
CALL CENTER OUTSOURCING CONTRACT ANALYSIS

AND CHOICE

O. Zeynep Akşin∗
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Abstract

This paper considers a call center outsourcing contract analysis and choice problem, faced by

a contractor and a service provider. The service provider receives an uncertain call volume over

multiple-periods, and is considering outsourcing all or part of these calls to a contractor. Each

call brings in a fixed revenue to the service provider. Answering calls requires having service

capacity, thus implicit in the outsourcing decision is a capacity decision. Insufficient capacity

implies that calls cannot be answered, which in turn means there will be a revenue loss. Faced

with a choice between a volume-based and a capacity-based contract offered by a contractor

who has pricing power, the service provider determines optimal capacity levels. The optimal

price and capacity of the contractor together with the optimal capacity of the service provider

determine optimal profits of each party under the two contracts being considered. Each party

will prefer the contract that leads to higher profits. The paper characterizes optimal capacity

levels, and partially characterizes optimal pricing decisions under each contract. The impact of

demand variability and economic parameters on contract choice are explored through numerical

examples. It is shown that no contract type is universally preferred, and that operating envi-

ronments as well as cost-revenue structures have an important effect in outsourcing contract

design and choice.

Keywords: call center; outsourcing; subcontracting; contract choice; capacity investment;

exogeneous and endogeneous price.

1 Introduction

A growing number of companies outsource their call center operations. According to International

Data Corporation (1999), the worldwide call center services market totalled $23 billion in revenues

in 1998, and is estimated to double to $8.6 billion by 2003. Outsourcing constitutes 74% of this

market and is projected to be $42 billion in 2003. Datamonitor (1999) expects call center out-
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sourcing to boom in Europe, where the $7 billion market in 1999 is expected to grow to $15 billion

by 2004. In terms of outsourced agent positions, this constitutes a growth from 74,000 in 1999 to

126,500 in 2003.

While for some companies outsourcing the entire call center operation constitutes the best

option, many are hesitant to hand over their most important source of customer contact to another

firm. In-sourcing to a shared services organization (Akşin and Masini, 2005) is one alternative

approach. Another practice known as co-sourcing (Fuhrman, 1999), is one where some calls are

kept in-house while others are outsourced. Co-sourcing may be preferred because of the additional

safety it provides in case of a disaster, or because only the strategically less important calls are

outsourced to a third party. The decision of how to share calls in a co-sourcing setting is an

important one. In practice, this can take many forms where for example certain types of calls are

outsourced and others are kept in-house, or overflow calls in all functions are outsourced. In the

former type, the decision is driven by strategic considerations while in the latter it is mostly an

economic decision. In this paper we will focus on the latter type of sharing where only economical

issues are taken into consideration. Whatever the chosen form of sharing, detailed outsourcing

contracts that specify requirements, service levels, and price are deemed necessary for success.

This paper is motivated by the call center outsourcing problem of a major mobile telecommu-

nications service provider (operator) in Europe. The overall objective is to evaluate two types of

contracts made available to this company by a contractor. In making this comparison, detailed

contracts that specify capacity and price within each type of contract will be considered. Like in

most call center outsourcing situations, the contractor operates a much larger call center operation

compared to the one by the operator. This allows the contractor to have an advantageous cost

structure and power in negotiating prices. The telecommunications service provider opted for a

co-sourcing solution. Accordingly, some call types would be kept in-house while others would be

shared with a contractor. The calls that are kept in-house are those of the most valuable customers,

and strategic considerations have led to the in-sourcing decision for these calls. This paper is only

concerned with the sharing of the remaining calls. The economic implications of the contract will

determine what proportion of these calls will be co-sourced, if at all. In other words, it is possible

that under economic rationality all of these calls or none of them can be outsourced. The contractor

proposed two forms of sharing. The first type, which we label as Contract 1 or as subcontracting the

base, is a form of capacity reservation whereby the company reserves enough capacity for a steady

level of calls at the contractor for a given fee. All calls in excess of this level are considered for
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Contract 1: Subcontracting the base

calls

outsource

keep in house

t

outsource

keep in house
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Contract 2: Subcontracting the fluctuation

calls

Figure 1: The two contracts offered by the contractor

treatment in-house. One could also name this as a pay for capacity contract. The second type of

contract, labeled as Contract 2 or as subcontracting the fluctuation, stipulates that the telecommu-

nication service provider answers all calls up to a specified level in-house, beyond which calls are

diverted to the contractor. In other words, in this type of contract overflow calls are outsourced.

