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Abstract This paper investigates an optimal sequencing and dynamic pricing problem

for a two-class queueing system. Using a Markov Decision Process based model, we

obtain structural characterizations of optimal policies. In particular, it is shown that the

optimal pricing policy depends on the entire queue length vector but some monotonicity

results prevail as the composition of this vector changes. A numerical study finds that

static pricing policies may have significant suboptimality but simple dynamic pricing

policies perform well in most situations.

1 Introduction

Dynamic pricing opportunities for production and service systems have attracted signif-

icant attention recently. In particular, there is a rapidly growing literature on dynamic

pricing problems for queueing-based models of such systems. Most of this literature

focuses on single-class queues consisting of customers from a single segment. This pa-

per focuses on the dynamic pricing problem for a single-server queue that serves two
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distinct classes of customers. These segments are assumed to differ in their price sen-

sitivity as well as their waiting costs. The resulting problem involves offering different

prices to these customer segments upon their arrival and sequencing the server in order

to maximize the long-run profits. The multi-dimensional aspect of the problem brings

new challenges for establishing the structure of optimal pricing and sequencing policies.

The analysis of the pricing problem in a queueing context goes back to Naor [17]

who considers a static pricing problem for controlling the arrival rate in a finite buffer

queueing system. A rich literature on the static pricing problem has evolved since

then. Our main interest in this paper is dynamic pricing where different prices can be

charged at different times. Low [14] is the first to focus on the dynamic pricing problem

of a multi-server queue with finite waiting room capacity. In particular, Low proves

the monotonicity of the optimal prices in the queue length. These results are then ex-

tended to a multiserver queue with infinite waiting room capacity in [15]. Paschalidis

and Tsitsiklis [18] consider the pricing problem of a service provider, which provides

access to communication network, by modeling the problem as a dynamic pricing prob-

lem of multiserver loss system with N different customer classes. They establish the

monotonicity of the optimal prices in the number of customers in the system. Chen

and Frank [6] consider a queuing system where a monopolist charges an entrance fee

depending on the number of customers in the system. They establish the existence of

monotone optimal prices for this problem. Yoon and Lewis [22] obtain some monotonic-

ity results for a queueing-system with periodically varying parameters. Ziya, Ayhan and

Foley [23,24] investigate the related static pricing problem for a finite-buffer queue and

obtain some structural results. Son [20] considers a pricing problem for discrete-time

queue with the additional option to serve a second class of customers that are always

available. Finally, similar monotonicity results are also obtained for the make-to-stock

queue model of a production/inventory system in Li [13], Gayon et al. [8].

A related recent stream of work investigates the effect of problem parameters,

such as arrival rates, service rates, and number of servers on optimal dynamic pricing

policies. Gans and Savin [7] consider a joint admission control and dynamic pricing

problem of a multi-server loss system. They not only establish the structure of the

optimal policies maximizing the expected long-run average reward, but also investigate

the effects of the parameters on these policies. Çil, Karaesmen and Örmeci [4] and

Aktaran-Kalaycı and Ayhan [1] study the multi-server finite buffer queueing system

and investigate the monotonicity of the optimal pricing policy as a function of problem

parameters. Çil, Örmeci and Karaesmen [5] propose a framework that addresses a class

of queueing/inventory problems with dynamic pricing from a parameter monotonicity

perspective.

Most of the above papers consider either a single segment of customers or a queue

without waiting space or identical holding costs which makes the state space of the

problem single dimensional. The most closely related paper to ours is [16] which in-

vestigates a multi-class single server queue with different holding costs for each class.

Recognizing the difficulty of the underlying control problem, Maglaras [16] proposes

a fluid approximation and analyzes its solution to construct plausible policies. It is

shown through numerical examples that this approximate solution is extremely effec-

tive for the original problem. In this paper, using a Markov Decision Process (MDP)

framework, we obtain results on the structure of the optimal sequencing and pricing

policy for this problem. In particular, we show that the optimal sequencing policy is

a strict priority policy and establish a number of monotonicity results for the optimal

prices in terms of the queue lengths.
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The organization of the paper is as follows. Section 2 introduces the assumptions

and the model. Section 3 presents the structural results on the optimal policy. The

numerical results are presented in Section 4 and the conclusions can be found in Section

5. Finally, the proofs and the detailed numerical results are deferred to the Appendix.

2 The Model

We consider a single-server queue with infinite waiting room capacity and two classes

of customers. Arrivals occur according to independent Poisson processes with rate

λj , j = 1, 2. Whenever a class-j customer arrives, he either enters the system if his

reservation price, Rj , is higher than the announced price or leaves the system without

bringing any reward. It is assumed that Rj ’s are random variables with a cumulative

distribution function of Fj(.). We denote the probability density function by fj(.),

and let F̄j(p) = 1 − Fj(p). The service times of all customers are independent and

exponentially distributed with mean 1/µ regardless of the customer class. Moreover,

the queue owner incurs a holding cost per customer per unit time, hj , and without loss

of generality it is assumed that h1 > h2. The objective is to obtain dynamic pricing

and sequencing policies that maximize the total expected discounted profit with a

continuous discount rate β over an infinite horizon as well as the long-run average

profit.

At any time, the decision maker has to decide which class of customer is served and

to choose a price from a compact set [pmin, pmax]. For technical reasons, which will be

apparent in the text, it is assumed that Fj(.) has a strictly increasing generalized failure

rate, i.e., F̄j(.)/(pfj(.)) is strictly decreasing, and λ1F̄1(pmax) + λ2F̄2(pmax) ≤ µ.

Under any given feasible scheduling and pricing policy π, the system evolves as a

continuous-time Markov chain with state (X1(t), X2(t)), where Xj(t) is the number of

class-j customers in the system at time t. Due to the Markovian property, it is clear

that the optimal policy depends only on the current state regardless of t, and thus we

simply denote the current state of the system by (x1, x2), where (x1, x2) ∈ IN2 with

IN = {0, 1, · · · }.
In order to find the optimal policy π∗ that maximizes the total expected discounted

profit, we construct a discrete-time equivalent of the original system by using the

standard tools of uniformization and normalization. To this end, we assume that the

time between two consecutive transitions is exponentially distributed with rate γ =

µ + λ1 + λ2 + β, and, assume without loss of generality that γ = 1.

To obtain the structural properties of a system which operates over an infinite

horizon, we first prove these structural properties with the objective of maximizing

the expected total β-discounted reward for a finite number of transitions, n. The finite

horizon problems allow us to use the induction to prove the structural properties for all

finite n. To start the induction, we set v0(x1, x2) = 0 for all states (x1, x2). Further-

more, vn(x1, x2) is the maximum expected total β-discounted reward of the system

starting in state (x1, x2) with n transitions remaining in the future and the optimality

equation of the finite horizon problem is:

vn+1(x1, x2) = µTSEQvn(x1, x2) +
∑

j=1,2

λjTPRCj
vn(x1, x2)− h1x1 − h2x2,
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where,

TSEQv(x1, x2) =





max {v(x1 − 1, x2), v(x1, x2 − 1)} if x1 > 0, x2 > 0

max {v(x1 − 1, 0), v(x1, 0)} if x1 > 0, x2 = 0

max {v(0, x2 − 1), v(0, x2)} if x1 = 0, x2 > 0

v(0, 0) if x1 = 0, x2 = 0,

TPRC1v(x1, x2) = max
p

{
F̄1(p)[v(x1 + 1, x2) + p] + F1(p)v(x1, x2)

}
,

TPRC2v(x1, x2) = max
p

{
F̄2(p)[v(x1, x2 + 1) + p] + F2(p)v(x1, x2)

}
.

As we assume an increasing generalized failure rate for the reservation price dis-

tribution, the maximization problem in the pricing operator has a unique solution for

any given state (x1, x2). A brief discussion on this point can be found in Appendix

A. It should be noted that most monotonicity results extend to the case where the

monotone generalized failure rate assumption does not hold and there may be multiple

optima. But this requires defining more complicated set-based orders.

Using well-established standard arguments (see Chapter 6 of Puterman [19] for

example), there exists an optimal stationary policy for the infinite horizon problem and

v(x1, x2) = limn→∞ vn(x1, x2) whenever β > 0 where v(x1, x2) is the value function

of the infinite horizon problem. Therefore, structural results obtained for vn(x1, x2)

hold for v(x1, x2). In order to address the long-run average profit criterion (i.e., no

discounting with β = 0), we use another well-known result in queueing control (Weber

and Stidham [21]) which establishes that the value function of the average reward

problem can be obtained as the limit of the value function in the discounted problem

under certain conditions. It can easily be verified that all conditions of Weber and

Stidham [21] hold for our problem. The most challenging of these conditions requires

the existence of a policy with a finite average reward. In our case, this can be seen as

follows: consider the policy that always charges pmax, the maximum price allowable.

