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Abstract

The purpose of this paper is to investigate the structural properties of the optimal batch

acceptance policy in a Markovian queueing problem where different classes of customers arrive

in batches and the buffer capacity is finite. We prove that the optimal policy can possess

certain monotonicity properties under the assumptions of a single-server and constant batch

sizes. Even though our proof cannot be extended to cases where either one of the assumptions

is relaxed, we numerically observe that the optimal policy can still possess the same properties

when only the single-server assumption is relaxed. Finally, we present counter examples that

show the non-monotone structure of the optimal policy when the constant batch size assumption

is relaxed.

1 Introduction

Buffer capacity control in production and service systems addresses optimal allocation of fixed

buffer resources to different demand segments. Since this objective can be achieved by admission

control policies which determine when to accept or reject different segments, this class of control

problems has received a lot of attention in the queueing literature. An interesting problem within

this class is the case where the customers arrive in batches. In the models with batch arrivals, two

types of control policies can be employed: a partial acceptance policy in which some of the jobs in

a batch can be admitted while the rest are rejected or a batch acceptance policy where the system

can either admit or reject the whole batch. In our study, we focus on a batch acceptance problem in

a system where the buffer capacity (i.e. the waiting space) is finite and several classes of customers

differing in their rewards arrive in batches. We note that we will refer to systems with finite buffer
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capacity as capacitated systems. Moreover, the system incurs a holding cost per customer per unit

time. The objective of the problem is to maximize the expected total discounted profit over an

infinite horizon as well as the expected long-run average profit.

Admission control problems of queueing systems have been studied extensively in the literature.

For comprehensive reviews on queueing control problems and their applications on communication

networks, we refer to Stidham (2002) and Altman (2002), respectively. Most of the earlier studies

focus on systems where customers arrive individually. These systems can further be grouped into

two, as systems with no waiting room (which we will refer to as loss systems) and systems with

infinite waiting room (which will be referred to as uncapacitated systems). Altman et. al. (2001),

Örmeci et. al. (2001), Savin et. al. (2005), Gans and Savin (2004) and Örmeci and van der Wal

(2006) fall into the former group, whereas Stidham (1978), Ghoneim and Stidham (1985), Stidham

(1985) and Blanc et. al. (1992) consider systems in the latter group. All these studies investigate

mainly the structure of optimal admission control problems and prove the optimality of threshold

policies.

Admission control problems in queueing systems receiving batch arrivals have been studied as a

natural extension of the single arrivals case. Moreover, considering batch arrivals allows to observe

the system where customers request more than one resource. When partial acceptance is employed

as the control policy, the optimality of threshold policies is shown in several studies; see Örmeci

and Burnetas (2004) and Örmeci and Burnetas (2005) for loss systems, see Kulkarni and Tedijanto

(1998) for capacitated systems, and see Stidham (1978), Langen (1982) and Helm and Waldmann

(1984) for uncapacitated systems. On the other hand, the structure of an optimal batch acceptance

problem is analyzed only for an uncapacitated system, where Artiges (1995) shows the optimality

of a threshold policy for a discrete-time queueing system with constant batch size. In this paper,

our aim is to classify the set of continuous-time Markovian capacitated systems for which this result

can be extended. It is well-known that boundaries have a strong effect on the structure of optimal

policies. In particular, Örmeci and Burnetas (2004) provide an example of a loss system using

batch acceptance policy, which does not possess any monotonicity property. In a related control

problem, Kim and van Oyen (1998) denote that even though the well-known cµ rule is shown to be

optimal for many dynamic scheduling problems of uncapacitated systems, it may not be optimal

for equivalent scheduling problems of capacitated systems. We note that the cµ rule is a simple

index rule, which always serves an available job with the largest cµ index; where c is the waiting

cost per unit time and µ is the service rate.
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As a result, we examine the structure of batch acceptance problems in several capacitated

systems. We first investigate the optimal policy in a single-server queue with identical batch sizes

for each class and show the optimality of a threshold policy. Unfortunately, our proof cannot be

extended to other capacitated systems when any one of the two assumptions, i.e., the single server

and the constant batch size, is relaxed. However, we observe through many numerical examples that

threshold policies are still optimal for multi-server systems. Finally, we present counter-examples

to underline that such monotonicity properties may not exist whenever the constant batch size

assumption is relaxed. Hence, we conclude that optimal threshold policies exist for capacitated

systems only if the batch sizes are identical for all customer types.

