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M ost service systems consist of multidepartmental structures with multiskill agents that can deal with several types
of service requests. The design of flexibility in terms of agents’ skill sets and assignments of requests is a critical

issue for such systems. The objective of this study was to identify preferred flexibility structures when demand is random
and capacity is finite. We compare structures recommended by the flexibility literature to structures we observe in prac-
tice within call centers. To enable a comparison of flexibility structures under optimal capacity, the capacity optimization
problem for this setting is formulated as a two-stage stochastic optimization problem. A simulation-based optimization
procedure for this problem using sample-path gradient estimation is proposed and tested, and used in the subsequent
comparison of the flexibility structures being studied. The analysis illustrates under what conditions on demand, cost,
and human resource considerations, the structures found in practice are preferred.
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1. Introduction

It is known that flexible resources, such as cross-
trained servers or flexible equipment, mitigate the
negative effect of demand uncertainty. This is because
flexible resources can be allocated to different tasks,
thereby adjusting supply to better meet uncertain
demand. Especially for service systems like call cen-
ters, where production and consumption occur simul-
taneously, flexibility is essential in meeting and
satisfying customer needs.
Demand uncertainty can come in different forms.

Uncertain arrival rates imply unknown demand
parameters for the underlying capacity models of ser-
vice systems. Thus, forecasts and the associated fore-
cast errors are necessary to measure demand
parameter uncertainty. For a given arrival rate, there
is also demand uncertainty due to stochastic variabil-
ity, which is modeled by an arrival process to the ser-
vice system. Both parameter uncertainty and
stochastic variability affect capacity choices that lead
to desired performance in terms of service levels. Both
effects imply the need for safety capacity and flexibil-
ity. For many call centers, demand uncertainty in the
form of unknown arrival rates dominates the uncer-
tainty that results from stochastic variability. Moti-
vated by this observation, this study focuses on

flexibility design in settings with parameter uncer-
tainty.
Through resource flexibility, demand is aggregated

and resources are shared. Therefore, flexibility
improves the utilization of a system. Nevertheless, it
is usually expensive. Cross-training a server has a
cost. Furthermore, additional skills typically require
higher compensation. While in some settings broad-
ening the scope of a server through cross-training can
have positive effects on employee well-being and pro-
ductivity, there are limits to this beyond which addi-
tional flexibility may be detrimental to individuals.
This latter effect imposes constraints on the flexibility
design problem which tries to determine the appro-
priate skill sets for employees, and the number of
employees in each skill set, such that the benefits of
flexibility are maximized while minimizing its direct
and indirect costs.
The flexibility design problem for call centers can

be viewed as a hierarchical planning problem. At a
strategic level, managers will try to determine the
type of flexibility. This will start out with job design
which we label as skills’ definition. Each skill consists
of a set of tasks, and different skill definitions may
group the tasks differently. A server who has a partic-
ular skill will be able to perform all tasks within that
skill. Different skill definitions may be preferred, for
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example, to enable a natural career progression for
agents, to manage the total call volume of a particular
skill, or to group tasks by product or service being
offered. Given a skill definition, the strategic level will
then determine the skill sets for agents. This is where
the type of flexibility in a system as a function of the
skills that have been defined is determined. The tacti-
cal level problem determines the capacity levels for
each skill set. Once flexible capacity is in place, the
operational control problem which consists of skill-
based routing will route incoming calls to the appro-
priate agent pools, thereby exploiting the flexible
capacity. In this study, we will mostly focus on the
tactical problem of capacity optimization for a given
flexibility structure, which will enable us to make
statements about preferred choices (from a profit
standpoint) at the strategic level in terms of different
flexibility structures. The operational problem is
approximated as a linear program in the ensuing
analysis, thus disregarding stochastic variability.
Our motivation to compare different flexibility

structures in terms of their profit implications stems
from observing different flexibility structures in real
call centers. These have not all been analyzed from a
profit perspective in the extant literature. In particu-
lar, the flexibility literature, building on the work by
Jordan and Graves (1995), suggests that a two-skill
complete chain, where each server has two skills, with
its capacity appropriately optimized, would be an
ideal structure for a call center. A chain is formally
defined as a group of demand and resource types that
are either directly or indirectly connected by demand-
resource assignment decisions. A complete chain
structure allows reallocation of demands within the
resources of the whole system. The performance of
the two-skill complete chain has been explored and
confirmed in Wallace and Whitt (2005), where the
capacity is determined taking staffing costs into
account. In practice, flexibility structures are devel-
oped by also taking certain human resource-related
issues into account, which are not explicitly consid-
ered in the flexibility literature.
A structure which we call the nested structure is typ-

ical in many banking and insurance contact centers.
Nested structures are adopted in call centers where
career planning is extremely important. The employ-
ees have a high profile and a high potential to learn
different tasks. Their aim is to be promoted to higher
positions after a certain amount of contact center
experience. The nested structure implies a natural
career progression from being inexperienced agents
with limited skills to becoming experienced multiskill
agents by learning additional skills over time. With
an appropriate skill definition upfront, this progres-
sion can be made from simple or fundamental to
more complex or advanced skills: The most standard

operations can be taught easily to the beginners, thus
agents start out with these skills. As their contact cen-
ter experience grows, the agents are trained to
respond to additional more complex queries. This
type of a progressive training structure results in
what we call a nested structure. Apart from the entry
level agents, all agents in such a call center will be
cross-trained in several skills.
The second type of flexibility structure, observed in

technical support providing call centers is labeled as
the overflow structure. These centers have two kinds of
employees, dedicated or non-flexible agents who
focus on only one type of skill, and expert or flexible
agents who can provide assistance requiring all or
several types of skills. This structure seems to
acknowledge the cost and difficulty of cross-training
all employees and instead adopts a structure with a
small proportion of so-called super-servers.
Finally, we also consider the adjacent-level-of-flexibil-

ity structures proposed in Bassamboo et al. (2010b).
In that study, it is shown that “the optimal structure
invests in at most two adjacent levels of flexibility”
for systems with symmetric parameters. Here, we
consider the two possible adjacent-level flexibility
structures in a three-skill setting, one with pools of
one-skill and two-skill agents (Adjacent level-12,
A12), the other with pools of two-skill and three-skill
agents (Adjacent level-23, A23). We note that A12
consists of pools of specialists and a two-skill com-
plete chain, while A23 is a two-skill complete chain
combined with a generalist pool as in the overflow
structure, however, excluding the specialist pools we
see in the overflow structure.
The question of whether one would rather have

cross-trained servers throughout a service organiza-
tion, or focus cross-training activities on an exclusive
set of servers has been addressed from a human
resource practice standpoint before. Hunter (1999)
describes two prevailing models of work organization
in retail banking (branch, call center), labeling one as
the inclusive and the other as the segmented model. In
terms of cross-training practice, the inclusive model
implies cross-training for most employees throughout
the organization, whereas the segmented model refers
to systems with cross-training for a select few. View-
ing the above flexibility structures from this perspec-
tive, we can consider the two chain, nested, and A23
structures as examples of what one might find in an
organization with inclusive work practices, whereas
an overflow structure or A12 would suggest seg-
mented work practices.
Our research objective is to compare the two-skill