The contractor charges a fee per call treated. These two cases are illustrated in Figure 1. This

contract could be labeled as a pay for job contract. In both settings, the contractor has pricing

power. Both parties try to maximize their own profits.

While we are motivated by this particular instance, we note that the problem is common to call

center outsourcing in general. As also noted by Gans and Zhou (2004), call center outsourcing con-

tracts are typically volume-based or capacity-based. Some contracts involve payment for capacity

that is utilized, as in our Contract 2. Others have payment for capacity irrespective of whether it

is utilized or not, as in our Contract 1. In order to model the contract choice problem, we specify

the contracts in more detail, using our motivating instance to do this.

For the service outsourcing problem, we analyze the optimal capacity and pricing decisions

under each contract type. We then explore the telecommunication service provider’s basic question,

namely which contract type they should prefer. Current practice at the company is to co-source

with a contract of the form subcontracting the base. While basic operations management intuition

would suggest that keeping the less variable portion of the demand in-house and outsourcing the

high variation overflow would be more beneficial, we illustrate that both contract types may be

preferred, depending on economic parameters and demand characteristics. Our analysis further

highlights the importance of modeling outsourcing contracts as multiple period problems. While

subcontracting the base results in complete outsourcing in the single period case, we find that
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co-sourcing can be optimal once demand fluctuations across multiple time periods are considered.

This difference also impacts the resulting contract choice. In the following section, we provide a

brief literature review. Section 3 formulates the model. This is then analyzed in order to determine

optimal service capacities in Section 4 and the optimal prices in Section 5. In Section 6 we discuss

some model extensions. Section 7 presents a numerical study to illustrate the relationships between

contract parameters, demand characteristics, and contract preferences of each party. We provide

concluding remarks in Section 8.

2 Literature Review

The problem of outsourcing or subcontracting has been studied in the economics literature in the

context of vertical integration. This literature does not consider capacity constraints. Kamien et

al. (1989), Kamien and Li (1990) first model capacity constraints, either implicitly or explicitly, in

the context of subcontracting production. Kamien and Li (1990) consider two firms that are in the

same market and that can subcontract from each other. In this regard, both of their firms resemble

our operator firm. The firms consider a production planning problem with a subcontracting option.

Rather than analyzing the performance of specific contracts like we do, they consider coordinating

contracts. One of their most important results is that optimal production and inventory quantities

are less variable in the presence of subcontracting. In our setting, the possibility of outsourcing or

co-sourcing allows the operator firm to smooth its capacity levels between periods.

The supply chain literature provides a rich set of models that address supply contract design

and analysis, where capacity is explicitly taken into account as a decision variable. See for example

Tsay et al. (1998), Lariviere (1998), Anupindi and Bassok (1998), and references therein. As also

noted by Van Mieghem (1999), these models typically consider only one party’s capacity investment

decision. Similar to Van Mieghem (1999), the capacity investment of both the call center and the

contractor are decision variables in our setting. We further consider the price as a decision variable

for the contractor.

Van Mieghem (1999) and many of the papers in the supply contracts literature consider the

outsourcing problem in a single-period setting. The nature of the call center outsourcing problem

requires a multi-period analysis, as is the case in this paper. A continuous time analysis of sub-

contracting, in a manufacturing context, can be found in Tan (2002), which addresses the demand

variability inherent in a multi-period problem. Subcontracting is considered as a capacity option
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whose value is evaluated in the presence of demand uncertainty. Contract parameters are assumed

to be exogenously specified, and the problem is analyzed from the standpoint of a single decision

maker. Atamturk and Hochbaum (2001) provide a multi-period treatment of subcontracting, and

use call centers as one of their motivating examples. In their paper, demand is deterministic, price

is determined exogenously, and the capacity investment decision is once again only considered for

a single party.

We consider a multi-period model of outsourcing, with multiple decision makers, in the presence

of uncertain demand. Capacity investment levels of each firm and the outsourcing price are the

decision variables. As such, our model combines various features found separately in previous

subcontracting models in the literature. Our analysis demonstrates that for Contract 1, in a single

period setting, the optimal decision is one where the call center outsources all calls to the contractor.