Due to the assumption that λ1F̄1(pmax) + λ2F̄2(pmax) ≤ µ, the resulting system is

a stable two-class queueing system, which generates finite average queue-lengths and

finite average rewards. Therefore, the value function of the average profit criterion

can be obtained as the limit of the value function of the discounted cost problem as

the discount factor goes to zero. In addition, as shown in [21], this limit preserves all

structural properties of the discounted value function, and the average reward problem

possesses the identical structural properties as the discounted cost problem. In other

words, all structural properties are true for the relative value function of the long-run

average reward problem, which we denote by v′(x1, x2).

3 Structure of the Optimal Sequencing and Pricing Policy

In order to explore the structure of the optimal policies, it is required to investigate

the properties of the value function v(x1, x2). In addition to basic directional mono-

tonicity (decreasingness) (denoted by Dec1, Dec2), we also establish other properties

such as diagonal dominance (Dec21), submodularity (SubM) and subconcavity (SubC)

and concavity. For the sake of completeness, the definition of all these properties are

presented in Appendix B.

In order to establish that the value function preserves the properties above, we first

show that all operators preserve these properties. Assume that a function f(x1, x2) has
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a certain property A. An operator T preserves property A if Tf(x1, x2) also has this

property. The results are summarized in Table 1. The ticks in Table 1 represent that the

corresponding operators preserve the desired properties (Dec1, Dec2, Dec21, SubM ,

SubC) for the function f . Table 1 should be read as follows: consider e.g., operator

TSEQ and property Dec1: If a function f has properties Dec2 and Dec21 in addition

to Dec1, then TSEQf is decreasing in x1 so that TSEQ preserves property Dec1. The

proofs of these results can be found in Appendices C-E.

Table 1 Properties preserved by the operators when the function f(x) has the corresponding
property

Preserved Operators Additional
Properties TSEQ TPRCj

Condition(s)

Dec1
√ ∗ √ ∗ f : Dec2, Dec21

Dec2
√ † √ † f : Dec1, Dec21

Dec21
√ ¦ √ ¦ f : Dec1, Dec2

SubM
√¨ √ ¨ f : Dec1, Dec2, Dec21, SubC

SubC
√ ? √4 ? f : Dec1, Dec2, Dec21

4 f : SubM

Remark: Koole [12] presents weaker conditions for the propagation of SubM and

SubC for the TSEQ operator. For this operator, we present a simpler proof in the

appendix using other properties here for completeness. On the other hand, to the best

of our knowledge, the multi-dimensional properties of TPRCj
, have not been studied

before.

3.1 Structure of the Optimal Sequencing Policy

In a number of queueing control problems involving processor sequencing/scheduling

between multiple customer classes, the cµ rule is known to be optimal. This rule gives

higher priority to those classes that have higher weighted service rates (weighted by

the unit holding cost). This result is especially well-established for single-server queues

with state-independent arrivals (Baras, Ma, and Makowski [2], Buyukkoc, Varaiya and

Walrand [3]). In our setting, if the pricing policy is static (i.e. does not depend on

queue lengths), the arrival processes do not depend on the queue lengths. By the former

results, this implies that giving strict preemptive priority to class 1 whose holding cost

is higher is optimal.

On the other hand, when the arrival process depends on the queue lengths, as is the

case with dynamic pricing, the situation is known to be more complicated. Hordijk and

Koole [10] appears to present the most comprehensive analysis for optimal scheduling

in the case of general state-dependent arrival processes. They consider systems in which

arrivals are generated by Markov Decision Arrival Processes (MDAPs), where MDAPs

subsume several important state-dependent arrival process models. For the queue-

length dependent arrival process, they show that there are counter-examples to the

optimality of the cµ rule and establish that the generic optimality of this rule is not

guaranteed.

Given that the optimality of the cµ priority rule is not guaranteed by the existing

results when the arrival process is queue-length dependent (as in dynamic pricing), we
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present a concise proof of optimality in Appendix F. The main result can be summa-

rized in the following theorem:

Theorem 1 The optimal sequencing policy is a preemptive-priority policy which serves

class 1 first whenever there is a class-1 customer in the queue in a non-idling manner.

In addition, using Lemma 2 (from Appendix F) we can further characterize optimal

pricing policies when the two customer classes are only differentiated by their holding

costs:

Corollary 1 Let the reservation price distributions F1 and F2 satisfy the following

two conditions:

(1) F2(p)− F1(p) is weakly decreasing in p: F2(p + ε)− F1(p + ε) ≤ F2(p)− F1(p) for

any ε > 0.

(2) F2(p)p − F1(p)p is weakly increasing in p: F2(p)p − F1(p)p ≤ F2(p + ε)(p + ε) −
F1(p + ε)(p + ε). for any ε > 0.

Then the optimal price to charge class 1, p∗1(x1, x2), is greater than or equal to the

optimal price to charge class 2, p∗2(x1, x2), for all (x1, x2).

Remark: Using the corresponding results from [12], Theorem 1 can be extended to

class-dependent service rates µ1 and µ2 such that h1µ1 ≥ h2µ2. It appears, however,

that the other properties in the rest of the paper cannot be easily extended to that

case.

Theorem 1 and Corollary 1 establish two properties uncovered by Maglaras [16]

using the fluid approximation: the optimality of a strict priority policy for the class

with higher holding cost along with preferred pricing for the class with lower holding

cost. The service provider thus seems to be encouraging a higher percentage of arrivals

from the lower holding cost class but is obliged to give priority to the class with higher

holding costs that join the queue.

We now examine when the conditions of Corollary 1 are satisfied. Both conditions

hold when F1 and F2 are identical. When they are not identical, Condition (1) is

very restrictive. This condition can be satisfied only when F2 has a mass at the lower

bound of its domain, i.e., F2(pmin) > 0. This is true because if F2(pmin) = 0, we have

F2(pmin) = F1(pmin) = 0, F2(pmax) = F1(pmax) = 1 and F2 − F1 is continuous. In

addition, the previous argument can be extended to the case when pmin and pmax are

class-specific. Finally, we note that neither of the conditions seems to have a direct

relation with any of the well-known stochastic orders.

3.2 Structure of the Optimal Pricing Policy

The optimal sequencing policy is obtained to be a priority policy. However, we still

need to determine the optimal pricing policy. To this end, we focus on submodularity

and subconcavity properties of the value function.

We only present the proof of submodularity in detail, since the arguments used to

establish submodularity and subconcavity are similar. We define submodularity as:

Submodularity (SubM): ∆01v(x1, x2) ≤ ∆01v(x1, x2 + 1),
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where

∆01v(x1, x2) = v(x1, x2)− v(x1 + 1, x2).

We denote the opportunity cost of having an additional class-1 customer in state

(x1, x2) by ∆01v(x1, x2). Hence, submodularity implies that the opportunity cost of a

class-1 customer is increasing in x2.

We prove the submodularity of vn(x1, x2) for all finite n by induction. The initial

condition is trivially true. Then, we assume the submodularity of vn(x1, x2). We can

write the submodularity inequality for vn+1(x1, x2) as:

µ∆01TSEQvn(x1, x2)

+
∑

j=1,2
λj∆01TPRCj

vn(x1, x2) ≤
µ∆01TSEQvn(x1, x2 + 1)

+
∑

j=1,2
λj∆01TPRCj

vn(x1, x2 + 1). (1)

We know that vn(x1, x2) has properties Dec1, Dec2 and Dec21 by Lemma 2. More-

over, the induction hypothesis implies that vn(x1, x2) is submodular. Thus, inequality

(1) is true due to Table 1, so that vn+1(x1, x2) is submodular, i.e., ∆01vn(x1, x2) ≤
∆01vn(x1, x2 + 1), for all finite n. Then, v(x1, x2) and v′(x1, x2) are also submod-

ular as vn(x1, x2) converges to v(x1, x2). Similarly, v(x1, x2) and v′(x1, x2) have the

subconcavity property. Furthermore, combining submodularity and subconcavity prop-

erties implies the concavity of v(x1, x2) in both x1 and x2. Lemma 1 summarizes the

structure of the value functions.

Lemma 1 The value functions v(x1, x2) and v′(x1, x2) satisfy submodularity and sub-

concavity conditions, and they are concave in both x1 and x2.

