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Abstract Advance Demand Information can improve the performance of produc-
tion/inventory systems with random demand considerably. However, to exploit the
potential of such information, replenishment policies must be adapted to the avail-
able information. We explore the impact and the benefits of Advance Demand Infor-
mation under optimal replenishment policies for two different supply chain struc-
tures, one without inventory sharing and the other with complete inventory and ca-
pacity sharing. We perform this analysis for three different modeling frameworks
with different degrees of sophistication in modeling the inventory and production
dynamics. This enables a comparison of the factors that make advance demand in-
formation relatively more valuable.

1 Introduction

Investigating the benefits of Advance Demand Information (ADI) in production and
inventory systems has been a significant research question in recent years. We view
ADI as a general concept encompassing different types of future demand informa-
tion: formal and subjective forecasts, early or advance orders and in general any
signal providing information about future demand occurrences. Under this general
definition, it is clear that ADI is has been around for a long time. It is therefore
interesting that it was not modeled and investigated systematically for a long time
in production/inventory control literature. It is likely that the recent increase in re-
search effort was fueled by the information revolution which enabled more data and
much easier analysis and exchange of such data. At the same time, models of pro-
duction/inventory systems appear to have reached a maturity with well-established
sophisticated tools for analysis. The combination of practical business needs and
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the existence of tools for analysis have rapidly generated a wide body of research in
ADI applications in production/inventory systems.

This chapter has a double purpose. First, we would like to present some basic
results on ADI in inventory and production systems from a common perspective.
These results usually appear in a dispersed manner but studying them within the
same perspective enables better comparisons and possibly an improved understand-
ing. Second, there is a rich inventory control literature in modeling and understand-
ing the benefits of resource sharing in terms of inventory pooling for uncapacitated
inventory systems and capacity and inventory pooling for capacitated systems. Re-
source sharing is well-known to be of value but is not always feasible. In order to
understand how the benefits from resource sharing interact with the benefits from
ADI, we present an investigation of the value of ADI in situations with and without
resource sharing.

We consider three different inventory models. The first model is a single-period
newsvendor problem where demand uncertainty can be modeled but inventory dy-
namics are ignored. The second model is a dynamic model with Poisson demand
arrivals and constant supply lead times, a standard model in continuous-time. This
model captures inventory dynamics as well as demand uncertainty but does not take
into account replenishment capacity. Finally, the third model is a make-to-stock
queue: a dynamic model with Poisson demand arrivals and a limited production
resource modeled by a queue server. This model is also relatively simple and well-
established and has the virtue of capturing the effects of limited capacity. For all
three models, we consider multi-location demand that can either be satisfied by
dedicated resources (inventory or capacity) to each location or by shared resources.
In this setting, we explore the benefits of ADI for the above three models with and
without resource sharing.

In order to assess the value of information, we employ a common ADI invest-
ment problem. The firm decides to invest in ADI at each location at a cost per
location. This is a basic linear cost investment problem where the ADI investment
is traded-off against the gains from inventory related costs. The solution of the ADI
investment problem is obtained for all three models which allows some structural
comparisons about under what conditions to invest.

The chapter is structured as follows. Section 2 presents a short literature review.
Section 3 describes the supply chain structures considered. Section 4-6 present the
three models and their analysis. Finally, Section 7 summarizes the main findings in
terms of the value of information and Section 8 presents the conclusions.

2 Literature Review

The literature review is divided into three subsection. We first address the general
issue of modeling ADI. Next, we review the papers that consider uncapacitated mod-
els of inventory systems and finally we present a review of the literature using ADI
for capacitated inventory systems.
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2.1 Modeling ADI

ADI is a general concept that encompasses different types of future demand infor-
mation. The models for ADI vary in the degree of complexity and sophistication.
Static models tend to be simpler whereas dynamic models may capture the evolu-
tion of ADI and may be considerably more complicated.

Static models in the context of single-period random demand inventory systems
usually view ADI as a modification of the demand distribution. In the simplest case,
this may correspond to a standard deviation reduction as in Milgrom and Roberts
[38]. In particular, Milgrom and Roberts [38] assume that ADI removes all of the
uncertainty (standard deviation) when demand prior to ADI is normally distributed.
Zhu and Thoneman [51] consider a similar ADI model with partial removal of stan-
dard deviation but they also incorporate the forecast update in their model. Several
other papers make similar assumptions in different settings (see for example [9],
[16]).

Dynamic production/inventory models allow richer demand information model-
ing. A simple but useful model assumes that all customers order a fixed time in
advance of their due-dates. The time between the order instant and the due-date is
called the demand lead time . Buzacott and Shanthikumar [4], [6] and Hariharan
and Zipkin [21] propose and analyze such models with fixed demand lead times for
capacitated and uncapacitated inventory systems respectively. Several papers use
this type of advance order model (Chen [7], Karaesmen, Buzacott and Dallery [26],
Wijngaard and Karaesmen [50], Kocaga and Sen [31], Marklund [37] for example).
Other papers assume that demand lead times can be random and/or orders can be
cancelled (Gayon, Benjaafar, and de Vericourt [15], Benjaafar, Cooper and Mardan
[2], Kim, Ahn, and Righter [30] for example).

More sophisticated advance demand information evolution models have been
proposed for discrete time systems. Such models typically use a future demand in-
formation vector. In additive models, this vector includes all orders that have already
arrived and that have due-dates in the future. Because orders are collected over time,
if they are not subject to cancelations, the information vector is subject to additive
updates. Gallego and Ozer [12], [13], Ozer and Wei [40], Ozer [39] and Dellaert and
Melo [10] investigate such models. In contrast, Tan, Gullu and Erkip [42] propose
a similar model but in their case arriving orders are subject to cancellations before
they materialize. Van Donselaar, Kopzcak and Wouters [11] and Thonemann [45]
consider supply chains consisting of several manufacturers that can produce similar
products. In this case, the customer may provide information about which products
will be ordered and which manufacturers may receive the order which specifies the
ADI structure.

