy is of threshold type: there exists a threshold
level S∗ such that it is optimal to produce if the work-
storage level x is smaller than S∗ and to idle production
otherwise.

3.2. The multi-class problem

As expected, the multi-class problem turns out to be much
more challenging than the single-class problem. Neverthe-
less, we are able to establish a number of basic results on
the structure of the optimal policy for this case. Proposition
2 establishes three properties described in Definition 1 for
the optimal policy (where the last two are consequences of
the first one).

Definition 1. Let Un be a set of functions such that v ∈ Un
if and only if:

1. �i jv(x) ≤ 0 when 1 ≤ i < j ≤ n.
2. �0 jv(x) ≤ �0iv(x) when 1 ≤ i < j ≤ n.
3. �0 jv(x − e j ) ≤ �0iv(x − ei ) when 1 ≤ i < j ≤ n.

Proposition 2. If v ∈ Un, then Tv ∈ Un

We obtain by value iteration that the optimal value func-
tion belongs to Un. The structural properties suggested by
Proposition 2 are fairly intuitive. Assume that there are
backorders of classes i and j with 1 ≤ i < j ≤ n (bi > b j ).
The first property establishes that it is better to satisfy Class
i , the more expensive one. The second property implies that
if increasing the inventory level when there are Class i back-
orders in the system decreases costs, then increasing the
inventory when there are Class j backorders in the system
also decreases costs. The third property is symmetrical to
the second one: if it is optimal to satisfy an arriving demand
of Class j with a given on-hand inventory, it is also optimal
to satisfy the arriving demands of more expensive classes
at the same inventory level.

Even though Proposition 2 establishes basic properties
on how to prioritize items, a sharper characterization of the
optimal policy requires several additional properties which
turn out to be difficult to establish by this approach. For
instance, Proposition 2 implies that it is optimal to employ a
strict priority rule for production allocation when all classes
are backordered but it is not clear what rule to follow in
deciding when to increase inventory instead of satisfying a
Class i backorder. Since such rules may in general depend
on the entire state vector, additional effort is needed to
completely define an optimal policy.

In order to outline some of the technical challenges in
the multi-class problem, let us describe some analogies with
the single-class problem. Before that, we need to define the
notions of submodularity and supermodularity. The value
function v is supermodular in vectors (u, v), with u 
= v, if
for all x ∈ Sn such that x + v, x + u and x + u + v are in Sn,
we have:

v(x + u + v) + v(x) ≥ v(x + u) + v(x + v).

The definition of submodularity is the same but with op-
posite inequality (see Veatch and Wein (1992) for more on
these notions). For the single-class problem, Equation (3)
implies that v is supermodular in (e0, e0/r ) (i.e., in the in-
ventory level, s, and in the production status, i ). In order
to generalize Proposition 1 to the multi-dimensional prob-
lem, more modularity properties are required to ensure that
Equation (3) can be propagated.

For instance, with two demand classes, a first step to this
generalization would be to show that v is supermodular in
(ei , e0/r ), i.e., the marginal benefit of continuing produc-
tion increases in the number of waiting demands. Unfortu-
nately, the optimal value function does not systematically
satisfy this property. For example, a numerical study shows
that the optimal value function for x0 = 9.5, x2 = −1,
r = 2, µ = 1, λ1 = 0.3, λ2 = 0.3, h = 0.01, b1 = 10, b2 = 1,
α = 0.01, is not supermodular in (ei , e0/r ). As a result, a
better characterization of the optimal policy seems diffi-
cult in the multi-class case using this approach. In the next
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1102 Gayon et al.

section, we will prove that the above modularity property
holds when a salvage market is considered (see 3(c) in Def-
inition 4).

4. Characterization of the optimal policy for the problem
with a salvage market

4.1. Preliminary results

We now extend Proposition 2 to the case with an ample
salvage market.

Definition 2. Let Ũn be a set of functions such that v ∈ Ũn
if and only if:

1. �i jv(x) ≤ 0 when 1 ≤ i < j ≤ n + 1.
2. �0 jv(x) ≤ �0iv(x) when 1 ≤ i < j ≤ n + 1.
3. �0 jv(x − e j ) ≤ �0iv(x − ei ) when 1 ≤ i < j ≤ n + 1.