Given this result, in such a setting, our model can be analyzed as a single party capacity investment

decision problem, like in Atamturk and Hochbaum (2001) and Lariviere and Porteus (2001).

Cachon and Harker (2003), Ren and Zhou (2004), Allon and Federgruen (2005) also consider

outsourcing contracts in a service setting. Cachon and Harker (2003) analyze a queueing game

between two service providers. The option of outsourcing to a contractor is one of the alternatives

considered in comparing different supply chain designs for the service providers. In their outsourcing

contract, the contractor charges a price per customer and ensures a service level, while the service

providers guarantee a minimum demand rate to the contractor. This resembles Contract 2, though

service levels and demand sharing is implicitly determined through each party’s optimal capacity

decisions in our setting. Cachon and Harker (2003) and Allon and Federgruen (2005) are concerned

with the competition between service providers, while we are interested in the specifics of the

relationship between a single service provider and contractor. Ren and Zhou (2004) analyze call

center outsourcing contracts that can coordinate staffing and service quality decisions. The fluid

approximation of a queueing system is used to model the call centers. The analysis only considers

a single period outsourcing problem. Both Ren and Zhou (2004) and de Véricourt and Zhou (2005)

consider the implications of service quality. This aspect of the problem is not treated herein.

In addition to differences in modeling assumptions, we also ask a different question compared

to earlier papers in the operations literature. Our ultimate objective is to answer the contract

choice problem faced by the telecommunications service provider, as described in the Introduction.

The issue of contract choice is one which has been dealt with extensively within contract theory

in economics. Bajari and Tadelis (2001) explore the choice between fixed price and cost-plus
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procurement contracts in the construction industry. In a fixed price contract, the seller is offered a

fixed price for project completion. This resembles Contract 1 where a fixed capacity reservation fee

is paid. In a cost-plus contract, the seller is reimbursed for costs. Uncertainty affects the project

completion cost, thereby affecting what the buyer will pay. A cost-plus contract resembles Contract

2 in that the actual payment is determined by the volume of calls that are eventually outsourced.

The source of uncertainty is the randomness in demand. However if call volumes exceed total

capacity, the operator loses revenue. As such, in this case the revenue of the operator is also affected.

Different types of demand uncertainty, the fact that both revenue and cost are affected by these, and

the assumption that the contractor has pricing power are the major differences of our analysis from

theirs. We next point out some recent papers that deal with IT outsourcing problems. Gopal et al.

(2003) perform an empirical analysis of offshore software development, where the choice between

fixed price and time-and-materials type contracts are explored. It is shown that among other things,

this choice is driven by requirements uncertainty. This resembles the demand uncertainty in our

case. Kalnins (2004) explores empirically the role of firm relationships in choosing between these

types of contracts. In our analysis, we will explore the role of demand uncertainty and economic

parameters on such a contract choice, using a modeling approach.

Unlike most call center models, as reviewed in detail by Gans et. al. (2002), we do not model

the call center as a queue in this paper. This choice is in part driven by tractability concerns, since

embedding a queueing model in the games we analyze would not allow us to pursue the contract

design and choice problem fully. However, we feel that this choice is not inappropriate since

these types of outsourcing contract decisions are strategic decisions which would not be affected

fundamentally by waiting or abandonment behavior of customers. This is illustrated in the model

extensions section where we show that our results are robust to the no queueing assumption, making

use of a fluid approximation as in Ren and Zhou (2004). Queueing models become necessary to

analyze detailed implementations of call center outsourcing contracts (Gans and Zhou, 2004; Milner

and Lennon, 2005). Viewing the call center outsourcing problem at the operational level, Gans and

Zhou (2004) analyze the routing problem faced between a service provider and contractor. We do

not consider this aspect of the problem herein.
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3 Formulation of the Model

We consider a call center operator (also referred to as a service provider) (B) which can send part

or all of the calls it receives to a contractor (A). Calls arrive to the operator during N different

periods, which represent parts of a typical day, like half-hour intervals. We assume that the number

of calls in period t is a real random variable Dt, characterized by the density ft(.), for t ∈ {1, ..., N}.
Ft(.) denotes the corresponding cumulative function, and has an inverse F−1

t (.). We will also use

Gt(.) := 1− Ft(.) and G̃t(.) :=
∑t

τ=1 Gτ (.), where t ∈ {0 . . . N} with G̃0(x) := −∞.