As in the one-dimensional models of dynamic pricing problems, such as Low [14],

Çil et al. [4] or Gayon et al. [8], monotone opportunity costs lead to monotone optimal

prices in this model and we present the implied structure of the optimal prices in the

following theorem (see Appendix G for its proof).

Theorem 2 For all (x1, x2), we have:

(i) for j = 1, 2, p∗j (x1, x2) ≤ p∗j (x1 + 1, x2) and p∗j (x1, x2) ≤ p∗j (x1, x2 + 1),

(ii) p∗1(x1, x2 + 1) ≤ p∗1(x1 + 1, x2),

(iii) p∗2(x1 + 1, x2) ≤ p∗2(x1, x2 + 1).

Figure 1 illustrates the conclusions of Theorem 2. It is worth discussing the im-

plications of Lemma 1 and Theorem 2. Due to submodularity, the optimal prices for

both classes are increasing as the number of customers from the other class increases.

The pricing policy therefore must take into account the total queue length (i.e. work-

load) in the system as in the fluid approximation of Maglaras [16]. The implications

of Theorem 2 are more intriguing however. Keeping the overall total length constant,

increasing the number of class-2 customers results in lower optimal prices for class 1.

This is understandable since class-1 customers have higher priority: their wait is not

affected by class-2 customers but only by class-1 customers ahead of themselves. Thus,

the effective queue length ahead of them is reduced. On the other hand, keeping the to-

tal queue length constant, increasing the number of class-2 customers, results in higher

optimal prices for class 2 customers. The intuition here seems more subtle, class-2 cus-

tomers have to wait for the total queue length in front of them at their arrival plus the

future arrivals from class-1 customers. But by the previous property, class-1 customers
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Fig. 1 Structure of the optimal prices in the 2-dimensional model

are charged lower prices when there are more class-2 customers, which increases their

expected future arrival rate. Therefore, the potential queue length ahead of class-2

customers is increased, and they need to be charged higher prices.

The above results suggest that the optimal pricing policy is affected not only by

the total queue length in the system but also by the class composition of the queue in

a subtle manner.

4 Numerical Examples

The structural properties established in the previous section characterize the optimal

scheduling and pricing policies. However, specifying a pricing policy is a challenging

problem. In this section, we investigate the performance of the optimal dynamic pricing

policy and compare it with two alternative benchmark policies. The first alternative

is a simple static pricing policy which charges a unique price to each customer class

regardless of the queue length. Appendix H presents the computational details for this

policy. The second alternative is a simpler dynamic policy where the optimal prices

depend on the total queue length x1 + x2 rather than (x1, x2). This type of policy is

suggested by the fluid analysis in Maglaras [16]. The implementation details for this

policy can be found in Appendix H.

In this section, we use the long-run average profit criterion (so the discount rate

β is 0), and denote the optimal average profit by g∗. The optimal policy is computed

numerically by truncating the state space and using the value iteration algorithm. The

computation yields the optimal prices p∗i (x1, x2) and the expected optimal profit g∗

which will be reported below.

4.1 Example 1: Symmetric arrival rates and prices, low holding costs

We begin with an example in a regime that is similar to the numerical examples in

Maglaras [16]. Let λ1 = λ2 = 8 and µ = 4, h1 = 0.4 and h2 = 0.1. The reservation

prices R1 and R2 are independently uniformly distributed in the interval (0, 8).

Under the optimal policy, the utilization of the server turns out to be 98% in

this case (the detailed results can be found in Table 5 of Appendix H). The static
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pricing policy has a suboptimality greater than 4%. On the other hand, the theoretical

results in Maglaras imply that considering the total queue length (referred to as the

workload approximation in that paper) should perform well in this regime. Indeed, the

suboptimality reported in Maglaras for this example is 0.2%. Our implementation of

the workload approximation yields a suboptimality of 0.16%.

The optimal prices for this example are reported in Table 2. The implications of

Theorem 2 can be observed in this table. Optimal prices are increasing in x1 and x2

for both customer classes, and the optimal price for class 1 is higher than that of

class 2 in any given state. The optimal static prices are 6.22 and 6.10 for classes 1

and 2 respectively (see Table 5 in Appendix H). It can be observed that the state-

dependent prices can deviate significantly from these values. More interestingly, as a

consequence of subconcavity, the optimal prices were established to be monotone on the

total queue length line. This is clearly manifested in Table 2 for class 1. For instance,

p∗1(0, 5) ≤ p∗1(1, 4) ≤ ... ≤ p∗1(5, 0). The reverse is also true for class 2 in a weaker

sense. For instance, p∗2(0, 5) = p∗2(1, 4) = ... > p∗2(5, 0) (it should be noted that we only

report results up to a two-digit accuracy). The latter observation partially explains the

excellent performance of the total queue length heuristic. For class 2, the optimal prices

are sensitive to the total queue length but not extremely sensitive to individual queue

lengths. The heuristic should therefore retrieve the right prices for class 2. For class

1, the situation is different in that the optimal prices differ for the same total queue

length depending on the composition. It appears, however, that the optimal profit is

not very sensitive to these differences.

p∗1(x1, x2) p∗2(x1, x2)
x2 \ x1 0 1 2 3 4 5 0 1 2 3 4 5

0 4.72 5.12 5.52 5.76 5.92 6.08 4.64 4.96 5.28 5.44 5.60 5.68
1 5.12 5.44 5.68 5.92 6.08 6.24 5.04 5.28 5.44 5.60 5.76 5.84
2 5.36 5.60 5.84 6.00 6.16 6.32 5.28 5.44 5.60 5.76 5.84 5.92
3 5.52 5.76 5.92 6.08 6.24 6.40 5.44 5.60 5.76 5.84 5.92 6.00
4 5.68 5.92 6.08 6.16 6.32 6.48 5.60 5.76 5.84 5.92 6.00 6.08
5 5.84 6.00 6.16 6.24 6.4 6.48 5.76 5.84 5.92 6.00 6.08 6.16

Table 2 Optimal Prices with λ1 = λ2 = 8 and µ = 4, h1 = 0.4 and h2 = 0.1.

Table 5 (in Appendix H) presents additional detailed results as the service rate

and the price parameters are varied. At low effective utilization rates, static pricing

appears to be very effective but its performance degrades as the effective utilization

rates increase. It should be noted that the optimal static prices do not differ significantly

between classes. On the other hand, the total queue length heuristic uniformly performs

extremely well for this range of parameters.

4.2 Example 2: Symmetric arrival rates and prices, high holding costs

Next, we present the same example as in Section 4.1 where we take h1 = 4 and

h2 = 1 which generates a stronger trade-off between utilization and holding costs. The

resulting optimal policy has a utilization of 88%. As can be observed in Table 3, all

consequences of Theorem 2 appear in a sharper manner in this case. In particular,

there seems to be a stronger dependence on individual prices for any given total queue
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length. Table 6 in Appendix H, which presents the detailed results for this example,

shows that the static pricing policy has a suboptimality higher than 10% in this case.

With respect to Example 1, the optimal static prices differ more significantly between

classes. The total queue length heuristic continues to perform remarkably in this case

resulting in a suboptimality of only 0.72%. In addition, varying the service rates, and

thus the effective utilization does not have a negative effect on the suboptimality of

the total queue length heuristic.

p∗1(x1, x2) p∗2(x1, x2)
x2 \ x1 0 1 2 3 4 5 0 1 2 3 4 5

0 5.36 6.32 7.12 7.68 8.00 8.00 4.80 5.36 5.68 6.00 6.24 6.40
1 5.92 6.72 7.36 7.92 8.00 8.00 5.36 5.76 6.00 6.24 6.48 6.64
2 6.24 6.96 7.60 8.00 8.00 8.00 5.76 6.08 6.32 6.56 6.72 6.88
3 6.56 7.20 7.76 8.00 8.00 8.00 6.08 6.32 6.56 6.72 6.88 7.04
4 6.80 7.44 8.00 8.00 8.00 8.00 6.40 6.56 6.80 6.96 7.12 7.28
5 7.04 7.60 8.00 8.00 8.00 8.00 6.64 6.80 6.96 7.12 7.28 7.44

Table 3 Optimal Prices with λ1 = λ2 = 8 and µ = 4, h1 = 4 and h2 = 1.

4.3 Asymmetrical Cases

We tested several cases with asymmetric arrival rates and reservation price distribu-

tions and observed the strong performance of the total queue length heuristic in general,

whereas the performance of the static pricing policy varies. On the other hand, it ap-

pears that there are some particular situations which are difficult to capture by either

the static or the total queue length heuristic. In particular, a challenging case is when

one of the classes can afford higher prices (i.e. has stochastically larger reservation

prices) but also incurs relatively high holding costs. Under such a condition, the cus-

tomers from this class should be admitted relatively rarely and at the right time to

enhance the expected profit.