The rest of the paper is organized as follows: In the next section, we build the corresponding

Markov decision process (MDP) model of the single-server system with constant batch size. We

present the structural properties of the model and the optimal actions in the third section. In

section 4, we examine the problem when the single-server assumption is relaxed. Section 5 presents

counter examples to the monotonicity property of the optimal policy when the constant batch size

assumption is relaxed. Finally, we conclude in the last section.

2 MDP Model

In this section, we build a discrete-time Markov decision process (MDP) for a system employing a

batch acceptance policy. We consider a single server queue with waiting room capacity (including

the server), K, and N classes of customers. Arrivals occur according to a Poisson process with

rate λ. At each arrival epoch, the probability that an arriving batch consists of class-j customers

with j = 1, . . ., N is pj and the batch size, B, is the same for all classes of customers. Whenever a

class-j batch is admitted to the system, it brings a reward of Rj > 0 upon its arrival. Without loss

of generality, we assume that rewards are ordered as R1 ≥ R2 ≥ · · · ≥ RN . The service times of

all admitted customers are exponentially distributed with mean 1/µ, regardless of the class of the

customer. Moreover, the queue owner incurs a holding cost per unit time as a function of the queue

size. We are interested in dynamic admission policies that maximize the total expected discounted

profit with a continuous discount rate β over an infinite horizon as well as the long run average

profit.

Under any given batch acceptance policy, π, the system evolves as a continuous time Markov

chain with state X(t), where X(t) is the number of customers in the system at time t. Then, the
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state space, S, is the set of non-negative integers less than or equal to K, i.e., S = {x : 0 ≤ x ≤ K}.
If we denote the number of class-j customers admitted to the system under policy π until time t

by Nj(t), the expected total discounted profit of the system starting in state x is given as follows:

Eπ
x




N∑

j=1

∫ ∞

0
e−βtRjd(Nj(t))−

∫ ∞

0
e−βth(X(t))dt


 , (1)

where h(X(t)) is the holding cost per unit time when there are X(t) customers in the system.

The objective of the problem is to find the optimal policy π∗ that maximizes Eπ
x[.]. To achieve

this aim, we first build the discrete time equivalent of the original system. Since we can interpret

discounting as exponential failures with rate β, the arrivals occur according to a Poisson process

with rate λ, and the mean service rate is µ, the maximum rate of transition is λ + µ + β, which

is finite. Therefore, we can use uniformization (Lippman, 1975) and normalization to build the

discrete time equivalent of the original system. After uniformization and normalization, we assume

that the time between two consecutive transitions is exponentially distributed with rate λ + µ + β,

and using the appropriate time scale, assume that λ + µ + β = 1.

We use the event-based dynamic programming framework introduced by Koole (1998) to define

the value function of the system and show some structural properties of the value function. This

formalism establishes that if certain event operators, T , satisfy some structural properties under

given assumptions, then the value function of the models which can be constructed by using these

operators will also satisfy the same structural properties under the same assumptions. Therefore,

we build our model as the combination of the operators: departure (TDEP ) and batch arrival

(TB ARR(j)). Since the class of the arriving batch is random at each arrival epoch we let the batch

arrival operator depend on the class of the arriving batch. In this operator, the states reached as a

result of the action taken are the same for all types but the rewards are different for each type of

batches.

As we mentioned before, we will describe the structural properties of a system which operates

over an infinite horizon. For this purpose, we first prove the structural properties with the objective

of maximizing the expected total β-discounted reward for a finite number of transitions, n. The

finite horizon problems allow us to use induction to prove the structural properties for all finite

n. To start the induction we specify the initial function v0 as v0(x) = 0 for all x. We denote the

maximum expected total β-discounted reward of a system starting in state x when n transitions

remain by vn(x) and present the optimality equation of the finite horizon problem as,
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vn(x) = µTDEP vn−1(x) + λ
N∑

j=1

pjTB ARR(j)v
n−1(x)− h(x) (2)

where,

TDEP v(x) =





v(x− 1) if x > 0

v(x) x = 0,

TB ARR(j)v(x) =





max {Rj + v(x + B), v(x)} if x ≤ K −B

v(x) if x > K −B,

where h(x) is increasing and convex in x.

