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ABSTRACT

We consider the financial hedging of a random operational
cash flow that arises in inventory operations with price
and demand uncertainty. We use a variance minimization
approach to find a financial portfolio that would minimize
the total variance of operational and financial returns. For
inventory models that involve continuous price fluctuations
and price-dependent demand that arrives in continuous time,
we characterize the minimum-variance hedging policies and
numerically illustrate their effectiveness.

0.1 Introduction

We consider a firm that is running inventory operations in an envi-
ronment with input and/or output price uncertainty in addition to
uncertain demand. There are significant risks in such an environment
and effective risk management is essential.

Financial hedging is one way of managing inventory operations risks
under price and demand volatility. The objective is to manage downside
operational risks by keeping a portfolio of financial instruments to
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exploit possible correlations with the operational cash flows. We focus
on such a formulation where the random operational cash flow is given
and the goal is to find a an appropriate financial portfolio that would
enable better controlling downside risks. In particular, we investigate a
minimum-variance approach to determine an optimal financial portfolio
that minimizes the variance of the total (operational + financial) returns.
Although there are other approaches for risk management, the minimum-
variance approach leads to intuitive and explicit solutions even for fairly
complicated operational cash flows.

Financial hedging of operational risks is a rapidly growing topic
in the operations literature. We will not attempt a full review of this
literature here but briefly introduce some recent papers. Gaur and
Seshadri (2005) consider hedging demand risk in a newsvendor problem.
They characterize optimal hedges in case of both perfect and partial
correlations. Caldentey and Haugh (2006) introduce a continuous-time
modeling framework for dynamically hedging operational risks. In a
multi-period setting, Kouvelis et al. (2013) investigate an inventory
system where a volatile spot market is used for immediate procure-
ment and liquidation alongside with long-term procurement contracts.
The authors characterize optimal procurement and portfolio decisions
with and objective of maximizing inter-period mean-variance utility by
investing in financial securities written on the commodity price.

Our operational focus is on price fluctuations and their effects on
inventory operations. This is a well-investigated problem in operations
management literature. To mention a few papers, Kalymon (1971)
investigates a periodic-review inventory system where the purchase
price follows a Markov process. Berling and Martinez-de-Albéniz (2011)
consider a continuous-review system with Poisson demand arrivals and
input prices following a two-factor price process. Matching each unit
bought with a demand arrival, they characterize base-stock levels as
a series of two thresholds and analyze the effect of price evolution on
optimal policy. Haks6z and Seshadri (2007) review supply chain systems
that involve spot market procurements where spot prices fluctuate
randomly. Inderfurth and Kelle (2011) analyze the management of two
alternative procurement sources, capacity reservation and spot markets.
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In Section 0.2, starting from more simpler models, we analyze
minimum-variance hedging applications on different types of cash flows
with a consideration of continuous price fluctuations at the end. In
Section 0.4, we present a numerical study that illustrates the effects of
variance-minimizing investments on risk reduction. Lastly, in Section
0.5, we give some concluding remarks and perspectives.

0.2 Minimum-Variance Hedging

In this section, we demonstrate the general minimum variance approach
in a case where a firm invests in an operational project at time t = 0
which has random return X at the end of the investment horizon ¢ = T
The firm can also choose to invest in a financial asset whose return S
at the end of the horizon is random and proportional to the invested
amount «. The total return from the asset at time 7" is therefore a.S. To
simplify the investment problem, let us further assume that E[S] = 0.
Therefore, E[X + aS] = E[X] and investing in the asset in addition to
the operational project does not improve expected total returns. On
the other hand, investing in the asset S does alter the variance of the
total return Var(X + a.S). We use this simple setup to benefit from the
investment in the financial asset to minimize the variance of the return
if X and S have non-zero correlation. Let us denote by Cov(X,S) the
covariance between X and S and by px g the corresponding correlation
coefficient. Then, we solve the following optimization problem:

min Var(X + aS).
This results in:
Var(X + aS) = Var(X) + o*Var(S) + aCov(X, S).

