
Discrete Event Dyn Syst
DOI 10.1007/s10626-006-0002-z

Optimal Threshold Levels in Stochastic Fluid Models
via Simulation-based Optimization

Gül Gürkan · Fikri Karaesmen · Özge Özdemir

Received: 19 October 2004 / Accepted: 23 August 2006
© Springer Science + Business Media, LLC 2007

Abstract A number of important problems in production and inventory control
involve optimization of multiple threshold levels or hedging points. We address the
problem of finding such levels in a stochastic system whose dynamics can be modelled
using generalized semi-Markov processes (GSMP). The GSMP framework enables
us to compute several performance measures and their sensitivities from a single sim-
ulation run for a general system with several states and fairly general state transitions.
We then use a simulation-based optimization method, sample-path optimization,
for finding optimal hedging points. We report numerical results for systems with
more than twenty hedging points and service-level type probabilistic constraints. In
these numerical studies, our method performed quite well on problems which are
considered very difficult by current standards. Some applications falling into this
framework include designing manufacturing flow controllers, using capacity options
and subcontracting strategies, and coordinating production and marketing activities
under demand uncertainty.
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1 Introduction

In an influential paper, Kimemia and Gershwin (1983), proposed a framework for
studying production control problems as optimal control problems for stochastic fluid
systems. This framework, usually referred to as manufacturing flow control, assumes
that the production/inventory processes of interest are governed by flows that
correspond to deterministic production and demand rates and that the randomness
in the system can be captured by changes in production or demand rates according
to some stochastic process governing the possible input and output rates. In recent
years, there has been a strong interest in the development of models and in their
analysis within this framework; Sethi et al. (2002) provide a comprehensive review of
this literature.

The particular manufacturing flow control problem that we consider in this paper
is that of a single resource (a “machine” for simplicity) coping with a flow of demand
whose rate varies randomly. The production capacity of the machine can take
multiple values according to some external stochastic process. Similarly the demand
rate at any given time is governed by another external and uncontrollable stochastic
process. The objective then is to dynamically select the production rate of the
machine (within the capacity constraints) in order to minimize expected inventory
and backorder costs. Under the general assumptions we consider here (multiple
machine and demand states and general transition times), the exact solution of
the optimal control problem is unknown and even if it were known the exact
optimal policy is likely to be extremely complicated. On the other hand, there is
a plausible class of policies called “hedging point” policies that are described by a
few parameters and therefore are extremely useful for implementation in practice. A
hedging point policy, in general, requires determining a parameter corresponding to
each machine and demand state. The corresponding parameter (hedging point) acts
as an inventory target threshold in each machine/demand state. The machine should
produce at the maximum rate if the inventory level is below the current threshold,
should stop if the inventory level is above the current threshold, and should produce
at the rate that would keep the inventory level at the current threshold level when it
reaches there.

As described further in Section 2, hedging point policies are attractive not only
due to their simplicity but also because they turn out to be optimal in a number of
important special cases studied in the literature. In addition, if the production policy
is required to depend only on the inventory level (and not on elapsed times since
previous transitions), hedging point policies seem to be the only plausible alternative.
In turn, these type of policies are recently used not only for designing manufacturing
controllers, but also for using capacity options and subcontracting strategies, and for
coordinating production and marketing decisions.

Focusing on the class of hedging point policies reduces the optimal control
problem to the optimization of a finite number of parameters: the hedging points.
This optimization problem is the main focus of this paper. In particular, we pro-
pose a simulation-based approach, namely sample-path optimization, to tackle this
problem. To this end, we first model the evolution of the system using a generalized
semi-Markov Process (GSMP) framework. Although in the past the GSMPs were
mainly used for modelling systems with discrete entities, they can also be well
suited for modelling fluid systems; see Suri and Fu (1994) and Gürkan (2000)
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for example. Here, we also adapt the GSMP framework to our continuous-time
continuous-state space problem. Utilizing the GSMP representation, we then obtain
gradient estimates of the performance measures using infinitesimal perturbation
analysis (IPA). Finally, we implement the relatively recent technique of sample-path
optimization to find the optimal hedging points.

Sample-path optimization is a simulation-based optimization method to optimize
performance functions of complex stochastic systems; it can be used for providing
solutions to difficult stochastic optimization problems (including ones with stochastic
constraints), stochastic variational inequalities, and equilibrium models. The basic
idea is to observe a fixed sample path (by using the method of common random num-
bers from the simulation literature), solve the resulting deterministic problem using
fast and effective methods from nonlinear programming, and then use the resulting
solutions to infer information about the solution of the original stochastic problem. In
Section 2, we briefly explain the underlying basic ideas and give references in which
more details can be found.

Up to date, there have been several successful implementations of simulation-
based optimization in the context of manufacturing flow control. Most of those
papers, mentioned in Section 2, use IPA coupled with some form of stochastic
approximation (SA) technique on the optimization side. More precisely, they apply
SA-IPA framework to particular models and/or establish the validity of that ap-
proach for those particular models. There seems to be a number of valid reasons for
focusing on particular models. To start with, proving the validity and unbiasedness
of the IPA estimate can be extremely challenging and is usually dependent on
the particular model representation. Moreover, the practical implementation of
stochastic approximation (or its variants) has to be carefully adapted and fine tuned
to the context even when unbiased derivative estimates are available. Partly as a
consequence of these, the existing literature doesn’t go beyond the unconstrained
optimization of two hedging points.

In contrast with the most of the existing literature, we start by a fairly general
single-stage model allowing any number of machine and demand states and general
state transitions. Our main contributions are two-fold. First, using the GSMP frame-
work, we obtain a flexible and general representation of the system evolution, and
derive gradient estimates. Even though these estimates may be obtained by other
means, the GSMP approach significantly facilitates obtaining transparent estimates
by simulation and proving the unbiasedness of these estimates. Second, using sample-
path optimization we avoid certain drawbacks associated with stochastic approxima-
tion type methods such as number of parameters to fine tune, slow convergence,
and ad hoc handling of constraints. These two complementary features enable us to
investigate much larger systems than is usually reported in comparable simulation-
based optimization studies and to obtain insights on the structure of optimal hedging
points for large systems. Furthermore, we also report numerical experiments with
service-level type probabilistic constraints.

We would like to emphasize that although the main focus of this paper is the
analysis of a particular manufacturing flow control model, the scope of application
for the developed techniques is potentially much wider. Threshold based control
of stochastic fluid models have useful applications in other related problems in
manufacturing control (see Tan and Gershwin (2004) or Hu et al. (2004)), but
also on queueing-based admission control and routing models commonly used in
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telecommunications (see Sun et al. 2004). The general approach proposed here may
be utilized with appropriate modifications for such models as well.

The rest of the paper is organized as follows. In Section 2 we present a review of
the related literature. Section 3 provides a detailed description of the problem. The
GSMP framework and gradient estimation is presented in Section 4. The numerical
results can be found in Section 5 and the conclusions are presented in Section 6.
To improve readability, we deal with the details of our technical analysis in several
appendices. Appendix 1 provides a proof of a sufficient condition for the stability
of the system under consideration. Appendix 2 deals with so-called “similarity
properties” needed for rigorous analysis of our gradient estimation. Appendix 3
contains the proofs of several technical results of Section 4. Finally, Appendix 4 is
the pseudo-code for simulation and gradient estimation.

2 Literature

The research in manufacturing flow control can roughly be classified in two direc-
tions: papers directly addressing optimal control issues and papers that analyze and
optimize the performance of plausible policies. Our work falls in the latter category
but the policies we employ are strongly motivated by the research on optimal control.

Kimemia and Gershwin (1983) proposed formal optimal control theory as an
approach for studying general manufacturing flow control problems. They also
proposed a plausible class of control policies. The first formal proofs of optimality
of a certain policy, however, was established later by Akella and Kumar (1986)
and Bielecki and Kumar (1988) for a two machine state system with exponential up
and down times, constant demand, linear holding and backorder costs. In particular,
these papers established the optimality of a hedging point policy: whenever up, the
machine should produce at full capacity below a target inventory level called the
hedging point and produce at a rate which enables it to stay there once it reaches this
target.

There are several extensions of the hedging point type optimality structure.
For instance, for a multiple machine state system with a Markovian transition
structure, a multiple hedging point type policy is optimal: for each machine state
where capacity exceeds demand rate, there is a corresponding hedging point; see
Sethi et al. (2002) for related results. It is also known that with non-exponential ma-
chine state transitions, the structure of the optimal policy becomes more complicated
(see Hu and Xiang (1995) for an example) but hedging point policies remain useful
due to their simplicity.

In addition, there is also considerable literature on the performance analysis side.
Sharifnia (1988) investigates the multiple machine state problem with Markovian
transitions when a multiple hedging point policy is used and presents analytical
results for the performance measures of the system. Finding the optimal hedging
points, however, remains difficult. Liberopoulos and Hu (1995) also investigate the
multiple machine state problem with Markovian transitions with a different focus.
They establish useful monotonicity properties of the optimal hedging levels with
respect to the machine state transition structure. We use these intuitive monotonic-
ity properties for testing our procedure as part of our numerical experiments in
Section 5.
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There are also several other examples where hedging point type policies arise
in single-part and single-stage systems under more general modelling assumptions.
A typical example is that of threshold subcontracting: additional manufacturing
resources can be used depending on the inventory level. Tan (2002a), Hu et al. (2004),
and Tan and Gershwin (2004) propose models and performance analysis approaches
for this class of problems. Zhang et al. (2001) is another recent example in which
joint production and marketing decisions are modelled through a hedging point type
policy. Our approach, as we explain in more detail below, can be utilized in such
settings with some straightforward modifications.

If one is concerned with a system with several machine and demand states and
fairly general random disturbances (i.e. not necessarily exponentially distributed),
then the generality of the problem and the intractability of an analytical solution
makes a simulation-based method an attractive approach. Using a simulation-based
method for finding optimal hedging points has been tried before by Caramanis
and Liberopoulos (1992), Liberopoulos and Caramanis (1994), Haurie et al. (1994),
Yan et al. (1994), Brémaud et al. (1997), Yan et al. (1999), and Yin et al. (2001).
However, optimization side of all these papers were confined to the method of
stochastic approximation and its variants, see Robbins and Monro (1951). Although
very prominent, in practise these methods suffer from serious drawbacks such as
slow convergence, lack of a good stopping criterion, and difficulty in enforcing
feasibility. In particular, when there are constraints, these methods handle inequality
constraints—even deterministic linear inequalities—via projection onto the feasible
set. Such a projection operation can retard the performance of an optimization al-
gorithm immensely, as illustrated by the simple example in Appendix 6 of Plambeck
et al. (1996). In that example, such a method requires nearly 1043 steps to find the
minimizer (the origin) of a linear function on the nonnegative orthant R2

+. Fur-
thermore, even in the unconstrained case, the empirical performance of stochastic
approximation type methods is very sensitive to the choice of a predetermined step
size. Fu and Healy (1992), L’Ecuyer et al. (1994), Glasserman and Tayur (1995), and
Gürkan (2000) contain a number of examples which demonstrate this sensitivity.

These difficulties are partly reflected in the available numerical results of
simulation-based optimization literature for finding optimal hedging points: none
of the papers we could reach (for single-part single-stage models) had numerical
experiments with systems having more than two decision variables and they were
all solving unconstrained problems. Furthermore, very often, following how the
gradient estimates are derived is quite challenging for a non-specialist in gradient
estimation literature since the arguments leading to a particular estimator are often
done case by case. For example, Brémaud et al. (1997) is one of the most recent
papers developing a rigorous infinitesimal perturbation analysis (IPA) algorithm for
a system whose transition times are not necessarily Markovian and the IPA analysis
of the two hedging point case is done in a separate section than the IPA estimate for
a single hedging point.

Aside from the literature mentioned, after we have submitted this paper for pub-
lication, we have become aware of Zhao and Melamed (2004). That paper also deals
with a general Make-to-Stock system (not necessarily Markovian) with random de-
mand and production rates; IPA gradients of two performance measures are derived
recursively via a sample-path analysis. However, their results are somewhat special-
ized (for specific initial conditions) and there are no numerical experiments reported.
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To overcome the difficulties encountered in the literature, in this paper we pro-
pose using a different simulation-based method, namely sample-path optimization,
coupled with a generalized semi-Markov process (GSMP) representation for the
system. As we will explain below, this has two consequences. On the optimization
side, we are able to solve much larger (with several machine and demand states) and
general (not necessarily exponential disturbances) problems with even probabilistic
constraints. On the modelling and gradient estimation side, we derive a rigorous,
intuitive, and transparent algorithm for a general system that can compute the func-
tion and gradient values of the objective function and service level type probabilistic
constraints at any parameter setting in a single simulation run.