We first concentrate on maximizing the total expected β-discounted reward over an infinite

horizon. Since both the state and action spaces are finite and the rewards are bounded, there is

always an optimal stationary policy due to Theorem 6.2.10 of Puterman (1994). Moreover, this

policy can be computed by the value iteration algorithm. Then, all our results for finite horizon

problem can be extended to infinite horizon problem with discounting. Specifically, v(x) denotes

the value function for the infinite horizon expected discounted reward. Thus for β >0,

v(x) = lim
n→∞ vn(x).

Besides the discounted reward criterion, we can also consider the criterion of maximizing the

expected long-run average reward. In this case, we need to define the relative value function, v′(x),

and the optimal expected revenue per unit time, g∗. Then, the optimality equation for the average

reward criterion is,

g∗ + v′(x) = µTDEP v′(x) + λ

N∑

j=1

pjTB ARR(j)v
′(x)− h(x)

In addition to the finite state and action spaces and bounded rewards, the corresponding model

is unichain since the state 0 is reachable under all possible policies and it is aperiodic due to the

fictitious service completions in x = 0. Thus, Theorem 8.4.5 of Puterman (1994) guarantees the

existence of an optimal stationary policy for the long-run average problem and the validity of the

value iteration algorithm to find this policy. Furthermore, Weber and Stidham (1987) establish

that the long-run average problem can be obtained as the limit of the infinite horizon discounted

problem as β → 0 under some specific conditions. The model considered in this section satisfies all

of these conditions, so that all results for the infinite horizon problem with discounting hold also

for the long-run average problem.
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3 Single-server Case with Constant Batch Size: Structure of the

Optimal Policy

The first structural property on which we focus is the monotonicity of the value function in x for

all states x, explicitly v(x) ≥ v(x + 1). We can iterate on this property to obtain v(x) ≥ v(x + B)

which means that admitting an arriving batch induces a positive burden in the system. This is a

natural consequence of collecting the rewards immediately upon admitting a batch: The customers

already in the system do not generate any additional reward, instead they prevent the system to

accept new customers who will bring some reward. We refer to this burden, v(x)−v(x+B), as the

opportunity cost of admitting a new batch. In many queuing system problems, the opportunity

cost affects the optimal decisions, while the monotonicity of the opportunity cost implies optimal

threshold policies in the admission control problems. Therefore, we also work on the monotonicity

of the opportunity cost. To simplify the notation, we define ∆Bf(x) as ∆Bf(x) = f(x)− f(x + B)

for any function f defined on S. We first prove that the operators preserve the monotonicity

properties of both v(x) and ∆Bv(x) in order to prove the properties for the whole system. The

following lemma summarizes our results on the monotonicity properties preserved by the operators,

and its proof is placed in the appendix.

Lemma 1 Assume that v(x) is non-increasing and ∆Bv(x) is non-decreasing in x. Then, Tv(x)

is non-increasing in x and ∆BTv(x) is non-decreasing in x for T=TDEP and T=TB ARR(j) for all

j=1,. . . ,N.

Now, we observe that the same monotonicity properties hold for the value function: We first

prove the properties for vn(x) for all n by induction. As a result of the specification that v0(x) = 0

for all x, the initial condition of the induction holds for all x. Then, we assume that vn−1(x) ≥
vn−1(x + 1) and ∆Bvn−1(x) ≤ ∆Bvn−1(x + 1) and prove the same inequalities for vn(x). Since we

use event-based dynamic programming, these inequalities hold for vn(x) due to Lemma 1 and the

monotonicity and concavity of h(x). Hence, we complete the proof of the monotonicity properties

for vn(x) and ∆Bvn(x) for all n. Since v(x) = limn→∞ vn(x), we conclude that the value function,

v(x), in this model is also non-increasing in x, and similarly ∆Bv(x) is non-decreasing in x. The

same results are also valid for the average reward criterion.

Finally, we state the effects of the monotonicity of the value functions and the opportunity costs

on the optimal policies: Let l∗j = min {x : v(x)− v(x + B) ≥ Rj}, where we set l∗j = K − B + 1 if
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there is no such x, so that, it is optimal to reject a class-j batch in state l∗j . Since the opportunity

cost of an arriving batch, ∆Bv(x), is non-decreasing in x, the opportunity cost of admitting a class-j

batch will continue to exceed the reward obtained by admitting this batch in all states x ≥ l∗j and

thus, it is not worth admitting these batches. Therefore, the optimal batch acceptance policies for

any class j are of threshold type. Moreover, if the reward obtained by admitting a class-j batch

is higher than the reward of a class-i batch, then the optimal threshold of class j will be also

higher than that of class i as a result of the definition of l∗j . The following theorem summarizes our

structural results for the discounted problem, which are also valid for the average reward criterion.