Property 1 of Ũn applied when j = n + 1 implies that it
is better to satisfy backorders of Class i , 1 ≤ i ≤ n rather
than demands from the salvage market. It should be noted
that we implicitly take �i (n+1)v(x) = �iv(x) for 0 ≤ i ≤ n.

Proposition 3. If v ∈ Ũn, then T̃v ∈ Ũn

The proof of Proposition 3 is similar to the proof of
Proposition 2. The only difference is in showing that
�i j T̃0v(x) ≤ 0 but the arguments are the same.

A direct application of value iteration implies that the op-
timal value function also belongs to Ũn. A useful property
is that for v ∈ Ũn, the operators satisfy:

T̃0v(x) = v(w + ei ) + min [0, �0iv(w)] with i = m(x),
T̃kv(x) = v(x − e0) + min [0, �0kv(x − ek − e0)]

for 1 ≤ k ≤ n.

This implies that the optimal actions are entirely deter-
mined by the sign of �0i ṽ

∗, for 1 ≤ i ≤ n + 1.

4.2. Work-storage rationing policies

Consider a particular class of policies entirely described by
n + 1 parameters, one corresponding to each type of de-
mand. Let zk ∈ INr be the work-storage rationing level of
Class k, 1 ≤ k ≤ n + 1, that is, all arriving demands of this
type are backordered when the work-storage level is below
(or equal) zk. Moreover, when a part is produced it is allo-
cated to a backordered demand of Class k, only if the work
storage level x0 is larger than or equal to zk. It is allocated to
the stock otherwise. If some of these parameters are equal,
the resource is allocated to the most expensive customer
class (that is, to the class m(x) in state x). This class of poli-
cies will be referred to as Work-Storage Rationing (WR)
policies. In a WR policy, the decisions depend on the cur-
rent production status (i.e., stage of production) in addition

to the current inventory level. Definition 3 gives a formal
description of WR policies.

Definition 3. A WR policy π is characterized by a (n + 1)-
dimensional rationing vector z = (z1, . . . , zn+1) where z1 =
1 − 1/r ≤ z2 ≤ . . . ≤ zn+1 such that:

ãπ
0 (x) =

{
0 if x0 < zi and i = m(x),

i if x0 ≥ zi and i = m(x).

ãπ
k (x) =

{
k if x0 ≤ zk,

0 if x0 > zk and m(x) ≥ k.

In a WR policy, demands of Class 1 are always satisfied
when inventory is available, since z1 = 1 − 1/r . According
to such a policy and assuming that x(t = 0) = 0, the recur-
rent region of the space is [x ∈ Sn|x0 ≤ zm(x)]. The definition
leaves the policy unspecified for x0 > z∗

k and m(x) < k. A
precise definition for these states is not necessary if the
initial state is 0.

We claim that the optimal policy is a WR policy. To
prove the claim, we will argue inductively on the number
of customer classes. The construction of the proof is based
on the following key property: The optimal value function
of an n-class problem is closely related to the optimal value
function of a k-class problem, in the region of the state space
where x0 ≤ z∗

k. In particular, it will be shown that for this
region, the optimal actions do not depend on the demands
of classes strictly greater than k. The 0-class subproblem
corresponds to a problem with the salvage market only
and no other customer class. The transformation, which
relates an n-class problem P̃n(µ, λ, h, b, r, α) to a (n − 1)-
class subproblem, is based on the decomposition of the cost
function c(x):

c(x) = cn−1(xn−1) − bn

(
�x0� +

n∑
i=1

xi

)
,

where cn−1 is the cost function of the (n − 1)-class subprob-
lem P̃n−1(µ, λn−1, h + bn, bn−1 − bn1n−1, r, α) and 1n−1 =∑n−1

i=1 ei . We can iterate this decomposition for k < n:

ck(xk) = ck−1(xk−1) − (bk − bk+1)

(
�x0� +

k∑
i=1

xi

)
.

It follows that:⎧⎪⎨
⎪⎩

c0(x0) = (h + b1)�x0�
ck(xk) = (h + bk+1)�x0� − ∑k

i=1(bi − bk+1)xi

for 1 ≤ k ≤ n − 1.