Finally, there is a stream of papers that incorporate the demand forecasting pro-
cess in inventory management. Graves et al. [17] and Heath and Jackson [22] pro-
pose a coherent framework for the outputs of a demand forecasting process in a
production/inventory system. This framework is called the Martingale Model of
Forecast Evolution (MMFE) [22]. There are several papers that use the MMFE-
based forecast information to analyze different poduction/inventory systems start-
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ing by [17] and [22]. Some other examples include Gullu [19], [20], Graves, Kletter
and Hetzel [18], Toktay and Wein [46], Zhu and Thonemann [51] and Schoenmeyr
and Graves [41]. Finally, Kaminsky and Swaminathan [24], [25] propose a simpler
forecasting models where the forecasts consist of a forecast band comprising a pes-
simistic and optimistic forecast.

2.2 Uncapacitated Inventory Systems

In this subsection, we review the ADI literature that considers ordering policies for
supply systems without capacity constraints. Some of these papers consider single-
period models. Others consider dynamic models in discrete or continuous time with
supply lead times that do not depend on the number of orders.

Milgrom and Roberts [38] consider a single-period random demand model where
customers may reveal the exact demand at a cost. For this setting, they find the op-
timal level of investment of ADI. Zhu and Thonemann [51] consider a more sophis-
ticated model within the same framework where demand information gets updated
according to a MMFE type model.

The models in continuous time typically assume a Poisson order process with a
constant demand lead time that is the customers order a fixed time in advance of
their due-dates and late delivery penalties, if any, are incurred only after the due-
date. This enables the supplier to initiate the ordering process before the required
due-date. Hariharan and Zipkin [21] investigate the system with constant supply
lead times and identify optimal ordering policies and the assess the benefits of ADI.
In particular, they make the fundamental observation that demand lead times have
an opposing effect to supply lead times and alleviate the need for inventories. Chen
[7] explores a problem motivated by market segmentation issues where customers
may be willing to provide different demand lead times depending on the financial
incentives provided. Marklund [37] considers a single warehouse multiple retailer
supply chain with advance order information and presents exact and approximate
performance analysis considering different inventory allocation policies. Lu, Song
and Yao [36] investigate assemble-to-order systems with ADI and establish that ADI
improves fill-rate type service levels for such systems. Kocaga and Sen [31] study
an inventory allocation problem with advance order information in the context of
spare-parts inventories and show that ADI and efficient capacity allocation can lead
to significant inventory cost savings.

A number of papers investigate the impacts of ADI on periodic-review inventory
systems. Bourland, Powell and Pyke [3] study a two-stage supply chain and explore
the effect of the retailer providing early information on its demand to the supplier.
Güllü [20] considers a two-echelon allocation problem for a supply chain consist-
ing of a single warehouse and multiple retailers under the MMFE model and shows
that the value of forecast information can be significant. Graves et al. [18] consider
the MMFE demand information model to investigate the trade-off between produc-
tion smoothing and inventory optimization. DeCroix and Mookerjee [9] investigate
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a model where one-period ahead demand information can be obtained at a cost and
establish optimal replenishment and ADI purchasing policies. Gilbert and Ballou
[16] consider a make-to-order manufacturer whose customers may provide advance
order information in return for a price discount. In this setting, they explore the opti-
mal discount scheme for using ADI. Motivated by project-based supply chains, Van
Donselaar et al. [11] consider supply systems with several products, several man-
ufacturers and a single customer where the customer provides information about
which manufacturers may get the upcoming order and which products are to be or-
dered. They show that this type of information is extremely valuable. Thonemann
[45] extends this model to cover multiple types of information sharing and analyzes
the inventory cost savings under different types of ADI sharing structures. Zhu and
Thonemann [51] study a single-period problem with a single retailer and multiple
customers under the possibility of an MMFE-based demand update for individual
customers. They explore the problem of finding the optimal set of customers to share
demand information given that such information is costly. Gallego and Ozer [12]
establish the structure of optimal replenishment policies for a single-stage periodic-
review inventory system with ADI using the additive demand information update
framework. The analysis is extended to the multi-stage case in Gallego and Ozer
[13] and to distribution systems in Ozer [39]. Dellaert and Melo [10] also consider
the additive demand information update model to study a lot-sizing problem and
propose lot-sizing heuristics that take into account ADI. Tan, Gullu and Erkip [42]
investigate optimal ordering decisions for a single-stage inventory system under an
imperfect ADI model where initial orders may be cancelled over time. Tan, Gullu
and Erkip [44] consider a similar demand model for an inventory allocation prob-
lem in a two-demand class system. Tan [43] proposes a forecasting methodology
for imperfect ADI. Wang and Toktay [48] investigate optimal ordering policies in
a model with advance order information but where customers are willing to accept
deliveries before the due-dates. Kunnumkal and Topaloglu [32] consider the prob-
lem of offering optimal price discounts to reduce the variability of demand which
can be achieved through ADI. Schoenmeyr and Graves [41] study the safety stock
optimization in a multi-stage inventory system under an MMFE-based demand in-
formation process. They show that the forecast evolution model can be incorporated
into known safety stock optimization approaches.

2.3 Production/Inventory Systems

This subsection reviews the ADI literature that explicitly models production ca-
pacity constraints and the interaction between capacity and inventories. Such sys-
tems are prone to congestion and therefore their production lead times are endoge-
nously determined. These endogenous lead times make the analysis challenging and
presents interesting contrasts with respect to similar systems that have exogenous
lead times. Some of the important issues for these systems are presented in detail in
Buzacott and Shanthikumar [5] and Zipkin [52] for example.
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Graves et al. [17] and Heath and Jackson [22] propose models that incorporate the
forecast information captured by the MMFE framework in production and inventory
planning. Gavirneni, Kapuscinski and Tayur [14] consider a two-stage supply chain
with a capacitated production system upstream. Using simulation, they compare the
cases where the upstream stage has access to end-customer demand information or
not and show that there is significant value in this shared demand information. Gullu
[19] uses the MMFE framework to model a single-stage production inventory sys-
tem in discrete time and characterizes the structure of optimal policies and the value
of forecast information system. A similar model is investigated by Toktay and Wein
[46] who characterize optimal base stock levels under some approximations. Ozer
and Wei [40] characterize the optimal production policy under the additive demand
update framework. Kaminsky and Swaminathan [24], [25] investigate production
policies and propose several heuristics under the forecast band model.