chain structure, and the adjacent-level flexibility
structures recommended by the literature with the
nested and overflow structures found in practice.
Figure 1 shows the five flexibility structures to be
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analyzed in this study for the case when there are
three different types of skills (used synonymously
with call types or products throughout). We aim to
answer the following research questions: When
capacity is optimized to maximize profits, can the
nested or overflow structures achieve the perfor-
mance of the recommended structure of the flexibility
design literature? Under what conditions might the
former two structures that originate from some
human resource-related concerns be preferred?
We first develop a methodology to solve the capac-

ity optimization problem for any given flexibility
structure. This methodology is then used to investi-
gate the flexibility structures specified above. The
remaining parts of this study are organized as
follows: A review of the literature in section 2 is
followed by a presentation of the model in section 3.
Section 4 introduces the solution method and ana-
lyzes its theoretical background. Some benchmarks
from the literature are used to numerically verify this
solution method. Section 5 proceeds with a numerical
study that compares the flexibility structures in dif-
ferent environments. Section 5.1 describes the experi-
mental design and section 5.2 gives a detailed
account for the comparison of the flexibility struc-
tures. Following a summary of the numerical results
in section 5.3, section 5.4 presents a case study from a
banking call center where the insights from the
analysis have been used to propose alternative flexi-
bility structures. Using demand data from this call
center, we demonstrate that the proposed structures
outperform the current flexibility structure in place
at this call center. Analysis of the demand data also
illustrates that this call center indeed operates in an
uncertainty dominated regime, as assumed in the
study. The numerical examples and case study illus-
trate how capacity optimization reduces the impor-
tance of flexibility design, and how specialist servers
help to control costs. The study ends with concluding
remarks in section 6.

2. Related Literature

The operations management literature has mostly
focused on the benefits of different flexibility struc-
tures, not explicitly dealing with its costs. Within the
spectrum of full-flexibility and full-specialization, a
variety of limited-flexibility structures can be built.
Jordan and Graves (1995) are the first to develop prin-
ciples on the benefits of process flexibility, showing
that well-designed limited flexibility can be as good
as full flexibility. Later on, Aks�in and Karaesmen
(2002, 2007) and Iravani et al. (2005, 2007) analytically
justify these principles, and propose methods to eval-
uate different flexibility structures.
From a throughput maximization perspective, a

limited flexibility structure called a complete chain,
first proposed by Jordan and Graves (1995), has been
shown to perform almost as well as the fully flexible
structure in a variety of different settings. The benefits
of chaining have been explored by many: Sheikzadeh
et al. (1998) and Jordan et al. (2004) analyze chaining
within manufacturing systems, Graves and Tomlin
(2003) within multistage systems, Inman et al. (2004)
within assembly lines, Gurumurthi and Benjaafar
(2004) within service systems, Hopp et al. (2004) and
Van Oyen et al. (2001) within both service and manu-
facturing systems, Aks�in and Karaesmen (2002, 2007)
and Wallace and Whitt (2005) within contact centers,
and Andradottir et al. (2013) within networks.
Both Jordan and Graves (1995) and Aks�in and Kar-

aesmen (2007) show the close relationship of flexibil-
ity to capacity design, suggesting that flexibility and
capacity need to be jointly designed. Capacity optimi-
zation prevents holding unnecessary flexible capacity,
which consequently decreases the cost of the system
and prevents waste of highly qualified resources.
While the literature focusing on the flexibility design
problem typically assumes that capacity is fixed,
capacity optimization problems have mostly focused
on given, relatively simple flexibility structures (see,

(a) (b) (c) (d) (e)

Figure 1 Different Flexibility Structures (a) Two-Skill Complete Chain (b) Nested (c) Overflow (d) Adjacent Level A12 (e) Adjacent Level A23

Aks�in, C�akan, Karaesmen, and €Ormeci: Flexibility Structure and Capacity Design
1088 Production and Operations Management 24(7), pp. 1086–1100, © 2014 Production and Operations Management Society



e.g., Chevalier et al. 2004, Fine and Freund 1990, Har-
rison and Zeevi 2005, van Mieghem 1998, Netessine
et al. 2002). Exceptions are Chevalier and Van den
Schrieck (2008), Bassamboo et al. (2012), and Bassam-
boo et al. (2010b).
In the setting being considered herein, capacity is

provided by human servers. While we focus on flexi-
bility benefits in terms of increased system through-
put, and flexibility costs in terms of direct staffing
costs for servers, actual benefits and costs may also
include human resource-related ones like motiva-
tional effects, mental load implications, career paths,
etc. These costs and benefits are reviewed in Aks�in
et al. (2007b). That study and Aks�in et al. (2007a) pro-
vide detailed reviews of the call center flexibility
design problem and illustrate its close ties to human
resource management. While we do not consider any
of these issues explicitly in our modeling, we consider
some of them in developing our managerial implica-
tions at the end.
In this study, we formulate a two-stage stochastic

optimization model, as, for example, in Fine and Fre-
und (1990), van Mieghem (1998), Harrison and van
Mieghem (1999), and propose a solution method
based on the gradient estimation via perturbation
analysis (GPA) technique. A detailed exposition of
GPA can be found in Glasserman (1991). Some theo-
retical issues are investigated by Robbins and Monroe
(1951), Talluri and van Ryzin (1999), and Karaesmen
and van Ryzin (2004).

3. Model Formulation

Capacity in service systems is typically modeled by a
queue. In a queueing model, assumptions are made
about the arrival process and the service process, and
the system’s performance is analyzed under given
parameters. In this framework, the arrival process is
frequently modeled as a Poisson process with known
arrival rates (k). Capacity is determined based on a
square-root safety principle that adds safety capacity
which is proportional to the square root of this known
arrival rate.
In practice, it has been documented that call centers

face arrivals that are more variable than a Poisson
process (see, e.g., Avramidis et al. 2004, Steckley et al.
2005). One way of modeling a process that is more
variable than a Poisson process is to imagine that the
arrival process is actually a Poisson process with an
arrival rate that varies according to some random pro-
cess. A typical interpretation is to view this random-
ness as a consequence of forecasting difficulties
(Steckley et al. 2005). We model arrival rates as a ran-
dom variable with a specified distribution herein.
Instead of a queuing model, we adopt a newsven-

dor-like capacity model that faces random arrival

rates. Through this choice, we disregard the stochastic
variability effect on capacity. As argued in Aks�in
et al. (2008), and later shown in Bassamboo et al.
(2010a), this type of a newsvendor-like capacity
model is appropriate and accurate when the uncer-
tainty in the demand rate is more significant than the
stochastic variability. In particular, Theorem 1 of Bas-
samboo et al. (2010a) shows that when the coefficient
of variation of the random arrival rates is larger than
1=

ffiffi
�

p
, where e = k/l is the offered load of the system

with l the average service rate, a capacity prescription
that follows a newsvendor model is nearly optimal. In
such settings, there is not much to be gained by add-
ing a safety capacity as suggested by the square root
staffing rule. On the other hand, if the condition does
not hold, then the newsvendor prescription could be
further refined through square root safety staffing.
Our analysis focuses on such settings where uncer-
tainty dominates stochastic variability. We present a
case study from a call center in section 5.4, where
analysis of real demand data demonstrates that
uncertainty dominates stochastic variability. As
shown in that example, the condition that verifies the
dominance of the uncertainty over stochastic variabil-
ity is only applicable to demand data that does not
contain predictable variations, as these can be dealt
with via staffing and scheduling.
The capacity design with flexible resources problem

is thus modeled as a two-stage stochastic optimiza-
tion problem. The capacities of the resources are
determined in the first stage, prior to the realization
of the demand. Realized demand is allocated to the
resources in the second stage. The capacity optimiza-
tion problem is a multidimensional newsvendor-like
problem. All of the demand is assumed to be realized
at the beginning of the period, and the demand that
cannot be processed immediately due to the lack of
capacity, is lost.
Consider a service or a manufacturing system with

