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Abstract
This article studies the pricing problem of a seller given an initial inventory of products
with heterogeneous quality, facing uncertain customer arrivals over a finite selling sea-
son. We consider various regimes depending on whether the seller inspects the inven-
tory to assess the quality levels of the products, and whether customers examine the
inventory themselves and pick their specific item of choice among the available prod-
ucts. We formulate the problem under each regime as a stochastic optimization model
which maximizes the seller’s expected profits, capturing the salient problem features
such as stochastic customer arrivals, customers’ choice behavior, and uncertain product
qualities. As obtaining closed-form solutions or structural properties for the optimal
prices is quite difficult, we explore the full information solution to the problem as an
upper bound, as well as solution approaches that approximate some key problem char-
acteristics. Finally, we substantiate our results through an extensive numerical study,
focusing on the performance of the proposed pricing policies and approximations.
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1 INTRODUCTION

Product quality is an essential component of competitive
advantage and a key driver of customer satisfaction. It is
generally viewed as an exact variable that is measured as
a function of some technical characteristics of the product
(Garvin, 1984). For example, quality of timber is determined
by factors such as knot size and frequency, grain uniformity,
discoloration, and wane in the wood (Sunley, 1963). Even
after timber products are categorized (graded) at the supply,
such that products in the same category are deemed to have
the same functional use, significant heterogeneity in quality
still remains due to differences in the quantity of levels of
such key attributes (Leffler, 1982). So, how should a seller
price an inventory of such heterogeneous quality products?
How do key operating factors impact the seller’s profit? To
address these questions, we introduce a modeling framework
that takes into account whether the seller inspects the indi-
vidual products for quality before pricing and/or the cus-
tomers are allowed to examine the products before making
purchase decisions, and develop a stochastic optimization
formulation for each model. Our primary focus is to derive
analytical and managerial insights. In what follows, we dis-

cuss the salient features of our problem and our modeling
assumptions.

Although we use the timber industry as a motivating exam-
ple, our model and subsequent analysis apply to more gen-
eral settings in which a seller makes pricing decisions for a
given initial inventory of products with heterogeneous qual-
ity, facing random demand over a finite selling season. We
should also note that “quality,” in a broader sense, refers to
any product attribute for which all customers have a com-
mon preference for. The seller initially knows the quality
distribution, but does not specifically know the true quality
of each product in their inventory, which could potentially
be unraveled through inspection of each individual item, at
a cost. We assume that the quality levels of the individ-
ual products are fixed and do not deteriorate through time
due to environmental conditions (such as meat, dairy prod-
ucts, fresh produce, flowers, pharmaceutical products, chem-
icals, and blood). In such an environment, the seller sets one
price at each point in time, and this price holds for all prod-
ucts regardless of their quality. In other words, the seller
does not pursue quality-based price discrimination to sell
higher quality products at higher prices. On the other hand,
a customer makes the purchase decisions based on a linear
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2 PRICING POLICIES FOR HETEROGENEOUS QUALITY PRODUCTS

TA B L E 1 Summary of regimes

Customers

Don’t Examine Examine

Seller Doesn’t Inspect ∅ 𝔼

Inspects 𝕀 𝕀𝔼

utility function that is increasing in the product’s quality and
decreasing in its price. As all products carry the same price, it
is in the customers’ best interest to look for (assuming that
they are allowed to do so) a high-quality item among the
available products, so as to maximize their surplus. To this
end, we assume that the “customers know best”—they can
basically distinguish low- versus high-quality products, and
accordingly purchase (at most) one item each (we discuss the
details of our choice model in Section 2). This is a stylized
model that addresses the flip side of the simplest conventional
models where customers may have heterogeneous valuations
(preferences) for perfectly identical products; in our model,
the products are similar but heterogeneous in quality and cus-
tomers agree upon a common value for each product.

Based on the above description of our problem, we con-
sider a framework with four possible regimes (summarized in
Table 1) depending on whether the seller chooses to inspect
the inventory to assess the individual quality levels of the
products, and whether the seller lets customers examine the
inventory themselves and pick their specific item of choice
among the available products:

∅: Seller does not inspect inventory and does not allow
customers to examine products

𝔼: Seller does not inspect inventory but allows customers
to examine products

𝕀: Seller inspects inventory but does not allow customers
to examine products

𝕀𝔼: Seller inspects inventory and allows customers to
examine products

Under ∅ and 𝔼, the seller determines the optimal price
based on the distribution of product quality, whereas under
𝕀 and 𝕀𝔼, he makes the pricing decision with the com-
plete information about specific quality levels of the products.
Under 𝔼 and 𝕀𝔼, the seller sets the optimal price taking
into account that customers make purchase decisions based
on their realized utility after observing quality, whereas they
would make these decisions based on their expected utility
facing random quality under ∅ and 𝕀. Specifically, we con-
sider two pricing policies under 𝔼: (i) Under static pricing
policy, the seller does not change the price over the course
of the selling season; (ii) under price updating (PU) policy,
the seller revises the initial price at a pre-specified time. We
should also note that under ∅, 𝕀, and 𝕀𝔼, as well as under
𝔼 with static pricing, the product price remains the same
throughout the selling horizon.

We introduce the stochastic optimization formulations that
maximize the seller’s expected profit for each regime in Sec-

tions 3 and 4.1. Our main focus in this article is on the seller’s
optimal pricing policy under 𝔼. We primarily use the pric-
ing policies under the other regimes, ∅, 𝕀, and 𝕀𝔼, as
benchmarks. For example, the gap between the optimal prof-
its under 𝔼 and ∅ reveals the marginal value of the cus-
tomers’ ability to examine products before making their pur-
chase decisions. In fact, our numerical experiments show
that the seller benefits more from this ability when inven-
tory has overall lower and more variable quality, and cus-
tomer demand is relatively scarce (we present the details of
our computational study in Section 5.1 and discuss further
insights regarding the impact of key problem parameters on
the seller’s optimal profit under ∅, 𝕀, 𝔼, and 𝕀𝔼).

We should mention that obtaining closed-form solutions
for the optimal prices is quite an arduous task. In our prob-
lem, not only are customer arrivals stochastic but also each
product in inventory is essentially different from one another
through uncertain quality. This calls for the analysis to deal
with multiple order statistics and manipulations of their joint
distribution functions. To address these challenges, we con-
sider three approximations—a fixed proportions approxima-
tion scheme that overlooks the stochastic nature of product
quality and assumes that a fixed (deterministic) proportion of
available inventory rather than a random proportion is above a
given quality level; a mean-value-equivalence scheme that in
addition to the fixed proportions assumption ignores demand
uncertainty; and an unlimited demand scheme that further
assumes that demand is not a constraint for the seller. We
computationally assess the performance of these approxima-
tions relative to the optimal pricing strategies under regime
𝔼 in Section 5.2, and show that the fixed proportions pol-
icy is the most effective one among the three. Moreover, the
performance of the approximations improves as inventory
becomes more abundant in quantity and less variable in qual-
ity.