This is a convex function and the minimizing value of « is given by:

Cov(X,S)
T Var(S) (1)

*

«a* is the optimum investment amount in the financial asset that
enables the smallest variance of the total return. We can then charac-
terize the reduction in variance between the unhedged operational cash



flow X, and the optimal hedged cash flow X + o*Y":
A=Var(X)—Var(X +a*S) = pg(,SVaT(X)

and the relative reduction in variance with respect to the unhedged
cash flow is

Ar=A/Var(X) = ps. (2)

Observing the characterization given in (1), it is clear that if there
is a negative correlation between the random operational payoff and
external investment yield, then one should buy a* units of S. Similarly,
in the case of positive correlation, one should shortsell a* units of S, if
possible, in order to minimize the cash flow variance. We also note from
(2) that the relative reduction in variance is completely characterized
by p%(’ g- In the extreme case of perfect positive or negative correlation
between X and S, i.e., px,g =1 or px,s = —1, one can achieve a 100%
reduction in variance.

The idea of minimum-variance hedging can also be extended to the
case where there are multiple external investment opportunities. Let
us assume that there are n of them available. Defining the net returns
of these investments by the column vector S = {S1,S5s,...,5,} and
investment amounts by the column vector a = {a, ag, ..., a, }, one can
write the objective function as

min Var(X +a’Y) = Var(X) + o’ Ca + 22" Cov(X,S)  (3)

where C' is the covariance matrix between net returns from investment
options and Cov(X, S) is the covariance vector of operational return
X and investment returns. Note that objective function given in (3) is
also convex in « (C' is always semidefinite) and the variance-minimizing
investment amounts are given by the vector

of = —C'0ov(X, S). (4)

It is clear from (4) that no other information than the covariance
matrix of external investment returns and the covariance vector between
operational and external returns is needed to calculate the hedge that
minimizes the variance of the final cash flow.
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0.3 Minimum-Variance Hedging in Inventory Operations

0.3.1 Newsvendor Model

The minimum-variance hedging framework can easily be applied to
settings involving inventory operations. To demonstrate the application,
we first consider the case of a newsvendor who buys items at ¢ per unit
at t = 0 and sells them at a per unit selling price of p. Demand D is
realized at time T'. The well-known newsvendor problem is to determine
the order quantity in order to maximize the expected net cash flow (or
possibly some other function related to the cash flow). For our purposes,
we focus on the cash flow for a given order quantity. Assuming a unit
penalty cost of b, the random return as a function of ordering decision
y can be written as

CF(y, D) = —cy + pmin(D,y) — b(D —y)*. (5)

Rearranging the terms, one can write the covariance between the return
from operations CF(y, D) and return from ith alternative investment
S; as a function of operational decision y as

wi(y) = (b+ p)Cov(min(D,y),S;) — bCov(D, S;).

Then, following (4), the minimum-variance hedge as a function of y can
be written as

a*(y) = —C™ u(y) (6)
where p(y) = {u1(y), ..., un(y)} is a column vector.

The above expression characterizes the variance minimizing port-
folio for a newsvendor. More details on the newsvendor application of
minimum-variance hedging framework can be found in Okyay et al.,
2014 who also investigate additional cases of random supply.

0.3.2 Hedging Fluctuating Price and Demand Risks

One can also utilize minimum-variance hedging on more complicated
operational settings that involve both demand and price risks. To
illustrate this, assume now that the demand is not realized only at T,
but rather it is generated by an arrival process that is affected by the



random prices until time T'. Let us assume that there is a continuous
price process P = {P;;t € [0,T]} which describes the purchase price for
the item and affects sales prices. More specifically, assume that ¢ = Py is
the purchase price and the item is sold to nth arriving customer at a unit
price of f(Pr,) where f is a positive selling price function. Unit demand
arrives continuously according to a Poisson process with rate A(P;) and
in case of shortage, the customers are backordered to be satisfied at
time T and the selling price is set and paid at the time of customer
arrival. Let us denote the arrival process as N = {Ny;t € [0,T]} where
N; denotes the number of customers that arrived until time ¢ and let
T = (T1,..,Tn,) denote the corresponding arrival times. Assuming,
without loss of generality, that there is no time value of money, one can
write the cash flow accumulated until time T" as

Nt
CF(y,N,P) = —cy+Zf(PTj) — b+ Pr)(Np—y)* (7)
j=1
where the first term is the total purchase cost for y units, the second
term is the total accumulated revenue from sales and the last term is
the total backorder and repurchase cost. Note that the newsvendor cash
flow given (5) is a special case of (7) where P, = p and f(.) = p.