Next, we discuss such a case in detail. In this example λ1 = 2, λ2 = 0.5, µ = 1.5,

h1 = 2 and h2 = 0.1. The reservation prices R1 and R2 are independently uniformly

distributed in the interval (0, 2) and (0, 0.5) respectively.

Table 4 reports the optimal prices for this example. The detailed summary results

can be found in Table 7 in Appendix H. The static pricing heuristic has a very significant

suboptimality (over 25%). Moreover, the total queue length heuristic also results in a

significant suboptimality of 17%. To see why this occurs, we note, from Table 4, that

class-1 customers are only accepted whenever x1 = 0. This makes the optimal prices for

class 2 significantly different for small levels of total queue length (i.e., x1 + x2 = 1, 2,

or 3). But neither the static pricing policy nor the total queue length heuristic can take

this dependence into account. The optimal static prices are 1.84 and 0.31 for classes 1

and 2 respectively. But the dynamic pricing policy completely rejects arrivals of class

1 in certain states. In Table 7, we continue the same experimentation by varying the

service rate between 1 and 2, and the suboptimality is consistently around 15% and

25% for the total queue length and static pricing heuristics, respectively. It appears

that this regime is troublesome for both of the heuristics.
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p∗1(x1, x2) p∗2(x1, x2)
x2 \ x1 0 1 2 3 4 5 0 1 2 3 4 5

0 1.70 2.00 2.00 2.00 2.00 2.00 0.30 0.34 0.37 0.41 0.44 0.48
1 1.74 2.00 2.00 2.00 2.00 2.00 0.34 0.38 0.41 0.45 0.48 0.50
2 1.78 2.00 2.00 2.00 2.00 2.00 0.38 0.42 0.45 0.48 0.50 0.50
3 1.80 2.00 2.00 2.00 2.00 2.00 0.42 0.45 0.49 0.50 0.50 0.50
4 1.84 2.00 2.00 2.00 2.00 2.00 0.46 0.49 0.50 0.50 0.50 0.50
5 1.88 2.00 2.00 2.00 2.00 2.00 0.49 0.50 0.50 0.50 0.50 0.50

Table 4 Optimal Prices with λ1 = 2, λ2 = 0.5, µ = 1.5, h1 = 2 and h2 = 0.1.

5 Conclusion

We investigated the structure of optimal dynamic pricing and sequencing policies in

a two-class queueing system. As in most similar cases, the sequencing problem turns

out to be easy and the optimal sequencing policy gives priority to the customer with

the higher holding cost. We were also able to obtain monotone characterizations of

the optimal prices as the queue lengths and their compositions vary. On the other

hand, despite the characterization results, developing an approximate pricing policy

remains a difficult problem. Our numerical results indicate that static pricing policies

do not perform well especially when there are strong asymmetries between the customer

types. This is in contrast with the results in [24] where static pricing is very effective

in a similar situation but with FIFO sequencing. The holding cost asymmetry and the

resulting priority sequencing policy seems to work against static pricing policies.

It appears, however, that simple dynamic pricing policies may be effective. In par-

ticular, the numerical evidence supports that the total queue length based approach

proposed by Maglaras [16] performs remarkably well in general. Yet there are certain

situations where the individual queue lengths matter significantly in terms of the pric-

ing policy, and dynamic pricing policies should take this information into account. Such

cases require a special attention and an approximate solution of the multi-dimensional

MDP seems worthwhile when the customer mix includes lucrative but expensive to

hold customers.
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4. E. B. Çil, F. Karaesmen, and E. L. Örmeci. Sensitivity analysis on a dynamic pricing
problem of an m/m/c queueing system. Proceeedings of the 12th IFAC Semposium on
Information Control Problems in Manufacturing, 2006.
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A Uniqueness of the Optimal Prices

In our pricing operator for class-1, we have the following maximization problem:

max
p

{
F̄1(p)[v(x1 + 1, x2 + p] + F1(p)v(x1, x2)

}
.

When we rearrange the first order optimality condition of the above problem, we have:

p− F̄1(p)

f1(p)
= v(x1, x2)− v(x1 + 1, x2). (2)

In order to ensure that there is a unique p solving (2), it is sufficient that the right-hand
side of (2) is increasing in p. This is a indeed a conservative condition because (2) may have a
unique solution even though p− F̄j(p)/fj(p) is not monotone. For notational convenience, let
g(p) = p− F̄1(p)/f1(p). Below, we show that g(p) is increasing in p when F1 has the Increasing
Generalized Failure Rate (IGFR) property, i.e., F̄1(p)/pf1(p) is decreasing in p.

F̄1(p)

pf1(p)
is decreasing in p ⇒

[
1− F̄1(p)

pf1(p)

]
is increasing in p

⇒ p

[
1− F̄1(p)

pf1(p)

]
is increasing in p

⇒ g(p) is increasing in p
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The same argument naturally also applies to the pricing operator for class-2.

B Definitions of Properties

We start by the basic monotonicity properties of the value function v(x1, x2). We note that
the words “increasing”, “decreasing” and “positive” mean “non-decreasing”, “non-increasing”
and “non-negative”, respectively, in the whole paper. These properties are defined as follows:

Decreasing in x1 (Dec1): v(x1, x2) ≥ v(x1 + 1, x2) (1)

Decreasing in x2 (Dec2): v(x1, x2) ≥ v(x1, x2 + 1) (2)

Decreasing on the diagonal (Dec21): v(x1, x2 + 1) ≥ v(x1 + 1, x2). (3)

Inequality (1) implies that when a new class-1 customer enters the system, the expected dis-
counted profit decreases. In other words, an additional class-1 customer incurs a positive oppor-
tunity cost. Similarly, inequality (2) implies a positive opportunity cost of an additional class-2
customer. Inequality (3), on the other hand, implies that the value function decreases when a
class-2 customer is exchanged by a class-1 customer. We introduce the following notation:

∆01v(x1, x2) = v(x1, x2)− v(x1 + 1, x2),

∆02v(x1, x2) = v(x1, x2)− v(x1, x2 + 1),

∆21v(x1, x2) = v(x1, x2 + 1)− v(x1 + 1, x2),

where ∆0jv(x1, x2) represents the opportunity cost of having an additional class-j customer in
state (x1, x2), and ∆21v(x1, x2) the opportunity cost of having an additional class-1 customer
rather than an additional class-2 customer in state (x1, x2).

Now we focus on the concavity properties of the value function. Concavity represents the
monotonicity of the opportunity costs, which directly affects the optimal policy structure.
Concavity of v(x1, x2) in x1 and x2 are given by inequalities (4) and (5), respectively:

∆01v(x1, x2) ≤ ∆01v(x1 + 1, x2), (4)

∆02v(x1, x2) ≤ ∆02v(x1, x2 + 1). (5)

Concavity of the value function in xj implies that the opportunity cost of a class-j customer
is increasing in xj . Although concavity properties are quite intuitive, it is difficult to prove
these inequalities directly. Therefore, we employ the supporting properties submodularity and
subconcavity (see [11]) in order to prove concavity. These two properties are of interest in them-
selves and when combined they imply concavity. Submodularity implies that the opportunity
cost of a class-1 (class-2) customer is increasing in x2 (x1):

Submodularity (SubM): ∆01v(x1, x2) ≤ ∆01v(x1, x2 + 1), or equivalently
∆02v(x1, x2) ≤ ∆02v(x1 + 1, x2).

Subconcavity, on the other hand, is the monotonicity of the opportunity cost on the diagonal.
Since we have two classes of customers, subconcavity consists of two conditions: The first con-
dition states that the opportunity cost of changing a class-2 customer to a class-1 is decreasing
in the number of class-2 customers, x2, whereas the second condition states that it is increasing
in the number of class-1 customers, x1:

Subconcavity (SubC): ∆21v(x1, x2 + 1) ≤ ∆21v(x1, x2) ≤ ∆21v(x1 + 1, x2).

As a result, when we add the inequality of submodularity and the second inequality of
subconcavity, we obtain the concavity of v(x1, x2) in x1, and similarly adding the submodu-
larity inequality and the first inequality of the subconcavity property yields to the concavity
of v(x1, x2) in x2. Lemma 1 summarizes the structure of the value functions.