J parallel resources, which processes I different ser-
vice types. The set of services that a resource can pro-
cess will be referred to as the skill set of that resource.
The skill sets of the resources are different from each
other. We represent the flexibility structure of the sys-
tem by the matrix K, where kij ¼ 1 denotes that
resource j has skill i and therefore demand i can be
processed at resource j, otherwise kij ¼ 0. The overall
service capacity of resource j is denoted by cj. The
demand vector, D ¼ ðD1; . . .; DIÞ, is random with a
joint probability density function gDðdÞ. The demand
realization of service i is denoted by di. In the context
of call centers, the demand realizations represent the
mean demand rate. In a more general context, we
assume that the demand represents the overall
amount of required work, rather than the number of
service requests for a service type i. Accordingly, they
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can have continuous values. We assume that each
demand unit requires one unit of resource capacity.
Finally, we let xij be the units of service i processed by
resource j.
It is assumed that each unit of service i has an asso-

ciated revenue pi per unit, and each specialized
resource j has an associated cost sj per unit capacity.
Similar to Chevalier et al. (2004), we assume that flex-
ibility increases the cost of capacity in an amount pro-
portional to the additional skills of the corresponding
resource. Thereby, the unit cost of a flexible resource
is denoted by the expression sj þ fjð

P
i kij � 1Þ, where

fj denotes the cost of flexibility at resource j for each
additional skill. In the context of service systems, fj
represents the payment to resources for additional
skills in terms of salary and benefits, which justifies
this linear relationship. Then, we can formulate the
problem as follows:

Stage I: max
fcj;xijg

XðcÞ ¼

max
fcj;xijg

E Uðc;DÞ �
X
j

cjsj �
X
j

cj
X
i

kij � 1

 !
fj

2
4

3
5

8<
:

9=
;;

ð1Þ

Stage II: Uðc;dÞ ¼ max
fxijg

X
i

X
j

xijpi; ð2Þ

subject to:
X
i

xij � cj 8j; ð3Þ
X
j

xij � di 8i; ð4Þ

0� xij �M� kij 8i; j; ð5Þ

where M is a large number, c ¼ ðc1; . . .; cJÞ and kij
is taken as a parameter. xij is a decision variable in
both stages while cj becomes a parameter in the sec-
ond stage. The capacity should be decided at the
beginning of the period so that the expected profit
of the system, Ω, is maximized. The first term of
Equation (1) represents the expected revenue for a
given capacity c. The second and the third terms
represent the total cost of the capacity. Since the cost
is constant for a given capacity value, the first-stage
problem can be reformulated as follows:

max
fcj;xijg

XðcÞ ¼

max
fcj;xijg

E½Uðc;DÞ� �
X
j

cjsj �
X
j

cj
X
i

kij � 1

 !
fj

8<
:

9=
;
ð6Þ

The second stage maximizes the revenue of the
system for any demand realization, d, and capacity

level, c. Inequality Equation (3) guarantees that the
number of jobs handled by any resource is not more
than its capacity, whereas inequality Equation (4)
prevents the number of processed i jobs from
exceeding the corresponding demand. Finally, Equa-
tion (5) ensures that the jobs are assigned to the
capable resources.

4. The Solution Method

In this section, we propose a solution method to
the capacity optimization problem, which is based
on the gradient estimation via perturbation analysis
technique. We then numerically compare capacity
vectors obtained via this method to certain bench-
mark problems for which the optimal capacities are
known.

4.1. GPA Combined with Stochastic
Approximation
The GPA technique estimates the gradient of the
objective function in consecutive experiments. The
decision variable is then changed in the direction of
the estimator with a certain step size.
Let c ¼ ½c1; . . .; cJ� denote the capacity vector,

r ¼ ½ð@X=@c1Þ; . . .; ð@X=@cJÞ] denote the gradient
vector of the expected profit with respect to the capac-
ity, and ~r denote the gradient estimator. Beginning
from an arbitrary initial capacity level, the method
searches for an optimal level by successively perturb-
ing c in the direction of ~r with a certain step size bk,
where k denotes the iteration number.
This approach is similar to the steepest descent

algorithm. However, instead of the gradient, an esti-
mator is employed. Ω(c) depends on the random
demand distribution due to the first term of Equation
(6), E[Φ( c,D)]. However, stage 2 is solved for each
realization of d, so that it is not possible to derive the
probability distribution or the expected value of Φ(c,
D). Hence, the exact gradient of E[Φ(c,D)],
rcE Uðc;DÞ½ �, and so of Ω(c), cannot be calculated.
Thus, we estimate rcE Uðc;DÞ½ � by simulation. The
second and third terms of Equation (6), on the other
hand, have fixed values for a given c, so their gradi-
ents are easily computed.
The estimation procedure begins with the solution

of the second-stage problem for an initial capacity
vector. At each iteration k, R realizations of the
demand vector are generated in a common probabil-
ity space, where we denote the rth realization of the
demand vector at iteration k by dk

r . For each realiza-
tion r, we solve stage 2, and calculate the shadow
price of the capacity constraint j, ujðc;dk

rÞ, where
ujðc;dÞ denotes the partial derivative of the total
profit with respect to the capacity of the jth resource
for a given demand realization d, that is, ujðc;dÞ ¼
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@Uðc;dÞ=@cj. Let u(c,d) be the vector of shadow prices
associated with the capacity constraints. We use the
average shadow price of R experiments as the estima-
tor of the gradient. Therefore, 1

R

PR
r¼1

ujðc;dk
rÞ represents

the estimator for the partial derivative of the total
profit with respect to the capacity of the jth resource in
iteration k. Then, the gradient estimator of E[Φ(c,D)]
at iteration k is given by:

~rk
cE Uðc;DÞ½ � ¼ 1

R

XR
r¼1

uðc;dk
rÞ:

By adding this term to the gradient of the second
and third terms with respect to c, ~r is estimated.
Then, the new capacity vector is found by:

c ! cþ bk
~r

jj ~rjj ;

where bk is the step size chosen in iteration k. The
algorithm stops when the magnitude of the gradient
estimator ð ~rÞ becomes smaller than a specified
e > 0, or when a specified number of iterations, say
N, is exceeded.
In our numerical experiments, we set R = 20,

� ¼ 10�6 and N = 10,000. In most of our numerical
results, the number of iterations stopping criterion is
used. This is in line with what is found in the litera-
ture (see, e.g., Karaesmen and van Ryzin 2004). More-
over, we use a fixed step size of 1 when k ≤ 5000, and
decrease it after that point by setting bk ¼ 1=ðk � tÞ
for k > 5000. This rule satisfies a certain convergence
criterion as discussed in the Appendix.
There are some technical issues related to the con-

vergence of the algorithm. First, the steepest descent
approach leads to a globally optimal solution only if
the objective function is jointly concave in the deci-
sion variables. This is easy to verify since the cj
variables appear on the right-hand side of the con-
straints in Stage 2 which is a linear program. This
implies that Φ(c,d) is jointly concave in c for a fixed
demand vector d. Since the expected value operator
preserves concavity, the objective function in Equa-
tion (6) is also jointly concave in c. The unbiased-
ness of the gradient estimator as well as the details
of the step-size selection rule are discussed in the
Appendix.