(4)

Therefore, ck is the cost of a k-class problem P̃k(µ, λk, h +
bk+1, bk − bk+11k, r ).

Hence, for any n-class problem we have defined n sub-
problems with the number of customer classes equal to
0, 1, . . . , n − 1 respectively. We denote by v∗

k (resp. π∗
k )
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Stock rationing with Erlang processing times 1103

the optimal value function (resp. optimal policy) of the
k − class subproblem.

We will show that the optimal policy is a WR policy by
iterating on the number of classes. To start the induction,
assume that the optimal policy of any (n − 1)-class problem
is a WR policy. In particular the optimal policy π∗

n−1 of the
(n − 1)-class subproblem defined above is a WR policy,
with (z∗

1, . . . , z∗
n) its rationing vector.

Based on the optimal value function v∗
n−1 of the (n − 1)-

class subproblem, we introduce Ṽn, a structured set of value
functions. We will again employ value iteration to show that
the optimal value function of the n-class problem belongs
to Ṽn. In the following definition, [x]0 designates the first
component of vector x.

Definition 4. Let Ṽn ⊂ Ũn such that v ∈ Ṽn if and only if:

1. �i jv(x) = �i jv
∗
n−1(x) for 0 ≤ i < j ≤ n and [x + ei ]0 ≤

z∗
n.

2. �0iv(x) ≥ 0 for i = m(x) < n + 1 and x0 > zn
∗ − 1.

3. For x0 > z∗
n − 1 and m(x) ≥ n

(a) �0nv(x + e0/r ) ≥ �0nv(x);
(b) �0nv(x + en) ≤ �0nv(x);
(c) �nv(x + e0/r ) ≥ �nv(x);
(d) �0v(x + e0/r ) ≥ �0v(x);
(e) �nv(x + en) ≥ �nv(x).

Condition 1 of the previous definition links any func-
tion v ∈ Ṽn to the optimal value function of the (n − 1)-
class subproblem, when the work-storage level is below the
last optimal rationing level. When the work-storage level is
above the optimal rationing level, Condition 2 states that
it is always better to satisfy a waiting demand of the class
with the highest backorder cost rather than to increase the
inventory level.

Condition 3 describes monotonicity properties that the
value functions must satisfy in the directions of e0 and en,
when xk = 0 for 0 < k < n. These conditions guarantee in
turn that the optimal rationing decisions for the demand
class with the lowest backorder cost can be described with
a monotone switching curve, when no demands of other
classes are waiting. More formally, Condition 3 states that
�0nv is increasing in x0/r and decreasing in xn, �0v is in-
creasing in x0/r and �nv is increasing in both x0/r and xn.
Condition 3 may be also interpreted in terms of submodu-
larity and supermodularity. Conditions 3(a), 3(c) and 3(d)
establish that v is supermodular in (e0 − en, e0/r ), (en, e0/r )
and (e0, e0/r ) respectively. Condition 3(b) establishes that
v is submodular in (e0 − en, en) and Condition 3(e) estab-
lishes that v is convex in xn. It can be shown that Conditions
3(a) and 3(c) imply Condition 3(d) and that Conditions 3(b)
and 3(c) imply Condition 3(e). Finally, Condition 4 implies
that demands from the salvage market should be satisfied
if and only if there are no other backordered demands and
if x0 ≥ zn+1.

Note that for the lost-sales case studied by Ha (2000),
Condition 3(d) is the only modularity property that v needs
to verify, since that model has a single-dimensional state
space. In our case, the multi-dimensional aspect of the prob-
lem requires the value function to satisfy more conditions
that are also less typical.

We will next establish that, for any number of customer
classes, the optimal value function belongs to Ṽk and there-
fore the optimal policy is a WR policy. We denote by P(n)
this property.

Definition 5. We say that property P(n) is true if for all
k-class subproblems, k ≤ n:

1. the optimal value function v∗
k belongs to Ṽk,

2. the optimal policy is a WR policy.