Pricing of seasonal products has been widely studied
in extant literature. We refer the reader to Phillips (2005)
and Talluri and Van Ryzin (2005) for overviews of the
basic pricing models, and to Elmaghraby and Keskinocak
(2003), Bitran and Caldentey (2003), and Chen and Simchi-
Levi (2012) for reviews of this rich literature. An implicit
assumption in the typical line of research is that all items in
the seller’s inventory for a particular product are identical
(homogenous inventory), and that customers consequently
have the same preference for each unit. On the other hand,
our work assumes that items are variants of a single product,
differentiated in their random quality levels (heterogeneous
inventory). In this sense, the pricing component of our work
is related to the pricing of vertically differentiated product
inventories that arise in assortment planning. For instance,
Pan and Honhon (2012) assume that customers differ in
their valuations of quality, and consequently, develop several
efficient algorithms to optimally price the products (jointly
with optimal assortment decisions). Akcay et al. (2010) study
the dynamic pricing problem for an inventory of vertically
differentiated products over a finite selling season and derive
structural properties of the optimal pricing policy. All of
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these models inherently assume that the quality levels of the
products in inventory are predetermined (perhaps at a strate-
gic level) and known by the firm, whereas a distinct feature
of our model is the uncertainty in the quality levels of the
products. In particular, we focus on how to price the products
under different levels of information on their quality. To
this end, our main contribution in this article is to develop
and analyze a series of stylistic models that enhance our
understanding of pricing an inventory that is heterogeneous
in quality. The models present unique challenges both on the
customer choice side and the supply side, and to perform a
complete unified analysis, we simplify some of the features
while respecting the essence of the main issues.

2 CHOICE MODEL

We consider a seller selling products to price- and quality-
sensitive customers over a single selling season. The seller
purchases an initial stock of n units from a supplier before
demand is realized and sells these products during the sea-
son. Any unsold product by the end of the selling season is
valueless (no salvage value). We assume that the quality lev-
els of products are identically and independently distributed
continuous random variables denoted by Q (for any randomly
selected item) with cumulative distribution FQ(⋅) and den-
sity fQ(⋅) over support [0,∞). For notational convenience, we
index the products in decreasing order of their quality and
let i, i ∈ {1, 2,… , n}, indicate the product with the ith highest
quality product among all n products in the supplier’s ini-
tial inventory. Subsequently, Qi designate the random quality
level of product i, that is, Q1 ≥ Q2 ≥ ⋯ ≥ Qn. By definition,
Qi is also known as the ith-order statistic of Q. We denote by
Ui a customer’s utility for product i with quality level Qi at
price p, and express it as

Ui = Qi − p. (1)

Note that all customers have the same utility for product i,
that is, customers are homogenous in their valuations of the
products. Unless otherwise stated, the seller does not set dif-
ferent prices for different quality items and p is the same for
all products in (1). We assume that the no-purchase option,
denoted by 0 for notational convenience, is always available,
and its utility is 0, that is, U0 = 0. Therefore, a customer
would never purchase a product with a negative utility. If
the customer examines product i, they can resolve the uncer-
tainty associated with random quality Qi. We assume that the
cost of acquiring and processing product information (search
cost) is negligible, and therefore, a new customer examines
all products available at the time of arrival, identifies the high-
est quality product, and purchases it if the utility is nonneg-
ative. This choice model is commonly referred to as a pure
characteristicsdemand model (Berry & Pakes, 2007) and has
been widely used to describe vertical demand (e.g., Bhargava

& Choudhary, 2001; Bresnahan, 1987; Tirole, 1988; Wauthy,
1996).

3 PRICING WITHOUT INSPECTION

In this section, we formulate the seller’s pricing problem
when the seller does not inspect products to resolve their
exact quality levels. Section 3.1 describes our model under
regime ∅, whereas Section 3.2 presents two pricing policies
under 𝔼. Throughout the article, we focus on the revenue
optimization problem of the seller. Unsold items have no sal-
vage value or disposal cost.

3.1 Pricing under ∅

Customers do not examine the products before they make
their purchase decisions under regime ∅. This is a com-
mon situation for products sold over the Internet or through
mail-order catalogs, where customers cannot experience the
traditional touch-and-feel shopping, hence diminishing their
ability to assess the quality of products considerably. As the
seller also does not inspect the available inventory, we assume
that he randomly assigns products to customers. Hence, it
is likely that a customer ends up with an “unsatisfactory”
product, that is, the customer observes a negative ex-post
utility because the true quality of the product turns out to
be less than its price. Selling with “money-back guarantee”
is a widely used approach to improve customer satisfaction
in today’s hypercompetitive business environment. Accord-
ingly, the seller allows customers to return products that do
not meet their expectations as a result of “poor” quality back
to the seller for a full refund. We assume that: (i) all returned
products are discarded by the seller, that is, they do not go
back to the seller’s inventory; (ii) customers do not seek to
replace an unsatisfactory product with a new product; and
(iii) customers keep a product as long as their utility is non-
negative and do not return a product back to the seller hop-
ing to exchange it with a higher quality item (clearly, if such
exchanges were allowed by the seller, our results would be
quite different). We refer the reader to Fruchter and Gerstner
(1999), Su (2009), and Akcay et al. (2013) for detailed stud-
ies of pricing and inventory models under money-back guar-
antees.

Under ∅ with full refunds, the customer’s utility is (q −
p), given that the product’s realized quality q exceeds p. On
the other hand, the customer’s utility is 0 if the product’s qual-
ity is below p (because the customer returns the product for
full refund). The customer’s expected utility is then:

E[U] = E[(Q − p)+], (2)

where z+ ≡ max(z, 0). The customer’s expected utility in (2)
is nonnegative. Therefore, customers would always be willing
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to purchase the product.1 In turn, the seller’s expected profit
from a unit of product sold would be p(1 − FQ(p)) because
pFQ(p) of the selling price p is refunded.