4.2. Verifying GPA Results
The verification process consists of ensuring that the
method based on GPA converges to the optimal
capacity levels. To test the accuracy of the method
and to observe the effects of some problem parame-
ters on the performance of the method, we benchmark
our results to those from the existing literature. The
criterion of the relative percentage error is used in this

evaluation, where we set the relative percentage
error as:

% error ¼100�
jcapacity by ourmethod�capacity by existing resultj

capacity by existing result
:

We first compare the results of our method with the
optimal newsvendor problem results for fully spe-
cialized and fully flexible structures in a set of
experiments, and then run another set of experi-
ments for the two structures analyzed by Netessine
et al. (2002). Figure 2 presents all the structures used
in these comparisons.
We focus on the two flexibility structures demon-

strated in Figure 2a and b as bipartite graphs with
nodes standing for the demand types and the
resources; and arcs standing for the skills. The first
structure represents a fully specialized system, where
each resource has only one skill, and the second struc-
ture represents a fully flexible system, where each
resource has all the skills. In the classical newsvendor
problem, the optimal capacity of a resource is given
by the formula G�1

D ½ðp � vÞ=p�, where G�1
D is the

inverse of the cumulative demand distribution, GD, v
is the unit cost, and p is the unit price. To find the
optimal newsvendor solution to the fully specialized
structure, each resource-demand pair is treated inde-
pendently. In the fully flexible case, the resource
capacities are aggregated and the whole system is
treated like a single resource-demand pair.
For simplicity, the unit specialized capacity cost,

s, of the resources is assumed to be identical. Also,
the cost of unit flexible capacity for any additional
skill is assumed to be the same for each resource,
so it is set to f. Hence, v = s in fully specialized sys-
tems, and v = s + f9(I � 1) in fully flexible systems,
where I is the total number of the demand types.
We also note that p ¼ pi for fully specialized
resource i, and p ¼ ðPi E½Di�piÞ=ð

P
i E½Di�Þ in fully

flexible systems.
For each combination of the system parameters

given in Table 1, four different types of problems are
solved; fully flexible with 2 and 3 resources, and fully
specialized with 2 and 3 resources. The number of
demand types is taken to be equal to the number of
resources in each case. The demand scenarios are cre-
ated using a truncated normal distribution, N(k,r), to
ensure positive demand values. We set k = 50 in all
experiments, whereas r has two levels: r = 5 and
r = 10.
As a result, each of the fully flexible structures is

evaluated in a total of 2 9 3 9 3 9 3 9 2 = 108
experiments, and each of the fully specialized is eval-
uated in 2 9 3 9 3 9 3 = 54 experiments. For the
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specialized systems, each capacity value is evaluated
as a separate instance, such that there are 2 9 54
instances for the two-class specialized and 3 9 54
instances for the three-class specialized systems.
Table 2 presents the summary of percentage errors for
capacity: the second column shows the average rela-
tive error in capacity, while the third column shows
the proportion of examples where the error in capac-
ity values was <2%.
Next, we implement our method to find optimal

capacity levels for the resources in the structures of
Netessine et al. (2002) (see Figure 2) which we label as
Netessine Structure 1 and Netessine Structure 2. We
slightly modified the objective function of our model
to incorporate the different pricing scheme of Netes-
sine et al. (2002). The demands of all types in both
systems arrive according to truncated normal distri-
butions. The numerical results from our method are
compared to the optimal capacity levels found for
these structures by the algorithm proposed in Netes-
sine et al. (2002). We first consider 16 instances from
Table 1 (p = 30 or 50; s = 15 or 5; f = 5 or 2; initial
capacity = 50) and compare capacity values under
our method and the algorithm from Netessine et al.
(2002) for Structure 1 and Structure 2. The demand
scenarios are created using a truncated normal distri-
bution, N(k, r), with k = 50 and r = 5 or r = 10. The

errors in capacity are tabulated in Table 3. Some
capacity pools exhibit higher errors compared to the
specialized and fully flexible structure examples;
nevertheless, simulations of profit under the capacity
vectors determined by the GPA method and the algo-
rithm from Netessine et al. (2002) reveal that their
profits are close. In particular, there is only one case
where the profit difference exceeds 5% and on aver-
age this difference is <2%. Finally, we consider one of
the numerical examples from Netessine et al. (2002)
and provide detailed results. For this example, Table
4 shows that the capacity levels found by our algo-
rithm are close to those found to be optimal in Netes-
sine et al. (2002). A simulation under both capacity
vectors shows that profits under these capacity vec-
tors are practically identical, thus demonstrating the
flatness of the profit function around the optimal
capacity values.
The above experiments provide evidence that solv-

ing the two-stage stochastic optimization problem via
the GPA combined with stochastic approximation
yields reliable solutions in a range of different flexibil-
ity designs.

5. Performance of the Flexibility
Structures

This section compares the profits of the five flexibility
structures shown in Figure 1 (two-skill complete
chain, 2C; nested, N; Overflow, O; Adjacent level-12,
A12; Adjacent level-23, A23) in different environ-
ments. We focus on the setting with three skills and
explore the role of symmetry in demand between dif-
ferent skills, and variability in the demand rates, as
well as differences in agent/server costs. To keep the
distinction between structures, our implementation

(a) (b) (c) (d)

Figure 2 (a) Fully Specialized Structure (b) Fully Flexible Structure (c) Structure 1 in Netessine et al. (2002) (d) Structure 2 in Netessine et al.
(2002)

Table 1 System Parameters

Initial
capacity (c0) Price (p)

Specialized
capacity cost (s)

Additional
skill cost (f)

100 50 15 5
50 40 10 2
0 30 5

Table 2 Summary of Errors for Capacity Values

Problem Average relative error Less than 2% difference

3-3 flexible 0.67% 93%
3-3 specialized 0.75% 89%
2-2 flexible 0.84% 88%
2-2 specialized 1.0% 88%

Table 3 Summary of Errors for Capacity Values

Problem Capacity 1 Capacity 2 Capacity 3

Netessine Structure 1 1.12% 3.84% –
Netessine Structure 2 3.95% 8.37% 12.47%
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ensured that structures with specialist pools were
unable to set the capacity of these pools to zero (the
lower bound was set to one), thereby eliminating the
possibility of two structures (e.g., 2 chain and A12) to
become identical.