A contract specifies how the arriving calls are distributed between the operator and the con-

tractor. Calls that are not answered by either the operator or the contractor are lost. On the other

hand, an answered call brings a revenue of r per unit to the operator, even when that call was

handled by the contractor. In the following, we analyze two types of contracts.

The operator chooses a service capacity level KB
t for each period t. Similarly KA

t denotes the

service capacity of the contractor for period t. We define cB and cA, the unit costs of the service

capacity level per period for the operator and the contractor respectively. It is assumed throughout

that cA < cB. In the first type of contract, all the KA
t ’s, t ∈ {1, ..., N} are equal to a unique

capacity KA which is fixed by the operator, while in the second one, these levels are chosen by the

contractor. We denote by Kt := KA + KB
t , the total service capacity of the system in period t.

All parameters are common knowledge. In general outsourcing settings, true cost information may

be difficult to obtain. However in call centers where around seventy percent of costs are personnel

costs, we assume that knowledge of the local labor market will enable an estimation of true costs,

even if this information is not directly shared.

3.1 Contract 1: Subcontracting the Base

In this contract, the operator specifies the capacity level KA of the contractor. This capacity level

will remain constant during the day, namely KA
t = KA for t ∈ {1, ..., n}. In turn, the contractor

charges a capacity reservation price γ per unit of capacity and per period. This contract is only

attractive to the operator if cB > γ. Otherwise the operator keeps all capacity in-house.

The operator chooses KA and KB
t , t ∈ {1, ..., N} in order to maximize its total profit πB, which

is equal to,

πB =
N∑

t=1

πB
t (1)
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where πB
t is the profit for period t given by:

πB
t = rE[min(Dt,Kt)]− cBKB

t − γKA. (2)

The corresponding total profit of the contractor is equal to,

πA = N(γ − cA)KA. (3)

For the time being γ can be regarded as an exogenously determined contract parameter. Section

5 focuses on the case where the contractor sets γ in order to maximize its profit πA.

3.2 Contract 2: Subcontracting the fluctuation

In this contract, the operator sends all calls it cannot answer to the contractor. The contractor

charges a unit price p per answered call. Calls that are not handled by the contractor do not incur

any payment. This contract will lead to the outsourcing of some calls by the operator only if r > p

since the firm has no interest to outsource calls otherwise.

Hence, in period t, the operator first tries to saturate his service capacity KB
t , before sending

calls to the contractor. In other words, the number of calls DB
t received by the operator is equal to

min(Dt,K
B
t ). The corresponding number DA

t received by the contractor is then equal to (Dt−KB
t )+

where (x)+ = max{0, x}.
The operator chooses KB

t , t ∈ {1, ..., N} in order to maximize its total profit, which is equal

to,

πB =
N∑

t=1

πB
t (4)

where πB
t is the given by:

πB
t = rE[min(Dt,Kt)]− cBKB

t − pE[min(DA
t ,KA

t )]. (5)

For this type of contract, the contractor chooses KA
t , t ∈ {1, ..., N} in order to maximize its total

profit,

πA =
N∑

t=1

πA
t (6)

where πA
t is given by:

πA
t = pE[min(DA

t ,KA
t )]− cAKA

t . (7)

Once again, as far as the capacity decisions are considered p can be viewed as an exogenously

determined parameter. Section 5 focuses on the more complicated pricing problem where the

contractor selects p in order to maximize πA.
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4 Optimal Service Capacities

In this section, we derive the optimal service capacity levels for both contracts. For the time being,

we assume an exogenously set price γ or p.

4.1 Contract 1: Subcontracting the Base

The following proposition provides the optimal capacity levels that the operator should set.

Proposition 1 The capacity levels KA∗ and KB∗
t , t ∈ {1, ....N}, which maximize the operator’s

profit function can be characterized as follows:

1. Determine φt for t ∈ {1, ....N}, where φt := F−1
t (1− cB/r),

2. Re-index the periods such that φ1 ≤ ... ≤ φt ≤ ... ≤ φN ,

3. Compute κt := G̃−1
t ( tcB−N(cB−γ)

r ) for t ∈ {1, ....N} and set κ0 = +∞,

4. Define t∗ to be the time period such that, t∗ = max(t, t ∈ {1, ....N}; φt ≤ κt−1).

5. Compute KA∗ and KB∗
t as follows,

KA∗ = κt∗

KB∗
t = [φt −KA∗]+, for t ∈ {1, ....N}

Proof: All proofs can be found in the Appendix.