Let the total number of customer arrivals over the course
of the selling season be a discrete random variable, denoted
by A with cumulative distribution FA(⋅). We assume that A
is independent of the quality of the seller’s inventory n and
the selling price p. On the other hand, the final sales would
ultimately be a function of A, Q, p, and n.

We write the seller’s expected profit under ∅ as

Π∅(p) = p(1 − FQ(p))E[min{n, A}],

and express the optimal expected profit as

Π∗
∅
= max

p≥0
Π∅(p). (3)

Note that the optimal expected profit is scaled by
E[min{n, A}], but the optimal price is independent of n and
A, because Q and A are independent. This leads to the follow-
ing result:

Proposition 1. If p(1 − FQ(p)) is a concave function of p or
if Q has an increasing generalized failure rate (IGFR), then
the optimal price p∗

∅
satisfies:

p∗
∅
=

1 − FQ(p∗
∅
)

fQ(p∗
∅
)

. (4)

We refer the reader to Lariviere and Porteus (2001) for
a formal definition of IGFR. The proof of Proposition 1 is
straightforward by differentiating p(1 − FQ(p)) with respect
to p. Concavity or the IGFR condition in Lariviere and Por-
teus (2001) ensures that the first-order condition guarantees
optimality (see Online Appendix A for the formal proof).

Proposition 1 is the analog of the results in the classical
unconstrained price optimization problem for customers with
random valuations for homogeneous items where the optimal
price only depends on the customer valuations but not on the
market size (potential demand). In the classical problem, the
optimal price is typically nondecreasing in the available sup-
ply but here the optimal price does not depend on n because
customers have homogeneous valuations for items of same
quality. On the other hand, the expected optimal revenue is
nondecreasing in n.

In our case, the randomness comes from the product qual-
ity levels and the optimal price only depends on Q. To com-
pare the impact of random quality on optimal price and
expected profit, let us define QX and QY as random vari-
ables associated with two different quality-level distributions,
FQX (⋅) and FQY (⋅). To understand how the optimal price
depends on Q, we can remark that if a given product quality

1 We assume that if the utility of a product is 0, customers prefer purchasing the product
over the no-purchase option.

level QX stochastically dominates another quality level QY in
terms of the hazard rate order, then the optimal price for QX is
higher. As the hazard rate order carries a similar meaning to
the regular stochastic order (in fact, it implies the stochastic
order), this can loosely be interpreted as stochastically higher
quality in the hazard order sense, leading to higher optimal
prices and higher expected revenues.

3.2 Pricing under 𝔼

The seller could inspect their inventory so as to resolve the
uncertainty around the quality levels of products. In some
cases though, such an effort can be a significant cost fac-
tor for the seller. A study by the Juran Institute reveals that
costs associated with measuring, evaluating or auditing prod-
ucts (or services) to assure conformance to quality standards
amount to 10–30% of sales or 25–40% of operating costs for
most U.S. companies (De Feo, 2005). There are also relevant
situations where the seller simply does not have the expertise
to assess the quality of the inventory. This may happen when
the seller is an occasional trader of items such as objects of
art or crafts. Further, customers may also have more exper-
tise in artisanal objects than occasional traders. This particu-
lar behavior of customers could potentially save the seller the
inspection effort and enable higher profits.

In light of the above arguments, suppose that the seller does
not perform any inspection when the products are received
from the supplier, hence not knowing the exact (realized)
quality levels of the products in the inventory. On the other
hand, the customer examines the inventory, and chooses the
highest quality product available at the time of their arrival.
The objective of the seller is to maximize their expected profit
over the finite selling season, given a particular pricing policy
and without full information about product quality. In Sec-
tion 3.2.1, we first present our pricing policy in which the
seller does not change the price over the course of the selling
season under 𝔼. We then extend this model in Section 3.2.2,
to discuss a policy in which the seller updates the initial price
at a prespecified time.

3.2.1 Static pricing policy

Under the static pricing policy in regime 𝔼, the seller sets
the price at the start of the selling season based on the prior
information about product quality and taking into account
that customers will be making choices after examining the
inventory. Let us define N(p) as the number of available items
whose quality levels are greater than or equal to the selling
price p. In other words, N(p) corresponds to the maximum
number of products that can be sold at price p given infinite
demand. Accordingly, N(p) would be equal to a particular
value i, if the quality level of the ith highest quality product
exceeds p, that is, Qi ≥ p, whereas the next highest quality
product does not, that is, Qi+1 < p. We can then express the
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probability mass function of N(p) as:

(N(p) = i) = 
(
Qi ≥ p, Qi+1 < p

)
=
(n

i

)
FQ(p)n−i(1 − FQ(p)

)i
. (5)

The random variable N(p) follows a binomial distribution
with number of trials n and probability of “success” 1 −
FQ(p).

Let us next define S(p) as the random number of products
sold to customers at price p. Clearly, total sales is bounded
by customer arrivals as well as by N(p). Then, we have
S(p) = min{N(p), A}. We write the seller’s expected profit as
a function of price p under the static pricing policy in 𝔼 as

ΠSP
𝔼

(p) = pE[S(p)], (6)

where

E[S(p)] =
n∑

i=0

∞∑
j=0

min(i, j)(N(p) = i)(A = j).

We then express the optimal expected profit as

ΠSP∗
𝔼

(p) = max
p≥0

ΠSP
𝔼

(p). (7)

Unfortunately, S(p) is a complicated random variable and
explicit optimization to obtain a closed-form solution appears
difficult. On the other hand, we can perform some compara-
tive statics on the expected profit. We can establish that the
expected optimal revenue increases when the quality level
Q stochastically increases, and that the expected optimal
revenue increases as the number of arrivals stochastically
increases. These results are formalized and justified in Online
Appendix B.

If ΠSP
𝔼

(p) is concave in p, we can express the optimal price
under the static pricing policy as the solution of:

pSP∗
𝔼

=
−E[S(pSP∗

𝔼
)]

d(E[S(pSP∗
𝔼

)])

dp

.

Apart from special cases, the optimal price from the above
expression has to be computed using numerical integration
and derivation or simulation-based methods that use deriva-
tive estimators. To gain further insight into the optimal prices,
we next explore two approximations that relax part of our
model assumptions.