C Proof: Monotonicity of the Operators

We show that the operators that we consider, TSEQ, TPRC1 and TPRC2 , preserve the mono-
tonicity properties (1), (2) and (3) of the function v(x1, x2) to which they are applied.
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C.1 Monotonicity of TSEQ

In the proof of the monotonicity of TSEQv(x1, x2), we assume without loss of generality that
v(x1, x2 + 1) ≥ v(x1 + 1, x2) and this property implies that serving the expensive customer is
more valuable than serving a cheap customer. Therefore, we can redefine this operator as:

TSEQv(x1, x2) =





v(x1 − 1, x2) if x1 > 0, x2 > 0
v(0, x2 − 1) if x1 = 0, x2 > 0
v(0, 0) if x1 = 0, x2 = 0.

(7)

Then, we investigate whether the departure operator preserves all of the three monotonicity
properties. Since the operator is partially defined, we consider all possible cases, i.e., (x1 > 0,
x2 > 0), (x1 = 0, x2 > 0) and (x1 = 0, x2 = 0), separately for each property.

C.1.1 Monotonicity in x1

We can write the first monotonicity inequality for TSEQ as follows:

Cases TSEQv(x1, x2) ≥ TSEQv(x1 + 1, x2)

(x1 > 0, x2 > 0) v(x1 − 1, x2) ≥ v(x1, x2)
(x1 = 0, x2 > 0) v(0, x2 − 1) ≥ v(0, x2)
(x1 = 0, x2 = 0) v(0, 0) ≥ v(0, 0)

It is obvious that all three cases are true: the first case is true by the monotonicity of
v(x1, x2) in x1, the second case is true by the monotonicity of v(x1, x2) in x2, and the left-
hand side and the right-hand side is equal in the third case. Thus, the departure operator
preserves the first monotonicity property of v(x1, x2).

The proof for the second monotonicity property is similar and is omitted.

C.1.2 Monotonicity on the diagonal

The third monotonicity inequality for TSEQ is as follows:

Cases TSEQv(x1, x2 + 1) ≥ TSEQv(x1 + 1, x2)

(x1 > 0, x2 > 0) v(x1 − 1, x2 + 1) ≥ v(x1, x2)
(x1 = 0, x2 > 0) v(0, x2) ≥ v(0, x2)
(x1 = 0, x2 = 0) v(0, 0) ≥ v(0, 0)

In this monotonicity property, all of the three cases are also true: the first one is true
by the monotonicity of v(x1, x2) on the diagonal and the remaining ones are trivially true.
Hence, the departure operator also preserves the third monotonicity property of v(x1, x2), and
it preserves all of the monotonicity properties of v(x1, x2).

C.2 Monotonicity of TPRC1

C.2.1 Monotonicity in x1

Let p∗1 and p∗2 be the optimal prices for the states (x1, x2) and (x1 +1, x2), respectively. Then,
we show that TPRC1 preserves the monotonicity of v(x1, x2) in x2. Inequality (1) for this
operator can be written as:

F̄ (p1)[p1+v(x1+1, x2)]+F (p1)v(x1, x2) ≥ F̄ (p2)[p2+v(x1+2, x2)]+F (p2)v(x1+1, x2). (8)

Since p∗1 is the optimal price for the state (x1, x2), we have that:

F̄ (p1)[p1 + v(x1 + 1, x2)] + F (p1)v(x1, x2) ≥ F̄ (p2)[p2 + v(x1 + 1, x2)] + F (p2)v(x1, x2), (9)
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and by the monotonicity of v(x1, x2) in x1,

F̄ (p2)[p2+v(x1+1, x2)]+F (p2)v(x1, x2) ≥ F̄ (p2)[p2+v(x1+2, x2)]+F (p2)v(x1+1, x2). (10)

When we combine inequalities (9) and (10), it is obvious that inequality (8) is true and
thus TPRC1 preserves the monotonicity of v(x1, x2) in x1.

The proof for the second monotonicity property are similar and is omitted.

C.2.2 Monotonicity on the diagonal

Similar to the previous monotonicity proofs of the pricing operator, we let p∗1 and p∗2 be the
optimal prices for the states (x1, x2 + 1) and (x1 + 1, x2), respectively, and write inequality
(3) for the pricing operator as:

F̄ (p1)[p1+v(x1+1, x2+1)]+F (p1)v(x1, x2+1) ≥ F̄ (p2)[p2+v(x1+2, x2)]+F (p2)v(x1+1, x2).
(11)

Since p∗1 is the optimal price for the state (x1, x2 + 1), we have that,

F̄ (p1)[p1+v(x1+1, x2+1)]+F (p1)v(x1, x2+1) ≥ F̄ (p2)[p2+v(x1+1, x2+1)]+F (p2)v(x1, x2+1),
(12)

and by the monotonicity of v(x1, x2) on the diagonal,

F̄ (p2)[p2+v(x1+1, x2+1)]+F (p2)v(x1, x2+1) ≥ F̄ (p2)[p2+v(x1+2, x2)]+F (p2)v(x1+1, x2).
(13)

When we combine inequalities (12) and (13), it is obvious that inequality (11) is true and
thus TPRC1 preserves the monotonicity of v(x1, x2) on the diagonal.

The monotonicity proofs for TPRC2 are similar to these proofs.

D Proof: Submodularity of the Operators

Here, we prove that TSEQ, TPRC1 and TPRC2 preserve the submodularity of a function on
which they are applied v(x1, x2):

∆01Tv(x1, x2) ≤ ∆01Tv(x1, x2 + 1) (14)

D.1 Submodularity of TSEQ

While considering the departure operator, we assume that v(x1, x2) is decreasing in x1, x2 and
on the diagonal, and it satisfies the submodularity and subconcavity inequalities, i.e., v(x1, x2)
is concave in x1 and x2. Since we assume the monotonicity of v(x1, x2), serving an expensive
customer is more valuable than serving a cheap customer. Thus, we can again use the redefined
version of the departure operator, which is introduced in Equation (7). With the help of this
modification, we need to examine the submodularity inequality for only these three possible
cases: (x1 > 0, x2 > 0), (x1 = 0, x2 > 0) and (x1 = 0, x2 = 0), separately. Inequality (14) can
be written as follows for each case:

Cases ∆01TSEQv(x1, x2) ≤ ∆01TSEQv(x1, x2 + 1)

(x1 > 0, x2 > 0) v(x1 − 1, x2)− v(x1, x2) ≤ v(x1 − 1, x2 + 1)− v(x1, x2 + 1)
(x1 = 0, x2 > 0) v(0, x2 − 1)− v(0, x2) ≤ v(0, x2)− v(0, x2 + 1)
(x1 = 0, x2 = 0) v(0, 0)− v(0, 0) ≤ v(0, 0)− v(0, 1)

The first case is true by the submodularity of v(x1, x2), the second case is true by the
concavity of v(x1, x2) in x2, and the last case holds by the monotonicity of v(x1, x2) in x2.
Hence, TSEQ preserves the submodularity of v(x1, x2) under given assumptions.
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D.2 Submodularity of TPRC1

We let the optimal prices for the states (x1, x2), (x1 + 1, x2), (x1, x2 + 1) and (x1 + 1, x2 + 1)
as follows:

p∗(., .) x2 x2 + 1

x1 p1,1 p1,2

x1 + 1 p2,1 p2,2

Then, we write the submodularity inequality for the pricing operator as:

F̄ (p1,1)[p1,1 + v(x1 + 1, x2)]
+F (p1,1)v(x1, x2)

−F̄ (p2,1)[p2,1 + v(x1 + 2, x2)]
−F (p2,1)v(x1 + 1, x2)

≤
F̄ (p1,2)[p1,2 + v(x1 + 1, x2 + 1)]

+F (p1,2)v(x1, x2 + 1)
−F̄ (p2,2)[p2,2 + v(x1 + 2, x2 + 1)]

−F (p2,2)v(x1 + 1, x2 + 1).

(15)

Using the optimality of p2,2 at the state (x1 + 1, x2 + 1) and after some algebra, we have
that:

F̄ (p1,1)[p1,1 + v(x1 + 1, x2)]
+F (p1,1)v(x1, x2)

−F̄ (p2,1)[p2,1 + v(x1 + 2, x2)]
−F (p2,1)v(x1 + 1, x2)

≤
F̄ (p1,1)p1,1 − F̄ (p2,1)p2,2

+F (p1,1)[v(x1, x2)− v(x1 + 1, x2)]
+F̄ (p2,2)[v(x1 + 1, x2)− v(x1 + 2, x2)].