Theorem 1 In the given model, v(x) ≥ v(x+1) and ∆Bv(x) ≤ ∆Bv(x+1), and for every j, there

exists a threshold value, 0 ≤ l∗j ≤ K −B + 1, such that an arriving class-j batch is admitted if and

only if x < l∗j . Moreover, l∗j ’s are monotone in j, i.e., l∗1 ≥ l∗2 ≥ · · · ≥ l∗N .

4 Multi-server Case with Constant Batch Size: Numerical Study

In this section, we investigate the structure of optimal batch acceptance policies when we relax

the single-server assumption so that the system has c identical parallel servers. In this case, our

methodology to prove the monotonicity of ∆BTDEP v(x) requires the concavity of v(x), i.e., v(x)−
v(x + 1) ≤ v(x + 1) − v(x + 2); and unfortunately we have seen many examples in which v(x)

is not concave: Consider a system with 6 identical and parallel servers, 2 classes of batches and

no holding costs, i.e., h(x) = 0 for all x, where the parameters are set, before normalization, as

K = 15, B = 5, R1 = 5, R2 = 10, p1 = 0.75, p2 = 0.25 and λ = 100, µ = 17 and φ = 0. The

value function v(x) is not concave for this system. As a result, our methodology fails to prove

the monotonicity of ∆BTDEP v(x). This implies that we cannot prove the monotonicity of the

opportunity cost, ∆Bv(x), and so the existence of an optimal threshold policy. On the other hand,

we have not observed any counter-examples to the monotonicity of ∆Bv(x) in our comprehensive

numerical study.

In the numerical study, we consider a multi-server queue with 2 classes of customers and no

holding costs, where we fix K = 15, λ = 100, B = 5, and R2 = 10. Then we let µ change in

range [1,250], R1 in range [1,50], the number of servers, c in range [2,6], all with increments of 1,

and p1 in a range [0.01,0.80] with 0.01 increments. In this way, we generate 5,000,000 different

instances, and observe that in all these instances ∆Bv(x) is non-decreasing in x and the optimal

policy is a threshold policy. Our intuition also agrees with these observations: Whenever the batch
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sizes are identical, all classes use the available capacity in the same way, so that the only criterion

to compare different classes is their rewards, which naturally induce the same order in admission

control. Based on this intuition and the numerical evidence, despite the lack of proof, we can state

the following conjecture:

Conjecture 1 In a multi-server queue with constant batch sizes, there exists a threshold value for

every j, 0 ≤ l∗j ≤ K − B + 1, such that an arriving class-j batch is admitted if and only if x < l∗j .

Moreover, l∗j ’s are monotone in j, i.e., l∗1 ≥ l∗2 ≥ · · · ≥ l∗N .

5 Random Batch Size: Counter Examples

In this section, we present counter examples to show that optimal batch acceptance policies do not

have any structural properties when the constant batch size assumption is relaxed. Differences in

batch sizes bring a new criterion to evaluate the classes, namely how the classes use the available

resources. This criterion is quite different than the rewards, as the value of classes may change

drastically when most of the resources are being used, i.e., when the system state is close to the

boundary. In all capacitated systems, boundary effects are observed. In systems with constant

batch sizes, these effects are identical for all classes, so that they affect optimal admission policies

only in a monotone way. For systems with random batch sizes, on the other hand, the boundary

effects on different classes depend on their batch sizes, which, in turn, induce non-monotonicity

on optimal admission policies. The following examples show these non-monotone effects first in a

single-server system, then for a multi-server system.

5.1 Single-server Case

In this example, we observe the optimal batch acceptance policy of a single-server queue with two

classes of customers, and no holding costs. Class-1 customers arrive in 5-unit batches whereas

class-2 customers arrive in 1-unit batches. The parameters are: K = 8, λ = 10, p1 = 0.7, p2 = 0.3,

R1 = 50, R2 = 10, µ = 1/2, φ = 1.