First, we relax the assumption that items in inventory are
discrete, and instead, let the inventory be infinitesimally divis-
ible. Then, the number of products whose quality ratings are
above a certain level is a fixed proportion (FP) of the initial
inventory (see Honhon & Seshadri, 2013; Hopp & Xu, 2008,
as similar approximations in extant literature). Specifically,
we approximate the quantity of products that can potentially
be sold at price p as n(1 − FQ(p)). We can then express the
optimal expected profit of the seller under the FP approxima-

tion to the SP policy as follows:

ΠSP∗
𝔼,FP

= max
p

pE
[
min

{
A, n(1 − FQ(p))

}]
. (8)

If p(1 − FQ(p)) is concave in p and since the minimum of
two concave functions is concave and expected value pre-
serves concavity, one can establish the concavity of ΠSP

𝔼,FP
(p)

in p. Then, the optimal price can uniquely be determined
under this approximate policy. Unfortunately, there appears
to be no general analytical characterization of the optimal
price because both demand arrival randomness and quality
randomness play a role.

To make further headway, we next introduce a second
relaxation, and replace the random number of arrivals with its
mean value, in addition to the assumptions of FP approxima-
tion. Effectively, this captures a situation in which the market
size is fixed. Then, the optimal profit of the seller under the
mean-value approximation (MVE) to the SP policy is given
by

ΠSP∗
𝔼,MVE

= max
p

p
[
min

{
𝜇A, n(1 − FQ(p))

}]
, (9)

where 𝜇A := E[A]. In this case, we can establish that the opti-
mal price is characterized by one of the two following condi-
tions given in the next proposition.

Proposition 2. If p(1 − FQ(p)) is a concave function of p or
Q has an IGFR, the optimal price under the MVE approxima-
tion is given by:

p̃sp
𝔼,mve = max {pu, pc}, (10)

where pu is the solution of pu = (1 − FQ(pu))∕fQ(pu) that is
the unconstrained solution and

pc = F−1
Q

(
1 −

𝜇A

n

)
,

which is the constrained (market satiating price) under the
MVE approximation.

The proof follows from the (quasi)-concavity of the uncon-
strained problem under the IGFR condition. If the uncon-
strained optimal price leads to a supply that is above the aver-
age demand, then it is optimal to increase the price so that
the demand constraint becomes binding. This is the reverse
of a corresponding result for pricing under random customer
valuations and limited supply (see Phillips, 2005, Chapter 5)
that establishes that the optimal price under limited supply is
greater than or equal to the optimal price under ample sup-
ply. For our case, we remark from Proposition 2 that the opti-
mal price under limited demand must be greater than or equal
to the unconstrained price that is the optimal price given in
Proposition 1. Accordingly, the comparison between p̃SP

𝔼,MVE

and p∗
∅

reveals the price premium when the seller lets cus-
tomers examine the products before making their purchase
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TA B L E 2 Summary of all approximations

Policy Quality Demand

Optimal Random Random

fp Deterministic Random

mve Deterministic Deterministic

ul Deterministic Unlimited

decisions (assuming that the MVE approximation is relatively
accurate).

In contexts where customers arrive in abundance, and
hence do not impose a constraint on the seller’s price prob-
lem, we can take the above approximations one step further.
In the unlimited demand (UL) approximation, we first adopt
the FP approximation for the available inventory, and subse-
quently remove the demand constraint from the problem, that
is, we assume that the demand is infinite. Then, the optimal
profit of the seller under the UL approximation to the SP pol-
icy is given by

ΠSP∗
𝔼,UL

= max
p

p
[
n(1 − FQ(p))

]
. (11)

Note that under the UL assumption, FP and MVE approxi-
mations become identical. Consequently, the optimal price of
the seller under the UL approximation to the SP policy satisfies

pSP
𝔼,UL

= p̃SP
𝔼,MVE

=
1 − FQ

(
pSP
𝔼,UL

)

fQ
(

pSP
𝔼,UL

) ,

which coincides with the optimal price from Proposition 1.
Table 2 provides a conceptual summary and comparison of

all approximate policies that are proposed in this section.

3.2.2 Price updating policy

When the seller does not know the exact quality levels of
the products in the inventory, they can observe the realized
sales that is driven by customers’ quality assessments. A
smart seller should then be able to infer quality informa-
tion pertaining to its remaining inventory, though acquiring
and exploiting this information is not trivial. As inventory is
depleted, adjusting the price dynamically enables the seller to
better exploit the current supply-demand mismatch (see Gal-
lego & van Ryzin, 1994, and Bitran & Mondschein, 1997). In
this particular setting where the higher quality items are sold
first, price updating has the potential to be an even stronger
lever, because not only the remaining inventory level but
also the remaining quality-level distribution provides valu-
able information. From a theoretical perspective, the seller
could continuously update the product price so as to promptly
adjust to the ever-changing operational conditions. Never-

theless, because of the high costs associated with frequent
price changes, the number of times that the seller can adjust
the price is typically limited in practice (Netessine, 2006).
Moreover, differentiated and directly unobservable quality
make such pricing decisions in our context more challeng-
ing. Therefore, we consider a PU policy in which the seller
first sets an initial price for all products at the start of the sell-
ing season, and then adjusts this price once, before the end of
the selling season. By doing so, the seller divides the selling
season into two periods, and makes a pricing decision at the
start of each period. Note that the seller only observes real-
ized sales at the end of the first period and makes the price
update decision for the second period without the full infor-
mation about customer arrivals. In other words, the seller does
not monitor the actual arrivals but rather only keeps record of
depleted inventory (hence observes only sales). Let A1 and A2
be random variables that correspond to the number of arrivals
in periods 1 and 2. We assume that A1 and A2 are independent
(this assumption can be relaxed but at the expense of further
complicating an already challenging model).

To find the optimal pricing policy, we formulate a two-
period dynamic program starting with the second period.
𝜋PU

2 (n − i, p1) denotes the expected optimal profit-to-go in the
beginning of period 2, given that n − i items are remaining in
inventory (i.e., i items were sold at price p1 in the first period.
The price p2 is action to take in the second period. We have

𝜋PU
𝔼,2(n − i, p1) = max

p2

n−i∑
j=0

{S2(p2) = j|S1(p1) = i)}jp2 for i < n

and the boundary condition 𝜋PU
𝔼,2(0, p1) = 0.