(16)

Similarly, since p1,2 is the optimal price for the state (x1, x2 + 1),

F̄ (p1,2)[p1,2 + v(x1 + 1, x2 + 1)]
+F (p1,2)v(x1, x2 + 1)

−F̄ (p2,2)[p2,2 + v(x1 + 2, x2 + 1)]
−F (p2,2)v(x1 + 1, x2 + 1)

≥
F̄ (p1,1)p1,1 − F̄ (p2,1)p2,2

+F (p1,1)[v(x1, x2 + 1)− v(x1 + 1, x2 + 1)]
+F̄ (p2,2)[v(x1 + 1, x2 + 1)− v(x1 + 2, x2 + 1)].

(17)

Finally, using the fact that v(x1, x2) satisfies submodularity, and inequalities (16) and
(17), inequality (15) holds and TPRC1 preserves the submodularity of v(x1, x2). The proof for
TPRC2 is similar.

E Proof: Subconcavity of the Operators

Below, we prove that TSEQ, TPRC1 and TPRC2 preserve both of the subconcavity conditions
of v(x1, x2). In other words, we show that the conditions below hold for TSEQ, TPRC1 and
TPRC2 under the assumptions mentioned in the lemma.

∆01Tv(x1, x2 + 1) ≤ ∆01Tv(x1 + 1, x2) (18)

∆02Tv(x1 + 1, x2) ≤ ∆02Tv(x1, x2 + 1) (19)

E.1 Subconcavity of TSEQ

We can express the first condition of subconcavity for each of the cases as follows:

Cases ∆01TSEQv(x1, x2 + 1) ≤ ∆01TSEQv(x1 + 1, x2)

(x1 > 0, x2 > 0) v(x1 − 1, x2 + 1)− v(x1, x2 + 1) ≤ v(x1, x2)− v(x1 + 1, x2)
(x1 = 0, x2 > 0) v(0, x2)− v(0, x2 + 1) ≤ v(0, x2)− v(1, x2)
(x1 = 0, x2 = 0) v(0, 0)− v(0, 1) ≤ v(0, 0)− v(1, 0)

The first case is true by the first condition of subconcavity and the last two cases are true
by the monotonicity of v(x1, x2) on the diagonal, i.e., v(x1, x2 +1) ≥ v(x1 +1, x2). Therefore,
TSEQ preserves the first condition of subconcavity.

Similar to the first condition, we can write the second condition of subconcavity as:
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Cases ∆02TSEQv(x1 + 1, x2) ≤ ∆02TSEQv(x1, x2 + 1)

(x1 > 0, x2 > 0) v(x1, x2)− v(x1, x2 + 1) ≤ v(x1 − 1, x2 + 1)− v(x1 − 1, x2 + 2)
(x1 = 0, x2 > 0) v(0, x2)− v(0, x2 + 1) ≤ v(0, x2)− v(0, x2 + 1)
(x1 = 0, x2 = 0) v(0, 0)− v(0, 1) ≤ v(0, 0)− v(, 1)

The last two cases are obviously true and the first case is true by the second condition of
subconcavity. Hence, TSEQ also preserves the second condition of subconcavity.

E.2 Subconcavity of TPRC1

In order to prove both of the subconcavity conditions, we let the optimal prices for the states
(x1, x2 + 1), (x1, x2 + 2), (x1 + 1, x2), (x1 + 1, x2 + 1) and (x1 + 2, x2) as follows:

p∗(., .) x2 x2 + 1 x2 + 2

x1 p1,2 p1,3

x1 + 1 p2,1 p2,2

x1 + 2 p3,1

and then focus on the subconcavity conditions.

E.2.1 1st Condition: ∆21v(x1, x2) ≤ ∆21v(x1 + 1, x2)

The proof of the first condition is similar to the proof of the submodularity of the pricing
operator: We first derive two inequalities by using the optimality of p2,2 and p2,1, and we com-
bine these inequalities with the fact that v(x1, x2) satisfies the first condition of subconcavity.
Therefore, the proof is omitted.

E.2.2 2nd Condition: ∆21v(x1, x2 + 1) ≤ ∆21v(x1, x2)

The proof of the second condition is not as trivial as the first condition because the second
condition is related to the opportunity costs of class-2 customers and the pricing operator is
defined for class-1 customers. Therefore, we distinguish two cases: (p2,1 ≥ p1,3) and (p2,1 <
p1,3). The idea of this case by case analysis comes from our computational studies. In these
studies, we observe that for some holding cost parameters p2,1 ≥ p1,3 whereas for some other
parameters p2,1 < p1,3. This result implies that the opportunity cost of an additional class-1
customer at state (x1 + 1, x2) may or not may not be higher than the opportunity cost of
an additional class-1 customer at state (x1, x2 + 2) according to the cost parameters. The
intuition behind this result is the ratio of the holding cost of an expensive customer and a
cheap customer. When this ratio is very high, i.e. cost of an expensive customer is much higher
than cost of a cheap one, having 2 more class-1 customers may be more expensive than having
one expensive and two cheap customers, and thus p2,1 ≥ p1,3.

Then, we write inequality (19) for the pricing operator as:

F̄ (p2,1)[p2,1 + v(x1 + 2, x2)]
+F (p2,1)v(x1 + 1, x2)

−F̄ (p2,2)[p2,2 + v(x1 + 2, x2 + 1)]
−F (p2,2)v(x1 + 1, x2 + 1)

≤
F̄ (p1,2)[p1,2 + v(x1 + 1, x2 + 1)]

+F (p1,2)v(x1, x2 + 1)
−F̄ (p1,3)[p1,3 + v(x1 + 1, x2 + 2)]

−F (p1,3)v(x1, x2 + 2).

(20)

Case 1: (p2,1 ≥ p1,3)
Using the optimality of p2,2 at the state (x1 + 1, x2 + 1) and after some algebra, we have

that:

F̄ (p2,1)[p2,1 + v(x1 + 2, x2)]
+F (p2,1)v(x1 + 1, x2)

−F̄ (p2,2)[p2,2 + v(x1 + 2, x2 + 1)]
−F (p2,2)v(x1 + 1, x2 + 1)

≤ F̄ (p2,1)[v(x1 + 2, x2)− v(x1 + 2, x2 + 1)]
+F (p2,1)[v(x1 + 1, x2)− v(x1 + 1, x2 + 1)].

(21)
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Similarly, by using the optimality of p1,2, we have that

F̄ (p1,2)[p1,2 + v(x1 + 1, x2 + 1)]
+F (p1,2)v(x1, x2 + 1)

−F̄ (p1,3)[p1,3 + v(x1 + 1, x2 + 2)]
−F (p1,3)v(x1, x2 + 2)

≥ F̄ (p1,3)[v(x1 + 1, x2 + 1)− v(x1 + 1, x2 + 2)]
+F (p1,3)[v(x1, x2 + 1)− v(x1, x2 + 2)].

(22)

Now, we focus on the right hand side of the inequalities (21) and (22) and show that the
following inequality holds:

F̄ (p2,1)[v(x1 + 2, x2)− v(x1 + 2, x2 + 1)]
+F (p2,1)[v(x1 + 1, x2)− v(x1 + 1, x2 + 1)]

≤ F̄ (p1,3)[v(x1 + 1, x2 + 1)− v(x1 + 1, x2 + 2)]
+F (p1,3)[v(x1, x2 + 1)− v(x1, x2 + 2)].

(23)
As we know that (p2,1 ≥ p1,3), we also have that F̄ (p1,3) = F̄ (p2,1) + ξ, where ξ > 0.

Then, inequality (23) becomes:

F̄ (p2,1)[v(x1 + 2, x2)− v(x1 + 2, x2 + 1)]
+F (p2,1)[v(x1 + 1, x2)− v(x1 + 1, x2 + 1)] ≤

F̄ (p2,1)[v(x1 + 1, x2 + 1)− v(x1 + 1, x2 + 2)]
+F (p2,1)[v(x1, x2 + 1)− v(x1, x2 + 2)]

ξ

[
[v(x1 + 1, x2 + 1)− v(x1 + 1, x2 + 2)]
−[v(x1, x2 + 1)− v(x1, x2 + 2)]

]
.

Here, the first two lines are true by the second condition of subconcavity and the last line
is true by the submodularity of v(x1, x2). Therefore, inequality (23) is true. When we combine
(21), (22) and (23), it is obvious that equation (20) holds for the first case.

Case 2: (p2,1 < p1,3)
We first rearrange Equation (20) as:

F̄ (p2,1)[p2,1 + v(x1 + 2, x2)]
+F (p2,1)v(x1 + 1, x2)

−F̄ (p1,2)[p1,2 + v(x1 + 1, x2 + 1)]
+F (p1,2)v(x1, x2 + 1)

≤
F̄ (p2,2)[p2,2 + v(x1 + 2, x2 + 1)]
−F (p2,2)v(x1 + 1, x2 + 1)

−F̄ (p1,3)[p1,3 + v(x1 + 1, x2 + 2)]
−F (p1,3)v(x1, x2 + 2).