Since the objective function (1) is separable in the time periods, the capacity decision is in-

dependent of the pattern of Fts over time. That is, different orderings of t will lead to the same

optimal capacity levels.

For the single period case, since cA < cB, co-sourcing is never optimal. For the multi-period case

however, the operator may outsource some, but not all calls to the contractor. To illustrate this

point, consider a two period problem (N = 2) where demand for the second period stochastically

dominates demand in the first one (i.e. F1(.) ≥ F2(.)). The next proposition establishes that if γ

is large enough, then co-sourcing is optimal.

Proposition 2 Assume D1 ≤st D2. Define the critical price γ̃ as

γ̃ =
rG1

(
F−1

2

(
1− cB

r

))
+ cB

2
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If γ > γ̃ then co-sourcing is optimal and

KA∗ = F−1
1

(
1− 2γ − cB

r

)

KB∗
1 = 0

KB∗
2 = F−1

2

(
1− cB

r

)
− F−1

1

(
1− 2γ − cB

r

)

If γ ≤ γ̃ then outsourcing all the calls is optimal and

KA∗ = G̃−1
2

(
2γ

r

)

KB∗
1 = KB∗

2 = 0

Note that in Proposition 2 when D1 and D2 have the same probability distribution (F1(.) =

F2(.) = F (.)), γ̃ = cB and outsourcing all the calls to the contractor is optimal with KB∗
1 = KB∗

2 = 0

and KA∗ = F−1(1 − γ/r). The problem becomes then equivalent to the single period case. This

suggests that as the between period variability increases, more co-sourcing is desirable. More

formally, consider a series of two-period problems where D1 = A−θ and D2 = Aθ for θ ≥ 0 where

{Aθ}θ∈Θ⊂]−∞,+∞[ is a series of i.i.d. random variables with Fθ(.) and fθ(.) the corresponding

cumulative probability and density functions. We are interested in studying the impact of the

parameter θ ≥ 0 on the service capacity levels when the variability between periods increases with

θ while the total demand average remains constant, i.e. when E[A−θ]+E[Aθ] = µ does not depend

on θ. To that end, we further assume that the series {Aθ}θ∈Θ are ordered according to the first

order stochastic dominance, Aθ ≥st Aθ′ for θ′ ≤ θ, which is equivalent to Fθ(ε) ≤ Fθ′(ε) for all ε ≥ 0.

For instance, for a given random variable D with cumulative distribution F (.) and finite mean µ,

the series Aθ = (1 + θ)D for θ ∈ Θ = [−1, 1] satisfies the previous conditions where D1 = (1− θ)D

and D2 = (1 + θ)D for θ ≥ 0 with E[D1] + E[D2] = µ. The parameter θ is then a measure of

the between period variability since the stochastic dominance between period becomes stronger as

θ increases while the total demand average in the system remains constant. The following result

states that more co-sourcing is needed (that is, the operator increases its service capacity) as the

between period variability (i.e. θ) increases.

Proposition 3 Assume that the price γ is fixed. Consider the 2 period problem where D1 = A−θ

and D2 = Aθ. If Aθ >st Aθ′ for θ > θ′ and E[A−θ] + E[Aθ] is a constant for θ > 0 then:

1. The capacity levels KA and KB
2 are respectively non-increasing and non-decreasing in θ ≥ 0,

while KB∗
1 = 0,
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2. There exists a threshold θ̃ such that co-sourcing is optimal if and only if θ > θ̃.

4.2 Contract 2: Subcontracting the Fluctuation

For this contract, the profit functions of both the operator and the contractor are separable into

N profit functions πB
t and πA

t respectively. Each party specifies its service capacity for the entire

horizon independently, but simultaneously. A and B act strategically, taking the other’s decision

into account. For each period, the contractor specifies its own service capacity, which impacts the

operator’s profit. Similarly, the operator’s choice modifies the contractor’s profit. This situation

creates then a game between the operator and the contractor, whose final profits are determined

by a Nash Equilibrium in each period. The following proposition specifies the capacity levels at

the equilibrium for a given price p.