For the first period, we define ΠPU
𝔼

(p1) as the expected
profit-to-go obtained by optimally pricing in period 2 with
an initial inventory level of n

ΠPU
𝔼

(p1) =
n∑

i=0

{S1(p1) = i)}
(

ip1 + 𝜋PU
𝔼,2(n − i, p1)

)
, (12)

and express the optimal expected profit-to-go as follows:

ΠPU∗
𝔼

= max
p1≥0

ΠPU
𝔼

(p1). (13)

Although the formulation of the dynamic program appears
simple enough, the computation of the conditional probabil-
ities {S2(p2) = j|S1(p1) = i)} is rather involved. Note that
S1(p1) depends on the number of arrivals in period 1, A1,
which are not observable. If A1 were observable and equal
to k, then we could have expressed this conditional proba-
bility as: {S2(p2) = j|S1(p1) = i, A1 = k)}. When A1 is not
observable, however, we need to rely on the total law of prob-
ability to write:

{S2(p2) = j|S1(p1) = i)} =
∞∑

k=0

{S2(p2) = j|S1(p1) = i, A1 = k)}P(A1 = k),
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which only requires information regarding the probability
distribution of customer arrivals, and not the specific realiza-
tions of the random arrivals. We present the details of these
conditional probability calculations, which are fairly tedious,
with illustrative examples, in Online Appendix B.

The formulation in (12) clearly does not lend itself to fur-
ther analysis to obtain closed-form expressions for the opti-
mal prices under the PU policy. Similar to those in Sec-
tion 3.2.1, fixed proportions and MVEs can be developed for
this case as well. The most explicit approximation combines
these approximations and is described in Online Appendix B.

Finally, we should note that the idea behind the PU pol-
icy is akin to price skimming and dynamic pricing in rev-
enue management (e.g., Besanko & Winston, 1990; Talluri
& Van Ryzin, 2005). Therefore, there is no reason to restrict
the number of price updates to one from a “theoretical” per-
spective. Nevertheless, with each price update, the seller also
needs to dynamically revise the quality distribution of the
remaining inventory. Clearly, as the number of price updates
increases, the required analysis is expected to become more
complicated, even intractable. On the other hand, the PU pol-
icy delivers an actionable and scalable pricing policy that
is relatively easy to understand, compute, and implement.
Our numerical experiments indicate that if the seller updates
the price of the remaining inventory more frequently, the
expected revenue increases but the marginal benefit from each
additional price update decreases. Although not surprising,
our observations are analogous to that in Aviv and Pazgal
(2008).

4 PRICING WITH INSPECTION

In this section, we formulate the seller’s pricing problem
when the seller inspects all items in the inventory and has
full information about the true quality of each product. We
discuss our model under regimes 𝕀 and 𝕀𝔼 in Section 4.1.
We then present an upper bound on the expected profit of the
seller in Section 4.2.

4.1 Pricing under 𝕀 and 𝕀𝔼

As customers do not examine the seller’s inventory upon
their arrival under 𝕀, customers make their purchase deci-
sions solely based on their prior information regarding qual-
ity, as in regime ∅. Assuming that the seller refunds all
unsatisfied customers, the expected utility of a customer is
always nonnegative, as given by (2). Unlike ∅, however,
the seller would not randomly assign any available prod-
uct to a customer under 𝕀, but instead assigns only one of
those products whose true quality level is above the price.
In other words, the seller would not attempt to sell a prod-
uct that would eventually be returned by the customer for a
refund (because of a negative postpurchase utility). In con-
trast, under 𝕀𝔼, a customer chooses the product with the
highest quality among those whose true quality level exceeds

the price, as customers have the opportunity to examine the
products before purchase. Even though the set of products
that could be sold under 𝕀 and 𝕀𝔼 are identical, the spe-
cific assignment of products to customers could potentially be
different. For instance, the first arriving customer would pur-
chase the highest quality product (given that its true quality
exceeds p) under 𝕀𝔼, whereas the seller (randomly) assigns
any one of the qualifying products to the customer under
𝕀. Nevertheless, the total number of items sold at price p
is the same under both 𝕀 and 𝕀𝔼 given the same demand.
Therefore, the seller faces the exact same pricing problem in
both cases.

Let q = (q1, q2,… , qn) be the true quality levels of the
n products in the seller’s initial inventory. As products are
indexed in decreasing order of their quality levels, we have
q1 ≥ q2 ≥ … ≥ qn. Further, define

𝛿i(p) =

⎧⎪⎨⎪⎩
1 if qi ≥ p,
0 if qi < p. (14)

The indicator 𝛿i(p) indicates whether the product with qual-
ity qi yields a nonnegative utility at price p. Then, the seller
would solve the following problem to maximize the expected
profit from an initial inventory with quality q

𝜋𝕀(q) = 𝜋𝕀𝔼(q) = max
p≥0

n∑
i=1

p𝛿i(p)(A ≥ i) − n.c,

where c is the seller’s unit cost of inspection. Note that the
optimal price p∗

𝕀
= p∗

𝕀𝔼
∈ {q1,… , qn}. In other words, the

seller picks the optimal price from a discrete set of values
(quality levels), and essentially establishes the set of products
to offer to customers.

Taking an expectation over all possible realizations of the
random quality vector Q = {Q1, Q2,… , Qn}, we calculate the
expected optimal profit under regimes 𝕀 and 𝕀𝔼 as follows:

Π∗
𝕀
= Π∗

𝕀𝔼
= E[𝜋𝕀(Q)] = E[𝜋𝕀𝔼(Q)]. (15)

4.2 Complete price differentiation

Let us now assume that the seller can price each individual
product separately given full information about quality. In
terms of PU, this is equivalent to the seller continuously updat-
ing the price of the inventory after each sale so as to clear
the highest quality product currently available. One could
alternatively imagine that the seller sets a different price for
each product in advance, as he knows their qualities. In this
case, no price updating is required; the seller just has differ-
ent sets prices for different products. Obviously, such a pol-
icy would be difficult to implement in practice but it does
provide an upper bound on the performance of all dynamic
updating policies.
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Note that under this policy, the seller sets the price of the ith
highest quality product (with quality level qi) as pi = qi, for
i = 1, 2,… , n, so as to maximize the total profit. Accordingly,
all customers would have a zero net surplus (expected utility)
for all products in the seller’s inventory. Then, the expected
profit of the seller from an initial inventory with quality q
follows as

�̄�(q) =
n∑

i=1

qi(A ≥ i) − nc.

The optimal expected profit under this policy with individual
prices is then given by

Π̄∗ = E[�̄�(Q)] =
n∑

i=1

E[Qi](A ≥ i) − nc, (16)

where E[Qi] denotes the expected value of ith-order statistic
of the random variable Q. Note that Π̄∗ is an upper bound on
Π∗
𝕀
= Π∗

𝕀𝔼
.

In the next proposition, we show how two different sets
of initial inventories, whose product quality levels can be
stochastically ordered, impact the expected profit of the seller
under complete price differentiation.