Another class of models explore advance order information for continuous
time models of production/inventory systems represented by make-to-stock queues.
Buzacott and Shanthikumar [4], [5], [6] study a single-stage M/M/1 make-to-stock
queue with constant demand lead times and characterize the inventory-related per-
formance measures as well as the demand-lead time inventory trade-off. Karaesmen,
Buzacott and Dallery [26] investigate a version of the same system in discrete time
and characterize optimal production policies. Karaesmen, Liberopoulos and Dallery
[28], [27] explore the value of advance order information for M/G/1 and M/M/1
make-to-stock queues with constant demand lead times. Wijngaard [49] studies an
M/D/1 make-to-stock system and characterizes the cost reduction due to ADI. Wi-
jngaard and Karaesmen [50] further characterize the optimal policy structure for
this system. Liberopoulos and Tsikis [34] propose a framework for describing pro-
duction policies that incorporate advance order information for multi-stage produc-
tion/inventory systems. Liberopoulos and Koukoumialos [33] explore the perfor-
mance of single-stage and multi-stage policies that use such policies. Liberopou-
los [35] investigates the inventory and demand lead time tradeoffs for M/D/1 and
M/D/∞ make-to-stock systems. Claudio and Krishnamurthy [8] investigate multi-
stage production/inventory systems that use ADI under kanban control using sim-
ulation. Iravani et al. [23] and Gayon, Benjaafar and de Véricourt [15] consider
single-product multiple demand class systems. Iravani et al. [23] assume that the
primary customers order at regular intervals and provide advance information but
secondary customers request a single item at random times. The optimal production
and stock allocation policy for this model is characterized. Gayon et al. consider a
multi-class system with different lost sales costs for each demand class. The demand
lead times are random and exponentially distributed. In addition, demand cancela-
tions are allowed. The authors characterize the optimal production and inventory al-
location policies for this system. Kim, Ahn and Righter [30] and Benjaafar, Cooper,
and Mardan [2] also consider ADI models with demand cancelation. Both papers
model the order evaluation over time through multiple stages with order cancelation
probabilities at each stage and investigate optimal production policies.
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3 Supply Chain Structures and Resource Sharing

Our objective is to analyze the value and the impacts of ADI in supply chains that
are structurally similar but differ in terms of their inventory dynamics and supply
capabilities. In particular, we analyze three different basic inventory models with
random demand. We start with a single-period random demand also known as the
newsvendor model. We next consider an uncapacitated supply model which receives
a random demand process: this is the model of a supply system that has exogenous
supply lead times. Finally, we investigate a supply model with production capacity
and therefore is subject to congestion and experiences endogenous lead times. For
each class of inventory system, ADI is modeled and incorporated in a different way
that will be explained in the coming sections.

For the three basic inventory systems above, we consider a two-stage supply
chain structure consisting of multiple customers that generate the demand and either
multiple supply systems dedicated to each customer or a single supply system that
servers all customers. The multiple dedicated supply system model represents the
situations where inventories are planned individually for each customer and cannot
be shared between customers due to product or customer specific restrictions. The
single supply system, on the other hand, represents the centralization of resources
and allows sharing inventories and capacity. Inventory centralization or pooling is
a widely studied topic in inventory management and the structures studied here are
standard in this body of work.

The two structures considered are depicted in Figure 1. The structure on the
right satisfies demand using customer specific supply facilities and does not share
inventories or capacity while the structure on the left pools inventories and capacity
and allows complete sharing of resources. To maintain simplicity we assume that the
customers are identical in terms of their backorder or lost sales costs which enables
us to avoid to challenging inventory allocation problem under resource pooling that
can arise under non-identical customer costs. We assess the value of ADI for both
structures leading to a comparison of the structures as well as the three different
inventory models.

4 A Static Model: Newsvendor Framework

In this section, we investigate a single-period random demand model under a simple
model of ADI. This model ignores the inventory dynamics but still captures some
of the important characteristics of the problem in terms of randomness and the ef-
fect of demand information. The analysis is inspired by Milgrom and Roberts [38],
Zhu and Thonemann [51]. As for the effects of inventory sharing, we follow Uçkun,
Karaesmen and Savaş [47] which investigates an inventory inaccuracy problem us-
ing similar models.
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4.1 No Inventory Sharing

Let us assume that there are N customers with independent and identically dis-
tributed demands Di (i = 1,2, ..N). Each Di is normally distributed with mean µ
and standard deviation σ . We assume that each customer is satisfied by its dedi-
cated inventory and that inventory cannot be shared between different customers.

Using standard assumptions, we assume that each customer location chooses an
order quantity before observing the demand. Unsatisfied demand is lost and unsold
inventory is salvaged. Let r be unit sale price per item, w be the purchasing cost per
item and s be the salvage value per item. It is useful to define the critical fractile α
expressed as a ratio of the financial parameters: α = (r−w)/(r−s). We also denote
by Π(Q) the profit obtained for some order quantity Q.

Let Qi be the order quantity at location i. The expected profit at location i,
E[Π(Q)], is given by:

E[Π(Qi)] = (r−w)µ− (r−w)E[(D−Q)+]− (w− s)E[(Q−D)+] (1)

where (x)+ denotes max(x,0).
Let Q∗

i be the optimal order quantity which maximizes the expected profit
given in (1), it is well-known that Q∗

i is characterized by the critical fractile rule:
FDi(Q

∗
i ) = α where FDi(x) is the cumulative distribution function of the random

variable Di and α depends on the financial parameters as defined above.
To further exploit the critical fractile rule in the case of normally distributed de-

mand, let φ(z) and Φ(z) denote the probability density function and the cumulative
density function of a standard normal random variable Z and let zR be the solution
of Φ(zα) = α . The optimal order quantity can then be expressed as:

Q∗
i = µ + zα σ . (2)

D
1

D
2

D
1

D
2

D
N D

N�� ��������� 	
����� ��������� ����������� ��������� 	
����� ����������� ���������
Fig. 1 The Two Supply Chain Structures
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Further, Q∗
i can then be plugged back in (1) and using the properties of nor-

mally distributed random variables, the following expression for the optimal ex-
pected profit at location i can be obtained:

E[Π(Q∗
i )] = (r−w)µ− (r− s)φ(zα)σ .