5.1. Experimental Design and Evaluation
All demand rates in the numerical experiments are
assumed to have a truncated normal distribution. The
examples are constructed such that the total mean
demand is held constant at 120, while its distribution
to the three skills is varied to ensure examples with a
range of different levels of symmetry–asymmetry in
mean demand rates. Without loss of generality,
assume that the call types are ordered such that skill
C is learned first and skill A is the last skill learned if
agents follow a career path as implied by a nested
structure. Another way of interpreting this ordering is
to consider type A calls to be the most complex when
call types are ordered by complexity. The demand
rates in the experiments have one of the following
orderings: (D1) �A \�B \�C; (D2) �A [ �B [ �C;
(D3) �A ¼ �B ¼ �C. We will equivalently label D1 as
the unbalanced-Pareto ordering, D2 as the unbal-
anced ordering, and D3 as the balanced ordering. The
unbalanced-Pareto ordering represents a setting
where the most complex calls, or the calls that only
the most experienced agents can answer in a nested
structure, have the lowest volume of calls. This type
of inverse relationship between call complexity and
call volume is a common situation in practice. The
unbalanced ordering is the reverse of this case. The
balanced ordering represents the setting analyzed in
most studies in the flexibility literature. There are six
asymmetric average demand vectors (see Table 5) and
one symmetric (40,40,40). To analyze the role of vari-
ability in the demand rates, two different coefficient

of variation (CV) values are considered. CV = 1 repre-
sents the high variability case, while CV = 0.3 repre-
sents the low variability cases. With average demand
rates that vary between 10 and 90, we see that 1=

ffiffi
�

p
varies between 0.31 and 0.10, thus ensuring that for
the most part CV [ 1=

ffiffi
�

p
and we are in an uncer-

tainty dominated regime.
We set p to 100, while letting (s,f) take different val-

ues as specified in Table 6, which leads to a total of
eight different cost configurations. These configura-
tions will enable evaluation of the effect of decreasing
s/p, specialist resource capacity costs relative to the
revenue (going from the first column to the last), and
the effect of s/f flexibility costs relative to the special-
ist resource capacity costs. Note that the total cost of a
flexible server with two skills (s + f) and flexible serv-
ers with three skills (s + 2f) are decreasing as we go
from configuration 1 to 8. Thus, there are 6 (asymmet-
ric demand vectors) 9 2 (CV values) 9 8 (cost config-
urations) = 96 instances for D1 and D2 and 1
(symmetric demand vector) 9 2 (CV values) 9 8
(cost configurations) = 16 instances for D3.
The optimal capacity allocations for each flexibility

structure are computed with an iteration limit of
10,000. We set the average demand as the initial
capacity for specialist pools, and set capacity equal to
5 in all additional pools. For the A12 structure, we
also consider the optimal capacity for the correspond-
ing 2C structure as an initial capacity point along with
capacity equal to 5 in the additional pools. To com-
pare the overall system performances, the experi-
ments are then repeated 10,000 times when optimal
capacity levels are implemented in each problem. The
best profit is reported whenever there are multiple
initial capacity points. We compute the 95% confi-
dence intervals on the difference of the mean profit
values for each pair of structures. Whenever these
confidence intervals include 0, it is not possible to
conclude that one structure performs statistically bet-
ter than the other, even though the average profits
may be different.

5.2. Comparison of Flexibility Structures
We first focus on results for D1 (unbalanced-Pareto)
and D3 (balanced). D2 only matters for the nested
structure and we report on this difference at the end
of the comparisons. To compare the performance
of the flexibility structures, we first need to define

Table 4 Comparison of the Results for Problems in Netessine et al.
(2002)

Problem Method Pool size Error in capacity Profits

1 Netessine
Structure 1

(138, 168) – 3238

GPA (135, 169) (2.25%, 0.54%) 3238
2 Netessine

Structure 2
(127, 145, 165) – 3105

GPA (124, 146, 166) (2.12%, 0.96%,
0.73%)

3106

Table 5 Mean Demand Rates, �A, �B, �C

a �A \�B \�C �A [ �B [ �C �A ¼ �B ¼ �C

Set 1 2 3 4 5 6 7 8 9 10 11 12 13
A 10 10 10 10 20 30 90 80 70 60 60 50 40
B 20 30 40 50 40 40 20 30 40 50 40 40 40
C 90 80 70 60 60 50 10 10 10 10 20 30 40
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certain performance measures: Let XS denote the
profit of structure S, where S 2 {2C, N, O, A23, A12}.
We report the number of instances where structure S2
has a significantly higher profit than structure S1. We
define the relative profit of structure S1 with respect
to structure S2 by the ratio XS1=XS2 , and denote it by
RPðS1jS2Þ. We report the average relative profit
( �RPðS1jS2Þ) of a structure S1 with respect to structure
S2 over all the instances where structure S1 has a
significantly lower profit than S2; accordingly
0 � �RPðS1jS2Þ � 1. Now let X� ¼ max XSjS 2�
f2C, N, O, A23, A12gg. Then, the relative profit of a
structure S is defined as the ratio XS=X�, denoted by
RP(S), which always satisfies 0 ≤ RP(S) ≤ 1. Finally,
we let �RPðSÞ be the average of RP(S) over all instances
(considering both significant and not significant
cases). Note that the comparisons in �RPðSÞ are always
with respect to the best-performing structure.
Table 7 shows pairwise comparison results for each

structure under D1 and D3. In this Table, as well as in
the other tables that follow, the first number reported
in each cell represents the number of instances where
the structure in the row has a significantly higher
profit than the structure in the column. The second
number is the average of the relative profits of the
structure in the column (S1) with respect to the struc-
ture in the row (S2) among the significantly different
cases ( �RPðS1jS2Þ). The percentages in the last row
represent �RPðSÞ, the average relative profit of the
structure in the column with respect to the best-
performing structure over all instances. For example,
consider the first column: Structure N performs
significantly better than structure 2C in two instances,
where the average relative profit of structure 2C with
respect to structure N is 97% over these two instances,
that is, �RPð2CjNÞ ¼ 97%. On the other hand, the
overall performance of structure 2C is given by the
average relative profit as �RPð2CÞ ¼ 97%.

We can rank the structures with respect to the num-
ber of instances when each structure is significantly
better than another and the average relative profits in
this table. Then A12 is the best structure, closely fol-
lowed by O, while 2C is the third, N the fourth and
A23 the last. In fact, structure A12 performs as the
best structure in almost all cases, which is reflected by
100% average relative profit. However, the average
relative profits of all structures are quite high with a
minimum of 95%. Hence, while the number of signifi-
cantly different instances shows a clear ordering
between structures, in terms of relative profit, the dif-
ferences are low.
We then focus on the role of asymmetry in demand

rates. Tables 8 and 9 show the results for 16 instances
each for the most unbalanced demand vector (10, 20,
90) and the balanced demand vector, respectively.
From these Tables, we observe that the 2C and N
structures perform better for symmetric (balanced)
demand, while O performs relatively better when
demand is asymmetric. A12 consistently performs as
the best both under symmetric and asymmetric
demand; however, relative average profits with O
under asymmetric demands and with 2C, N, and O
under symmetric demands are very small (1–2%).
The role of balance in the demand rates is further

explored in Table 10. In this analysis, the best struc-
ture under each of the six unbalanced demand vectors
is compared to the best structure under symmetric
demand. We let Xð‘Þ be the average profit of the best
performing structure when the demand rates are
given by Set (ℓ ), where ℓ = {1, 2, 3, 4, 5, 6}, and Xð13Þ

is the profit of the balanced demand case (see Table 5
for the labels). Since all demand rates sum up to 120,
the differences can be attributed to the way the
demands are distributed between classes. The third
and fourth columns of Table 10 report the average
and the minimum of Xð‘Þ=Xð13Þ over all instances. The
differences between the average profits are not always
statistically significant, so we statistically compare the
average performances of unbalanced structures (Xð‘Þ)
with that of the balanced structure (Xð13Þ) using a sig-
nificance level of 5%. In 48 of 96 instances, balanced
demand structures perform significantly better,
whereas there are no instances in which they perform