Proposition 3. Define QX and QY as random variables asso-
ciated with two different quality-level distributions, FQX (⋅)
and FQY (⋅), respectively. Under complete price differentia-
tion,

(i) if QX stochastically dominates QY, then for the same
inventory size, the optimal expected profit of QX is
greater than or equal to that of QY;

(ii) if QX and QY are symmetrical with the same mean, and
QY is more peaked than QX around this mean, then for
the same inventory size, the optimal expected profit of QX

is greater than or equal to that of QY.

The condition QX ≥st QY implies that all order statistics
are also stochastically ordered: QX

i ≥st QY
i for all i (see David

& Nagaraja, 2003). In return, this implies that E[QX
i ] ≥

E[QY
i ] for all i. The result then follows from (16). As cus-

tomers’ willingness to pay increases with quality, the seller
clearly has a higher pricing power with X than Y for all items.
Consequently, the full information solution with X as initial
stock exceeds what the customers would obtain with Y , as
stated in part (i) of Proposition of 3.

Perhaps, the more interesting issue arises when sets X and
Y contain products with the same average quality but differ
in the variability of the quality levels. Such a comparison is
nontrivial because increased variability in quality has a down-
side (i.e., more low-quality items) as well as an upside (more
high-quality items that can be priced accordingly). A compar-
ison of these two depends on all order statistics as expressed
in (16) and requires a variability order called the “peakedness

order” (see David & Nagaraja, 2003) from reliability theory.
Note that the peakedness order is a measure of concentration
around the mean. In particular, if QY is more peaked than QX ,
then Var(QY ) ≤ Var(QX).

Part (ii) of Proposition 3 suggests that an initial inventory
with more variable quality provides a more lucrative sales
opportunity for the seller. In the following, we give an intu-
itive explanation for this result. First, if QY is more peaked
than QX , then it is more likely for the seller to have a high-
quality (above-average-quality) product in X compared to Y .
Accordingly, with X, the seller can generate a larger profit
from products with higher than average quality levels. On
the other hand, the seller is also more likely to have a low-
quality (below average quality) product in X compared to Y .
Hence, the seller can potentially collect higher profits with Y ,
by asking higher prices than what he could with X for these
below average-quality products. However, customer arrivals
over the selling season might be less than the initial inventory.
Any leftover stock contains lower quality products as cus-
tomers buy high-quality products first, resulting in the seller
not being able to fully realize the potential profit from low-
quality products. As a result, the nature of customer behavior
along with uncertain demand enables the seller to achieve a
larger profit with the initial stock X than with Y .

5 NUMERICAL RESULTS

In this section, we report the results of our extensive numer-
ical experiments to substantiate our analytical findings and
complement them with new insights. Specifically, we address
how key problem parameters affect the seller’s optimal profit
under the four regimes ∅, 𝕀, 𝔼, and 𝕀𝔼, as well as the
upper bound (complete price differentiation), and the perfor-
mance of the FP and MVE approximations of the SP and
PU policies.

5.1 Impact of problem parameters

We generate problems by systematically varying key parame-
ters of our problem. We assume that customers arrive accord-
ing to a Poisson process with mean arrival rate 𝜆 = 10
(homogenous). The seller has 10 items in its initial inventory
(n = 10) at the start of the selling season, and quality levels of
these items are uniformly distributed between q and q̄, that is,

Q ∼ U[q, q̄]2. We vary the q and q̄ values to reflect different
initial inventory constructs. We also assume that the seller’s
unit purchasing cost and unit inspection cost of a product are
both zero (without loss of generality). We should mention
that, as optimal price expressions under each regime and the
corresponding expected profit values are not in closed form in
general, we used simulation-based stochastic optimization to
solve the problem instance. Accordingly, we generated 1000

2 We tested the robustness of our results assuming that quality follows a Beta distribution
instead of uniform, and validated that our overall insights remain unchanged.
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TA B L E 3 Impact of average quality of the starting inventory (n = 10)

q q̄ 𝚷∗
∅

𝚷
sp∗
𝔼

𝚷
pu∗
𝔼

𝚷∗
𝕀𝔼

�̄�∗ 𝚫
𝔼,sp
∅

𝚫
𝔼,pu
𝔼,sp

𝚫𝕀𝔼
𝔼,sp

�̄�𝕀𝔼

𝜆 = 5 0.0 0.5 0.622 1.010 1.074 1.226 1.703 62.37% 6.34% 21.33% 38.94%

0.1 0.6 0.896 1.373 1.449 1.623 2.201 53.21% 5.54% 18.23% 35.60%

0.2 0.7 1.220 1.763 1.858 2.040 2.699 44.53% 5.39% 15.75% 32.27%

0.3 0.8 1.593 2.173 2.277 2.472 3.196 36.44% 4.79% 13.75% 29.29%

0.4 0.9 2.016 2.600 2.704 2.915 3.694 28.94% 4.00% 12.13% 26.74%

0.5 1.0 2.489 3.037 3.135 3.366 4.192 22.00% 3.25% 10.84% 24.55%

𝜆 = 10 0.0 0.5 1.094 1.223 1.517 1.516 2.364 11.84% 23.99% 23.94% 55.91%

0.1 0.6 1.575 1.743 2.155 2.107 3.238 10.69% 23.63% 20.87% 53.71%

0.2 0.7 2.143 2.340 2.848 2.769 4.113 9.15% 21.71% 18.34% 48.56%

0.3 0.8 2.800 3.004 3.587 3.488 4.988 7.28% 19.43% 16.13% 43.01%

0.4 0.9 3.543 3.726 4.359 4.250 5.863 5.15% 16.99% 14.08% 37.95%

0.5 1.0 4.374 4.494 5.166 5.043 6.738 2.74% 14.94% 12.21% 33.61%

𝜆 = 15 0.0 0.5 1.233 1.244 1.646 1.551 2.484 0.92% 32.30% 24.64% 60.20%

0.1 0.6 1.775 1.792 2.372 2.184 3.471 0.95% 32.37% 21.88% 58.89%

0.2 0.7 2.416 2.438 3.187 2.917 4.457 0.88% 30.73% 19.68% 52.78%

0.3 0.8 3.156 3.181 4.072 3.735 5.443 0.77% 28.02% 17.45% 45.72%

0.4 0.9 3.995 4.016 5.000 4.614 6.430 0.54% 24.49% 14.88% 39.35%

0.5 1.0 4.932 4.937 5.953 5.531 7.416 0.10% 20.60% 12.03% 34.09%

random sample paths for Poisson arrivals over the course of
the selling season, and 1000 random draws from uniformly
distributed quality levels for the initial inventory.