Next, we focus on the total profit of the supply chain over N customers. To fa-
cilitate the forthcoming analysis, let us define by Πn the total supply chain profit
where n customers are providing ADI. Therefore Π0 denotes the total profit over all
customers without ADI. Its expected value is given by:

E[Π0] = N(r−w)µ−N(r− s)φ(zα)σ .

Let us now investigate the case where Advance Demand Information is available
possibly at a cost. We first assume the following form of ADI: at any location de-
mand can be completely revealed in advance of the ordering decision at a unit cost
of k per location. This may be possible by an early commitment contract along with
improved information sharing and delayed ordering.

Let location i be one of the locations where ADI is available. For any realization
of demand d, the order quantity Qi = d. Obviously, E[Qi] = µ since E[Di] = µ . The
expected profit for this location is:

E[Π ] = (r−w)µ .

Let us now express the total profit if the firm chooses to obtain ADI at n
(n = 0,1,2, ...N) locations and uses the optimal order quantity given in (2) for the
remaining N−n locations

E[Πn] = N(r−w)µ− (N−n)(r− s)φ(zα)σ −nk.

We can now focus on the problem of optimal ADI investment. Let us find the
optimal number of locations to obtain ADI in order to maximize the expected profit.
To this end, treating n momentarily as a continuous variable, we note that:

dE[Πn]
dn

= (r− s)φ(zα)σ − k. (3)

Because E[Πn] is linear in n (from (3)), the optimal value of n is either 0 or N.
Then n∗ = 0 or n∗ = N depending on the value of the unit ADI investment cost k. It
is clear that there is a threshold level k̄NIS for this cost where it is optimal to invest
in ADI at all N customers if k < k̄NIS (where the index NIS denotes No Inventory
Sharing) and not to invest at any customer otherwise. Using (3), this threshold is
given by:

k̄NIS = (r− s)φ(zα)σ . (4)

The investment threshold k̄NIS is clearly increasing in σ . Increasing demand vari-
ability justifies higher levels of ADI investments. The effect of financial parameters
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is less clear because they influence φ(zα) in addition to the term (r− s) but it is safe
to say that increasing r also justifies higher investments except in very special cases.

Imperfect ADI

Let us now focus on the case where ADI is not perfect and assume that ADI does
not enable the removal of all demand uncertainty but only a proportion. As a simple
model, we assume that a fraction t (0 < t < 1) of all demand uncertainty is removed
by ADI investment at a location at a cost of kt . This implies that after ADI, the
demand at a location is normally distributed with mean µ and variance (1− t)σ 2.
For a location j with ADI investment, the optimal order quantity is then given by:

Q∗
j = µ + zα

√
(1− t)σ .

Let us now consider the case where the ADI investment takes place at n locations.
The total expected profit is given by:

E[Πn] = N(r−w)µ− ((N−n)+n
√

1− t)(r− s)φ(zα)σ −nkt .

E[Πn] in the above expression is linear in n. The investment threshold is given
by:

k̄t,NIS = (1−√1− t)(r− s)φ(zα)σ .

We see that the optimal investment threshold is increasing in σ as before but
it is lower than the threshold in the perfect ADI case when t < 1. Naturally, the
threshold is also increasing in t. As the quality of ADI improves, ADI investments
become more attractive.

4.1.1 Inventory Sharing

We consider a similar supply chain structure with N locations as in the previous
section but now we assume that a central inventory can be shared among different
locations after demand is realized. the objective is to compare the benefits of ADI
with respect to the structure of the supply chain.

The central inventory is planned to maximize the total supply chain profit tak-
ing into account the total demand. Because demand at each location is normally
distributed, the total demand also has a normal distribution with mean Nµ and vari-
ance Nσ2. It then follows the optimal order quantity for the supply chain without
ADI is given by:

Q∗ = Nµ +
√

Nzα σ .

The total supply chain profit then follows as:
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E[Π0,IS] = N(r−w)µ−
√

N(r− s)φ(zα)σ .

Let us first consider the case of perfect ADI at n locations. Once again, this is
assumed to remove the uncertainty completely at these locations at a cost of k per
location. This makes the total supply chain demand normally distributed with mean
Nµ and variance (N−n)σ2. The optimal order quantity is given by:

Q∗
n = Nµ +

√
(N−n)zα σ

and the corresponding expected optimal profit is:

E[Πn,IS] = (r−w)Nµ−
√

(N−n)(r− s)φ(zα)σ −nk.

This expression is not linear in n as before. Differentiating with respect to n we
obtain:

dE[Πn,IS]
dn

=− ((r− s)φ(zα)σ
2
√

(N−n)
− k.

It can be verified that the function E[Πn] is convex in n. Therefore the optimal
value of n is again an extreme value: n∗ = 0 or n∗ = N.

The optimal investment threshold is then given by:

k̄IS =
(r− s)φ(zα)σ√

N
. (5)

It is interesting to compare the threshold for case without inventory sharing given
in (4) with the threshold in (5). For N ≥ 2, the investment threshold is lower under no
inventory sharing. This is intuitive because uncertainty has a greater impact in this
setting. Alternatively, under inventory sharing, there may be little reason to invest in
ADI if N is large.

Imperfect Information

The above analysis can be extended to imperfect ADI following the approach
and the notation in Section 4.1. The expected optimal profit under imperfect ADI
when n locations are invested in is:

E[Πn,IS] = N(r−w)µ− (r− s)φ(zα)
√

(N−n)σ2 +n(1− t)σ2− ktn.

Once again, E[Πn,IS] can be verified to be convex in n and n∗ = 0 or n∗ = N.
The investment threshold is given by:

k̄t,IS =
(1−

√
(1− t))(r− s)φ(zα)σ√

N
.
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As before, the above is lower than the corresponding threshold under no inven-
tory sharing and is lower than the threshold under perfect ADI.

Correlated Demand

As a final case, let us investigate the effects of demand correlation on ADI in-
vestment decisions. First, clearly such correlation does not have any impact on the
results under no inventory sharing since locations are managed independently. How-
ever, the correlation structure makes a difference when inventory is shared.