We prove in the online Appendix that P(0) is true. For the 0-
class problem, the WR policy with z∗

1 = 1 − 1/r is optimal.
It is hence optimal to allocate all the produced items to the
salvage market. If we assume that P(n − 1) is true, then Ṽn
is well defined and not empty since v∗

n−1, the optimal policy
of the (n − 1)-class problem, belongs to Ṽn.

Lemma 1. If P(n − 1) is true then:

1. v ∈ Ṽn implies that T̃v ∈ Ṽn.
2. v∗

n ∈ Ṽn.

Lemma 2. Let z∗
n+1 = min[x0 ∈ INr |�0v

∗
n (w) > 0 and m(x)

= n + 1]. If P(n − 1) is true then the WR policy with
rationing vector (z∗

1, . . . , z∗
n+1) is optimal for the n-class

problem.

Lemmas 1 and 2 imply that if P(n − 1) is true then P(n)
is true. Finally P(n) is true for all n. We can now state our
main result.

Theorem 1. For all n-class problems P̃n(µ, λn, h, bn, r, α),
the optimal policy is a WR policy with rationing vec-
tor (z∗

1, . . . , z∗
n+1). In addition, for k < n, the projection

(z∗
1, . . . , z∗

k+1) is the optimal rationing vector of the k-class
subproblem P̃k(µ, λk, h + bk+1, bk − bk+11k, r, α).

From a technical point of view, this result can also be
interpreted in terms of switching surfaces dividing the state
space into different regions for which the optimal action
is constant. Under this interpretation, Theorem 1 indicates
that all switching surfaces are vertical planes defined by
the equations x0 = z∗

k. In particular, our result is consis-
tent with the corresponding characterization of De Vricourt
et al. (2002). This simplifies the policy structure in a signif-
icant manner because the precise description of a generic
switching surface may require infinitely many parameters
whereas the vertical line is described by a single parameter.
The entire optimal policy is then completely characterized
by n parameters in the sense that given only the values of
these parameters the optimal policy can be implemented.

Finally, it should be noted that so far we concentrated
on the discounted cost problem. Fortunately, there are
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1104 Gayon et al.

existing results for controlled queueing systems that ensure
that the average cost problem retains the same optimal
policy structure as the discounted problem (Weber and
Stidham, 1987). Our model satisfies these conditions and
the optimal policy structure is retained for the average
cost problem. The average cost case is attractive since
the optimal average cost does not depend on the initial
conditions and the optimal policy parameters do not
depend on the discount factor selected. This facilitates
comparisons and interpretations (see Ha (1997a, 2000)
and De Véricourt et al. (2002) for similar comparisons.)

Remark 1. In particular, a critical condition of Weber and
Stidham for the passage from the discounted cost to the
average cost is the existence of a stationary policy with a
finite average cost. This condition is satisfied in our case
by taking a strict priority allocation policy with a base-
stock level of zero. The resulting system is related to an
M/Er/1 queue with pre-emptive priorities. Recall that since
allocation takes place at the end of processing completion, a
higher-class customer can always preempt a service process
that was initiated by a lower-class customer. In addition,
a customer that pre-empts, only experiences the remaining
part of the on-going service time. The resulting queueing
system generates stochastically smaller queue lengths than
the standard strict priority system. Since it was assumed
that ρ < 1, this system generates a finite number of expected
backorders and therefore a finite average cost.

5. Heuristic policy for the problem without a salvage
market

The results of Section 3 partially uncover the priority prop-
erties of production and stock allocation policies but do
not suggest a precise policy. In Section 4, we show that
a WR policy is optimal for the problem with a salvage
market. Based on this fact, we propose, for the problem
without a salvage market, a modification of the WR policy
as a heuristic. In particular, we define a Modified Work-
Storage Rationing (MWR) policy as a WR policy where
the salvage market rationing level is replaced by an integer-
valued base-stock level. When there are no backordered
demands (m(x) = n + 1), this modified policy recommends
producing if the inventory level is strictly smaller than the
base-stock level, and not producing otherwise. All the other
controls are the same as those in the original WR policy.