Table 6 Cost Configurations

1 2 3 4 5 6 7 8

s 60 60 30 30 10 10 5 5
f 6 2 6 2 3 1 3 1

Table 7 Performance of all 112 Instances under Demand Patterns D1
and D3

S 2C N O A23 A12

2C – 21 98% 19 92% 31 95% 0 –
N 2 97% – 16 92% 18 93% 3 96%
O 66 97% 71 96% – 72 96% 0 –
A23 0 – 6 99% 4 94% – 0 –
A12 71 96% 81 95% 45 95% 95 95% –
�RPðSÞ 97% 96% 98% 95% 100%

Table 8 Performance of 16 Instances under Unbalanced Demand
Vector (10,20,90)

S 2C N O A23 A12

2C – 2 95% 0 – 2 94% 0 –
N 0 – – 0 – 0 – 0 –
O 11 95% 11 95% – 12 95% 0 –
A23 0 – 0 – 0 – – 0 –
A12 12 95% 13 94% 3 95% 14 94% –
�RPðSÞ 96% 95% 99% 95% 100%
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significantly worse. The fifth column of Table 10
shows the distribution of the statistically significant
instances over different demand structures. Finally,
we report the average performance of the unbalanced
structures over only the significant instances (last col-
umn of Table 10). We observe that more balance
(lower rows of Table 10) leads to higher profits and
better performance consistently under all these met-
rics.
In addition to the demand pattern, we observe that

variability of demand rates, as measured by the CV,
has an effect on the comparisons between the struc-
tures. A comparison of Tables 11 and 12 demonstrates
that under low variability, A12 and O clearly outper-
form the others. While A12 is the better of the two, the
difference between these two structures is negligible
under low variability. As variability is increased,
dominance of O and A12 over 2C and N becomes less
distinct.
Tables 13 and 14 present the instances with respect

to low and high s/p ratios, respectively. Looking clo-
ser to Tables 11–14, we see that N outperforms O
when CV = 1 is coupled with high s/p and s/f values,
in other words when specialist pools become rela-
tively more expensive. Similarly, 2C outperforms O
when CV = 1 is coupled with higher relative special-
ist costs as well as more balanced demand patterns.
A23 is the worst structure and outperforms O and N
only in several instances. It never outperforms A12 or
2C. The role specialist costs play in the performance
of 2C and N is further demonstrated by Tables 13
and 14.

The D2 demand pattern only makes a difference for
the nested structure. We summarize our observations
for these 96 instances without the details for brevity.
By construction, we expect the nested structure to
perform better under D1. This is because we have a
higher volume of calls for the specialist pool and a
lower volume of calls for pools with higher skill num-
bers. This pattern is reversed in D2. When we com-
pare the performance of N under the two demand
patterns, we see that indeed N is better than the other
structures in five fewer instances under D2 and is sig-
nificantly worse than other structures in eight more
instances compared to the D1 setting. Nevertheless,
the average profit performance differences between
the D1 and D2 settings are very small (<1%).

Table 9 Performance of 16 Instances under Balanced Demand Vector
(40,40,40)

S 2C N O A23 A12

2C – 3 98% 4 94% 2 96% 0 –
N 1 96% – 3 91% 2 94% 1 96%
O 9 97% 9 97% – 9 97% 0 –
A23 0 – 2 99% 2 94% – 0 –
A12 9 97% 11 96% 8 96% 12 96% –
�RPðSÞ 98% 97% 97% 97% 100%

Table 10 Performance Comparison by Demand Pattern

Set Demand
Overall

average (%) Worst (%)
Significant
differences

Average
over

significant
cases (%)

(1) 10-20-90 94 72 13 out of 16 93
(2) 10-30-80 96 80 10 out of 16 93
(3) 10-40-70 97 86 10 out of 16 95
(4) 10-50-60 97 90 8 out of 16 95
(5) 20-40-60 99 93 7 out of 16 97
(6) 30-40-50 100 98 0 out of 16 –

Table 11 Performance of 56 Instances with CV = 0.3

S 2C N O A23 A12

2C – 12 99% 0 – 7 99% 0 –
N 0 – – 0 – 2 99% 0 –
O 55 97% 56 96% – 54 96% 0 –
A23 0 – 6 99% 0 – – 0 –
A12 56 96% 56 95% 21 98% 56 96% –
�RPðSÞ 96% 95% 99% 96% 100%

Table 12 Performance of 56 Instances with CV = 1

S 2C N O A23 A12

2C – 9 96% 19 92% 24 93% 0 –
N 2 97% – 16 92% 16 93% 3 96%
O 11 97% 15 96% – 18 96% 0 –
A23 0 – 0 – 4 94% – 0 –
A12 15 96% 25 95% 24 93% 39 94% –
�RPðSÞ 98% 97% 96% 95% 100%

Table 13 Performance of 56 Instances with Low s/p Ratios

S 2C N O A23 A12

2C – 0 – 0 – 2 98% 0 –
N 0 – – 0 – 0 – 0 –
O 36 98% 40 98% – 39 97% 0 –
A23 0 – 0 – 0 – – 0 –
A12 39 98% 42 97% 1 – 42 97% –
�RPðSÞ 98% 98% 100% 98% 100%

Table 14 Performance of 56 Instances with High s/p Ratios

S 2C N O A23 A12

2C – 21 98% 19 92% 29 94% 0 –
N 2 97% – 16 92% 18 93% 3 96%
O 30 95% 31 95% – 33 95% 0 –
A23 0 – 6 99% 4 94% – 0 –
A12 32 94% 39 93% 44 95% 53 93% –
�RPðSÞ 96% 95% 96% 93% 100%

Aks�in, C�akan, Karaesmen, and €Ormeci: Flexibility Structure and Capacity Design
Production and Operations Management 24(7), pp. 1086–1100, © 2014 Production and Operations Management Society 1095



5.3. Summary of Results
Earlier literature on flexibility design has focused on
the value of flexibility for a fixed capacity level. In our
analysis, we compared the value of flexibility when
capacity is optimized under each flexibility structure.
The most interesting observation from our analysis is
that when capacity is properly optimized, the profit
difference induced by different flexibility structures is
small. This observation is particularly applicable in
the case of services where adjusting capacity is much
easier than adjusting capacity in a manufacturing set-
ting. Given that different flexibility structures have
different human resource implications (as elaborated
on in the following section), and may not be easily
changed, the result on the importance of capacity
optimization is significant. It is possible to view the
five structures considered herein as combinations of
basic structures: Overflow = generalist pool + spe-
cialists; 2 chain = 2-skill pools (no specialists);
Nested = 1,2,3 skill pools (just one specialist pool);
A12 = 2 chain + specialists; A23 = generalist pool +
2 chain (no specialists).
We then note that in the overall performance rank-

ing A12 > O > 2C > N > A23, A12, and O are the
two structures which have specialist pools. Allowing
for specialist pools enables control of capacity costs
while the two-skill pools and the generalist pool in
A12 and O, respectively, allow to provide the little
flexibility that is needed. On the other hand, N and
A23 are two structures with three skill pools. These
pools are expensive and unlike the O structure, the
lack of specialist pools does not enable these struc-
tures to control costs. As the cost of flexible capacity
increases and the need for it is increased through a
higher CV, the performance of the O structure deteri-
orates relative to A12 and 2C due to the presence of
flexibility through an expensive three-skill pool as
opposed to two-skill pools in the former two struc-
tures. The 2C structure, which is the one recom-
mended by the flexibility design literature, is indeed
the best when specialist pools are also allowed as in
A12. Analysis of the results for A12 and A23 shows
that the optimal structure for symmetric systems,
determined as systems that only invest in adjacent
levels of flexibility (Bassamboo et al. 2010b), also
appears to be the best when systems are not symmet-
ric (as demonstrated by A12 in our numerical
analysis). However, at the same time, A23 turned out
to be the worst structure despite its focus on adjacent
levels of flexibility. This contrast underlines the
importance of choosing the right adjacent level struc-
ture. Combining our observation regarding specialist
pools with the adjacent level result seems to suggest
that A12, which is basically a two-chain plus special-
ists, would give excellent (if not the best) results in
most settings.