Let us assume that demand at different locations has a multi-variate normal dis-
tribution. The marginal distributions at each location are normal with mean µ and
variance σ2 as before. In addition, the demands of any two locations are pairwise
correlated with correlation coefficient β (where −1/N − 1 < β ≤ 1). It turns out
then that the total demand variance β 2 = (N +N(N−1)β )σ2.

The optimal order quantity is given by:

Q∗ = Nµ + zRβ

and the corresponding profit is:

E[Π0,IS] = N(r−w)µ− (r− s)φ(zR)β .

It is more difficult to model partial ADI investment in this case but we can inves-
tigate the case of full investment. Assume that ADI is implemented at all locations,
the corresponding expected profit is then:

E[ΠN,IS] = N(r−w)µ−Nk.

Therefore, the all or nothing investment threshold is given by:

k̄IS =

√
1−β +αN(r− s)φ(zR)σ√

N
.

It is seen that the investment threshold is increasing in the correlation coefficient
β for −1/N − 1 < β ≤ 1. Consider now the case of extreme positive correlation
where β = 1. This makes the threshold equal to: (r− s)φ(zR)σ just like in the NIS
case. Higher costs of ADI investment are justified as the demand correlation be-
tween the locations increases.

5 Inventory Systems with Exogenous Lead Times

In this section, we consider a continuous review inventory system that receives Pois-
son demand processes from multiple locations. The replenishment system has ample
capacity but there are processing lead times. In Zipkin’s terminology [52], this is the
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case of a supply system with exogenous lead times. Similarly to the previous sec-
tion, we model ADI and explore the ADI investment structure under two different
scenarios: without any inventory sharing between locations and with inventory shar-
ing between locations. The inventory model is considerably more sophisticated with
respect to Section 4 but we use a similar framework to enable some comparisons.
The basic model that is employed in this section follows Hariharan and Zipkin [21].
The model with random replenishment lead times is summarized in Karaesmen [29].

5.1 No Inventory Sharing

The firm receives demand from N different locations and maintains a dedicated
inventory for each location. It is assumed that inventory cannot be shared between
locations.

The demand at each location is an independent Poisson Process with rate λ .
Whenever there is inventory available, the demand is satisfied from inventory and it
is backordered otherwise. As in Section 4, r denotes the unit sale price and w denotes
the unit purchasing costs. In addition, holding costs of h (per item per time) and
backorder costs of b (per item per time) are incurred for inventory and backorders
respectively. It is assumed that there are no fixed ordering costs.

Each order takes a supply lead time of L time units to replenish. We assume first
that L is constant and investigate the case of random supply lead times later.

Let us use the notation of Zipkin [52] for inventory related quantities. Let I(t)
and B(t) denote the inventory on hand and the number of backordered items at time
t respectively (I(t), B(t) ≥ 0). IN(t) = I(t)−B(t) is called the net inventory and
IN(t) can be positive or negative. Let IO(t) denote the number of items on order.
IO(t) corresponds to the items that are already in the supply system but have not yet
reached the inventory. Finally, IP(t) = IN(t)+ IO(t) is the inventory position.

It is well-known that the optimal replenishment policy (in the absence of fixed
ordering costs) is a base stock policy. This policy has a single parameter S which is
the base stock level. It then stipulates to order whenever the inventory position IP(t)
falls behind the base stock level S.

Let IOi be stationary random variable corresponding to the outstanding orders at
location i. The long-run average profit for location i can be expressed as:

E[Π ] = (r−w)λ −hE[(S− IOi)+]−bE[(IOi−S)+]. (6)

The above problem has the newsvendor structure similar to (1) of Section 4 where
the random demand in (1) has been replaced by the random number of (steady-state)
outstanding orders. It therefore follows that the profit maximizing base stock level is
again given by the critical fractile formula. Because IO is a discrete random variable:

S∗ = minS

{
FIOi(S)≥ b

h+b

}
.
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When demand is a Poisson process with rate λ , IOi is a Poisson random variable
with mean λL. Unfortunately, this does not lead to an explicit expression for the
base stock level. We therefore approximate IO by a normal random variable with
mean λL and standard deviation

√
λL. This approximation is known to be accurate

if λ is not too small.
Let the critical ratio α ′ = b/(h + b) and let zα ′ be the solution of Φ(z′R) = α ′.

Under the normal approximation,the optimal base stock level is obtained as:

S∗ = λL+ zα ′
√

λL

and the expected profit per unit time at location i can be expressed as:

E[Π ] = (r−w)λ − (h+b)φ(zα ′)
√

λL.

It is seen from the above that the optimal expected profit is decreasing in the
supply lead time L at a square root rate.

If we now consider the supply chain consisting of N locations, the total optimal
expected profit per unit time simply becomes:

E[ΠN ] = N(r−w)λ −N(h+b)φ(zα ′)
√

λL.

Let us now focus on the case where a location provides ADI by ordering earlier
than its due-date for a cost of k (per location per unit time). The time between the
order instance and the due-date is known as the demand lead time. Let us assume
that the demand lead times of all locations are l (if the ADI investment cost is paid
at the location) and assume first that l > L. When demand lead-times are longer than
supply lead times, the replenishment system is able to function in a make-to-order
mode if each order is released exactly L time units before its due-date. In this case,
no inventory is needed and all orders are satisfied right on time. The corresponding
expected profit per unit time at such a location is (r−w)λ .

Let us now consider that the firm invests in ADI at n locations and functions as
before for the remaining N − n locations. The optimal expected profit for such a
system is given by:

E[Πn] = N(r−w)λL−
√

(N−n)(h+b)
√

λLφ(zα ′)−nk.

As before, the above expression can be verified to be convex in n. This again
leads to n∗ = 0 or n∗ = N. The investment threshold is then:

k̄NIS = (h+b)φ(z′R)
√

λL.