The MWR policy is clearly plausible since it satisfies the
properties established in Section 3. However, more impor-
tantly, our numerical results suggest that it may even be
the optimal policy. In particular, we are not able to find
any counterexamples to the optimality of the MWR pol-
icy in a fairly exhaustive numerical study. In addition, if
(z∗

1, . . . , z∗
n+1) is the optimal rationing vector of the problem

with salvage market P̃n(µ, λ, h, b, r, α), we systematically

obtained numerically that (z∗
1, . . . , z∗

n, �z∗
n+1�) is the optimal

rationing vector of the problem without a salvage market
Pn(µ, λ, h, b, r, α). These results can be explained by the
fact that both systems are governed by very similar equa-
tions.

In principle, the optimal parameters of the MWR policy
can be obtained algorithmically by the characterization in
Theorem 1. However, as the number of classes increases, it
rapidly becomes difficult to obtain the parameters. In the
following, we first develop a heuristic to compute the op-
timal policy parameters of the WR policy for the problem
with a salvage market and then suggest another heuristic
to compute the optimal policy parameters of the MWR
policy for the problem without a salvage market.

To compute the policy parameters of the heuristic MWR
policy, we adapt the exact algorithm presented by De
Véricourt et al. (2002) for an M/M/1 make-to-stock queue.
The main procedure exploits the relationship between the
k-class problem and the (k − 1)-class problem in the same
manner as in De Véricourt et al. (2002). However, the Er-
lang distribution brings several computational complica-
tions. In order to obtain a tractable iterative approach, we
employ a geometric approximation as in Tijms (1994) and
Karaesmen et al. (2003) for the M/Er/1 queue. In addition,
the optimal thresholds should correspond to work-storage
levels, which requires keeping track of the phases of the dis-
tribution. The details are provided in the online Appendix.

To outline the main points of the approach, we con-
struct a method to successively compute the rationing lev-
els z1, . . . , zk+1. When the rationing vector (z1, . . . , zk) of
the (k − 1)-class subproblem and the corresponding aver-
age cost gk−1 have been evaluated, the next rationing level
zk+1 and optimal average cost gk for the k-class problem
can be computed by solving a single-dimensional problem.
Indeed, when the work-storage level is larger than zk, all
demands are satisfied with the stock and there are no back-
orders in recurrent states. When the work-storage level is
lower than zk, the average cost is given by gk−1. By iterating
this step for each subproblem, we obtain the following al-
gorithm to compute the parameters of the WR policy. The
full justification for this algorithm is given in the online
Appendix.

Heuristic 1. Consider an n-class problem. Construct the se-
quences ρk, ηk and z̃k as follows:
Initialize z̃1 = 1 − 1/r , ρ1 = 1, η0 = 0.
For k = 1, . . . , n do,

ρk = 1
µ

k∑
i=1

λi

ηk is the solution in the interval (0,1) of the equation
(r/(r + ρk(1 − 1/ηk)))r = 1/ηk

z̃k+1 = z̃k + logηk

× ηk(h + bk+1)
ρk(h + bk)[ηk + (1 − ηk)((1 − ρk−1)/(1 − ηk−1))]

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
Ü
B
T
A
K
 
E
K
U
A
L
]
 
A
t
:
 
1
9
:
0
9
 
2
8
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



Stock rationing with Erlang processing times 1105

Table 1. Problem instances

Number of classes (n)

1 2 3

r ∈ {2, 3, 4, 5, 10, 15, 20} {2, 3, 5, 10} {2, 3, 5}
ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} {0.2, 0.4, 0.6, 0.8} {0.4, 0.6, 0.8}
h ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 5} {0.001, 0.01, 0.1, 1} {0.01, 0.1, 1}
b1/b2 ∈ NA {1, 5, 25, 100} {2, 5, 10}
b2/b3 ∈ NA NA {2, 5, 10}
λ1/λ2 ∈ NA {0.2, 1, 5} {1}
λ2/λ3 ∈ NA NA {1}
Number of instances 567 768 243

The heuristic rationing levels zk, k ≥ 1, are then given by

z1 = z̃1

zk = max{1 − 1/r, �r z̃k + 1�/r} for k = 2, 3 . . . , n
zn+1 = �r z̃n+1 + 1�/r.