(24)

Then, using the optimality of p1,2 and after some algebra, we have that:

F̄ (p2,1)[p2,1 + v(x1 + 2, x2)]
+F (p2,1)v(x1 + 1, x2)

−F̄ (p1,2)[p1,2 + v(x1 + 1, x2 + 1)]
+F (p1,2)v(x1, x2 + 1)

≤ F̄ (p2,1)[v(x1 + 2, x2)− v(x1 + 1, x2 + 1)]
+F (p2,1)[v(x1 + 1, x2)− v(x1, x2 + 1)].

(25)

Similarly, by using the optimality of p2,2,

F̄ (p2,2)[p2,2 + v(x1 + 2, x2 + 1)]
−F (p2,2)v(x1 + 1, x2 + 1)

−F̄ (p1,3)[p1,3 + v(x1 + 1, x2 + 2)]
−F (p1,3)v(x1, x2 + 2)

≥ F̄ (p1,3)[v(x1 + 2, x2 + 1)− v(x1 + 1, x2 + 2)]
+F (p1,3)[v(x1 + 1, x2 + 1)− v(x1, x2 + 2)].

(26)

As in the previous case, we show that the following is true:

F̄ (p2,1)[v(x1 + 2, x2)− v(x1 + 1, x2 + 1)]
+F (p2,1)[v(x1 + 1, x2)− v(x1, x2 + 1)]

≤ F̄ (p1,3)[v(x1 + 2, x2 + 1)− v(x1 + 1, x2 + 2)]
+F (p1,3)[v(x1 + 1, x2 + 1)− v(x1, x2 + 2)].

(27)
Since (p2,1 ≥ p1,3), we have that F̄ (p2,1) = F̄ (p1,3) + ξ, where ξ > 0. Then, inequality

(27) becomes:

F̄ (p1,3)[v(x1 + 2, x2)− v(x1 + 1, x2 + 1)]
+F (p1,3)[v(x1 + 1, x2)− v(x1, x2 + 1)]

+ξ

[
[v(x1 + 2, x2)− v(x1 + 1, x2 + 1)]
−[v(x1 + 1, x2)− v(x1, x2 + 1)]

] ≤ F̄ (p1,3)[v(x1 + 2, x2 + 1)− v(x1 + 1, x2 + 2)]
+F (p1,3)[v(x1 + 1, x2 + 1)− v(x1, x2 + 2)].

Here, the first two lines hold by the second condition of subconcavity and the last line is
true by the first condition of subconcavity. Therefore, inequality (27) is true. When we combine
(25), (26) and (27), it is seen that (20) holds for the second case. Therefore, TPRC1 preserves
the second condition of subconcavity for both of the cases.

In conclusion, we show that TPRC1v(x1, x2) will preserve both conditions of the sub-
concavity if the necessary assumptions are satisfied. The proof for TPRC2 is similar. While
considering TPRC2 , we need to investigate the first condition in two cases: (p1,2) ≥ p3,1 and
(p1,2) < p3,1.
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F Structure of the Optimal Sequencing Policy

In order to establish the structure of the optimal sequencing policy, we need to show that
inequalities (1), (2) and (3) hold for the value function, v(x1, x2). Below, we provide a sketch
of the proof that v(x1, x2) is decreasing in x1. From the optimality equations, we have the
following for the finite horizon value function vn+1:

µTSEQvn(x1, x2)
+

∑
j=1,2

λjTPRCj
vn(x1, x2)

−h1x1 − h2x2

≥
µTSEQvn(x1 + 1, x2)

+
∑

j=1,2
λjTPRCj

vn(x1 + 1, x2)

−h1(x1 + 1)− h2x2.

The inequalities in the first two lines can easily be shown to hold and the last line is trivially
true. Therefore, vn+1(x1, x2) and v(x1, x2) are decreasing in x1. The infinite horizon value
function v(x1, x2) can be shown to possess the other monotonicity properties Dec2 and Dec21
in a similar way. Thus, v(x1, x2) satisfies inequalities (1), (2) (3).

Lemma 2 The value functions v(x1, x2) and v′(x1, x2) have the monotonicity properties
Dec1, Dec2 and Dec21 as specified in inequalities (1), (2), and (3).

F.1 Proof: Order of the Optimal Prices Among Classes (Corollary 1)

We prove this result by contradiction. To this end, we suppose p∗1(x1, x2) ≤ p∗2(x1, x2) for
some (x1, x2) on the contrary. Let p∗j = p∗j (x1, x2) for notational convenience. First, note that

the following inequalities hold due to the optimality of p∗1 and p∗2:

F̄1(p∗1)
[
p∗1 + v(x1 + 1, x2)

]
+ F1(p∗1)v(x1, x2) > F̄1(p∗2)

[
p∗2 + v(x1 + 1, x2)

]
+ F1(p∗2)v(x1, x2),

F̄2(p∗2)
[
p∗2 + v(x1, x2 + 1)

]
+ F2(p∗2)v(x1, x2) > F̄2(p∗1)

[
p∗1 + v(x1, x2 + 1)

]
+ F2(p∗1)v(x1, x2).

Combining these two inequalities, we have that
[
F1(p∗2)− F1(p∗1)

]
v(x1 + 1, x2) +

[
F2(p∗1)− F2(p∗2)

]
v(x1, x2 + 1)

−
([

F2(p∗1)− F1(p∗1)
]− [

F2(p∗2)− F1(p∗2)
])

v(x1, x2)

+

([
F2(p∗1)p∗1 − F1(p∗1)p∗1

]− [
F2(p∗2)p∗2 − F1(p∗2)p∗2

])
> 0.

Rearranging the above inequality, we have that
[
F1(p∗2)− F1(p∗1)

][
v(x1 + 1, x2)− v(x1, x2 + 1)

]

+

([
F2(p∗1)− F1(p∗1)

]− [
F2(p∗2)− F1(p∗2)

])[
v(x1, x2 + 1)− v(x1, x2)

]

+

([
F2(p∗1)p∗1 − F1(p∗1)p∗1

]− [
F2(p∗2)p∗2 − F1(p∗2)p∗2

])
> 0. (28)

Since F1(p∗2)−F1(p∗1) > 0 by our assumption on the optimal prices, p∗1 ≤ p∗2, and
[
v(x1 +

1, x2) − v(x1, x2 + 1)
] ≤ 0 by the monotonicity of v(x1, x2), the first term above is less

than zero. The second term is also less than zero because

([
F2(p∗1) − F1(p∗1)

] − [
F2(p∗2) −

F1(p∗2)
]) ≥ 0 by our assumptions on the optimal prices (p∗1 ≤ p∗2), and the reservation price

distributions (Condition (1)), and
[
v(x1, x2 + 1) − v(x1, x2)

] ≤ 0 by the monotonicity of
v(x1, x2). Furthermore, the last term is less than zero as F2(p)p−F1(p)p is (weakly) increasing
in p (Condition (2)) and p∗1 ≤ p∗2. Combining these three observations, inequality (28) cannot
be true, which leads to a contradiction. Therefore, our assumption on the optimal prices cannot
be correct. Hence, the optimal prices for class-1, p∗1(x1, x2), is greater than the optimal prices
for class-2, p∗1(x1, x2), as long as the reservation price distributions satisfy the condition stated
in the corollary.
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G Proof: Monotonicity of the Optimal Prices

Let p∗1 and p∗2 be the optimal prices for class-1 for the states (x1, x2) and (x1 + 1, x2), respec-
tively, and assume that p∗1 > p∗2. Then, we have the following as a result of the uniqueness and
optimality of p∗1 and p∗2:

F̄1(p∗1)[p∗1 + v(x1 + 1, x2)] + F1(p∗1)v(x1, x2) > F̄1(p∗2)[p∗2 + v(x1 + 1, x2)] + F1(p∗2)v(x1, x2)

F̄1(p∗2)[p∗2 + v(x1 + 2, x2)] + F1(p∗2)v(x1 + 1, x2) > F̄1(p∗1)[p∗1 + v(x1 + 2, x2)] + F1(p∗1)v(x1 + 1, x2).