Next, we describe the basic ideas behind sample-path optimization. Roughly
speaking, we are concerned with solving a problem of optimization involving a limit
function f∞ which we cannot observe. However, we can use simulation to observe
functions fn that converge pointwise to f∞ as n → ∞ almost surely. In the kind of
applications typically encountered, f∞ could be a steady-state performance measure
of a dynamic system or an expected value in a static system. In systems that evolve
over time, we can simulate the operation of the system for, say, n time units and then
compute an appropriate performance measure. In static systems we can repeatedly
sample instances of the system and compute an average.

To be more precise, many problems in simulation-based optimization can be mod-
elled by a real (or vector)-valued stochastic process { fn(x, ω) | n = 1, 2, . . .}. For each
n ≥ 1 and each x ∈ Rk, fn(x, ω) are random variables defined on a common proba-
bility space (�,F , P). It is helpful to keep in mind that x represents the decision
variable, ω represents the sample path (which is indeed a list random numbers that
give rise to a particular simulation run), and n represents the simulation length.

We assume the existence of a limit function f∞(x, ω) such that for every x,
fn(x, ω) → f∞(x, ω) as n → ∞ at almost every ω ∈ �. We are interested in finding
a minimizer of f∞ and in general we can only observe fn for finite n. Therefore we
will approximate minimizers of f∞ using such information about fn. The method is
simple: fix an ω ∈ � (by the method of common random numbers) and a large n (to
get a good estimate of the limit function), compute a minimizer x∗

n(ω) of fn(·, ω),
and take x∗

n(ω) as an approximate minimizer of f∞(·, ω). Note that minimizers of
f∞(x, ω) may generally depend on the sample path ω. However, in many practical
problems for which one would anticipate using this technique, f∞ is a deterministic
function, for example a steady-state performance function or an expectation, i.e. it is
independent of ω.

The basic case of sample-path optimization, concerning the solution of simulation
optimization problems with deterministic constraints, appeared in Plambeck et al.
(1993, 1996) and was analyzed in Robinson (1996). Robinson (1996) gave a num-
ber of sufficient conditions (on { fn(x, ω)}) which guarantee that if we take n large
enough, each approximate minimizer x∗

n(ω) will be close to a true minimizer of the
limit function. Plambeck et al. (1993, 1996) reported extensive numerical experi-
ments on large scale systems (project management involving PERT networks with up
to 110 stochastic arcs and cycle time optimization in unreliable tandem production
lines with up to 50 machines). In turn, Gürkan (2000) focused on optimization of
buffer allocations in unreliable tandem production lines and reported results also for
systems with up to 50 machines. Both Plambeck et al. (1993, 1996) and Gürkan (2000)
used IPA for gradient estimation.
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In the static case, a closely related technique centered around likelihood-ratio
methods appeared in Rubinstein and Shapiro (1993) under the name of stochastic
counterpart methods. The basic approach (and its variants) is also known as sample
average approximation method in the stochastic programming literature; see for ex-
ample Shapiro and Homem-De-Mello (1998) and Linderoth et al. (2002) for some of
the recent progress in the static context of stochastic programming.

In Gürkan et al. (1996, 1999a) the basic idea of using sample-path information
was extended to solving stochastic variational inequalities and equilibrium problems.
This work was used further in Gürkan et al. (1999b) for establishing almost-sure
convergence of sample-path methods when dealing with general stochastic optimiza-
tion problems with stochastic constraints. More recently, Birbil et al. (2006) deals
with the theoretical analysis and application of sample-path methods to the so-called
stochastic mathematical programs with equilibrium constraints.

In this paper, we do not deal with theoretical issues related to convergence analy-
sis; instead we solely focus on the operational issues that need to be addressed in
solving the hedging point problem in practise. In general, doing a rigorous conver-
gence analysis would require one to have additional insight to path-wise functional
properties of the performance measures involved. This can be achieved if one is
willing to make additional assumptions, say focus on certain distribution functions,
as illustrated in Gürkan (2000). There, certain path-wise functional properties of
sample throughput (as function of buffer capacities) were used to verify the sufficient
conditions established in Robinson (1996) and almost sure convergence of sample-
path optimization was proven. Here, we would like to work in full generality and we
only verify the convergence of our procedure through numerical experiments.

There are two key points that make sample-path type methods attractive in prac-
tise: (1) once we fix a sample point ω and n, fn(x, ω) becomes a deterministic function
of x; (2) IPA—when it is applicable—is able to compute exact gradients of fn(x, ω).
With these observations, very powerful methods of constrained and unconstrained
deterministic optimization become available for use on the fn(·, ω). In the smooth
case we can apply superlinearly convergent methods like the BFGS algorithm (or a
variant for constrained problems) to minimize fn to high accuracy in relatively few
function and gradient evaluations. For more information on these algorithms see
Fletcher (1987) and Gill et al. (1981), and for the software available see Moré and
Wright (1993). Using superlinearly convergent methods enables us to be confident
about the location and the accuracy of the minimizer of fn, because we can differen-
tiate between the errors due to the approximation of f∞ by fn and those due to the
inaccurate computation of a minimizer of fn. With slower algorithms like stochastic
approximation, this is difficult if not impossible.

It is well-known that in many cases in which one uses a discrete event simulation,
the exact partial derivatives (or directional derivatives) of fn(x, ω) with respect to x
can be obtained by using IPA in a single simulation run; see Glasserman (1991) and
Ho and Cao (1991). To this end, we propose developing a GSMP representation of
the system and utilizing that representation to derive recursive expressions for the ex-
act derivatives. A GSMP can simply be thought as a mathematical framework which
models the evolution of a discrete-event simulation. As it can be seen in Section 4, the
GSMP framework enables us to develop an intuitive and transparent algorithm for
a general system with multiple machine and demand states and with state transitions
that are governed by general continuous distributions.
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Finally, we would like to point out that our general approach, with appropriate
modifications, could be applicable to several other challenging problems encoun-
tered in practise, especially considering the recent trends in using stochastic fluid
models for decision making under uncertainty; see for example Liu and Gong (2002)
and Sun et al. (2004).

3 Problem description

Consider a manufacturing system that produces a single product. The maximum pro-
duction capacity of the system can take one of K possible values, ri (i = 1, 2, . . . , K )

according to a stationary process. We denote by α(t)(α(t) = 1, 2, . . . , K ) the state of
the machine at time t and rα(t) the corresponding maximum production capacity in
that state. The time spent in state i is a continuous random variable with a general
distribution Fi. After state i, the next machine state k, is determined according to a
matrix {Pik} with

∑K
k=1 Pik = 1.

The system has to cope with a random demand. Similar to machine states, we
denote by β(t)(β(t) = 1, 2, . . . , M) the state of demand at time t and dβ(t) the cor-
responding demand rate in that state. The time spent in demand state j also has a
general distribution G j and after state j, the next demand state k is determined ac-
cording to a matrix {Q jk} with

∑M
k=1 Q jk = 1. Note that although in many interesting

problems occurring in practise Pii = Q jj = 0 would hold, we don’t necessarily require
it in our model.

Let X(t) denote the inventory level at time t. Note that X(t) can take negative
values corresponding to backorders in the system. To this end, it is useful to distin-
guish the positive and negative parts of the inventory process. We define by X+(t) =
X(t)I{X(t)≥0} the production surplus of the system and by X−(t) = −X(t)I{X(t)<0} the
backorder level (where IA is the indicator function corresponding to set A). The
instantaneous cost function is then given as: c+ X+(t) + c− X−(t) where c+ and c− are
respectively the holding and backorder costs per item per unit time.

We can classify the combined states of the system as (i, j ) (i = 1, 2, . . . , K, j =
1, 2, . . . , M) considering the maximum production rates and demand rates simulta-
neously. A state (i, j ) is called deficient if ri < d j. In such a state X(t) has to be de-
creasing regardless of the production control selected. Similarly, state (i, j ) is called
non-deficient if ri ≥ d j; in this case X(t) can be increasing, decreasing, or constant
depending on the actual production control. Actually, if ri = d j, X(t) can be either
decreasing or constant and such a state is called a zero state.

Let v(t) (rα(t) ≥ v(t) ≥ 0) denote the actual production rate at time t. The objective
of the manufacturing flow control problem is to select v(t) such that

lim
T→∞

1

T

∫ T

0
c+ X+(t) + c− X−(t)dt (3.1)

is minimized. We study the above problem with the restriction that v(t) is in the class
of hedging point policies. A hedging point policy drives the system to the hedging
point of the current system state at the fastest rate possible and then keeps it at the
hedging point by adjusting the production rate until a system state change occurs. Ac-
cordingly, for each non-deficient system state (i, j ), there is a hedging point zij. The
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control v(t) is completely determined by the specification of zij’s for non-deficient
machine states:

v(t) =
⎧
⎨

⎩

ri if X(t) < zij

d j if X(t) = zij

0 if X(t) > zij

and in convention with the existing literature (see Liberopoulos and Hu (1995) for
example) we assume that the production rate in deficient states is set to the maximum
rate (i.e. v(t) = ri) regardless of the inventory position. Naturally, other production
rules can also be easily formulated within the same framework. The control problem
under the restriction to this particular class of policies is to select the optimal values
of the hedging points zij in order to minimize expression (3.1).

An important issue is the stability of such a system. Let πi (i = 1, 2, . . . , K) denote
the stationary probability of being in machine state i and q j ( j = 1, 2, . . . , M) denote
the stationary probability distribution of being in demand state j. Then a sufficient
condition for stability of the system is given by:

K∑

i=1

πiri >

M∑

j=1

q jd j. (3.2)

We provide a proof of this in Appendix 1. Hereon, we will restrict our attention to
systems satisfying condition (3.2).

In addition, we assume that the process X(t) does not “hit and run” any of the
hedging points. That is, there exist an ε > 0 such that if t

′
is a time that X(t

′
) becomes

zij, then we should have X(t
′ + ε) = zij for each i and j. Following the terminology

of Brémaud et al. (1997), we will call this assumption “hit and stick.” “Hit and stick”
is almost always satisfied: In practise, it means that two events (end of holding time
in a state and reaching to a hedging level) do not happen at the same instant which
is satisfied almost surely, since the probability of a continuous variable being equal
to a specific value is always 0. Roughly speaking, excluding the possibility of the
simultaneous occurrence of exogenous (end of holding time in a state) and endoge-
nous (reaching to a hedging level) events helps to ensure the differentiability of the
performance measure. Otherwise, one can still develop expressions for one-sided
directional derivatives, but they may not be equal, as also noted by Brémaud et al.
(1997) for a two hedging point system.

4 The GSMP and gradient estimation

As mentioned earlier, to carry out the subsequent simulation and infinitesimal per-
turbation analysis, we will utilize a generalized semi-Markov process (GMSP) repre-
sentation of the system. Glynn (1989) provides a brief introduction and an excellent
description of this framework can be found in Shedler (1993).

The basic idea of a GSMP can be explained as follows: There is a set of states and
a set of events. The GSMP jumps from one state to another upon the occurrence of
an event; at each state there are some active events. At any time, each active event is
associated with a clock representing the residual lifetime of that event and a speed at
which the clock runs down. If the clock corresponding to event e in state s equals k
and the speed at which this clock runs is r, then e is scheduled to occur after k/r units
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of time. The next event and the time until it occurs are always determined by the
smallest clock reading/clock speed ratio. More formally, let k(e, t) be the reading of
the clock for event e at time t and r(e, t) be the speed at which that clock runs down.
E(t) is the current set of active events, i.e. the set of events with r(e, t) �= 0. Then the
next event to occur is given by

e∗(t) = argmin
{

k(e, t)
r(e, t)

|e ∈ E(t)
}

.

Upon the occurrence of an event, changes may occur in the physical state, clock
settings, and clock speeds: If event e occurs in state s, the process may move to a
new state s′ with a certain probability p(s′; s, e); the set of active events changes with
the state; clocks for any old events which remain active continue to run in the new
state; new clocks are initialized for all new active events and for the event which just
occurred if it is also active in the new state. The initial value of each new clock for
event e in state s is a random variable with a pre-specified cumulative distribution
function F(·; s, e). This goes on until a termination criteria is reached.

To develop a GSMP representation for our system, let the current system states
be α(t) = i and β(t) = j and then define the following events:

MF : The end of a sojourn time at current machine state i,
UH: Reaching the hedging point zij of current system state (i, j ) from below,
DH: Reaching the hedging point zij of current system state (i, j ) from above,
DG: The end of a sojourn time at current demand state j,
T f : The simulation termination.