As it can be seen in Table 1, the optimal policy accepts both classes whenever it can, except for

state 3. In this state, the policy rejects the class-2 customers in order to wait for a 5-batch, which

will fully use the resources. If one small job is accepted in state 3, most of the capacity will stay idle

until many class-2 customers arrive at the system. Therefore, the optimal batch acceptance policy
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# of customers Optimal policy Optimal policy

in the system for class 1 for class 2

0 1 1

1 1 1

2 1 1

3 1 0

4 0 1

5 0 1

6 0 1

7 0 1

8 0 0

Table 1: The optimal batch acceptance policy for single-server queue and random batches

does not possess any monotonicity property when we consider a single-server queue and random

batches.

5.2 Multi-server Case

In this case, we only change the number of servers from 1 to 3 and the waiting room capacity

from 8 to 20 in the previous example and observe that the system rejects class-2 customers only in

state 15. In other words, the optimal policy still does not possess any monotonicity property. The

intuition behind this result is the same as the previous one.

6 Conclusion

The aim of this study has been to characterize the set of capacitated systems for which there exist

optimal batch admission policies that are of threshold type. We are able to show the existence of

optimal threshold policies for systems with single servers and constant batch sizes, while we have

strong numerical evidence that this result extends to multi-server systems with constant batch sizes.

Finally, when the batch sizes differ, we know that optimal batch admission policies do not have

any monotone behavior in general as evidenced by the counterexamples. Hence, we can conclude

that the set of capacitated systems with monotone batch admission policies is restricted to those

receiving batches with identical batch sizes. As a result, this paper presents a complete analysis of

capacitated systems which employ batch admission policies addressing all monotonicity questions

regarding optimal policies.
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Appendix

A Proof of Lemma 1

A.1 Monotonicity of TDEP v(x) and ∆BTDEP v(x)

Due to the definition of the departure operator, the operator preserves the structural properties

of v(x) whenever x > 0. Therefore, the proof of Lemma 1 for TDEP is trivial whenever x > 0.

However, we have to show that equations (3) and (4) also hold for x = 0 in order to complete the

proof of the lemma:

TDEP v(0) ≥ TDEP v(1) (3)

TDEP v(0)− TDEP v(B) ≤ TDEP v(1)− TDEP v(B + 1) (4)

Equation (3) can be rewritten as v(0) ≥ v(0) by using the definition of the operator, which is

obviously true. Similarly, we can write equation (4) as v(0)− v(B − 1) ≤ v(0)− v(B) and it holds

by the monotonicity of v(x). Therefore, both equation (3) and (4) hold and the proof of Lemma 1

for the departure operator is completed. 2

A.2 Monotonicity of TB ARR(j)

In this proof, we show the monotonicity of TB ARR(j)v(x) when v(x) is non-increasing in x. In other

words, we want to prove the following inequality for all j = 1, . . . , N .

TB ARR(j)v(x) ≥ TB ARR(j)v(x + 1) (5)

We first compare the states x and x + 1, so that we define an optimal action vector āj such

that āj = (ax, ax+1) where ax and ax+1 are optimal actions for a given state x and x + 1 when

a class-j batch arrives, respectively. An optimal action can be either admitting the whole batch,

1, or rejecting the whole batch, 0. Although there are 4 permutations of two consecutive optimal

actions, due to the monotonicities of v(x) and ∆Bv(x) the action āj = (0, 1) cannot be optimal, so

that it is enough to consider the cases (1, 1), (1, 0), and (0, 0). We study these cases first for the

condition x < K −B, then for the condition x = K −B, and finally for the condition x > K −B

in order to examine the boundary effect.
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Cases āj = (ax, ax+1) Rewritten form of equation (5)

Case I (1,1) Rj + v(x + B) ≥ Rj + v(x + B + 1)

Case II (1,0) Rj + v(x + B) ≥ v(x + 1)

Case III (0,0) v(x) ≥ v(x + 1)

Table 2: Possible optimal actions in states x and x + 1 for the condition x < K −B

Cases āj = (ax, ax+1) Rewritten form of equation (5)

Case I (1,0) Rj + v(K) ≥ v(K −B + 1)

Case II (0,0) v(K −B) ≥ v(K −B + 1)

Table 3: Possible optimal actions in states x and x + 1 for the condition x = K −B

A.2.1 x < K −B

For this condition, we can write equation (5) for each case as in Table 2. Cases I and III hold by

the monotonicity of v(x). However, case II holds not only by the monotonicity of v(x) but also

due to the optimal action in state x: Since the optimal policy admits an arriving batch in state x,

we have that Rj + v(x + B) ≥ v(x). Moreover, v(x) ≥ v(x + 1) by the monotonicity of v(x). By

combining these two results, equation (5) holds, i.e., Rj + v(x + B) ≥ v(x + 1), when āj = (1, 0).