The apparent risks involved in firm’s cash flow in (7) arise from
randomly fluctuating prices and random customer arrival times (i.e.,
random demand). In this setting, the risk that the firm bears spans the
entire horizon and a minimum-variance hedge should also reflect this
as it exploits all existing correlations. Here we assume that given the
random prices during [0, 7], customer arrival process is conditionally
independent from S, random return of investment alternatives. In this
case, the minimum-variance hedge is given by (6) and the covariance of
returns from inventory activities and ¢th investment alternative is

T
pi(y) = [ Covls (P) NP}, Si)du = Cov ((b+ Pr) (Nr = 9)*,5,)
0

(8)
Note that continuous price fluctuations and customer arrivals responding
to these changes throughout the sales horizon is reflected in the result
given in (8), which considers possible correlations at all points in [0, 7] .
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There are several advantages in utilizing the minimum-variance
framework in general operational settings. Intrinsically, the financial
hedge, quantified by « is dependent on the operational decision y but
the operational decision which may depend on other longer term factors
does not depend on the financial portfolio. This underlines the fact
that the operation is the main focus and know-how of the firm and
the financial hedge is a support to the operation and may be provided
separately if operational parameters are shared. We can then further
specialize to explore different trade-offs. In particular, one consistent
benchmark is to take operational decisions that maximize the expected
unhedged cash flows E[C'F(y, N, P)] and find the corresponding optimal
financial hedge.

Next, we investigate a special application involving futures, one of
the most extensively used financial contracts for risk hedging.

Special Case: Hedging with Futures

Assume that S is a fairly priced future on Ppr with random return
S = Pr — Py (Baxter and Rennie, 1996). For the operational setting,
assume that customer arrival process N is independent from the price
process P with A(P;) = A. This, in turn, implies that N and S are
independent which means that only price-related risks can be reduced
by investing in the future while the demand risk remains unchanged.
By (1) and (8), one can calculate the minimum-variance hedge in this
particular case by

T
@*() = B [V )*] = 2 [ g (9)
0

where

_ Cov(£(P).Pr)
be = Var (Pr)

Note that (9) characterizes the optimal number of future contracts to
be bought or sold in order to minimize the variance of the final cash
flow when the order-up-to level is y at time 0. The two components in
a* respectively hedge the random repurchase cost and the total revenue

from sales in (7). The decision maker should take a [(NT - y)ﬂ units



of long position on the future in order to eliminate the price risk in
the repurchase of backordered items. One can not fully eliminate the
risk associated with (Np — y)+ by investing in the future, since NV is
independent of S. The last term, on the other hand, partially eliminates
the price related risks in the operational cash flow as only a single
future contingent on Pr is used for hedging, whereas the revenue term
is affected by price changes during [0, 7]. Moreover, it is observed from
(9) that the higher the order level y, the lower a* since total backorders,
hence the repurchase risk decreases in order quantity.

0.4 Numerical Analysis

In this section, we present some numerical illustrations that reveal the
extent of risk reduction on the random operational cash flow when
alternative correlated external investments are used. In the following
numerical setup, we use a geometric Brownian motion process to model
sudden and continuous price changes. For the investment alternatives,
we use two different derivatives contingent on the value of Pr, which
are a future and a European call option. A unit of future bought at
time 0 with maturity date T gives a payoff of S1 = Pr — Py at time
T. On the other hand, a call option with strike price K and maturity
date T yields the net payoff So = (P — K)© — Eg {(PT - K)ﬂ where
the former term is the payoff obtained from exercising the option and
the latter is the fair-price of this call option at time 0. Note that Q
is the equivalent martingale measure (risk-neutral measure) of price
process P. To simplify, (and to isolate the effect of price volatilities), we
assume that P is already a martingale, i.e., it does not yield a positive
(or negative) payoff in expectation. In particular, we assume that