We let u(t) = v(t) − dβ(t) to denote the fill-in rate, the total rate of change in the
inventory level process, at time t. Also let WM(t) denote the remaining time until the
current machine state changes and W D(t) denote the remaining time until the current
demand state changes. If we let T to denote the prespecified amount of time that the
system will be simulated, we can then define the clock readings and associated speeds
as in Table 1.

Next, utilizing this GSMP representation, we derive a recursive formula to com-
pute exact derivatives of long-run average cost per unit time with respect to hedging
points, in a single simulation run. As mentioned earlier, we use IPA to compute
derivatives of long-run average cost per unit time. Let f : RKM → R be a function
which has a gradient at a point z = (z1, . . . , zKM), then IPA computes an array whose
(i, j )th component is

df
dzij

= lim
�z→0

f (z + �zyij) − f (z)

�z

where yij(i = 1, . . . , K, j = 1, . . . , M) is the (i, j )th unit vector in RKM. In the fol-
lowing we use d( · )/dzij to denote the (i, j )th partial derivative of ( · ) at the point z.

Table 1 The clock readings
and associated speeds e MF UH DH DG T f

k(e, t) WM(t) zij − X(t) X(t) − zij W D(t) T − t
r(e, t) 1 u(t) −u(t) 1 1
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Furthermore, we abuse notation and use z + �zij and z + �zyij interchangeably; that
is �zij = �zyij.

When z = (zij) is the vector of hedging points, as T gets large, the long-run average
cost per unit time could be defined as JT(z) = C(T)/T, where C(T) is the cumulative
cost incurred by the system over time T as given by

C(T) =
∫ T

0
c+ X+(t) + c− X−(t)dt. (4.3)

Let t0, t1, . . . be the event occurrence times in a sample path and τn = tn − tn−1 be
the time between the (n − 1)st and nth events. Without loss of generality we assume
t0 = 0. If the nth event is the event that the system has been working T time units,
i.e. tn = T for some n, we have

dJT(z)

dzij
= d

dzij

(
C(T)

T

)

= dC(T)

dzij

1

T
= dC(tn)

dzij

1

tn
. (4.4)

From Eq. 4.4 we see that JT(z) has derivatives if and only if C(tn) has them. Next
we show that C(tn) has the desired property and derive a recursive expression for
dC(tn)/dzij, which is a quantity computable from the simulation information gener-
ated up time tn.

For n = 0, 1, . . . let en+1 be the (n + 1)st event; then

en+1 = e∗(tn) = argmin
{

k(e, tn)
r(e, tn)

|e ∈ E(tn)
}

,

and

tn+1 = tn + τn+1 where τn+1 = k(en+1, tn)
r(en+1, tn)

. (4.5)

Recall that v(tn) is the actual production rate and u(tn) is the fill-in rate at tn; that
is, if the controller is in state (i, j ) at tn, then u(tn) = v(tn) − d j. Equation 4.6 below
gives a recursive expression for C(tn+1).

C(tn+1) = C(tn)

+I{X(tn)≥0} I{X(tn+1)≥0}c+
[

X(tn+1)τn+1 − u(tn)τn+1

2
τn+1

]

+I{X(tn)<0} I{X(tn+1)<0}c−
[

−X(tn+1)τn+1 + u(tn)τn+1

2
τn+1

]

+I{X(tn)≥0} I{X(tn+1)<0}
{

c+
[−X(tn)

2

X(tn)
u(tn)

]

+ c−
[−X(tn+1)

2

X(tn+1)

u(tn)

]}

+I{X(tn+1)≥0} I{X(tn)<0}
{

c+
[

X(tn+1)

2

X(tn+1)

u(tn)

]

+ c−
[

X(tn)
2

X(tn)
u(tn)

]}

.

(4.6)
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Here is the main theorem.

Theorem 1 For n ≥ 0, C(tn+1) has partial derivatives at z for all z and i = 1, . . . , K,

j = 1, . . . , M, given by

dC(tn+1)

dzij
= dC(tn)

dzij

+I{X(tn)≥0} I{X(tn+1)≥0}c+
[

dX(tn+1)

dzij
τn+1+ dτn+1

dzij
X(tn+1) − u(tn)τn+1

dτn+1

dzij

]

+I{X(tn)<0} I{X(tn+1)<0}c−
[

−dX(tn+1)

dzij
τn+1− dτn+1

dzij
X(tn+1)+u(tn)τn+1

dτn+1

dzij

]

+I{X(tn)≥0} I{X(tn+1)<0}
{

c+
[−X(tn)

u(tn)
dX(tn)

dzij

]

+ c−
[−X(tn+1)

u(tn)
dX(tn+1)

dzij

]}

+I{X(tn+1)≥0} I{X(tn)<0}
{

c+
[

X(tn+1)

u(tn)
dX(tn+1)

dzij

]

+ c−
[

X(tn)
u(tn)

dX(tn)
dzij

]}

.

(4.7)

The proof of Theorem 1 is by induction. In practise, to compute dC(tn+1)/dzij we
need to be able to compute dX(tn+1)/dzij (done in Lemma 3 below), dτn+1/dzij (done
in Lemmas 1, 4, 5, 6 below), and du(tn)/dzij (done in Lemma 2 below) recursively,
using information that is available up to tn+1. Before proceeding with the proof of
the theorem, we first mention the concept of “similarity” (which we address in detail
in Appendix 2) and state a few technical lemmas. The proofs of all lemmas of this
section are in Appendix 3.

“Similarity” of the nominal path and the perturbed path (which are made precise
in Appendix 2) is a standard issue one needs to deal with when developing IPA
algorithms. In Appendix 2, we show that along any sample path of finite length,
say k events, with min{τn|n = 1, 2, . . . , k} > 0, there is always a �zij > 0 (or �zij < 0
whose size depends on the sample path) small enough such that increasing (or de-
creasing, respectively) z by �zij does not cause any event order change; that is, the
perturbed path and the nominal path remain similar.

Lemma 1 For all n = 0, 1, . . ., r(en+1, tn) has partial derivatives at z for all z and i =
1, . . . , K, j = 1, . . . , M, which are 0.

Lemma 2 For all n = 0, 1, . . ., u(tn) has partial derivatives at z for all z and i = 1, . . . ,

K, j = 1, . . . , M, which are 0.

Lemma 3 Suppose that X(tn−1) and τn have partial derivatives at z for all z and
i = 1, . . . , K, j = 1, . . . , M. Then X(tn) has partial derivatives at z for all z and i =
1, . . . , K, j = 1, . . . , M given by

dX(tn)
dzij

= dX(tn−1)

dzij
+ u(tn−1) · dτn

dzij
.
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Lemma 4 Suppose that WM(tn−1), W D(tn−1), and τn have partial derivatives at z for
all z and i = 1, . . . , K, j = 1, . . . , M. Then WM(tn) and W D(tn) have partial derivatives
at z for all z and i = 1, . . . , K, j = 1, . . . , M given by

dWM(tn)
dzij

= dWM(tn−1)

dzij
− dτn

dzij
.

and

dW D(tn)
dzij

= dW D(tn−1)

dzij
− dτn

dzij
.

Lemma 5 Suppose that X(tn), WM(tn), W D(tn), and tn have partial derivatives at z for
all z and i = 1, . . . , K, j = 1, . . . , M. Then k(en+1, tn) has partial derivatives at z for all
z and i = 1, . . . , K, j = 1, . . . , M given by

dk(en+1, tn)
dzij

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dWM(tn)
dzij

if en+1 = MF ,

I{i=α(tn), j=β(tn)} − dX(tn)
dzij

if en+1 = UH,

dX(tn)
dzij

− I{i=α(tn), j=β(tn)} if en+1 = DH,

dW D(tn)
dzij

if en+1 = DG,

− dtn
dzij

if en+1 = T f .

(4.8)

Lemma 6 Suppose that tn has partial derivatives at z for all z and i = 1, . . . , K, j =
1, . . . , M. Then tn+1 has partial derivatives at z for all z and i = 1, . . . , K, j = 1, . . . , M
given by

dtn+1

dzij
= dtn

dzij
+ dτn+1

dzij
(4.9)

where

dτn+1

dzij
= 1

r(en+1, tn)
dk(en+1, tn)

dzij
. (4.10)

The next lemma will start the induction.

Lemma 7 t1, τ1, X(t0), WM(t0), W D(t0), and C(t0) have partial derivatives at z for all
z and i = 1, . . . , K, j = 1, . . . , M. These are given by, for all i and j:

dX(t0)
dzij

= dWM(t0)
dzij

= dW D(t0)
dzij

= dC(t0)
dzij

= 0 and
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dt1
dzij

= dτ1

dzij
= 1

r(e1, t0)
dk(e1, t0)

dzij
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

u(t0)
I{i=α(t0), j=β(t0)} if e1 = UH,

1

u(t0)
I{i=α(t0), j=β(t0)} if e1 = DH,

0 otherwise.

Now we are ready to prove the main theorem.

Proof of Theorem 1 First, observe that because of Remark 1 (in Appendix 2), we
can treat I{X(tn(z))≥0}, I{X(tn+1(z))≥0}, I{X(tn(z))<0}, and I{X(tn+1(z))<0} as constants while
using the chain rule of differentiation. Next, Lemma 7 provides the start of inductive
argument. Suppose that tn, τn, X(tn−1), WM(tn−1), W D(tn−1), and C(tn−1) have partial
derivatives at z for all z and i = 1, . . . , K, j = 1, . . . , M. Apply Lemma 4 to get the
recursions for WM(tn) and W D(tn); Lemma 3 for X(tn); and Lemma 6 for tn+1 and
τn+1. Lemmas 1 and 5 provide the necessary information about dk(en+1, tn)/dzij and
dr(en+1, tn)/dzij. 	


In Appendix 4, we provide a pseudo code for our simulation and IPA algorithm
that we developed utilizing our GSMP representation and the recursions developed
in this chapter. The steps (needed for the IPA algorithm) added to the basic simula-
tion algorithm are marked as “IPA”.

Note that the GSMP framework together with the recursive manner of computing
derivatives allows one to use IPA also for computation of second-order derivatives.
However, we have not pursued this here, since most of the state-of-art deterministic
nonlinear optimization codes (including E04UCC we use in our numerical experi-
ments reported in Section 5) are capable of using just the derivative information for
maintaining and utilizing efficiently dynamic BFGS quasi-Newton approximations
for the Hessian.

It is also worth noting that an important issue in gradient estimation literature
has been the development of estimators with good asymptotic behavior. The con-
vergence theorems and convergence rate results for stochastic approximation type
methods are concerned with the unbiasedness of the gradient estimator, for exam-
ple see Kushner and Clark (1978); whereas convergence theorems for sample-path
optimization may not have these requirements in general, for example see
Robinson (1996). When using sample-path optimization the main requirement from
the practical point of view is an exact gradient or a directional derivative (whichever
is available) of the sample function to be optimized so that an efficient deterministic
optimizer is able to utilize this sensitivity information. In this sense, the sample-path
performance functions (for finite time) of the buffer optimization problem
addressed in Gürkan (2000) constitute an interesting example. They were discontin-
uous functions and their exact derivatives were most likely biased. However, under
the assumption that the steady-state throughput is a continuous function of buffer
capacities, Gürkan (2000) proved the almost sure convergence of sample-path op-
timization. Furthermore, the deterministic optimizer was able to utilize the exact
directional derivatives of the discontinuous sample functions efficiently and find the
optimal buffer allocations in systems with up to 50 unreliable machines.
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Proving the unbiasedness of the estimator we derived here is rather standard and
we tackle that next.

Lemma 8 | JT (z+�zij,ω)−JT (z,ω)

�zij
| ≤ (c+ + c−), for any �zij small enough so that the event

order list does not change, where ω is the sequence of random numbers which give rise
to a particular simulation run.

Theorem 2 IPA provides an unbiased gradient estimator; that is, we have E[ dJT (z,ω)

dzij
] =

dE[JT (z,ω)]
dzij

.

Proof From Lemma 8, we have | JT (z+�zij,ω)−JT (z,ω)

�zij
| ≤ (c+ + c−). From Theorem 1,

dJT(z, ω)

dzij
= lim

�zij→0

JT(z + �zij, ω) − JT(z, ω)

�zij

exists at any z with probability 1.
We choose g(ω) := (c+ + c−) as the dominating function and use Lebesgue’s dom-

inated convergence theorem to obtain

dE[JT(z, ω)]
dzij

= lim
�zij→0

∫

�

JT(z + �zij, ω) − JT(z, ω)

�zij
dP

=
∫

�

lim
�zij→0

JT(z + �zij, ω) − JT(z, ω)

�zij
dP

= E
[

dJT(z, ω)

dzij

]

. 	