Our recommendations are made under the assump-
tion that flexibility in the form of additional skills
makes a server more expensive. While we have
assumed linear costs, one could also have concave
costs. Furthermore, one can envisage settings where
the costly flexibility assumption may not be true, thus
removing the additional cost of flexible servers we
have assumed. In such a setting, one would compare
the flexibility structures in terms of benefits and possi-
bly other criteria, which may change the suggestions
made herein. Among other criteria, one can envisage
the effect of different flexibility structures on call rout-
ing and agent occupancy or call routing and fairness.
The study of such criteria would require a different
modeling approach that enables an analysis of call
routing in continuous time.

5.4. Managerial Insights on Flexibility Design and
a Case Study
For a new system that is being established, flexibility
design starts with the strategic issue of skills defini-
tion. Skills are defined by combining and grouping
tasks to form a skill. Our results suggest that the best
strategy is to define the skills such that the resulting
demand rates would be balanced. This is in line with
the intuition that the benefits of flexibility are highest
in settings with high symmetry, and is supported by
our numerical analysis.
Certain settings may not allow for free regrouping

of tasks in skills to obtain the desired balanced struc-
ture for demand rates. An extreme example for this
inflexibility at the skill definition level is the one
offered by multilanguage call centers, where each lan-
guage has to constitute a different skill. Systems
which cannot change their skill definitions need to
choose server skill sets given skill definitions. Allow-
ing for specialist pools to control capacity costs and
combining these with a two-chain or a generalist pool
will result in consistently high profit performance in
such systems.
Next, consider a system where skill sets have

already been established. Suppose we have a call cen-
ter that offers its employees a career path based on a
progressive expansion of their skills. Such a system is
organized according to a nested structure, which also
becomes its major constraint. Our results suggest that
building career paths differently, possibly a progres-
sion from specialist pools to multiskill pools and then
onward to different managerial positions like supervi-
sor or team leader is more appropriate than career
paths that just build on the number of skills, particu-
larly when additional skill costs are significant. How-
ever when nested structures that build on the number
of skills cannot be avoided, managers need to pay
attention to the demand arrival rates. Indeed, unless
the demand rates are ordered as �A \�B \�C, the
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nested structure cannot provide a career path under
optimal capacity. This is because when demand rates
are ordered as in D2, optimal capacity is set such that
there are few servers in the specialized pools, and the
pool with three skills has the highest capacity. This
implies that the idea of starting many servers as spe-
cialists and having some progress to two skills and
some of those progress to three skills does not work
in this instance. When D2 prevails, the nested struc-
ture does not provide the desired career path option.
Frequently, service organizations rely on generalist

pools that can handle all service requests. Our results
demonstrate that adding specialist pools and optimiz-
ing capacity can lead to superior profit performance
for such systems, as demonstrated by the overflow
structure. An advantage of the overflow structure rel-
ative to A12 is that as the number of skills increases,
the number of agent pools to manage increases signif-
icantly with an A12 type structure, while for the O
structure it remains as the number of skills plus one
more pool. While the overflow structure comes out as
a robust flexibility structure, as the number of skills
increases, job scope for the flexible agents might
become excessive. In general, job scope has been
shown to have positive effects on performance (Hack-
man and Oldham 1976, Ilgen and Hollenbeck 1991).
Xie and Johns (1995) demonstrate that there is a limit
on the positive impact of job scope, and that beyond a
threshold, job scope can become excessive and induce
stress which is dysfunctional for the organization. If
this is the case, the two-chain structure with addi-
tional specialist pools (A12) may be preferred.
To illustrate the application of our analysis, we

focus on a case study from a retail banking call cen-
ter. This call center has predefined skills and our
focus is on flexibility structure design under capacity
optimization. The existing situation is described next:
The call center has seven defined skills (1, . . ., 7) with
agents grouped in five pools according to their skill
sets. Current skill sets (pools) are as follows: Pool
S = Skill 5; Pool AS = Skills 2,4,5; Pool A = Skills
1,3,2,4,5; Pool B = 1,3,5; Pool Q = 5,6,7; From S to AS
to A, we see a nested structure with 2 and 4 grouped
(24) and 1 and 3 grouped (13) together as a single
skill. From S to B to A, we see another nested struc-
ture, again with (13) and (24) bundled together. Fur-
thermore the presence of two nested structures
suggests that learning (13) first or (24) first does not
seem to matter. Pool Q is separate from the other
pools. From S to Q, we can see another path for
agents. The existing flexibility structure is shown in
Figure 3.
Recommending an adjacent level flexibility struc-

ture as in A12, our results would suggest the follow-
ing pools. In line with current practice, we assume
that (13) and (24) are grouped and treated as a single

skill. Specialist Pool 1 = 5 (current S); Specialist Pool
2 = (13) (new); Specialist Pool 3 = (24) (new); two-
skill pool 1 = (13),5 (current B); two-skill pool
2 = (24),5 (current AS); two-skill pool 3 = (13),(24)
(remove 5 from current A, labeled as A-). So we
would just add two specialist pools and remove skill
5 from A to reduce the number of skills in this pool
from 3 to 2. This structure would address career path
concerns to some extent by offering several alterna-
tives: Paths 1 and 2: 5 to 5,(13) or 5 to 5,(24); Paths
3;4;5;6: (13) to (13),(24); (24) to (24),(13); 13 to (13),5;
(24) to (24),5.
Recommending an overflow structure as in O, our

results would suggest the following pools. Specialist
Pool 1: 5 (current S), Specialist Pool 2: (13) (remove 5
from current B, labeled as B-), Specialist Pool 3: (24)
(remove 5 from current AS, labeled as AS-), three-skill
pool 5,(12),(34) current pool A. One advantage of this
structure would be the fewer agent pools to manage.
The recommended structures are also shown in Fig-

ure 3. As this example demonstrates, in practice, we
do not expect to find one of these structures in isola-
tion but frequently find several of them combined.
Thus, the banking example demonstrates a case
where we have nested structures combined with
other pools like pool Q. Some of these choices may be
driven by concerns not addressed in our analysis.
Nevertheless, insights from our analysis can guide
flexibility structure redesign.
To further test the value of our recommendations,

we perform a numerical analysis for this banking call
center. We use a data set with the number of call
arrivals and average call handle times in 30-minute
intervals in the month of April, 2008 for each defined
skill. An analysis of arrival rates indicates that week-
days are different from weekends and that the period
between 13:00 and 15:30 represents the peak period of
each day. There does not seem to be a consistently
peak day among the weekdays for all groups. We
thus focus our analysis of demand on weekdays dur-
ing the identified peak period to avoid any time and
day dependent effects on arrival rates. Average ser-
vice times are found by taking the average call handle
times for each skill. Whenever skills are combined,
we assume that they are independent and the arrival
rate and offered load (e) of the combined skills can be
obtained by summing those for each skill.
Table 15 tabulates the mean number of calls for