Pt — Poe—%O'Qt—i-U\/ZWt

where W is a Wiener process with F [W;] = 0 and Var(W;) = t. Note
that E (P;) = P for all t > 0. We use the following operational and
financial parameters. Py = ¢ = 20, f(p) = 2p, b = 4, K = 20 and
next we will use various volatility ¢ values. For the customer arrivals,
we assume a piecewise linear arrival rate function A(z) = (A — Bx)™,
where A =90 and B = 0.7.
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Figure 1: Effect of Price Volatility on Risk Reduction

With the above parameters, we analyze the effect of using a future
and/or and option on cash flow risk with respect to magnitude of price
volatility. For a consistent benchmark, we use ordering quantities that
maximize the expected total unhedged cash flow, i.e., y*. In Figure 1,
it is observed that using the future yields a greater reduction on the
standard deviation of the cash flow compared to using the call option
with strike price K = 20 for all price volatility component values ranging
from o = 0.1 to 0 = 0.8. It is also clear that the greatest risk reduction
is observed when simultaneously investment takes place in both the
future and the option. Note that since the underlying price process P is
assumed to be a martingale, both derivatives are also martingales and
fair-priced which means that they do not add anything on the expected
value of the cash flow. Yet, we observe that the mean return of the
cash flow is decreasing with respect to price volatility due to changes in
the value of E [P, A(P;)] and the changes in the expectation-maximizing
ordering quantity y* with respect to the magnitude of price fluctuations.
Note that the main driver of the decrease in mean return is that any
price increase which makes A(P;) = 0 implies that demand arrivals halt
and this is more likely to occur when prices fluctuate more.
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When Only a Future or a Call Option is Available
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Figure 2: Sensitivity of Minimum-Variance Hedges to Price Volatility

Figure 2 shows the optimal amount securities to buy (or shortsell)
to minimize the cash flow variance for both cases where there is simulta-
neous use of the future and the call option or not. When either of them
is used, it is observed that it is optimal to shortsell a specific amount of
these securities where the optimal number of transactions increase as
prices get more volatile. When investing in both of them at the same
time, we observe that opposite financial positions are taken on these
two investment alternatives. In particular, it is optimal to shortsell a
specific amount of future while buying a specific amount of the call
option at the same time. The number of transactions made on both of
these securities increase as price volatility increases.

0.5 Conclusion and Perspectives

In this paper, we formulated minimum-variance hedging problems and
characterized optimal hedges for demand and price risks in inventory
problems. Optimal hedges reflect the effect of price changes on the
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cash flow throughout the sales horizon. In a numerical experiment, it is
observed that using a future is a more effective tool than using a call
option and amount of the optimal hedges decrease as price volatility
increases. If both securities are available at the same time, then greatest
reduction in risk is observed by taking opposite financial positions.

This discussion also reveals that a nice feature of the minimum-
variance formulation is that it leads to a structured optimization problem
whose solution can be obtained explicitly even for complicated price
and demand processes. More precisely, it provides a tractable character-
ization that works for any operational decision (i.e., ordering quantity).
This idea can also be extended to the case where the decision maker
has dynamic hedging opportunities to revise his initial investment over
time by observing newly acquired information on price and demand.
This case is presented in Canyakmaz et al., 2017 where the authors
investigate dynamic financial hedging for both single and multi-period
inventory systems involving continuous price fluctuations.

It is also useful to contrast the minimum-variance approach with the
well known mean-variance optimization objective that investigates the
trade-offs between the expected payoff and its variance. For a complete
understanding of the mean-variance type risk trade-off, one needs to
trace the efficient frontier of non-dominated solutions. By definition,
the minimum variance approach yields minimum variances for each
operational policy. If the operational policy space is small and structured
(such as order-up-to or base-stock policies), one can computationally
explore non-dominated mean-variance policies and trace the efficient
frontier by searching over this space for all minimum variance policies.

This line of research can be also be extended to operational settings
where sales prices are also affected by the firm’s decisions. An interesting
case is the consideration of both financial hedging and sales markup
decisions on top of fluctuating prices for different objective functions.
Another possible direction is to consider the case where the decision
maker has a budget constraint when investing in external alternatives.
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