5 Numerical experiments

In this section, we report some of our numerical experiments used for testing the
empirical performance of the ongoing methodology. First, we compared the ana-
lytical results of some production control problems found in literature with our re-
sults. Then, we solved five different examples with dimensions up to ten machine
and four demand states. In Example 1, we also compared sample-path optimization
(SPO) with a variant of stochastic approximation (SA), called single-run optimiza-
tion (SRO) (see Meketon 1987), since SRO variant of SA is reported to perform
better than classical SA for some problems in the literature; see for example Leung
(1990). In all numerical experiments, we used the exponential distribution for state
transition times. Essentially any continuous distribution whose support is on (0,∞)

can be used; the choice of the exponential distribution is mainly made for comparison
and convenience.

In order to simulate a general model with K machine and M demand states, we
use our pseudo code written in C which calculates the gradients and the value of the
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objective function and constraints in a single simulation run. We convey these values
to the optimizer which determines an “optimal” point. As the optimizer, we use the
deterministic nonlinear optimization code E04UCC of NAG C library, Mark 7, NAG
(2002). E04UCC is designed to minimize an arbitrary smooth function subject to
constraints, which may include simple bounds on the variables, linear constraints,
and smooth nonlinear constraints. Essentially, it is a sequential quadratic program-
ming method incorporating an augmented Lagrangian merit function and a BFGS
quasi-Newton approximation to the Hessian of the Lagrangian. The code iteratively
determines the total number of simulation runs N required to find an approximate
minimizer; this is controlled by the “Optimality Tolerance (OptTol).” The parameter
OptTol specifies the accuracy to which the user wishes the final iterate to approx-
imate a solution of the problem. Broadly speaking, OptTol indicates the number
of correct figures desired in the objective function at the solution. For example, if
OptTol is 10−6, the final value of the objective function would have approximately
six correct figures. When there are only linear constraints, E04UCC considers a point
“optimal” if the current step length, the norm of the search direction, and the norm
of the projected gradient become sufficiently small. In the presence of nonlinear
constraints, to be considered “optimal,” the point should also satisfy an additional
stopping criteria; namely, the violation of all active constraints should also become
sufficiently small, see NAG (2002) for additional details. It is worth noting that in the
absence of convexity of the functions involved, a nonlinear optimization program like
E04UCC (rather than a specialized global optimization code) can only guarantee to
find a local optimum which may or may not be a global optimum.

As mentioned earlier, to verify the correctness and accuracy of our numerical
procedures, we first compared our results with other results we could find in the lit-
erature. These include analytical results reported in Bielecki and Kumar (1988) and
Gershwin (1994), and analytical/numerical results reported in Haurie et al. (1994)
(their single-part model), Yan et al. (1994) (their single-stage model), and
Liberopoulos and Caramanis (1994) (their single-part model). Aside from the sys-
tem of Liberopoulos and Caramanis (1994) which had two hedging points, all the
others were systems with a single hedging point. In all cases, we observed that our
results converged to the correct optimal solutions with relatively small computational
effort.

Additional test cases are provided by Liberopoulos and Hu (1995). They analyt-
ically established the relative ordering of optimal hedging points of more than two
machine states in four specific Markov chain systems. In our experiments, we used
their Systems 1, 2, and 3 with different numbers of machine states and parameter val-
ues. Optimal hedging points that we found had always the same ordering properties
established by Liberopoulos and Hu (1995).

All the runs reported here are performed by a Dell PC with Dual-Intel Xeon,
2.66 GHz processors, and 2 GB 266 MHz DDR Non-ECC SDRAM Memory using
Windows 2000.

5.1 Optimization of unconstrained production control problems

In this part, we report the results of three numerical experiments. An additional test
for the quality of the solutions we compute in these experiments is provided through
a well-known result: the probability that the system is in backlog state (P(X(t)<0))
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Table 2 Specifications of 4-machine state system with constant demand rate for Example 1

Machine states 1 2 3 4 d c+ c− c+/(c+ + c−)

Maximum production rate 0 4 80 40 9.533 1 10 0.090910

at an optimal solution should be equal to the proportion c+/(c+ + c−). In our com-
putations, we approximate the probability that the system is in backlog state by
computing the long run proportion of time that the system is in backlog state which
we denote by Pblog(z).

Example 1 The first experiment is with four machine states and a constant demand
rate. Table 2 contains the data of this problem and the corresponding transition
matrix of the four machine states is in Fig. 1.

In this example, we have two non-deficient machine states, namely 3 and 4. We
used T = 500, 000 simulation time per simulation call which corresponded to around
5, 000, 000 machine events in order to get a good estimate of the limit function.
We set OptTol to 10−6 and solved the problem from five different initial points
A, B, C, D, and E; we observed convergence to the same final point z∗

T . As we
do not know the analytical solution, we found the “optimal” solution z∗∞ and the
function values J∞(z) by using SPO with a very large computational effort; using
a simulation time of 5, 000, 000 per simulation call which corresponded to around
50,000,000 machine events. The results are summarized in Table 3. Recall that N
is the number of simulation runs determined by E04UCC to find an approximate
minimizer.

As mentioned earlier, for comparison, we also solved this example by using SRO
algorithm of the form: zn+1 = 
�(zn − a0

n gn), where zn is the hedging point vector at
the nth iteration, gn is the gradient estimate at zn, a0 is the predetermined step size
constant, and 
�(·) is the projection onto the feasible set � determined by the simple
bound constraints. It is well-known that it is possible for an SRO algorithm to diverge
if one does not impose explicit bounds on the variables to ensure the boundedness of
the iterates. We used a lower bound with each element equal to zero and an upper
bound with each element equal to 1,000.

We tried to observe the behavior of SRO iterates under the same computational
budget used by SPO. In our implementation of SRO, for each initial point, we used
T = 100, 000 simulation time per simulation call which corresponded to around
1, 000, 000 machine events and we made 5N iterations (i.e. simulation runs), each
run corresponding to one iteration of the algorithm. We chose to have a runlength
of approximately 1, 000, 000 machine events per iteration since Liberopoulos and
Caramanis (1994) used this value in their numerical experiments with the stochastic
approximation method. Since the simulation time T used in each iteration of SRO is
one fifth of the simulation time T used in each iteration of SPO, we made 5N itera-
tions for SRO so that we could compare both methods under the same computational

Fig. 1 Transition rate matrix
of machine states for
Example 1

–4
0 –8 8

14 0
0

4 0 0

 –15 1
0 9 –101
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Table 3 Optimal solution and the run-time information for Example 1

Machine states 3 4 JT (z) Pblog(z) J∞(z)

Initial point A 5.00 5.00 8.398 0.176439 8.376
Initial point B 20.00 20.00 17.360 0.001518 17.359
Initial point C 5.00 20.00 11.177 0.063795 11.163
Initial point D 20.00 5.00 12.764 0.021478 12.742
Initial point E 1.00 2.00 18.794 0.576287 18.769
Final point(z∗

T ) 7.44 5.27 7.382 0.090910 7.357
“Optimum” point(z∗∞) 7.45 5.25 7.382 0.090910 7.357

Initial point N Total CPU time

A 14 1 min 27 s
B 14 1 min 27 s
C 11 1 min 06 s
D 11 1 min 06 s
E 13 1 min 21 s

budget. Table 4 contains the results of the SRO algorithm with different a0 values;

the relative error is calculated as
∣
∣
∣

J∞(z)−J∞(z∗∞)

J∞(z∗∞)

∣
∣
∣ .

As mentioned earlier, it is well-known that one of the main drawbacks of SA-type
algorithms (including SRO variant) is the sensitivity of their empirical performance
to the choice of a0; documented, for example, in Fu and Healy (1992), L’Ecuyer et al.
(1994), Glasserman and Tayur (1995), and Gürkan (2000). Our own experiments also
confirmed this sensitivity issue even in this small example and we spent considerable
effort for finding reasonable values of a0 which also depend on the initial point. For
example, as seen in Table 4, from initial points A, B, C, and D the iterates converge
to the optimal solution with a0 equal to 20; whereas from initial point E, among the
ones we tried, the only good value of a0 is 1.8.

Experimenting with several a0’s was feasible in this example since this was a small
problem (with a relative short run time, no constraints, and two decision variables)
and we knew where the “optimal” solution was. Since SRO is a first-order gradient
method, one would expect to experience the same difficulties more severely in larger
examples. Therefore we decided not to compare SRO with SPO in larger uncon-
strained examples of Section 5.1. For the constrained examples of Section 5.3, since
we are not aware of any literature addressing how an SA-type method can handle
those, we did not perform comparisons there either.

Example 2 We modified the system in Example 1 by adding four demand states with
a transition rate matrix as in Fig. 2. The corresponding demand rates are given in
Table 5.

In this example, we have eight non-deficient states and it can be seen that the
system copes with a random demand which has an average value equal to the con-
stant demand of Example 1; that is 9.533. We used T = 1, 000, 000 simulation time
per simulation call which corresponded to around 12, 000, 000 events in order to get a
good estimate of the limit function. We again set OptTol to 10−6, solved the problem
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Fig. 2 Transition rate matrix
of demand states for
Example 2
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from different initial points, and observed convergence to the same point. Table 6
contains the summary of the results.

The differences in results of Examples 1 and 2 clearly illustrate that we cannot
ignore the stochastic behavior of demand; that is, the variability of demand has an
important effect on hedging points. Therefore considering only the average demand
without paying attention to the variability of demand leads to incorrect decisions.

Example 3 The third experiment is on a system with ten machine and four demand
states. Table 7 contains the data of the problem and the transition rate matrix of
machine and demand states are shown in Fig. 3. This system has twenty two non-
deficient states. We used T = 3, 000, 000 simulation time per simulation call which
corresponded to around 25, 000, 000 events.

Here, different from Examples 1 and 2, when we started from different initial
points, we observed finding different “optimal” solutions. To make sure that these
differences were not caused by insufficient accuracy, we increased OptTol to 10−7,
but still observed the same behaviour as reported in Table 8; different initial points
are indicated as A, B, and C and different final solutions reached are indicated as
z∗

A, z∗
B, and z∗

C, respectively. In general, there could be two major sources for the
multiplicity of solutions. First, when an objective function is rather flat near an op-
timum point (as observed in this example and discussed in Section 5.2.5), there may
be several points that can be declared as “optimum” for all practical purposes; a sit-
uation termed as “multiple optima.” Clearly, all the relevant performance measures
would take equal (or very close) values at all of these optimum points. Second, in
the absence of (strict) convexity, a function can have several local optima, which
may have similar or different performances. We also discuss the non-convex nature
of this objective function in more detail in Section 5.2.6. It is worth observing that
different solution points in Table 8 have very similar performances.

Furthermore, it can also be seen from Table 8 that some hedging points are close
to each other and form clusters. We also discuss this clustering effect in more detail
in Section 5.2.7.

5.2 Observations and conjectures from numerical experiments
from unconstrained systems

Throughout the numerical experiments, we have done lots of simulation runs and
observed some behavior that we found interesting during these runs. Below, we
report some of these as observations and conjectures.

Table 5 Demand rates for
Example 2 Demand states 1 2 3 4

Rate 5 8 15 20
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Table 6 Optimal solution and the run-time information for Example 2

Machine states 3 3 3 3 4 4 4 4 JT (z) Pblog(z)

Demand states 1 2 3 4 1 2 3 4

Initial point A 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 28.766 0.261616
Initial point B 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 24.390 0.036370
z∗

T 6.72 9.67 24.16 24.78 3.96 7.90 21.23 22.15 17.030 0.090910

Initial point N Total CPU time

A 16 7 min 07 s
B 32 13 min 44 s

5.2.1 Effect of load

As mentioned earlier, Liberopoulos and Hu (1995) study ordering properties of op-
timal hedging points for some special systems. Among those, we used their Systems 1
and 2 with two and three non-deficient and one deficient states to test our simulation
runs. After several runs with different parameter settings (with two non-deficient
and one deficient states of both System 1 and System 2), we observed that when
the load of the system is increased (by either increasing the demand or decreasing
the maximum production rates), the proportion of the difference between optimal
hedging points to the values of the optimal hedging points themselves decreases. That
is, the difference between the optimal hedging points stays constant but because of
the increased load, the optimal hedging points increase and the difference between
them become negligible compared to their values.

For example, we had an experiment with their System 1 in which there are two
hedging points and as the load, ρ, is increased they become close to each other.
The transition rate diagram of machine states are given in Fig. 4 and the parameter
settings of the system are given in Table 9.