Short Demand Lead Times
The case of ample demand lead time (l > L) is very similar to the case of perfect

demand information in Section 4. Let us now consider the case where 0 < l < L.
If ADI investment is made at location i, all orders at that location will be released
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exactly l units before their due-dates. Hariharan and Zipkin [21] show that the in-
ventory dynamics of such a system are equivalent to those of a system with zero
demand lead times and supply lead times of L− l. In other words, IOi is a Poisson
random variable with mean λ (L− l). The optimal base stock level under the normal
approximation then becomes:

S∗ = λ (L− l)+ zα ′
√

λ (L− l).

Assuming that the ADI investment takes place at n locations, the optimal ex-
pected profit is:

E[Πn] = N(r−w)λ − (h+b)φ(zα ′)(
√

(N−n)λL+
√

nλ (L− l))−nkl .

The above is expression is convex in n and the all-or-nothing investment structure
is maintained. The investment threshold is:

k̄l,NIS = (h+b)φ(zα ′)(
√

λL−
√

λ (L− l)).

Random Replenishment Times Let us briefly consider the case of random replen-

ishment times. The replenishment times L are now assumed to be independent and
identically distributed random variables and order crossing is allowed. This is the
model of a supply system with several parallel supply channels. The complication
is that the demand lead time l is not always greater than or less than the supply lead
time.

This system is analyzed in Karaesmen [29]. The analysis uses the following two
quantities:

γ1 = λ
∫ l

0
(l− x)dFL(x) (7)

γ2 = λ
∫ ∞

l
(x− l)dFL(x) (8)

where FL is the cumulative distribution function of the replenishment lead time.
Following [29], the number of outstanding orders can be written as the difference

of two quantities: IO = IO1 − IO2 where IO1 and IO2 are independent Poisson
random variables with means γ1 and γ2 respectively.

To employ a similar approximation as before, we approximate IO by normal

random variable with mean γ1− γ2 and standard deviation
√

γ2
1 + γ2

2 .
We can then write:

E[Πn] = (r−w)Nλ − (h+b)φ(zα ′)
(

(N−n)
√

λE[L]+n
√

γ2
1 + γ2

2

)
− kn.

The investment threshold is then given by:
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k̄l,NIS = max{0,(h+b)φ(zα ′)(
√

λL−
√

γ2
1 + γ2

2 )}.

This threshold is lower than the corresponding one with constant lead times that
are equal to E[L].

5.2 Inventory Sharing

Let us now review the model of Section 5.1 under the assumptions of inventory
sharing: a central inventory is held and the pooled demand from all locations can be
satisfied from this inventory.

Let us first consider the system without ADI, the total demand is a Poisson pro-
cess with rate Nλ . The centralized base stock level under the normal approximation
is then:

S∗ = NλL+
√

Nzα ′
√

λL.

The optimal expected profit is given by:

E[Π0,IS] = N(r−w)λ −
√

N(h+b)φ(zα ′)
√

λL.

Let us assume now that ADI is implemented at the first n locations and that
demand lead times are greater than supply lead times (l > L). The demand from the
first n locations can then be met at zero cost in a make-to-order mode and the total
steady-state outstanding orders in this system are given by:

IO =
N

∑
i=n+1

IOi

because IOi are independent Poisson random variables, IO is also a Poisson ran-
dom variable with mean (N− n)λ . The optimal base stock level using the normal
approximation is then obtained as:

S∗ = (N−n)λL+
√

(N−n)zα ′
√

λL

and the total expected profit per unit time as:

E[Πn,IS] = (r−w)λ −√N−n(h+b)φ(z′R)
√

λL−nk.

Once again, the convexity of E[Πn,IS] in n can be established. The optimal thresh-
old for full investment is then:

k̄IS =
(h+b)φ(zα ′)

√
λL√

N
.
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As in Section 4, this threshold is lower than the one without inventory sharing.
Once again, inventory sharing results in lower variability and the relative benefit of
ADI is lower in this environment.

Short Demand Lead Times

Let us now assume that supply lead times are longer than lead times. As for the
case of l < L, a similar analysis can be performed to that of Section 5.1. This leads
to:

E[Πn,IS] = (r−w)λ − (h+b)φ(zα ′)
√

nλ (L− l)+(N−n)λL−nk

and to an optimal investment threshold of:

k̄l,IS =
(h+b)φ(zα ′)(

√
λ (L)−

√
λ (L− l))√

N
.

We observe that this threshold lower than the threshold with long lead times and
is in fact increasing in l. Earlier orders by customers make the ADI investment more
attractive.

6 Capacitated Systems

The previous sections investigated the effects of ADI and optimal investment
levels while ignoring capacity limitations. In this section, we focus on produc-
tion/inventory systems where the production capacity endogenously generates lead
times through the congestion effect. Once again, we try to maintain the parallels to
the previous sections to explore similarities and contrasts. In particular, we inves-
tigate the effects of supply chain structure in terms of resource sharing. However,
in contrast with the previous sections, we consider production capacity in addition
to the inventory as the shared resource. The basic model without ADI is described
in Buzacott and Shanthikumar [5] or Zipkin [52]. The model with ADI is based on
Buzacott and Shanthikumar [6]. The differences between the short versus long de-
mand lead time cases are discussed in Karaesmen et al. [27] and the approximations
are based on Karaesmen et al. [28].

6.1 No Inventory and Capacity Sharing

We consider a production inventory system receiving customer demand from N lo-
cations. Locations generate demands according to independent Poisson processes at
rate λ . Each location has a dedicated processing resource. This dedicated resource
processes items one by one with exponential processing times with rate µ (where
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µ > λ ). Demand is satisfied from inventory whenever possible and is backordered
otherwise. We assume the same profit/cost structure as in Section 5.2.

It is known that base stock policies are optimal for replenishing the above produc-
tion/inventory system. The processor should be processing whenever the net inven-
tory IN(t) is below the base stock level S and stops processing when IN(t) reaches
S. Equivalently, a production order is released whenever the inventory position IP(t)
falls below S as in Section 5.2. In fact, the optimal profit as a function of S can be
represented as (6) of Section 5.2.

Let us define ρ = λ/µ which is a measure of the average load. For performance
analysis and optimization, the probability distribution of the number of outstanding
orders is critical. Let us consider location i which constitutes an M/M/1 make-to-
stock queue. It is well-known that, for this system, the stationary random variable
IOi (corresponding to the number of outstanding orders at location i) has a geometric
distribution:

P(IOi = j) = (1−ρ)ρ j for j = 0,1,2, ...