The MWR heuristic for our problem, without a salvage
market, is obtained by rounding off zn+1 in order to obtain
the base-stock level. Let us note that the above algorithm
can easily be adapted to any M/G/1 make-to-stock queue.
We do not pursue this adaptation here since testing the per-
formance of the algorithm in other settings than M/Er/1
would require the understanding and the computation of
the optimal policy.

6. Numerical results

In this section, we focus on the average cost
problems and consider the instances summarized in
Table 1. For example, we consider for the single-
class problem 567 = 7 × 9 × 9 instances correspond-
ing to the combinations of: r ∈ {2, 3, 4, 5, 10, 15, 20},
ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, h ∈ {0.0001,

0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5}. Without loss
of generality, we set µ = 1 and bn = 1 for all instances where
n is the number of customer classes.

6.1. Performance of the heuristic policy

In order to evaluate the performance of the MWR heuristic
proposed in Section 5, we compare the average cost g∗ of the
optimal policy of the problem with the average cost gH of
the heuristic policy. The average costs are computed numer-
ically by value iteration. We denote by �g = (gH − g∗)/g∗,
the relative cost increase when using the heuristic policy in-
stead of the optimal policy. Another useful benchmark for
the heuristic performance is the rationing level differences
�zi = zi − z∗

i .
We evaluated the performance of the heuristic with one,

two and three classes of customers for the 1578 instances
described in Table 1.

In Table 2, we summarize our main results. For one, two
and three classes of customers, the heuristic finds rationing
levels and base-stock levels with a maximum error of 1 unit
for all the 1578 instances tested. The relative cost increase
for using the heuristic policy is always less than 2% when
the base-stock level is higher than ten. However, when the
base-stock level is low, a small approximation error in the
base-stock level may lead to a magnified percentage error
in terms of the average cost. This situation occurs whenever
the holding cost h is very high or the utilization rate ρ is very
low. Although this is a limitation of the heuristic, it may
be argued that these situations are not the most relevant
for stock rationing, and that when the base-stock level is
low, the few rationing alternatives can all be individually
evaluated and compared.

6.2. Value of production status information

The optimal WR policy uses information on the produc-
tion status since the optimal rationing levels depend on
work-storage levels in general. This may not be feasible
if the production status cannot be observed or may not
be desirable due to increased complexity. Ha (2000) has
investigated the cost penalty for ignoring information on
the current production for a multi-class M/Er/1 make-to-
stock queue with lost sales. In this subsection, we perform
a corresponding investigation for the backorder case. We
define a Critical Stock Level (CSL) policy with parameters
R2, . . . , Rn, S as follows:

Table 2. Performance of the heuristic policy

Number of classes

Performance criteria 1 2 3

Percent of instances for which the heuristic
policy is optimal

85.9 52.3 33.7

Percent of instances for which |�zi | ≤ 1,
for i ≤ n + 1

100 100 100

Maximum �g (%) 47 139 47
Maximum �g if z∗

n+1 ≥ 10 (%) 1.4 2.0 1.0
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Table 3. Cost increase for using CSL policy instead of the optimal
policy

r

Costs 2 3 5 10

Average cost increase for
two-class instances (%)

0.15 0.22 0.27 0.35

Maximum cost increase for
two-class instances (%)

4.06 3.92 5.5 5.4

Average cost increase for
three-class instances (%)

0.23 0.42 0.57 Not evaluated

Maximum cost increase for
three-class instances (%)

2.27 2.75 4.00 Not evaluated

1. Produce if and only if the inventory level is strictly
smaller than S.

2. Satisfy arriving (or backordered) demands of class i if
and only if x > Ri and m(x) ≥ i .

A CSL policy with parameters R2, . . . , Rn, S is equivalent
to an MWR policy with parameters R2 − 1/r, . . . , Rn −
1/r, S. It is computationally difficult to find the optimal
CSL policy since it requires the calculation of the value
function of each possible CSL policy. To avoid this diffi-
culty, we only evaluate CSL policies with critical stock levels
that are adjacent to the optimal work-storage rationing lev-
els. The best candidate policy might not be optimal among
CSL policies but provides a good upper bound. We denote
by gCSL the average cost of the best candidate policy and
by �gCSL = (gCSL − g∗)/g∗ the relative cost increase for
ignoring production status information.