The optimal hedging points of this system are: z∗
1 = 11.5 and z∗

2 = 8.40 when the
demand rate d is 5 and the corresponding load ρ is 0.44 . When we increase the load
by increasing the demand, we obtain the results summarized in Table 10. This leads
to the following conjecture:

As the load increases to one, the difference between the optimal hedging points
become negligible compared to their values. In other words, the optimal hedging
points appear to get close to each other as the load of the system increases.

Table 7 Specifications of 10-machine and 4-demand state system for Example 3

Machine states 1 2 3 4 5 6 7 8 9 10
Maximum production rate 0.4 0 0.8 8 5 1.2 10 6 3 15

Demand states 1 2 3 4 c+ c− c+/(c+ + c−)

Rate 1.3 1.8 3.2 4.0 1 10 0.090910
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Fig. 3 Transition rate
diagrams of machine and
demand states for Example 3
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5.2.2 Irrelevant hedging point

Simulation runs of System 2 of Liberopoulos and Hu (1995) with two non-deficient
and one deficient states show that when one of the non-deficient states, say State 1,
has a very small long run average maximum production rate compared to the demand
rate (i.e. r1 > d but r1π1 � d), the hedging point of State 1 becomes “irrelevant”;
that is, the value it takes does not really matter. The optimal hedging point of non-
deficient State 2 determines the optimal hedging point of the system. A similar result
is obtained with systems having three non-deficient and one deficient states, where
r1π1 � d, r2π2 + r3π3 > d, r2π2 < d, and r3π3 < d hold but it is not the case that
r2π2 � d or r3π3 � d. In this case, z1 becomes irrelevant and z2 and z3 determine
the optimal hedging points of the system. This leads to the following conjecture:

Assume that there is a non-deficient state i which has a very small average maxi-
mum production rate compared to the demand rate in the long run, that is ri > d but
riπi � d, but this is not the case for the other non-deficient states in the long run, that
is r jπ j � d does not hold for ∀ j, j �= i. For such a system, the optimal hedging point
of state i is irrelevant and the optimal hedging points of the system are determined
by the optimal hedging points of states j.

5.2.3 Effect of transition diagram and transition probabilities

The more the machine states communicate with each other and the more the state
transition probabilities are close to uniform distribution, the more the optimal hedg-
ing points get close to each other. In the simulation runs up to systems with 10–15
non-deficient states, we observed that when the machine states form a closed set in
which all states communicate with each other with a uniform transition distribution,
all of the optimal hedging points are very close to each other. As the transition
probabilities between the machine states become less uniform, the optimal hedging
points move away from each other.
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Table 8 Optimal solution and the run-time information for Example 3

Machine Demand Initial Initial Initial z∗
A z∗

B z∗
C

states states point A point B point C

4 1 5.00 10.00 20.00 19.97 18.30 18.42
4 2 5.00 10.00 20.00 21.68 21.74 22.47
4 3 5.00 10.00 20.00 34.88 29.74 29.72
4 4 5.00 10.00 20.00 29.47 30.03 28.46
5 1 5.00 10.00 20.00 20.10 21.52 21.11
5 2 5.00 10.00 20.00 20.98 22.30 21.95
5 3 5.00 10.00 20.00 29.55 28.89 28.63
5 4 5.00 10.00 20.00 28.82 31.25 33.81
7 1 5.00 10.00 20.00 7.54 7.29 7.33
7 2 5.00 10.00 20.00 9.04 9.00 9.07
7 3 5.00 10.00 20.00 27.65 22.87 21.65
7 4 5.00 10.00 20.00 23.11 21.48 21.38
8 1 5.00 10.00 20.00 7.40 7.35 7.41
8 2 5.00 10.00 20.00 9.49 9.44 10.29
8 3 5.00 10.00 20.00 19.96 21.23 20.45
8 4 5.00 10.00 20.00 23.59 21.42 20.34
9 1 5.00 10.00 20.00 8.31 8.30 8.36
9 2 5.00 10.00 20.00 10.99 12.22 11.45
10 1 5.00 10.00 20.00 13.91 13.70 13.91
10 2 5.00 10.00 20.00 16.03 14.69 13.97
10 3 5.00 10.00 20.00 28.44 28.30 28.17
10 4 5.00 10.00 20.00 27.44 28.42 26.50
JT (z) 28.634 25.116 25.687 22.087 22.085 22.087
Pblog(z) 0.193072 0.123462 0.057995 0.090841 0.090899 0.090921

Initial point N Total CPU time

A 105 2 h 22 min 49 s
B 58 1 h 18 min 47 s
C 55 1 h 15 min 53 s

5.2.4 Effect of demand and production variability

In the simulation runs of Example 3, we have observed that as the production and
demand variability increase, the optimal hedging points also increase to hold enough
safety stock against the uncertainty in production and demand rates. When the vari-
ability in production is not very high, the hedging points get more separated from
each other as the demand variability increases. When production variability is high,
the hedging points are first separated from each other and then get closer to each

Fig. 4 Transition rate matrix
of machine states for example
of Section 5.2.1

–2

–22

2
14
0

0
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Table 9 Specifications of
example in Section 5.2.1 Machine states 1 2 3 c+ c− c+/(c+ + c−)

Maximum production rate 20 40 0 0.1 1 0.090910

other as the demand variability increases. These observations confirm a similar
comment made by Tan (2001) for a small system with two machine and two demand
states.

5.2.5 Flatness of the objective function and effect of c+/c− on flatness

From the simulation runs of Example 3, we have also observed that as the ratio c+/c−
gets smaller, that is the system has very low holding cost compared to its shortage
cost, the objective function value does not change much with considerable increases
in hedging points. This is very intuitive since the holding cost is very low, a large
increase in the hedging level is reflected to the cost function with a relatively very
small effect. Moreover, for a given ratio of c+/c−, the objective function is flatter
near the optimum points and its flatness increases as the number of hedging points
increases.

5.2.6 Non-convexity of the objective function

As also mentioned in Brémaud et al. (1997) the objective function (3.1) is generally
not convex in systems with two or more non-deficient machine states. Figure 5a shows
the non-convex average cost function with respect to hedging points of machine
states 3 and 4 of Example 1; whereas Fig. 5b depicts its level sets. Despite this non-
convexity, we reached to the same final solution for Examples 1 and 2 when we
started from several different initial points. In comparison, in Example 3 when we
started from different initial points, we reached to different final points which is not
unexpected when dealing with non-convex functions. As mentioned earlier, in the
absence of convexity, a nonlinear optimization program like E04UCC (rather than
a specialized global optimization code) can only guarantee to find a local optimum
which may or may not be a global optimum. In addition, we should point out that
we did not encounter any numerical difficulties in finding the local optimal solutions
even in large systems despite the non-convex nature of the objective function. We
also note that at different local optimal solutions, the objective function values are
very close to each other suggesting also multiple optima.

Table 10 Effect of load for
example in Section 5.2.1 d ρ z∗

1 z∗
2 z∗

1 − z∗
2

z∗
1−z∗

2
z∗

1

5 0.44 11.50 8.40 3.10 0.27
6 0.52 17.57 14.30 3.27 0.19
7 0.61 26.92 23.37 3.55 0.13
8 0.70 41.96 38.24 3.72 0.09
9 0.79 69.13 66.05 3.08 0.04
10 0.87 136.15 132.05 4.10 0.03
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Fig. 5 Cost function of Example 1 with respect to hedging points of machine states 3 and 4

5.2.7 Clustering effect on hedging points

It can be observed from the optimal solutions of Examples 2 and 3 (Tables 6 and
8) that the optimal hedging points of some system states are very close to each
other and form clusters. We have observed this behavior in several systems that we
experimented with. Unfortunately, how to correctly predict which hedging points
will form clusters is not obvious from the problem data in general. It mostly depends
on the topology of the transition diagrams and the transition rates of machine and
demand states.

5.3 Optimization of constrained production control problems

In this part, we report the results of two more numerical experiments. We modified
our unconstrained minimization problem (3.1) to minimization of the probabilisti-
cally constrained problem (5.11) as given below:

min
z≥0

lim
T→∞

1

T

∫ T

0
c+ X+(t)dt

s.t Pblog(z) ≤ δ. (5.11)
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How to modify Eqs. 4.6 and 4.7 to account for the change of objective function is
almost trivial and omitted. As mentioned earlier, the constraint function Pblog(z) is
the long run proportion of time that the system is in backlog state and it is desirable
to keep it below a pre-specified constant δ. As T gets large, the long run proportion
of time that the system is in backlog state can be computed as Pblog(z) = B(T)/T,
where B(T) is the cumulative time the system spends in backlog during T. Similar to
the recursive expressions (4.6) and (4.7) respectively for C(tn+1) and dC(tn+1)/dzij, it
is possible to write recursive expressions for B(tn+1) and dB(tn+1)/dzij as follows:

B(tn+1) = B(tn) + I{X(tn)<0} I{X(tn+1)<0}τn+1

+I{X(tn)≥0} I{X(tn+1)<0}
X(tn+1)

u(tn)
+ I{X(tn+1)≥0} I{X(tn)<0}

−X(tn)
u(tn)

and

dB(tn+1)

dzij
= dB(tn)

dzij
+ I{X(tn)<0} I{X(tn+1)<0}

dτn+1

dzij

+ 1

u(tn)

{

I{X(tn)≥0} I{X(tn+1)<0}
dX(tn+1)

dzij
− I{X(tn+1)≥0} I{X(tn)<0}

dX(tn)
dzij

}

.

How these can be incorporated to the IPA algorithm in Appendix 4 is trivial and
omitted.

Figure 6a shows the Pblog(z) function of the system of Example 1 which is again
non-convex, as one can clearly see from its level sets in Fig. 6b. Therefore, it is
possible that when we start from different initial points, we may find different local
optimal solutions which will indeed be the case for Examples 2′ and 3′ as explained
below. Actually, we will explain that in Example 2′, this multiplicity is actually caused
by multiple optima. Unfortunately, as in Example 3′, without additional testing, it is
not generally possible to know the source of such multiplicity; i.e. whether it is due
to several local isolated optima or multiple optima or both. Again, we also should
note that despite the non-convexity of Pblog(z), we did not encounter any numerical
difficulties in our experiments in solving even larger problems.

Upon observing how flat both the objective function and the constraint around the
solution points, we used 10−5 as OptTol in Examples 2′ and 3′ below. In the presence
of nonlinear constraints, one needs to specify an additional parameter, ConsTol,
which is a measure of largest constraint violation that is acceptable at an optimal
point; we set ConsTol to 10−6.

Example 2′ Here, we solved the probabilistically constrained problem for the sys-
tem of Example 2 (of Section 5.1) with δ = 0.05. In Table 11, it can be seen that when
we start from different initial points (A and B), we find different optimal solutions
(z∗

A and z∗
B, respectively). In Table 11, the more significant differences between the

optimum hedging levels appears to be in z∗
34 and z∗

44. In order to understand better
the behavior of the objective function and the constraint, we draw both functions
with respect to z34 and z44 by keeping the other hedging points at their optimal
levels reached from the initial point B; see Figs. 7a and b. The contour lines of
these functions illustrated in Fig. 7c show that the lowest contour line of the cost
function lying below Pblog(z) = 0.05 is at 13.253 and it overlaps with the contour line
of Pblog(z) = 0.05 at a range of hedging points. In this range, while z44 is anywhere
above 27, z34 can vary between 30 and 32 and from the performance side, all these
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Fig. 6 Pblog(z) of Example 1 with respect to the hedging points of machine states 3 and 4

points are equally good. We marked this range using a bold box in Fig. 7c. Indeed,
both optimal solutions reported in Table 11 are located in that box, illustrating a case
of multiple optima.

Example 3′: We also solved the probabilistically constrained problem for the system
of Example 3 (of Section 5.1) with δ = 0.05. The results are shown in Table 12.