Therefore, the batch arrival operator, TB ARR(j), is non-increasing in x whenever x < K −B − 1.

A.2.2 x = K −B

In this condition, we only need to study the cases (1, 0) and (0, 0) because the only feasible action

for x > K − B is rejecting an arriving batch. We can rewrite equation (5) for theses cases as in

Table 3. Case II holds by the monotonicity of v(x) and case I holds by both the monotonicity of

v(x) and the optimal action in state x, as in the case II of the previous condition. Thus, TB ARR(j)

is non-increasing in x for x = K −B.

A.2.3 x > K −B

The condition x > K−B is trivial because the only possible action for states x > K−B is to reject

the arriving batches and monotonicity of the batch arrival operator follows from the monotonicity

of v(x).

Thus, we complete the proof of the monotonicity of the batch arrival operator for all states x.2
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Cases āj = (ax, ax+1, ax+B , ax+B+1) Rewritten form of equation (6)

Case I (1,1,1,1) v(x + B)− v(x + 2B) ≤ v(x + B + 1)− v(x + 2B + 1)

Case II (1,1,1,0) v(x + B)− v(x + 2B) ≤ Rj

Case III (1,1,0,0) Rj ≤ Rj

Case IV (1,0,0,0) Rj ≤ v(x + 1)− v(x + B + 1)

Case V (0,0,0,0) v(x)− v(x + B) ≤ v(x + 1)− v(x + B + 1)

Table 4: Possible optimal actions in states x, x + 1, x + B and x + B + 1 for the condition x < K − 2B

A.3 Monotonicity of ∆BTB ARR(j)

In this proof, we show the monotonicity of ∆BTB ARR(j)v(x) when ∆Bv(x) is non-decreasing in x.

In other words, we want to prove the following inequality for all j = 1, . . . , N .

∆BTB ARR(j)v(x) ≤ ∆BTB ARR(j)v(x + 1) (6)

To show the monotonicity of ∆BTB ARR(j)v(x), we compare the states x, x + 1, x + B, and

x+B+1. Therefore, the optimal action vector āj is defined as āj = (ax, ax+1, ax+B, ax+B+1) where

ax, ax+1, ax+B and ax+B+1 are the optimal actions for states x, x+1, x+B, and x+B +1 when a

class-j batch arrives, respectively. Although there are 16 optimal action permutations for these 4

states, it is enough to consider the cases (1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0), and (0, 0, 0, 0)

due to the assumptions on v(x) and ∆Bv(x). As in the monotonicity of the operator, we prove

the monotonicity of ∆BTB ARR(j)v(x) first for the condition x < K − 2B, then for the condition

x = K − 2B and finally for the condition K − 2B < x ≤ K − B − 1 to observe the boundary

effect. Since our state space is bounded by K, it is not necessary to consider the monotonicity of

∆BTB ARR(j)v(x) for x ≥ K −B.

A.3.1 x < K − 2B

For this condition, we can rewrite equation (6) for each case as in Table 4. Case III is obvious and

cases I and V hold by the monotonicity of ∆Bv(x). In case II, v(x + B) ≤ Rj + v(x + 2B) as a

result of the optimal action in state x + B and thus, case II also holds. Similarly, Case IV holds by

the optimal action in state x + 1 in this case. Therefore, we finish the proof of the monotonicity of

∆BTB ARR(j)v(x) for the condition x < K − 2B.
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A.3.2 x = K − 2B

For this condition, we do not need to study all of the five cases mentioned for x < K − 2B. Since

the only feasible action in states x ≥ K−B +1 is 0 (i.e., rejecting an arriving batch) because of the

capacity, we only focus on the cases: (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0), and (0, 0, 0, 0). The proofs of

these cases are similar to the cases II, III, IV, and V in A.3.1.

A.3.3 K − 2B < x ≤ K −B − 1

Similar to the previous condition, we only need to study the cases, (1, 1, 0, 0), (1, 0, 0, 0), and

(0, 0, 0, 0). The proofs of these cases are similar to the cases III, IV, and V in A.3.1.

Hence, ∆BTB ARR(j)v(x) is non-decreasing in x for all states . 2

15