Before proceeding to the detailed discussion of our numer-
ical study, we first give a high-level summary of our results.
For the 36 different problem scenarios we generated in this
first part of our study, we find that the upper bound solution,
proposed in Section 4.2, is, on average, 84.60% higher than
the seller’s optimal expected profit in regime ∅. This gap
represents the joint value of perfect information and price
adjustment in this context —recall that the upper bound yields
the seller’s profit under full information and individualized
pricing (maximum possible number of price points), whereas
pricing in ∅ gives us the profit facing completely random
quality levels (no information) and a single price.

A comparison of expected profit levels in regimes 𝕀𝔼 and
the SP policy in 𝔼 reveals an interesting phenomenon—
a considerable chunk of the aforementioned 84.60% gap is
due to the seller’s ability to adjust the price, and inspection
appears to have only a limited effect. Specifically, the seller’s
average profit in regime 𝕀𝔼 is merely 15.49% more than that
under the SP policy in 𝔼. We observe that by leveraging the
opportunity to adjust the price under PU (even if it is through
a single price update) during the selling season, the seller can
overcome the challenges associated with having to make pric-
ing decisions with incomplete information; PU yields a com-
parable 15.75% higher profits than SP on average under 𝔼.

To understand how product quality affects policy per-
formance, we consider two important aspects of product
quality—average quality and variability of quality. For this
purpose, we adjust the upper and lower limits of the uniform

distribution, characterizing the quality levels of the products,
to reflect an assortment of quality-related features regarding
the initial inventory of the seller. We first vary the average of
product quality levels, while keeping the range (variability) of
the distribution at a constant level, specifically at 0.5. (i.e., the
distribution of quality levels becomes more dominant in the
stochastic order). As the average quality of the initial inven-
tory improves, so does the customers’ overall willingness to
pay a premium for such more desirable products. Table 3
presents the impact of average quality on the seller’s optimal
expected profit under regimes ∅, 𝔼, and 𝕀𝔼 (= 𝕀) and
the following metrics:

Δ𝔼,SP

∅
=

ΠSP∗
𝔼

− Π∗
∅

Π∗
∅

(marginal value of customers′examination),

Δ𝔼, SP𝔼,PU =
ΠPU∗
𝔼

− ΠSP∗
𝔼

ΠSP∗
𝔼

(marginal value of singlepriceupdate),

Δ𝕀𝔼
𝔼,SP

=
Π∗
𝕀𝔼
− ΠSP∗

𝔼

ΠSP∗
𝔼

(marginal value of theseller′sinspection),

Δ̄𝕀𝔼 =
Π̄∗ − Π∗

𝕀𝔼

Π∗
𝕀𝔼

(marginal value of priceadjustment).

As expected, as average quality increases, so does the seller’s
expected profits (under all policies). More interestingly, the
customers’ ability to examine products before making the
purchase decision is more valuable when the inventory is
of lower quality and the customers arrive rarely. In con-
trast, the seller’s ability to update the price is more beneficial
when inventory is scarce relative to demand. The seller also
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TA B L E 4 Impact of variability in quality of the initial inventory (n = 10)

q q̄ 𝚷∗
∅

𝚷
sp∗
𝔼

𝚷
pu∗
𝔼

𝚷∗
𝕀𝔼

�̄�∗ 𝚫
𝔼,sp
∅

𝚫
𝔼,pu
𝔼,sp

𝚫𝕀𝔼
𝔼,sp

�̄�𝕀𝔼

𝜆 = 5 0.0 1.0 1.244 2.019 2.149 2.452 3.406 62.25% 6.41% 21.41% 38.94%

0.1 0.9 1.260 1.975 2.081 2.354 3.223 56.77% 5.35% 19.18% 36.90%

0.2 0.8 1.327 1.956 2.064 2.279 3.039 47.33% 5.52% 16.54% 33.35%

0.3 0.7 1.524 1.993 2.077 2.243 2.856 30.76% 4.20% 12.51% 27.34%

0.4 0.6 1.991 2.132 2.142 2.277 2.672 7.09% 0.46% 6.79% 17.36%

0.5 0.5 2.488 2.488 2.488 2.488 2.488 0.00% 0.00% 0.00% 0.00%

𝜆 = 10 0.0 1.0 2.187 2.448 3.033 3.032 4.727 11.9% 23.92% 23.88% 55.91%

0.1 0.9 2.215 2.462 3.052 3.002 4.657 11.18% 23.98% 21.93% 55.12%

0.2 0.8 2.333 2.560 3.132 3.049 4.586 9.73% 22.35% 19.12% 50.40%

0.3 0.7 2.679 2.833 3.33 3.245 4.516 5.73% 17.55% 14.56% 39.15%

0.4 0.6 3.500 3.500 3.754 3.692 4.445 0.00% 7.27% 5.51% 20.39%

0.5 0.5 4.374 4.374 4.374 4.374 4.374 0.00% 0.00% 0.00% 0.00%

𝜆 = 15 0.0 1.0 2.466 2.489 3.292 3.102 4.969 0.92% 32.3% 24.63% 60.20%

0.1 0.9 2.497 2.521 3.345 3.096 4.961 0.97% 32.71% 22.80% 60.27%

0.2 0.8 2.630 2.655 3.486 3.195 4.954 0.94% 31.31% 20.33% 55.06%

0.3 0.7 3.021 3.039 3.812 3.512 4.946 0.62% 25.44% 15.56% 40.85%

0.4 0.6 3.945 3.945 4.325 4.136 4.939 0.00% 9.63% 4.83% 19.43%

0.5 0.5 4.931 4.931 4.931 4.931 4.931 0.00% 0.00% 0.00% 0.00%

benefits more from inspection when selling poor-quality
products. We finally observe that the quality of the upper
bound deteriorates as the average product quality decreases.

Next, in Table 4, we vary the standard deviation of the
product quality levels in the base scenario while keeping the
average quality for the initial inventory at a constant value of
0.5. W. Edward Deming, the eminent American statistician,
famously claimed that “Variation is the enemy of quality.”