Let us consider the optimization problem to maximize the expected profit per unit
time by choosing the optimal base stock level. Using the critical fractile formula,
there is an explicit expression for the optimal value of S:

S∗ =
⌊

log(1−α ′)
log(ρ)

⌋
(9)

where bxc denotes the largest integer that is greater than or equal to x and α ′ =
b/(h+b).

The exact optimal profit per unit time at location i can also be written explicitly
but for the rest of the analysis, we employ an approximation that is known to be
very accurate:

E[Π ]∼= (r−w)λ −h
(

log(1−α ′)
log(ρ)

)
. (10)

The total expected optimal profit per unit time is then:

E[ΠN ] = N(r−w)λ −Nh
(

log(1−α ′)
log(ρ)

)
.

Let us now assume that demand locations order l units of time in advance of their
desired due-dates at a unit cost of k. From known results, there are two different
release policies. If l is shorter than a critical lead time τc, it is optimal to release all
advance orders when they arrive (i.e. l units of time in advance). Otherwise, advance
orders should be delayed by l− τc time units and should be released τc units in
advance of their due-dates. Let us consider the case where l < τc. The stationary
distribution of the outstanding number of orders can be obtained explicitly when IO
is positive.
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P(IOi = j) = e−µ(1−ρ)l(1−ρ)ρ j for j = 0,1,2, ...

Unfortunately, because supply lead times are random, IO is not always non-
negative. Some orders are released in advance and experience shorter supply lead
times than planned and may reach the inventory before their-due dates. This com-
plicates the analysis but the optimal base stock level for a given location can still be
obtained by the critical fractile, yielding:

S∗ =

{⌊
log(1−α ′)

log(ρ) + µ(1−ρ)l
log(ρ)

⌋
if l < τc

0 otherwise.

In addition, the critical demand lead time τc is given by ([27]):

τc
NIS =

− log(1−α ′)
µ(1−ρ)

. (11)

To advance the analysis, let us first assume that the demand lead time l is longer
than the critical value τc. Using the results from [28], for the expected optimal profit
per unit time of a given location we can write:

E[Π ] = (r−w)λ +h log
(
1−α ′) ρ

1−ρ
− k.

If investment is made at n locations, the total expected profit per unit time is:

E[Πn] = N(r−w)λ +nh log
(
1−α ′) ρ

1−ρ
− (N−n)

log(1−α ′)
log(ρ)

− k. (12)

The expected optimal profit is linear in n and the optimal investment threshold
is:

k̄NIS =−h log
(
1−α ′)

(
ρ

1−ρ
+

1
log(ρ)

)
. (13)

It can be verified that the above term is always non-negative for 0 < ρ < 1.
Next, we explore the expected profits in the case of short demand lead times

(l < τc). Again using the results from [28], we have:

E[Π ] = (r−w)λ −h
(

log(1−α ′)
log(ρ)

+
(

µ(1−ρ)
log(ρ)

+λ
)

l
)
− k.

If ADI investment is made at n locations and the remaining locations use the
previous ordering policies, the total profit of the system becomes:

E[Πn(S∗)] = N(r−w)λ −Nh
(

log(1−α ′)
log(ρ)

)
+hn

((
µ(1−ρ)
log(ρ)

+λ
)

l
)
−nk.
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The above expression is linear in n and all-or-nothing investment is again opti-
mal. The threshold for making the full investment is obtained to be:

k̄NIS =−h
(

µ(1−ρ)
log(ρ)

+λ
)

l.
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Fig. 2 Effect of processing rate on the optimal investment threshold varying service rates and for
three different demand leadtimes

We can summarize the investment threshold result as follows:

k̄NIS =




−h

(
µ(1−ρ)
log(ρ) +λ

)
l if l < − log(1−α ′)

µ(1−ρ)

−h log(1−α ′)
(

ρ
1−ρ + 1

log(ρ)

)
otherwise

The effects of various parameters on the investment threshold are less clear than
the case of uncapacitated systems. To gain some insights, we take a numerical ex-
ample with h = 1, b = 10, λ = 1 and vary the processing rate µ for three different
lead times l = 20, 40, 60. Figure 2 depicts the optimal investment thresholds. We
see that the investment threshold is non-decreasing in l and in µ . At the same time,
systems with higher demand lead times reach the optimal investment threshold for
lower values of µ . Additional processing capacity does not change the value of ADI
if demand lead times are large.

6.2 With Inventory and Capacity Sharing

Let us now assume that capacity and inventory can be pooled such that all locations
can share the same joint capacity and inventory. Capacity pooling can take place in



Value of ADI 21

different ways but for simplicity we assume that the pooled capacity is modeled by
a single processor that can process items at rate Nµ .

We then perform a similar analysis to Section 6.1. Without ADI, we have a single
server make-to-stock queue with ρ = Nλ/Nµ = λ/µ as before. The optimal base
stock level for this system is equal to the optimal base stock level of a single location
without capacity sharing given in (9). Plugging in this optimal base stock level in
the expected profit function, we find that

E[ΠIS] = Nλ (r−w)−h
⌊

log(1−α ′)
log(ρ)

⌋
.

With ADI, let us first consider the case with long demand lead times (l > τc).
The partial investment case appears difficult to analyze using existing results but we
can investigate the effect of full ADI investment (at all N locations). In this case, the
optimal expected profit only depends on the financial parameters of the problem and
on the average utilization ρ but does not depend on l. The optimal expected profit is
therefore equal to:

E[ΠN,IS] = N(r−w)λ +h log
(
1−α ′) ρ

1−ρ
−Nk.

We then obtain the critical investment threshold for full investment as:

k̄IS =
−h log(1−α ′)

(
ρ

1−ρ + 1
log(ρ)

)

N
.

The above threshold is equal to the corresponding threshold in (12) divided by
N. Inventory and capacity sharing significantly reduce the investment threshold for
ADI. In addition, there is a second difference in the system with no capacity sharing
and the one with capacity sharing. Under capacity sharing, the critical lead time is:

τc
IS =

− log(1−α ′)
Nµ(1−ρ)

.