When we combine these inequalities, we obtain:

[F1(p∗1)− F1(p∗2)][[v(x1, x2)− v(x1 + 1, x2)]− [v(x1 + 1, x2)− v(x1 + 2, x2)]] > 0. (29)

Since F1(p∗1)−F1(p∗2) > 0 by our assumption on the optimal prices and [v(x1, x2)−v(x1 +
1, x2)]− [v(x1 +1, x2)−v(x1 +2, x2)] ≤ 0 by the concavity of v(x1, x2), inequality (29) cannot
be true. Therefore, there is a contradiction and our assumption on the optimal prices is not
correct. Hence, the optimal prices for class-1, p∗1(x1, x2), are increasing in the number of class-1
customers in the system. The monotonicity of the optimal prices for class-1 in x2 and on the
diagonal can be proven in a similar manner. Finally, the monotonicity of the optimal prices
for class-2 can also be proven similarly.

H Detailed Numerical Results

In this section, we present the detailed numerical results pertaining to the examples of Section
4.

We denote by g∗ the expected optimal profit corresponding to the solution of the MDP.
We also employ two benchmark policies: a static pricing heuristic and a total queue length
heuristic. A static pricing policy charges one unique price to each customer class regardless of
the queue length. Under any given static pricing policy, the system becomes a priority queue
whose expected queue lengths are easily obtained (see [9]). We numerically search over the two
prices to obtain the corresponding expected profit gSP .

The implementation of a total queue length based heuristic is more challenging. In our
setting, the workload approximation logic of Maglaras [16] translates into a pricing policy
that only depends on the total queue length x1 + x2 rather than on individual queue lengths.
Unfortunately, beyond this basic fact, devising and implementing a well-performing total queue
length heuristic is in itself extremely difficult. The implementation in [16] depends on a free
parameter that needs to be optimized numerically. Since our main objective in this paper is not
constructing a new total queue length based heuristic, we employ the optimal prices that were
numerically computed in the MDP solution to come up with a reasonable total queue length
based price. In particular, for any given total queue length w = x1+x2, the corresponding price
for class j is obtained by averaging the optimal prices: pW

j (w) = (p∗j (0, w) + p∗j (w, 0))/2. This

is not a useful practical heuristic since the optimal prices come from the numerical solution of
the multi-dimensional MDP. But it yields a simple benchmark approximation that performs
well. For instance, for the set of numerical examples presented in [16], this implementation
yields slightly better results in terms of percentage optimality. We denote by gW the expected
optimal profit corresponding to the total queue length heuristic.

The percentage suboptimality of the static pricing and total queue length benchmarks are
denoted respectively by ∆gSP and ∆gW and are defined as:

∆gW =
g∗ − gSP

g∗
× 100 and ∆gW =

g∗ − gW

g∗
× 100.

We are also interested in the fluctuations in the optimal price for a given workload level.
As a simple measure we take the relative difference of the highest and the lowest price for the
total queue length as a measure of this fluctuation. To this end, we denote percentage relative
price difference for a total queue length of w for class i by ∆pi (w). More precisely,

∆pi (w) =
|p∗i (w, 0)− p∗i (0, w)|

min{p∗i (w, 0), p∗i (0, w)} × 100.
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Finally, we denote by ρ∗ the utilization rate under the optimal policy and by p∗1 and p∗2
the optimal static prices under the optimal static pricing policy.

Table 5 reports the results that were summarized in Section 4.1. It is observed that the
optimal prices do not fluctuate much for the second class. On the other hand, the price fluc-
tuation is sometimes significant for class 1. Despite this fluctuation, the total queue length
heuristic performs well in all cases including those where the utilization rate is low.

λ g∗ ρ∗ p∗1 p∗2 ∆p1 (1) ∆p1 (3) ∆p1 (5) ∆p2 (1) ∆p2 (3) ∆p2 (5) ∆gW ∆gSP

1 0.43 0.23 0.68 0.52 7.02 21.67 29.69 0 0 0 0.03 0.23
2 1.82 0.46 1.11 1.04 7.14 12.28 18.64 0 0 1.78 0.03 0.33
3 4.12 0.68 1.70 1.62 3.7 7.27 13.56 0 0 0 0.06 0.53
4 7.18 0.84 2.44 2.34 3.63 6.89 11.67 1.88 0 0 0.11 1.31
5 10.73 0.92 3.32 3.21 1.75 4.92 9.52 0 0 0 0.16 2.60
6 14.51 0.96 4.27 4.15 1.69 4.69 7.46 0 0 0 0.17 3.63
7 18.39 0.98 5.24 5.12 1.64 2.99 5.71 0 0 0 0.16 4.28
8 22.31 0.98 6.22 6.10 0 4.35 4.11 1.61 0 1.41 0.16 4.65

Table 5 λ1 = λ2 = λ, µ = 4, h1=0.4, h2=0.1

Table 6 reports the detailed results for the case outlined in Section 4.2. The effect of
higher holding costs leads to lower optimal profits and lower utilization rates with respect to
the results in Table 6. The price fluctuations for the first class appear to be more significant
at higher utilization rates. Maybe surprisingly, the total queue length heuristic still performs
at a suboptimality of 1%.

λ g∗ ρ∗ p∗1 p∗2 ∆p1 (1) ∆p1 (3) ∆p1 (5) ∆p2 (1) ∆p2 (3) ∆p2 (5) ∆gW ∆gSP

1 0.13 0.09 1 0.65 0 0 0 0 0 0 0 1.49
2 0.89 0.29 1.68 1.24 18.65 1.01 0 0 0 0 0.86 4.61
3 2.39 0.46 2.40 1.88 16.88 13.63 3.09 1.59 1.35 2.41 0.81 5.36
4 4.53 0.6 3.20 2.61 13.51 20.48 9.89 0 1.38 2.5 0.83 6.67
5 7.16 0.71 4.06 3.42 14.7 21.95 12.36 1.59 1.39 2.53 0.8 7.88
6 10.17 0.79 4.96 4.28 9.59 23.46 13.63 1.56 2.77 2.53 0.79 9.14
7 13.44 0.84 5.90 5.19 8.22 19.51 13.63 1.54 2.74 3.79 0.79 10.15
8 16.89 0.88 6.86 6.12 6.76 17.07 13.63 0 1.33 3.75 0.72 10.91

Table 6 λ1 = λ2 = λ, µ = 4, h1=4, h2=1

Finally, Table 7 reports the details of the case from Section 4.3. The utilization rates are
now uniformly low since the first class is admitted only when there are no waiting customers
from this class. The price fluctuation is again insignificant for class 2 but is more significant
for class 1. The percentage suboptimality of the total queue length heuristic is now quite
high, ranging above 10% for a wide range of service rates and nearing 20% in certain cases.
The price fluctuation does not explain this bad performance in itself. It appears that in this
case, the optimal policy is extremely sensitive to when class-1 customers are accepted and the
acceptance rule is highly asymmetrical with respect to the total queue length. In particular,
a class-1 customer may be admitted with 5 class-2 customers in the system but is rejected
with a single class-1 customer (and no class-1 customer) in the system. This is a challenging
situation for the total queue length heuristic.
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µ g∗ ρ∗ p∗1 p∗2 ∆p1 (1) ∆p1 (3) ∆p1 (5) ∆p2 (1) ∆p2 (3) ∆p2 (5) ∆gW ∆gSP

1 0.04 0.18 2 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.83
1.1 0.04 0.22 1.97 0.32 1.01 0.00 0.00 0.00 0.00 0.00 1.99 9.32
1.2 0.06 0.26 1.94 0.32 5.26 1.01 0.00 1.43 0.00 0.00 12.57 19.67
1.3 0.08 0.27 1.91 0.31 8.69 4.16 0.00 1.45 2.35 0.00 16.05 25.30
1.4 0.11 0.29 1.88 0.31 12.36 7.53 3.09 1.47 2.41 3.09 18.42 29.18
1.5 0.13 0.29 1.84 0.31 14.94 11.11 6.38 1.49 3.70 3.16 17.12 26.15
1.6 0.16 0.29 1.81 0.30 17.65 13.63 9.89 1.51 3.79 4.35 15.64 27.50
1.7 0.18 0.29 1.78 0.30 20.48 16.28 12.36 1.54 3.89 4.44 13.69 24.44
1.8 0.20 0.29 1.76 0.30 21.95 20.48 13.63 1.56 3.95 5.75 11.86 21.00
1.9 0.22 0.29 1.73 0.30 25.00 20.48 16.28 1.59 2.67 4.65 10.19 18.63
2 0.25 0.28 1.70 0.29 26.58 21.95 19.04 3.22 4.11 4.76 8.54 19.60

Table 7 λ1 = 2, λ2 = 0.5, h1=2, h2=0.1