For the 768 two-class instances (respectively 243 three-
class instances) presented in Table 1, we compute �gCSL

and report its average and maximum values in Table 3.
We observe that the CSL policy performs very well which
confirms the results obtained by Ha (2000) for an M/Er/1
make-to-stock queue with lost sales.

6.3. Influence of processing time variability on optimal
average costs

In this subsection, we study the impact of processing time
variability on the optimal average cost. We measure the
processing time variability with its squared coefficient of
variation which is equal in our setting to c2

v = 1/r . When
c2

v = 1, the processing time is exponential, while when c2
v

approaches zero, the processing time approaches a deter-
ministic value. Note that when c2

v increases, the information
accuracy on the production status deteriorates, which rein-
forces the impact of the variability in the system.

We start by investigating the effect of c2
v on the optimal

average cost. Figure 1 represents for a two-class problem
the optimal cost g∗ as a function of c2

v for different values
of b1.

Fig. 1. Impact of c2
v on g∗ for different values of b1/b2 (λ1 = λ2 =

1, µ = 1, h = 0.055 and b2 = 1).

The interesting observation in Fig. 1 is that the impact of
the squared coefficient of variation on the average cost ap-
pears to be approximately linear. This is reminiscent of the
relationship between the average cost and the mean size of
an M/G/1 queue which is linear in c2

v according to the well-
known Pollaczek–Khinchin formula. The piecewise linear
cost structure of the system makes this analogy non-trivial.
The linear effect has also been observed on examples where
other parameters are varied and also in examples with three
customer classes.

This linear relationship can be exploited to evaluate the
average costs of problems with large r . These cases are
indeed difficult to analyze due to the size of the state space.
For instance, in order to evaluate the average cost when the
processing time is deterministic, we can compute the costs
for r = 1 and r = 2 only, and then deduce the result with a
linear approximation based on these two points.

We finally analyze the average cost increase due to pro-
cessing time variability. To this end we denote by g∗(cv) the
optimal average cost of a problem with a coefficient of vari-
ation cv. Hence, g∗(0) represents the average cost of prob-
lems with a deterministic processing time and is obtained
using the previous linear approximation. Figure 2 depicts

Fig. 2. Cost penalty for variability (λ1 = λ2, µ = 1, h = 0.055,
b1 = 10, b2 = 1).
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the relative cost increase �g∗(cv) = (g∗(cv) − g∗(0))/g∗(0)
as the coefficient of variation changes, for different values
of ρ. �g∗ appears to significantly increase as c2

v increases.
For instance, when ρ = 0.9, the relative cost increase for an
exponential processing time (c2

v = 1) reaches 94%. Other
similar examples, not reported here, show that ρ has a much
higher impact on �g∗ than other parameters.

6.4. Influence of production variability on the benefits of
rationing

Ha (1997b) and De Véricourt et al. (2001) have studied the
benefits of rationing for multi-class M/M/1 make-to-stock
queues with lost sales and backorders respectively. To com-
plement these investigations, in this subsection we explore
the influence of production variability on these benefits in
the context of a multi-class M/Er/1 make-to-stock queue
with backorders.

More precisely, we compare the average cost g∗ of the
optimal policy with the average cost gFCFS of the opti-
mal First-Come First-Served (FCFS) policy. Basically, the
FCFS policy serves customers in chronological order of ar-
rival and produces if and only if the stock level x0 is strictly
below the base-stock level z. The following result will help
us to evaluate gFCFS.

Proposition 4. The average costs of the two following policies
are equal:

1. The FCFS policy, with base-stock level z, for an n-
class M/G/1 make-to-stock queue with arrival rates
λ1, . . . , λn, independent and identically distributed (i.i.d)
service times (distribution function F), holding cost h,

backorder costs b1, . . . , bn.
2. The FCFS policy, with base-stock level z, for a single-

class M/G/1 make-to-stock queue with arrival rate λ̂,

i.i.d service times (distribution function F), holding cost
h and backorder cost b̂ where:

λ̂ =
n∑

i=1

λi , b̂ =
∑n

i=1 λi bi∑n
i=1 λi

.