Table 11 Optimal solution and the run-time information for Example 2′

Machine states 3 3 3 3 4 4 4 4 JT (z) Pblog(z)

Demand states 1 2 3 4 1 2 3 4

Initial point A 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 2.812 0.261616
Initial point B 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 20.596 0.036370
z∗

A 12.22 15.54 30.43 30.95 9.37 13.50 27.05 41.13 13.259 0.050000
z∗

B 12.22 15.62 30.30 31.41 9.41 13.53 27.29 28.03 13.253 0.050000

Initial point N Total CPU time

A 46 19 min 43 s
B 30 12 min 59 s
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Fig. 7 Average cost and Pblog(z) of Example 2′ with respect to z34 and z44
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Table 12 Optimal solution and the run-time information for Example 3′

Machine Demand Initial Initial Initial z∗
A z∗

B z∗
C

states states point A point B point C

4 1 5.00 10.00 20.00 57.92 25.71 26.88
4 2 5.00 10.00 20.00 26.43 28.56 24.82
4 3 5.00 10.00 20.00 64.33 49.75 40.39
4 4 5.00 10.00 20.00 82.52 52.16 37.49
5 1 5.00 10.00 20.00 25.85 28.26 28.12
5 2 5.00 10.00 20.00 26.65 34.22 28.56
5 3 5.00 10.00 20.00 69.72 48.23 39.02
5 4 5.00 10.00 20.00 75.45 52.24 38.01
7 1 5.00 10.00 20.00 14.32 15.22 14.97
7 2 5.00 10.00 20.00 16.97 16.78 16.59
7 3 5.00 10.00 20.00 45.99 42.67 30.05
7 4 5.00 10.00 20.00 40.13 39.54 32.70
8 1 5.00 10.00 20.00 15.25 14.64 14.48
8 2 5.00 10.00 20.00 17.38 17.98 17.44
8 3 5.00 10.00 20.00 42.78 29.03 29.57
8 4 5.00 10.00 20.00 58.12 39.23 29.48
9 1 5.00 10.00 20.00 15.25 15.69 15.61
9 2 5.00 10.00 20.00 17.56 16.31 20.75
10 1 5.00 10.00 20.00 21.78 22.56 21.32
10 2 5.00 10.00 20.00 21.99 14.53 23.02
10 3 5.00 10.00 20.00 65.56 45.69 37.79
10 4 5.00 10.00 20.00 75.00 42.19 35.19
JT (z) 3.590 7.816 16.958 16.655 16.615 16.586
Pblog(z) 0.193072 0.123462 0.057995 0.050000 0.050000 0.050000

Initial point N Total CPU time

A 79 1 h 45 min 18 s
B 50 1 h 07 min 14 s
C 87 1 h 56 min 38 s

Similar to Example 2′, when we start from different initial points, we find different
optimal solutions with very similar performances. In the absence of other constraints
and/or other selection criteria, one can choose any one of these local optimal solu-
tions since all perform equally well.

6 Conclusions

We investigated the problem of finding optimal hedging points in a stochastic fluid
model of a production/inventory system by simulation-based optimization. The model
is fairly general in terms of the number of machine and demand states and state
transitions. On the modelling and simulation side, a GSMP representation provided
a general and transparent description for the evolution of the system and was crucial
for obtaining sample-path derivatives. On the optimization side, an implementation
of sample-path optimization enabled us to optimize systems with more than twenty
hedging points and probabilistic constraints.
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The empirical performance of sample-path optimization in our numerical exam-
ples is very satisfactory. For small problems, the optimal solution always coincides
with previously reported solutions. For large problems, although there are no re-
ported benchmark solutions, the solutions obtained always pass a number of consis-
tency checks. This is very promising for other potential applications of this approach
and we consider it another encouraging sign that sample-path optimization will con-
tribute to the solution of difficult problems with several variables and/or constraints.

The hedging point policy in the context of manufacturing flow control is an exam-
ple of a general class of policies for stochastic fluid systems where the optimal control
(i.e. controllable flow rate) for each state of the external stochastic process depends
on a single threshold parameter expressed as the quantity of fluid in some buffer
(inventory or queue). The flow rate is then adjusted depending on this threshold.
A number of other interesting and important problems, other than manufacturing
flow control, fall into this framework. In production/marketing problems involving
dynamic pricing, the optimal price may vary as a function of thresholds (i.e. decrease
price if inventory is higher than a threshold). In subcontracting/manufacturing prob-
lems, when to subcontract depends on the current inventory (or order queue) level
(i.e. use subcontractor when the number of waiting orders exceeds a threshold).
Similarly, in several admission control or routing problems in telecommunications,
there is typically a threshold type policy structure (i.e. admit new arrivals of a given
class if the buffer is lower than a threshold, reject otherwise). Our general approach
should be applicable to such problems with certain modifications.

In addition, there are other important classes of stochastic optimization problems
that are not typically modelled by stochastic fluid models but that involve the opti-
mization of a finite number of threshold parameters in terms of certain buffer quan-
tities. In revenue management which fare classes to open are typically determined
by (possibly time-dependent) thresholds on the number of seats/resources available.
Even though these problems may require different approaches for simulation and
derivative estimation, the performance of sample-path optimization in our numerical
results indicate that it is a promising approach for the optimization side of such
problems.

Acknowledgement We thank Bariş Tan for fruitful discussions and useful comments on this
problem.

Appendix 1: Proof of stability condition (3.2)

Recall that the state of the system at time t is (α(t), β(t)) where α(t) is the state of the
machine (α(t) = 1, 2, . . . , K) and β(t) is the state of the demand (β(t) = 1, 2, . . . , M),
and the number of possible states of the system is KM, counting all combinations
of (α(t), β(t)). Tan (2002b) shows how a system with two machine states and two
demand states can be represented by an equivalent system with four machine states
coping with a constant demand rate. Below we generalize this basic idea for a system
with KM states.

Consider a system state k = (i, j ) where α(t) = i, β(t) = j. Let r̃k = ri + ∑M
i=1 di −

d j be the maximum production rate and pk = ∑M
i=1 di − d j be the minimum produc-

tion rate associated with state k. Let d̃ = ∑M
i=1 di be the constant demand rate in
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the equivalent representation. Then we can label state k as deficient if r̃k < d̃, non-
deficient if r̃k > d̃, and zero if r̃k = d̃. This way state k = (i, j ) gets the same label in
both representations:

(1) Deficient: if r̃k < d̃ then ri + ∑M
i=1 di − d j <

∑M
i=1 di and ri < d j,

(2) Non-deficient: if r̃k > d̃ then ri + ∑M
i=1 di − d j >

∑M
i=1 di and ri > d j,

(3) Zero: if r̃k = d̃ then ri + ∑M
i=1 di − d j = ∑M

i=1 di and ri = d j.

Let ṽ(t) denote the actual production rate and ũ(t) = ṽ(t) − d̃ denote the fill-in
rate at time t in the equivalent representation; fill-in rate specifies the total rate of
change in the inventory level process at time t. The control ṽ(t) is again completely
determined by the specifications of zk’s for non-deficient and zero states as:

ṽ(t) =
⎧
⎨

⎩

r̃k if X(t) < zk

d̃ if X(t) = zk

pk if X(t) > zk

and for deficient states ṽ(t) = r̃k regardless of the inventory position.
Then for non-deficient and zero states ũ(t) becomes:

ũ(t) =

⎧
⎪⎨

⎪⎩

r̃k − d̃ = ri − d j if X(t) < zk

d̃ − d̃ = 0 if X(t) = zk

pk − d̃ = −d j if X(t) > zk

and for deficient states ũ(t) = r̃k − d̃ = ri − d j < 0 which again coincide with the fill-
in rate, u(t) = v(t) − dβ(t), of the original system representation.

Now, let φk (k = 1, 2, .., KM) denote the stationary probability of being in system
state k = (i, j ). Brémaud et al. (1997) show that a sufficient condition for stability of
a system with KM machine states and a constant demand rate d̃ is given by:

KM∑

k=1

φkr̃k > d̃. (7.12)

The left side of Eq. 7.12 is E[r̃], the expected maximum production rate of the
system. r̃k is a random variable satisfying r̃k = ri + d̃ − d j. Hence, E[r̃] = E[r] + d̃ −
E[d] with E[r] being the expected maximum production rate of the machine and E[d]
being the expected demand. If we let πi (i = 1, 2, . . . , K) to denote the stationary
probability of being in machine state i and q j ( j = 1, 2, . . . , M) denote the stationary
probability distribution of being in demand state j, then we can calculate E[r] and
E[d] as follows: E[r] = ∑K

i=1 πiri and E[d] = ∑M
j=1 qjdj. After plugging these in the

stability equation (7.12) and simplifying, we get:

K∑

i=1

πiri >

M∑

j=1

qjdj.

Appendix 2: Similarity properties

The sample path (obtained by fixing ω ∈ �) of the underlying stochastic process
operated at the base hedging vector z is called the nominal path. The sample path
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(with the same ω) of the same process operated at a perturbed hedging vector z +
�zij is called the perturbed path. Whenever we would like to indicate the value of
a quantity in the perturbed path, we will put a superscript p to the corresponding
quantity in the nominal path. For example, tp

n denotes the occurrence time of nth
event and X p(t) denotes the inventory level at time t, in the perturbed path.

Definition 1 A nominal path and a perturbed path are said to be similar in [0, tk] if
and only if the order of events is the same for both paths; that is, the order of events
in [0, tk] (in the nominal path) is the same as the order of events in [0, tp

k ] (in the
perturbed path).

As mentioned in Section 4, “similarity” of the nominal path and the perturbed
path is a standard issue one needs to deal with when developing IPA algorithms and
we address it in detail in this appendix. In particular, we show that along any sample
path of finite length, say k events, with min {τn|n = 1, 2, . . . , k} > 0, there is always
a �zij > 0 (or �zij < 0 whose size depends on the sample path) small enough such
that increasing (or decreasing, respectively) z by �zij does not cause any event order
change; that is, the perturbed path and the nominal path remain similar.

To this end, notice that, under our “hit and stick” assumption, if tn corresponds
to the event UH or DH, the length of time that X(t) spends at zij (as a consequence
of the nth event), τn+1 satisfies: τn+1 ≥ ε > 0. In addition to“hit and stick”, in the
arguments below, without loss of generality we assume that either T (total simulation
time) or the initial conditions are chosen in a way that ensures the end of simulation
event T f does not coincide with any other event.

Lemma 9 Assume that the nominal and the perturbed paths (with an initial pertur-
bation of �zij) are similar in [0, tk]. Then for all n (n = 1, 2, ..k), the machine and
demand states in the nominal path at the nth event time are equal to the machine and
demand states in the perturbed path at the corresponding event time. That is α(tn) =
α p(tp

n ) and β(tn) = β p(tp
n ) for all n (n = 1, 2, ..k). Furthermore, if e∗(tn) ∈ {MF ,DG},

then tn+1 = tp
n+1 and e∗(tp

n ) = MF (if e∗(tn) = MF) or e∗(tp
n ) = DG (if e∗(tn) = DG)

for all n (n = 1, 2, ..k).

Proof The proof is by induction on the event instances tn and is omitted. 	


Lemma 10 Assume that the nominal and the perturbed paths (with an initial pertur-
bation of �zij) are similar in [0, tk]. Then X p(t) − X(t) ≤ �zij, ∀t ∈ [0, tk]. Further-
more, at all event times tn (n = 1, 2, .., k), we have X p(tp

n ) − X(tn) = �zij or X p(tp
n ) −

X(tn) = 0.

Proof We will only prove the second part of the lemma (the first part is an easy
consequence) and will argue through induction. We start the induction at time t0 =
0 with α(0) = i, β(0) = j, and X(0) = X p(0) = x0. Without loss of generality, we
assume that ij is a non-deficient system state. (Because in that case all possible events
{MF ,UH,DH,DG,T f } may occur; whereas in zero or deficient states, only a subset
of these events can take place.)

If e∗(t0) ∈ {MF ,DG,T f }, then t1 = tp
1 = τ1 = τ

p
1 and X(t1) = X p(tp

1 ). If e∗(t0) =
UH, we should have X(0) = X p(0) = x0 < zij and u(t1) = ri − d j. With an initial
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perturbation of �zij, we get tp
1 = t1 + �zij/(ri − d j ) and X p(tp

1 ) = X(t1) + �zij. Simi-
larly, if e∗(t0) = DH, we should have X(0) = X p(0) = x0 > zij and u(t1) = −d j. With
�zij as initial perturbation, we get tp

1 = t1 − �zij/d j and X p(tp
1 ) = X(t1) + �zij.

Now assume that, the stated property holds until (and including) the event transi-
tion times tn and tp

n . Let α(tn) = k and β(tn) = m. By Lemma 9, we have α p(tp
n ) = k

and β p(tp
n ) = m. Next observe that we only need to consider the case where k = i and

m = j, because the others will leave everything unchanged.
We first consider the case X(tn) = X p(tp

n ). If the last event at tn is MF or DG, that
is e∗(tn−1) ∈ {MF ,DG}, then by Lemma 9, we have tn = tp

n . Hence, the induction
step is the same as the beginning step. If e∗(tn−1) ∈ {UH,DH}, as we are in state
km with k = i and m = j, the corresponding inventory levels at tn and tp

n should be
X(tn) = zij and X p(tp

n ) = zij + �zij; this is a contradiction. Hence, we can conclude
that if X(tn) = X p(tp

n ), then e∗(tn−1) ∈ {MF ,DG} and the induction step will be the
same as the beginning step.