In our particular problem context, variability in quality lev-
els can intuitively be considered as a measure of the consis-
tency of the quality grade. Intuitively, as the standard devi-
ation of quality increases, it is more likely for a randomly
selected item in the seller’s initial inventory to have a rel-
atively high-quality level. Consequently, the pool of high-
quality products, which are clearly more attractive for cus-
tomers, is expected to be larger for the more variable quality
case compared to the less variable quality case for any given
initial inventory level. Furthermore, the size of this pool also
increases as the initial inventory of the seller increases. There-
fore, although somewhat counterintuitive, an abundant ini-
tial inventory (relative to demand) consisting of highly vari-
able quality levels presents a more desirable assortment of
products for which customers potentially have a higher will-
ingness to pay. At this point, the particular pricing policy
adopted by the seller is ultimately accountable in translating
this prospect into better returns. We observe that it might be
possible for the seller to take advantage of the “enemy,” as
coined by Deming, and cash in on opportunities bestowed by
variability through an intelligent pricing policy. Our results
in Table 4 reveal that the seller’s expected profits under
∅ decrease with variability, whereas they increase under

full information. The marginal value of customers’ ability
to examine the seller’s inventory is more emphasized when
quality variability is high and customer arrivals are infre-
quent. On the other hand, when customers arrive in abun-
dance, we observe that the price update proves to be more
beneficial for the seller. As with the customers’ examining
ability, the seller’s inspection is more valuable when variabil-
ity is high.

5.2 Performance of approximate policies

In our next set of computations, we assess the performance
of the FP, MVE, and UL approximations relative to the
PUoptimal pricing strategies in regime 𝔼. We generate a
wide range of problem instances from the base scenario,
mainly focusing on the level of demand-supply mismatch
and the variability in product quality. For this purpose, we
fix n = 40 and let 𝜆 ∈ {5, 10,… , 75, 80}. Moreover, we also
vary Q ∼ U[𝛿, 1 − 𝛿] such that 𝛿 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}.
In all, we generate 96 problem instances.

Table 5 shows the overall average and the maximum
optimality gap for each of the approximate policies. As
one would expect, FP approximation proves to be the most
effective. It is indeed near-optimal for the SP policy (even the
maximum percentage gap betweenΠSP∗

𝔼
andΠSP∗

𝔼,FP
is less than

1% over all the considered problem scenarios). Similarly, FP
approximation to PU also provides the best performance with
an average gap of 1.07%. However, the optimality gap can
possibly exceed 10% as seen in Table 5. We observe that FP
performance is followed by the MVE approximation, and
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TA B L E 5 Overall performance of approximate policies

Average Gap

sp pu

fp 0.13% 1.07%

mve 0.78% 1.78%

ul 5.79% 5.94%

Maximum Gap

sp pu

0.83% 10.76%

7.65% 17.26%

40.19% 25.52%

TA B L E 6 Average performance gap for the approximate policies
under different levels of demand

sp pu

Demand fp mve ul fp mve ul

Low

𝜆t ∈ {5, 10, 15, 20, 25} 0.22% 2.12% 16.19% 1.90% 3.94% 12.08%

Medium

𝜆t ∈ {30, 35, 40, 45, 50} 0.10% 0.27% 1.34% 1.12% 1.35% 4.06%

High

𝜆t ∈ {55, 60, 65, 70, 75, 80} 0.09% 0.09% 0.84% 0.33% 0.33% 2.37%

that completely ignoring demand as a constraint turns out to
be an inadequate approach to the seller’s problem.

To achieve a better understanding of the key operational
factors that might contribute to the performance of the
approximations, we next take a closer look at our numeri-
cal results and provide average optimality gaps as functions
of demand level and quality variability in Tables 6 and 7.
First, we observe that the degree of supply-demand mismatch
plays a significant role in the performance of our approxima-
tions. When there is abundant demand relative to the on-hand
inventory, all three approximations perform well. However,
if there is an oversupply of products, the seller needs to cap-
ture as much of the intricate effects of demand as possible—
the performance of the approximations deteriorate drastically
as demand becomes more scarce over the selling season (see
Table 6). This deterioration is more emphasized for MVE,

TA B L E 7 Average performance gap for the approximate policies
under different levels of quality variability

sp pu

Quality variability fp mve ul fp mve ul

Low

𝛿 ∈ {0.3, 0.4, 0.5} 0.08% 0.82% 5.22% 0.98% 1.73% 5.02%

High

𝛿 ∈ {0.0, 0.1, 0.2} 0.18% 0.74% 6.37% 1.16% 1.82% 6.85%

which ignores demand stochasticity, and even more so for
UL, which ignores demand completely.

On the other hand, the approximations generally perform
better when there is decreased variability in the quality levels
of the products. We should mention that all three approxima-
tions treat the amount of products that can be sold at a partic-
ular price as a deterministic quantity. Therefore, in Table 7,
we see that the effect of quality variability on their respective
performances are comparable. The significantly poor perfor-
mance under the UL approximation is due to its omission of
the effect of demand on prices.

Based on these observations, we conclude that the FP and
MVE approximations can be effectively used by the seller
when the demand (relative to supply) is large and the inven-
tory does not exhibit significant variability in quality; other-
wise, it is critical for the seller to adopt the exact optimal
pricing policy.

6 CONCLUDING REMARKS

In this article, we considered a seller with a given initial
inventory of products with heterogeneous quality, and for-
mulated the pricing problem when facing uncertain customer
arrivals over a finite selling season. We studied the problem
under various operating regimes and revealed the following
managerial insights:

◦ The expected profit of the seller improves as the average
quality of inventory increases. The seller’s ability to adjust
the price is more valuable when having to sell lower quality
inventory.

◦ The impact of quality variability on revenues is non-
monotone and depends on the direction/degree of demand-
supply mismatch. If inventory is scarce, variability tends
to hurt revenues, whereas if there is oversupply, it might
potentially end up improving the revenues.
The price update is more beneficial when selling scarce
and highly variable quality inventory.

◦ The seller might be better off being able to adjust the price
(even once) without full information of quality rather than
setting a unique price (with no adjustments) with complete
information.

◦ The fixed proportions policy is the most effective among
all approximate policies, followed by the mean-value
equivalent policy. Performance of these policies improves
as inventory becomes more abundant and less variable
in quality. However, under adverse operational conditions
(scarce inventory and highly variable quality), approxima-
tions of optimal pricing strategies might lead to significant
revenue losses.

Heterogeneous quality presents a unique challenge in
terms of modeling. To circumvent some of the difficulties in
the analysis, we assumed that customers are homogeneuous
in their preferences. It would be useful to extend the models
here to the case where both inventory and customer choices
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are heterogeneous. We also assumed that the search cost to
look for the best available item is negligible. It would be inter-
esting to take into account nonnegligible search costs but this
appears to be a challenging extension. Finally, there might be
extensions to consider on the inventory side such as replen-
ishment policies and salvage markets for unsold products.
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