The above is also N times smaller than the corresponding critical lead time with-
out capacity sharing given in (11). Therefore, under capacity sharing the system
achieves its maximum profit for much shorter demand lead times.

Finally, let us focus on the case with demand lead times of l where l < τc
IS. Once

again, it is not easy to analyze the case with partial ADI investment (investment
at n locations where 1 < n < N). Therefore, we again consider the all-or-nothing
investment strategy. If ADI investment takes place at all N locations, the optimal
base stock level is given by:

S∗ =
⌊

log(1−α ′)
log(ρ)

+
Nµ(1−ρ)l

log(ρ)

⌋
.

The expected profit per unit time then becomes:
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E[ΠN,IS] = N(r−w)λ −h
(

log(1−α ′)
log(ρ)

+
(

Nµ(1−ρ)
log(ρ)

+Nλ
))

−Nk.

We then obtain the following investment threshold:

k̄IS =−h
(

µ(1−ρ)
log(ρ)

+λ
)

l.

This threshold is identical to the corresponding threshold with no inventory shar-
ing. However, the critical demand lead times without inventory sharing are smaller.
To summarize:

k̄IS =




−h

(
µ(1−ρ)
log(ρ) +λ

)
l if l < − log(1−α ′)

Nµ(1−ρ)

−h log(1−α ′)
(

ρ
1−ρ + 1

log(ρ)

)

N otherwise.

7 Summary and Discussion

This section provides a summary of the results for the three different models covered
in Sections 4, 5, and 6. We first investigate the benefits of inventory and capacity
sharing and ADI assuming that ADI has no cost, therefore full investment can be
made. In order to perform a comparison, we use the following three benchmarks:

∆IS = E[ΠNIS]−E[ΠIS]
∆ADI = E[ΠNIS,ADI ]−E[ΠNIS]

∆IS,ADI = E[ΠIS,ADI ]−E[ΠNIS].

∆IS measures the gains from inventory sharing alone and ∆ADI the gains from
ADI alone. Finally, ∆IS,ADI reports the gains when both inventory sharing and full
ADI investment take place. The results are reported in Table 1 for the case of per-
fect demand information where perfect information is taken to be the case of long
demand lead times for systems with replenishment lead times.

Model ∆IS ∆ADI ∆IS,ADI

Newsvendor (N−√N)(r− s)φ(zα )σ N(r− s)φ(zα )σ N(r− s)φ(zα )σ
Exogenous Lead Time (N−√N)(r− s)φ(zα )

√
λL N(r− s)φ(zα )

√
λL N(r− s)φ(zα )

√
λL

Capacitated Supply (N−1)h log(1−α ′)
logρ −Nh log(1−α ′)

(
ρ

1−ρ + 1
log(ρ)

)
h log(1−α ′)

(
ρ

1−ρ + N
log(ρ)

)

Table 1 Gains due to inventory sharing and ADI under perfect information

We observe from Table 1 that the newsvendor case and the case of exogenous
lead times manifest similar behaviour. The benefits of ADI are more significant
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when demand variance for the newsvendor or the supply lead time for the exoge-
nous lead time case increases. The benefits are also increasing in the number of
customer locations. The case of production/inventory systems is different but for a
fixed demand rate, the benefits are increasing in the processing rate and also in the
number of locations N under ADI.

Next, we explore the investment thresholds for the three models considered. We
first summarize the results under perfect ADI in Table 2.

Model NIS IS
Newsvendor (r− s)φ(zα )σ (r−s)φ(zα )σ√

N

Exogenous Lead Time (h+b)φ(zα )
√

λL (h+b)φ(zα )
√

λL√
N

Capacitated Supply −h log(α ′)
(

ρ
1−ρ + 1

log(ρ)

) −h log(α ′)
(

ρ
1−ρ + 1

log(ρ)

)

N

Table 2 Investment thresholds under perfect ADI

It is observed from Table 2 that investment thresholds are smaller under inventory
sharing and are decreasing in the number of customer locations for all three models.
The rate of decrease in the third models is higher. Inventory and capacity pooling
leave little additional benefit to be reaped by using ADI and make ADI investment
less attractive.

Finally, we report a summary of the investment threshold results under imperfect
information in Table 3.

Model NIS Imperfect IS Imperfect

Newsvendor (1−√1− t)(r− s)φ(zα )σ (r−s)φ(zα )
√

(1−t)σ√
N

Exogenous Lead Time (h+b)φ(zα )(
√

λL−
√

λ (L− l)) (h+b)φ(zα )(
√

λ (L)−
√

λ (L−l))√
N

Capacitated Supply −h
(

µ(1−ρ)
log(ρ) +λ

)
l −h

(
µ(1−ρ)
log(ρ) +λ

)
l

Table 3 Investment thresholds under imperfect ADI

The results from Table 3 are similar to those from Table 2. The quality of de-
mand information (or the demand lead time provided by the customers) has a direct
effect on the investment threshold. For production/inventory systems the investment
threshold is identical for small times but it was seen in Section 6.2 that the criti-
cal demand lead times depend on the number of locations. This again leads to the
conclusion that inventory and capacity pooling lowers the need for ADI investment.
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8 Conclusions

We analyzed the impacts of ADI on supply chain profits for structures that allow
resource sharing at the supply stage or not. While each inventory model has its
own specifics and critical parameters, some general principles emerge. ADI is more
valuable when there is a lot of demand variability that can be removed using ADI.
Resource sharing seems to make ADI relatively less valuable precisely for this rea-
son. It enables considerable variability reduction and there is less uncertainty to
be alleviated using ADI. Naturally, this makes ADI investment more likely in de-
centralized systems from an economic point of view. Nevertheless, ADI may have
significant benefits for systems with shared resources.

There is some existing research on providing incentives in return for ADI. How-
ever, most of this research investigates simple supply chains. There still appears
to be room for designing ADI incentive structures/contracts in multi-stage supply
chains under realistic inventory dynamics. The potential cost savings for supply
chains are enormous and more ADI is likely to be shared and used if its benefits can
be shared in a fair manner.
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