Next, we consider the case X p(tp
n ) = X(tn) + �zij. We again need to differentiate

two cases in which the last event can be either in {MF ,DG} or {UH,DH}.
If e∗(tn−1) ∈ {MF ,DG}, then by Lemma 9, we have tn = tp

n . Now we need to con-
sider the possible events at tn+1. If e∗(tn) ∈ {MF ,DG,T f }, then τn+1 = τ

p
n+1. Since the

system states are also the same, X p(tp
n ) and X(tn) will change equal amounts; that is

u(tn) = up(tp
n ). Using X(tn+1) = X(tn) + τn+1u(tn), we get X p(tp

n+1) = X(tn+1) + �zij.
If e∗(tn) ∈ {DH,UH}, as we are in state km with k = i and m = j, the corresponding
inventory levels at tn+1 and tp

n+1 should be X(tn+1) = zij and X p(tp
n+1) = zij + �zij;

hence the induction step holds.
If e∗(tn−1) ∈ {DH,UH}, then the next event could be MF ,DG, or T f ; i.e. e∗(tn) ∈

{MF ,DG,T f }. Since the system will stay at its hedging level until the next event,
and X p(tp

n ) and X(tn) will stay at the same levels with u(tn) = up(tp
n ) = 0. Therefore,

X p(tp
n+1) = X(tn+1) + �zij and the induction step again holds. 	


Remark 1 As a direct consequence of Lemma 10, we know that we can always select
�zij > 0 small enough such that if X(tn) ≥ 0 (or X(tn) < 0), then X p(tp

n ) ≥ 0 (or
X p(tp

n )<0 respectively). This ensures that when �zij >0, I{X(tn(z)≥0)} = I{X(tn(z+�zyij)≥0)}
and I{X(tn(z)<0)} = I{X(tn(z+�zyij)<0)} for any n.

Similarly as a consequence of Lemma 10, we can always select �zij < 0 small
enough such that if X(tn) > 0 (or X(tn) < 0), then X p(tp

n ) > 0 (or X p(tp
n ) < 0 respec-

tively). When X(tn) = 0, e∗(tn−1) has to be either DH or UH. In either case, we get
X p(tp

n ) = 0 as well. (To see e∗(tn−1) cannot be MF ,DG, or T f , realize that X(tn) = 0
means τn =|X(tn−1)un−1|. This in turn would mean |X(tn−1)un−1|=argmin {WM(tn−1),

W D(tn−1), T − tn−1} whose probability is zero since the probability of a continuous
random variable being equal to a specific value is always zero).

Theorem 3 ∃ ε0 > 0 such that if any threshold zij is perturbed less than ε0 (i.e., |�zij| <

ε0), then the nominal and the perturbed paths remain similar.

Proof Let �zij > 0 be the initial perturbation. We will argue inductively as follows.
Let X(t0) = X(0) = X p(0) and let the initial machine state α(0) = k and β(0) = m
where without loss of generality, km is assumed to be a non-deficient state. First
note that, if km �= ij then e∗(t0) = e∗(tp

0 ), t1 = tp
1 , and X(t1) = X p(tp

1 ) trivially. There-
fore, we consider the case where the perturbation is associated to the hedging point
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km = ij; that is zp
km = zkm + �zkm, with �zkm > 0. By Lemma 9, we know that

e∗(tp
0 ) = MF if e∗(t0) = MF or e∗(tp

0 ) = DG if e∗(t0) = DG; hence X(t1) = X p(tp
1 )

and t1 = tp
1 trivially. The only interesting case happens if e∗(t0) ∈ {UH,DH,T f }.

If e∗(t0)=UH, then this implies that X(t0) < zkm and t1 = τ1 = (zkm − X(0))/u(t0).
Now, the possible events in the perturbed path are {MF ,DG,UH, and Tf }.
If e∗(tp

0 ) = MF ,DG, or Tf , then tp
1 = τ

p
1 = WM(tp

0 ), W D(tp
0 ), or T, respectively. If

e∗(tp
0 ) = UH, then tp

1 = τ
p

1 = t1 + �zkm/u(t0) as illustrated in Fig. 8a. We need to
show that if we select �zkm small enough, an event other than UH does not occur
on the perturbed path; that is e∗(tp

0 ) = UH. This can be guaranteed if WM(tp
0 ) >

t1 + �zkm/u(t0), W D(tp
0 ) > t1 + �zkm/u(t0), and T > t1 + �zkm/u(t0). It is obvious

that we can always ensure these conditions by selecting �zkm such that �zkm <

min{u(t0)(WM(tp
0 ) − t1), u(t0)(W D(tp

0 ) − t1), u(t0)(T − t1)}.
If e∗(t0) = DH, then this implies that X(t0) > zkm and t1 = τ1 = (X(0) − zkm)/ −

u(t0). Since e∗(t0) = DH, we know that t1 = τ1 < min{WM(t0), W D(t0), T}. The possi-
ble events for the perturbed path this time are {MF ,DG,DH, and Tf } and e∗(tp

0 ) =
argmin {WM(tp

0 ), W D(tp
0 ), (X(0) − (zkm + �zkm))/ − u(t0), T}. Since WM(tp

0 ) = WM

(t0), WM(tp
0 ) = WM(t0), and (X(0) − (zkm + �zkm))/ − u(t0) < t1 from Fig. 8b, we get

e∗(tp
0 ) = DH.

If e∗(t0) = Tf then t1 = τ1 = T. We should consider two cases here: (a) In case
X(t0) < zkm, we know that t1 = T < min{WM(t0), W D(t0), (zkm − X(0))/u(t0)}. The
possible events for the perturbed path are {MF ,DG,UH, and Tf } and e∗(tp

0 ) =
argmin {WM(tp

0 ), W D(tp
0 ), ((zkm + �zkm) − X(0))/u(t0), T}. Since e∗(t0) = Tf , it is

easy to see that T < WM(tp
0 ) = WM(t0), T < WM(tp

0 ) = WM(t0), and T < ((zkm +
�zkm) − X(0))/u(t0); therefore we get e∗(tp

0 ) = Tf . (b) In case X(t0) > zkm, we know
that t1 = τ1 = T < min{WM(t0), W D(t0), (X(0) − zkm)/ − u(t0)}. The possible events
for the perturbed path are {MF ,DG,DH, and Tf } and e∗(tp

0 ) = argmin {WM(tp
0 ),

W D(tp
0 ), ((X(0) − (zkm + �zkm))/ − u(t0), T}. We need to show that if we select �zkm

small enough, an event other than Tf does not occur on the perturbed path; that is
e∗(tp

0 ) = Tf . This can be guaranteed if T < WM(tp
0 ), T < W D(tp

0 ), and T < ((X(0) −
(zkm + �zkm))/ − u(t0). We know that T < WM(tp

0 ) = WM(t0), T < WM(tp
0 ) =

WM(t0) since e∗(t0)=Tf . We can also ensure that T <((X(0) − (zkm + �zkm))/ − u(t0)

Fig. 8 Similarity of nominal and perturbed paths in [0, t1]
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holds by selecting �zkm small enough (0 < �zkm < (X(0) − zkm + u(t0)T)).
This proves the first step of the induction.

We now assume that the nominal path and the perturbed path are similar until
(and including) the event times tn and tp

n . Let α(tn) = k and β(tn) = m. By Lemma 9,
we have α p(tp

n ) = k and β p(tp
n ) = m. We have to show that the next events, on both

nominal and the perturbed paths are identical; that is e∗(tn) = e∗(tp
n ).

By the argument in Lemma 10, we know that the similarity of the paths until
the nth event implies that X p(tp

n ) = X(tn) or X p(tp
n ) = X(tn) + �zij. First assume

that, X p(tp
n ) = X(tn). If ij = km, then we know from the proof of Lemma 10 that

e∗(tn−1) = e∗(tp
n−1) ∈ {MF ,DG} which implies that tn = tp

n . Also if ij �= km and if
e∗(tn−1) = e∗(tp

n−1) ∈ {MF ,DG}, then tn = tp
n . In both cases, X p(tp

n ) = X(tn) and tn =
t p
n ; hence the rest of the argument is identical to the first step of the induction and the

next events are identical. We now focus on the case where ij �= km but e∗(tn−1) =
e∗(tp

n−1) ∈ {UH,DH}. This implies that e∗(tn) and e∗(tp
n ) can only be a machine or

demand state transition or end of simulation, on both nominal and perturbed paths;
hence e∗(tn) = e∗(tp

n ).
Next assume that, X p(tp

n ) = X(tn) + �zij. Here, we again need to consider two
cases ij = km and ij �= km separately.

In case ij �= km, e∗(tn−1) = e∗(tp
n−1) should be MF or DG (Because if e∗(tn−1) =

e∗(tp
n−1) ∈ {UH,DH} then X(tn) = X p(tp

n ) = zkm) and by Lemma 9 we have tp
n = tn.

By Lemma 9, we again know that e∗(tp
n ) = MF if e∗(tn) = MF or e∗(tp

n ) = DG if
e∗(tn) = DG. If e∗(tn) = UH (i.e. X(tn) < zkm), then τn+1 = (zkm − X(tn))/u(tn). The
possible events for the perturbed path are {MF ,DG,UH, and Tf } and we can al-
ways select �zij small enough such that X p(tp

n ) = X(tn) + �zij < zkm. Since e∗(tn) =
UH, we know that τn+1 < min{WM(tn), W D(tn), T − tn}. We also know that e∗(tp

n ) =
argmin {WM(tp

n ), W D(tp
n ), (zkm − X p(tp

n ))/u(tn), T − tp
n }. Since WM(tn) = WM(tp

n ),

W D(tn) = W D(tp
n ), T − tn = T − tp

n and (zkm − X p(tp
n ))/u(tn) < τn+1 as illustrated in

Fig. 9a, we get e∗(tp
n ) = UH. If e∗(tn) = DH (i.e. X(tn) > zkm), then τn+1 = (X(tn) −

zkm)/ − u(tn). The possible events for the perturbed path are {MF ,DG,DH, and
Tf } (UH is excluded since X p(tp

n ) > X(tn) > zkm). If e∗(tp
n ) = MF ,DG, or Tf , then

Fig. 9 Similarity of nominal and perturbed paths in [tn, tn+1]
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τ
p

n+1 = WM(tp
n ), W D(tp

n ), or T − tp
n , respectively. If e∗(tp

n ) = DH then τ
p

n+1 =(X p(tp
n ) −

zkm)/ − u(tn) which implies that τ
p

n+1 = τn+1 + �zij/ − u(tn) as illustrated in Fig. 9b.
We need to show that if we select �zij infinitesimally small enough, an event other
than DH does not occur on the perturbed path, that is e∗(tp

n ) = DH. This will be
ensured if WM(tp

n ) > τn+1 + �zij/ − u(tn), WM(tp
n ) > τn+1 + �zij/ − u(tn), and T −

t p
n > τn+1 + �zij/ − u(tn). It is obvious that we can always ensure these conditions by

selecting �zij such that �zij < min{−(WM(tp
n ) − τn+1)u(tn),−(W D(tp

n ) − τn+1)u(tn),−
(T − t p

n − τn+1)u(tn)}.
In case ij = km, we have X p(tp

n ) = X(tn) + �zkm. First consider the case where
e∗(tn−1) = e∗(tp

n−1) ∈ {MF ,DG}; then we have tp
n = tn by Lemma 9. By Lemma 9

again, e∗(tp
n ) = MF if e∗(tn) = MF or e∗(tp

n ) = DG if e∗(tn) = DG. If e∗(tn) = UH
(i.e. X(tn) < zkm), then τn+1 = (zkm − X(tn))/u(tn). The possible events for the
perturbed path are {MF ,DG,UH, and Tf }(DH is excluded since X p(tp

n ) = X(tn) +
�zkm < zkm + �zkm). Since e∗(tn) = UH, we know that τn+1 < min{WM(tn), W D(tn),
T − tn}. We also know that e∗(tp

n ) = argmin {WM(tp
n ), W D(tp

n ), ((zkm + �zkm) −
X p(tp

n ))/u(tn), T − tp
n }. Since WM(tn) = WM(tp

n ), W D(tn) = W D(tp
n ), T − tn = T − tp

n ,
and ((zkm + �zkm) − X p(tp

n ))/u(tn) = τn+1, we get e∗(tp
n ) = UH. The argument is sim-

ilar for the case e∗(tn) = DH with τn+1 = (X p(tp
n ) − (zkm + �zkm))/ − u(tn). We now

consider the case where e∗(tn−1) = e∗(tp
n−1) ∈ {UH,DH}. This implies that e∗(tn) and

e∗(tp
n ) can only be a machine or demand state transition or end of simulation, on both

nominal and perturbed paths; hence e∗(tn) = e∗(tp
n ). This completes the induction

argument.
The case with �zij < 0 can be argued similarly. 	