Table 4. Cost increase for using a FCFS policy instead of the
optimal policy

r

Costs 2 3 5 10

Average cost increase for
two-class instances (%)

14.7 14.1 13.8 13.5

Maximum cost increase for
two-class instances (%)

158.2 154.4 151.6 149.7

Average cost increase for
three-class instances (%)

23.7 23.2 22.8 Not evaluated

Maximum cost increase for
three-class instances (%)

115.2 113.3 110.1 Not evaluated

Table 5. Cost increase for using a SP policy instead of the optimal
policy

r

Costs 2 3 5 10

Average cost increase for
two-class instances (%)

6.92 6.51 6.28 6.14

Maximum cost increase for
two-class instances (%)

73.8 72.9 70.4 69.2

Average cost increase for
three-class instances (%)

8.27 7.93 7.70 Not evaluated

Maximum cost increase for
three-class instances (%)

51.3 49.8 47.6 Not evaluated

Based on Proposition 4, we can compute gFCFS by eval-
uating the optimal policy of a single-class problem. In
Table 4, we report the average and maximum cost increase
(�gFCFS = (gFCFS − g∗)/g∗) for the instances presented in
Section 5.

The second policy that is considered is a Strict Prior-
ity (SP) policy, which was used as a benchmark by De
Véricourt et al. (2001). A SP policy does not reserve any
inventory for future demands but allocates production to
backorders according to a pre-emptive priority rule. Thus,
before constituting any inventory, all backorders are cleared
employing a priority rule starting from the most expensive
class. Table 5 presents the average and maximum cost in-
crease (�gSP = (gSP − g∗)/g∗) for the instances presented
in Section 5.

It can be observed from both Tables 4 and 5 that vari-
ability, summarized by the parameter r , does not seem to
have a big impact on the percentage suboptimality. There
is a slight decrease in the percentage suboptimality as r in-
creases (indicating decreased variability) possibly explained
by the corresponding overall decrease in costs. This is an in-
teresting observation since r impacts the overall costs and
policy parameters in a significant manner as was seen in
Section 6.3. The conclusion is that variability appears to
have a parallel impact on all considered policies and the
percentage difference stays relatively stable.

7. Conclusion and future research

In this paper, we analyzed a stock rationing problem with
several customer classes where the processing times have
an Erlang distribution. The Erlang distribution assumption
allows us to model the information on the production status
in a tractable manner and enables modeling production
time variability. In addition to the standard problem, we
also investigated an auxiliary problem where the manager
can sell the production surplus in an ample salvage market.

For the problem with a salvage market, we provided a
full characterization of the optimal policy by exploiting
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the nested structure. The resulting structure of the optimal
policy is fairly intuitive and easy to implement. Moreover,
we proposed an efficient heuristic evaluation of the corre-
sponding optimal parameters. This heuristic procedure al-
lows addressing problems with a large number of customer
classes that would not be tractable otherwise.

For the problem without a salvage market, we fully char-
acterized the optimal policy for a single-class problem and
provided a partial characterization for the multi-class case.
Based on the findings of the problem with a salvage mar-
ket, we also presented a heuristic that performs very well for
the problems without a salvage market. Moreover, based
on numerical results, we conjecture that the optimal policy
is an MWR policy and that the rationing levels are equal to
the optimal rationing levels of the problem with a salvage
market.

Our results constitute a useful benchmark for systems
with general processing times other than Erlang distri-
butions. These problems can be non-Markovian and are
extremely difficult to analyze since the optimal decisions
should take the actual processing time into account. Even
if they could be characterized, these policies would most
likely be hard to implement. For the deterministic case, our
heuristic procedure should already perform well, because
Erlang distributed processing times approach determinis-
tic times when the number of stages is large. For the more
general case, multi-stage distributions with different expo-
nential processing times provide a promising alternative to
approximate the processing time. Our heuristics can in fact
be directly extended to this case. In general, the nested ap-
proach using an M/G/1 approximation presented in this
paper offers a tractable framework to evaluate the optimal
rationing levels in multi-class make-to-stock queues with
generally distributed processing times.
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