30 minutes, the standard deviation of the mean num-
ber of calls for 30 minutes, the corresponding empiri-
cal coefficient of variation CVemp, the coefficient of
variation if arrivals were assumed to be Poisson
CVPoisson, and the value of 1=

ffiffi
�

p
for each of the four

demand types (2 + 4, 1 + 3, 5, 6 + 7). We observe that
all arrivals are overdispersed relative to a Poisson
process. CVemp is larger than the value of 1=

ffiffi
�

p
for
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demand types 2 + 4, 1 + 3, 5, and is slightly less for
demand type 6 + 7, thus demonstrating that the call
center is mostly operating in an uncertainty domi-
nated regime.
We use the GPA-based method to determine opti-

mal capacity levels for the existing and recommended
structures shown in Figure 3, under the given
demand data. Since we do not have cost-related data,
we use p = 100 and cost configurations 1 and 8 from
Table 6. Profits are simulated for implemented capaci-
ties under 500,000 repetitions in these examples, and
are tabulated in Table 16. For both cost configurations,
we find that the two recommended structures are sig-
nificantly better than the existing structure in terms of
profit performance at a 95% confidence level. Further-
more, the overflow and A12-based recommended
structures lead to profit performance that is very simi-
lar. In the first instance with higher costs s and f, the
profit under the two structures is statistically indistin-
guishable. In the second instance, the A12-based
structure results in slightly better performance (4%
better). While the profit differences between the pro-
posed structures and the existing one are low for the
case with a higher s/p ratio, the proposed structures
outperform the existing structure by 25�29% for the
case when this ratio is low.

6. Concluding Remarks

We analyzed the capacity decision of multiresource
service or production systems considering the flexibil-

ity structure and the cost of capacity. A solution
method that determines the capacities of the resources
under uncertain demand is proposed. The modeling
approach we select allows us to capture random
demand rates found in call centers.
The numerical comparison of the five flexibility

structures, found in practice or recommended by the
literature, illustrates the importance of optimizing
capacity given a flexibility structure. We confirm ear-
lier statements from the literature that for services a
little flexibility is important and valuable, and addi-
tionally show that capacity optimization coupled with
some no-flexibility (specialist) resources is even bet-
ter. Defining skills to minimize demand asymmetry is
worth exploring where feasible.
The result that systems that can combine a high

capacity in specialized resources with a lower level of
flexible capacity (as found in the overflow structure)
provide superior profit performance, is consistent
with the 80-20 rule observed in Chevalier et al. (2004),
as well as with the related results in Chevalier and
Van den Schrieck (2008) and Bassamboo et al. (2012).
Analyzing queueing systems in heavy traffic, with
their capacity optimized, under the assumption of
balanced demand rates, Bassamboo et al. (2012) show
the optimality of adjacent-level flexibility structures.
The fact that different modeling approaches, like the
loss systems analyzed via approximations in Cheva-
lier and Van den Schrieck (2008), or the queueing sys-
tems under heavy traffic in Bassamboo et al. (2012)
lead to consistent results with our observations based
on newsvendor-type models lends further support to

(a)

(b)

(c)

Figure 3 (a) Existing Structure (b) Recommended A12 Structure (c) Recommended Overflow Structure

Table 15 Demand Data from the Banking Call Center

Demand
type Mean SD CVemp (%) CVPoisson (%) 1=

ffiffi
�

p
(%)

2 + 4 176.54 73.10 41.41 7.53 19.63
1 + 3 1449.16 356.84 24.62 2.63 7.28
5 182.19 79.54 43.66 7.41 20.85
6 + 7 386.37 62.77 16.25 5.09 19.16

Table 16 Average Profits (Standard Error) for the Existing and
Proposed Structures of the Banking Call Center

Costs Existing Overflow A12

p = 100; s = 30; f = 6 19,893 (50) 20,311 (50) 20,332 (50)
p = 100; s = 5; f = 1 49,420 (24) 66,382 (27) 69,434 (27)
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the robustness of these with respect to modeling spe-
cifics.
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Appendix

A. Unbiasedness and Convergence
Glasserman (1991) draws attention to the importance
of two theoretical issues concerning the validity of the
GPA method, unbiasedness and convergence. We
investigate these issues in detail below.
First, consider the unbiasedness of the estimator.

Let X(h) be a random function of parameter h. If
rhXðhÞ is an unbiased estimator of rhE½XðhÞ�, the fol-
lowing is true by definition:

E rhXðhÞ½ � ¼ rhE XðhÞ½ �: ðA1Þ
In our setting, this condition can be written as:

E
1

R

XR
r¼1

uðc;Dk
rÞ

" #
¼ rcE Uðc;DÞ½ �:

It is known that (Glasserman 1994) if X(h) is almost
surely (a.s.) differentiable at h, and X(h) satisfies the
Lipschitz condition, then the estimator is unbiased.
We first show that Φ(c,d) is a.s. differentiable with
respect to c for any given realization d. Φ(c,d) is piece-
wise linear and concave with respect to c, since it is
the objective function of a linear maximization prob-
lem and c is the right-hand side of the constraints.
Clearly, Φ(c,d) fails to be differentiable at a finite
number of points. But since the average of R paths is
taken and the demand is continuous, the non-differ-
entiable points smooth-out (see Glasserman 1994).
Now, we are ready to prove the following lemma.

LEMMA 1. 1
R

PR
r¼1

uðc;dk
rÞ is an unbiased estimator of

rcE½Uðc;DÞ�.

PROOF. We know from the above discussion that
Φ(c,d) is almost surely differentiable with respect to
c for any given realization d. Then, we only need to
show that Φ(c,d) satisfies the Lipschitz condition for
each cj and for all d.

Let c be a point at which Φ(c,d) is differentiable.
At point c, the effect of a small increase in the
capacity cannot be more than the profit gained by

the same amount of increase in the throughput of
the most expensive job in the skill set of the corre-
sponding resource. Moreover, this effect is also
bounded by the unit capacity cost of resource j.
Let ɛ be the amount of increase in the capacity of

resource j, �pj be the highest contribution margin
among all jobs that the additional capacity can pro-
cess, and fj þ tj be the unit capacity cost of resource
j. Then, we have the following:

jUðcþ eej;dÞ � Uðc;dÞj � eminf�pj; fj þ tjg; ðA2Þ

where ej is the jth unit vector. Consequently, Φ(c,d)
satisfies the Lipschitz condition.
The second important theoretical issue is related

to the convergence of the method closely related to
the step-size selection rule. Considering the possibil-
ity that the initial capacity is too far from the opti-
mal, we implement the method by starting with a
big step size to accelerate the convergence. For the
first half of the iterations, a fixed step size of 1 is
used. After that point, we begin decreasing the step
size following the rule bk ¼ 1=ðk � tÞ, satisfying the
conditions given below:

X1
k¼1

bk ¼ 1
X1
k¼1

b2k\þ1; ðA3Þ

which were established by Robbins and Monroe
(1951) to guarantee convergence.
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