Appendix 3: Proofs of Lemmas in Section 4 for gradient estimation

Proof of Lemma 1 Observe that at any event time tn, r(en+1, tn) is equal to either
one of 0, 1, ri − d j, or −d j for some i and j. Thus r(en+1, tn) is a function of ri or d j for
some i and/or j and tn. Of those variables only tn depends on the hedging points. As
a consequence of similarity for small enough �z, tn(z + �zyij) is still the occurrence
time of the nth event. Therefore we must have r(en+1, tn(z + �zyij)) = r(en+1, tn(z))

and

dr(en+1, tn)
dzij

= lim
�z→0

r(en+1, tn(z + �zyij)) − r(en+1, tn(z))

�z
= 0. 	


Proof of Lemma 2 Similar to Lemma 1. 	


Proof of Lemma 3 Since u(t) is constant between adjacent events, we have X(tn) =
X(tn−1) + u(tn−1)τn. From Lemma 2, we know that du(tn−1)/dzij is 0; hence the result
follows. 	


Proof of Lemma 4 Recall that WM(tn)=WM(tn−1)−τn and W D(tn)=W D(tn−1)−τn.
The result follows by taking the partial derivatives of these equations at z. 	
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Proof of Lemma 5 Recall that

k(en+1, tn) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

WM(tn) if en+1 = MF ,
zα(tn)β(tn) − X(tn) if en+1 = UH,
X(tn) − zα(tn)β(tn) if en+1 = DH,
W D(tn) if en+1 = DG,
T − tn if en+1 = T f .

The result follows immediately. 	


Proof of Lemma 6 Direct consequence of Eq. 4.5 and Lemma 1. 	


Proof of Lemma 7 Since we start at time t0 = 0, we have X(t0) = x0, WM(t0) =
WM, W D(t0) = W D, and C(t0) = 0. Clearly these are all independent of zij. Since
t1 = τ1 = k(e1, t0)/r(e1, t0), it is enough to show the following facts about k(e1, t0) and
r(e1, t0): (a) r(e1, t0) �= 0; (b) r(e1, t0) has partial derivatives at z for all z and i =
1, . . . , K, j = 1, . . . , M, which are finite; (c) k(e1, t0) has partial derivatives at z for all
z and i = 1, . . . , K, j = 1, . . . , M, which are finite. Since e1 ∈ E(t0), (a) is immediate
from the definition of E(t) and (b) follows from Lemma 1. To see (c), observe that
E(t0) = {MF , (UH or DH),DG,T f }. Hence we have

k(e1, t0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

WM if e1 = MF ,
zα(t0)β(t0) − x0 if e1 = UH,
x0 − zα(t0)β(t0) if e1 = DH,
W D if e1 = DG,
T − t0 if e1 = T f .

Thus k(e1, t0) is a differentiable function of zij for i = 1, . . . , K, j = 1, . . . , M whose
partial derivative is −1, 0, or 1. 	


Proof of Lemma 8 From Lemma 10 in Appendix 2, we have X(tn(z + �zij), ω) −
X(tn(z), ω) ≤ �zij. Then |C(tn(z + �zij), ω) − C(tn(z), ω)|≤ tn|�zij|(c+ + c−). Hence
|C(T(z + �zij), ω) − C(T(z), ω)| ≤ T|�zij|(c+ + c−) and |JT(z + �zij, ω) − JT(z,

ω)| ≤ |�zij|(c+ + c−). Therefore
∣
∣
∣
∣

JT(z + �zij, ω) − JT(z, ω)

�zij

∣
∣
∣
∣ ≤ (c+ + c−).

	

Appendix 4: Pseudo code for simulation and IPA algorithm

4.1 Variables and procedures

Let wM
i be the mean holding time in machine state i and wD

j be the mean holding time
in demand state j. We use sample(μ) to denote a sample taken from a prescribed
distribution with mean μ.

The following events are defined for the GSMP representation when the current
state is αβ:

MF : The end of the sojourn time of the current machine state α

UH : Reaching the hedging point zαβ of current system state αβ from below
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DH : Reaching the hedging point zαβ of current system state αβ from above
DG : The end of the sojourn time of the current demand state β

T f : End of simulation

The following notation and procedures are used in the simulation/gradient estima-
tion algorithm:

INF : A very large constant
t : Current time
τ : Time to occurrence of triggering event
M : Number of demand states
K : Number of machine states
α : Current machine state
β : Current demand state
d j : Rate of the demand state j
zij : Hedging point of state ij
ri : Maximum production rate of machine state i
v : Current actual production rate of the system
u : Current fill-in-rate of the system
X : Current inventory level of the system
Xprev : Previous inventory level of the system
cost : Current cumulative cost of the system
Avg_cost : Average cost of the system
No_Events : Number of possible events
E[i] : Possible event i, i = 1, 2, . . . , No_Events
T[i] : Time to occurrence of E[i]
K∗ : Index of triggering event
WM : Time to occurrence of event MF
W D : Time to occurrence of event DG
Tremain : Time to occurrence of event T f

tsim : Total simulation time
x0 : Initial inventory level
α0 : Initial machine state
β0 : Initial demand state
Csum[i][ j] : Accumulator of dC/dzij

Tsum[i][ j] : Accumulator of dtn/dzij

Xsum[i][ j] : Accumulator of dX(tn)/dzij

X Prevsum[i][ j] : Accumulator of dX(tn−1)/dzij

W Msum[i][ j] : Accumulator of dWM(tn)/dzij

W Dsum[i][ j] : Accumulator of dW D(tn)/dzij

Temp[i][ j] : Accumulator of dτn/dzij

Gen_Sys : Boolean variable which is 1 if it is a general system (M > 1), 0
otherwise

S[i][ j] : State of the system at machine state i and demand state j.

I{A} =
{

1 if A holds
0 otherwise
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Procedure: Determine_Event_Space()
E[0] = MF ; E[1] = UH; E[2] = DH;
IF (Gen_Sys == 1) THEN {E[3] = DG; E[4] = T f ; No_Events = 4;}
ELSE {E[3] = T f ; No_Events = 3;}

Procedure: Determine_States()
FOR i=1 TO K DO
FOR j=1 TO M DO

{IF (ri < d j) THEN S[i][ j] =‘deficient’;
ELSE IF (ri > d j) THEN S[i][ j] =‘non-deficient’;
ELSE IF (ri == d j) THEN S[i][ j] =‘zero’;}

Procedure: Set_Uv()
IF (S[α][β] ==‘non-deficient’) THEN

IF (X < zαβ) THEN v = rα;
ELSE IF (X == zαβ) THEN v = dβ;
ELSE IF (X > zαβ) THEN v = 0;

ELSE IF (S[α][β] ==‘zero’) THEN

IF (X > zαβ) THEN v = 0; ELSE v = rα;
ELSE IF(S[α][β] ==‘deficient’) THEN v = rα;

u = v − dβ;

4.2 Simulation code

0. Initialization:

t = 0; τ = 0; X = x0; Xprev = 0; Tremain = tsim; cost = 0;
IF (M > 1) THEN Gen_Sys = 1; ELSE Gen_Sys = 0 ;
Determine_Event_Space();
Determine_States();
Choose initial machine state α0 : α = α0; Choose initial demand state β0 : β = β0;
Set_Uv();
Generate WM ∼ sample(wM

α )
IF (Gen_Sys == 1) THEN Generate W D ∼ sample(wD

β )

0(IPA). Initialization:

FOR i=1 TO K DO
FOR j=1 TO M DO

{Csum[i][ j] = 0; Tsum[i][ j] = 0; Xsum[i][ j] = 0; X Prevsum[i][ j] = 0;
W Msum[i][ j] = 0;
Temp[i][ j] = 0;
IF (Gen_Sys == 1) THEN W Dsum[i][ j] = 0;}
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1. Next Local Event:

T[0] = WM;
IF (S[α][β] ==‘non-deficient’) THEN

{IF (X < zαβ) THEN { T[1] = zαβ−X
u ; T[2] = INF; }

ELSE IF (X == zαβ) THEN { T[1] = INF; T[2] = INF; }
ELSE IF (X > zαβ) THEN { T[1] = INF; T[2] = X−zαβ

−u ; }}

ELSE IF (S[α][β] ==‘zero’) THEN

{T[1] = INF;
IF (X > zαβ) THEN T[2] = X−zαβ

−u ; ELSE T[2] = INF }

ELSE IF(S[α][β] ==‘deficient’) THEN

{T[1] = INF; T[2] = INF}

IF (Gen_Sys == 1) THEN {T[3] = W D; T[4] = Tremain; } ELSE T[3] = Tremain;

2. Next Global Event:

K∗ =argmin(T[i] : i = 1, 2, . . . , No_Events);
τ = T[K∗]; e∗ = E[K∗];

3A(IPA). Perturbation Generation:

Case:

e∗ = MF : FOR i=1 TO K DO
FOR j=1 TO M DO

Temp[i][ j] = W Msum[i][ j];
e∗ = UH :FOR i=1 TO K DO

FOR j=1 TO M DO
Temp[i][ j] = 1

u (I{i=α, j=β}−X Prevsum[i][ j]);
e∗ = DH :FOR i=1 TO K DO

FOR j=1 TO M DO
Temp[i][ j] = 1

−u (−I{i=α, j=β} + X Prevsum[i][ j]);
e∗ = DG :FOR i=1 TO K DO

FOR j=1 TO M DO
Temp[i][ j] = W Dsum[i][ j];

e∗ = T f : FOR i=1 TO K DO
FOR j=1 TO

Temp[i][ j] = −Tsum[i][ j];

3B(IPA). Perturbation Update:

FOR i=1 TO K DO
FOR j=1 TO M DO

{Tsum[i][ j] = Tsum[i][ j] + Temp[i][ j];
Xsum[i][ j] = X Prevsum[i][ j] + u × Temp[i][ j];
IF e∗ = MF THEN W Msum[i][ j] = 0; ELSE W Msum[i][ j] =

W Msum[i][ j] − Temp[i][ j];
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IF e∗ = DG THEN W Dsum[i][ j] = 0; ELSE W Dsum[i][ j] =
W Dsum[i][ j] − Temp[i][ j];}

4. Update:

t = t + τ ; Xprev = X; X = X + uτ ;

cost = cost + I{Xprev≥0} I{X≥0}c+
[

Xτ − uτ

2
τ
]

+I{Xprev<0} I{X<0}c−
[
−Xτ + uτ

2
τ
]

+I{Xprev≥0} I{X<0}
{

c+
[−Xprev

2

Xprev

u

]

+ c−
[−X

2

X
u

]}

+I{X≥0} I{Xprev<0}
{

c+
[

X
2

X
u

]

+ c−
[

Xprev

2

Xprev

u

]}

4A(IPA). Update Cost Perturbation:
FOR i=1 TO K DO
FOR j=1 TO M DO

{Csum[i][ j] = Csum[i][ j]
+I{Xprev≥0} I{X≥0}c+[Xsum[i][ j]τ + XTemp[i][ j] − uτTemp[i][ j]]
+I{Xprev<0} I{X<0}c−[−Xsum[i][ j]τ − XTemp[i][ j] + uτTemp[i][ j]]

+I{Xprev≥0} I{X<0}
{

c+
[−Xprev X Prevsum[i][ j]

u

]

+c−
[−Xsum[i][ j]X

u

]}

+I{X≥0} I{Xprev<0}
{

c+
[

Xsum[i][ j]X
u

]

+ c−
[

Xprev X Prevsum[i][ j]
u

]}

Case:
e∗ = MF : Generate new machine state k; α = k; Generate WM ∼ sample(wM

α );
e∗ = DG: Generate new demand state l; β = l; Generate W D ∼ sample(wD

β );

IF (e∗ �= MF) THEN WM = WM − τ ;
IF (Gen_Sys == 1) THEN

IF (e∗ �= DG) THEN W D = W D − τ ;

IF (e∗ = T f ) THEN GO TO Output;
ELSE IF (e∗ �= T f ) THEN

{Tremain = Tremain − τ ; Set_Uv(); GO TO Next Local Event;}

5. Output:
Avg_cost = cost/tsim;

5(IPA). Gradient Output:
FOR i=1 TO K DO
FOR j=1 TO M DO

dC/dzij = Csum[i][ j]/tsim;
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