Proposition 4 In Period t, the unique Nash equilibrium is reached for the following capacity levels:

If p > rcA/cB,

KB∗
t = F−1

t

[
1− cA + cB

p
− rcA

p2

]

KA∗
t = F−1

t

[
1− cA

p

]
−KB∗

t .

If p ≤ rcA/cB, KB∗
t = F−1

t (1− cB/r) and KA∗
t = 0

5 Pricing decision

So far, we have assumed that the prices of the different contracts (the capacity reservation price

γ and the price per call p) are set exogenously by the market. In this section we assume that

their values are determined by the contractor. By setting a price, the contractor may change the

capacity level decisions of the operator, which may in turn impact the contractor’s profit. Hence,

when prices are endogenous, both contracts induce a game, in which the contractor is a Stackelberg

leader. In Contract 1, given the price γ set by A, B optimizes KA and KB
t . In Contract 2, once

A sets the price p, A and B play a Nash game to determine the equilibrium levels of KA
t and KB

t .

The general analysis of these games is difficult. We first restrict our study to the single-period case.

Analytical results are also presented with 2 periods for Contract 1. Then in Section 7, through

numerical examples, we explore the pricing decision in multi-period settings.
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5.1 Characterizing The Capacity Reservation Price

We start by defining a probability distribution with an increasing generalized failure rate (IGFR)

as in Lariviere and Porteus (2001). A distribution is said to have an IGFR if

g(ε) =
εf(ε)
G(ε)

, (8)

is weakly increasing for all ε such that F (ε) < 1. This property is satisfied by common distributions

like the normal, uniform, gamma (Erlang), Weibull, etc. Given a random variable, we also define the

function J(.) such that J(ε) = G(ε)(1−g(ε)). If the distribution has IGFR, then J is non-increasing

for ε such that J(ε) ≥ 0.

Proposition 5 Suppose that F has IGFR with a finite mean and support [a, b). A Stackelberg

equilibrium exists and the corresponding capacity levels KA∗, KB∗ and the reservation price γ∗

satisfy:

KB∗ = 0

J(KA∗) = cA/r

γ∗ = rG(KA∗).

Given this equivalence result between the single-period case of Contract 1 and the problem in

Lariviere and Porteus (2001), we can further draw on their Lemma 1 and conclude that γ∗ will

decrease as a function of the coefficient of variation of certain demand distributions (for example

uniform, gamma, normal). This is demonstrated in the numerical analysis section.

The existence of an equilibrium can also be shown for the two period case as stated by the

following result. Consider a two period problem such that D1 ≤st D2. Denote by gi, i = 1, 2 their

respective general hazard rates, and by Ji(.) the corresponding functions Ji(ε) = Gi(ε)(1− gi(ε)).

Proposition 6 Suppose that both F1 and F2 have IGFR with finite means and supports [a, b). A

unique Stackelberg equilibrium exists and the corresponding capacity levels KA∗, KB∗
1 , KB∗

2 and the

reservation price γ∗ satisfy:

If J1(φ2) < (2cA − cB)/r then

KB∗
1 = 0

KB∗
2 = F−1

2

(
1− cB

r

)
− F−1

1

(
1− 2γ∗ − cB

r

)

J1(KA∗) = (2cA − cB)/r

γ∗ =
1
2

(
rG1(KA∗) + cB

)
.
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If (2cA − cB)/r ≤ J1(φ2) < 2cA/r − J2(φ2) then

KB∗
1 = KB∗

2 = 0

KA∗ = φ2

γ∗ =
1
2

(
rG1(φ2) + cB

)
.

If 2cA/r − J2(φ2) ≤ J1(φ2) then

KB∗
1 = KB∗

2 = 0

J1(KA∗) + J2(KA∗) = 2cA/r

γ∗ =
r

2
G̃2(KA∗).

with φ2 = F−1
2 (1− cB/r).

For the single period case, we have seen that by Proposition 5, it is never optimal to co-

source and no calls are kept in house. On the other hand for the two-period problem, the previous

proposition shows that co-sourcing can be optimal. However, Proposition 3 does not hold in general

when γ is not fixed and it is not clear how the service capacity levels at the equilibrium vary as the

between period variability increases (i.e. the first order stochastic dominance increases while the

total demand average remains constant). Nevertheless, we show in the following that stochastic

dominance still plays a crucial impact on co-sourcing decisions at the equilibrium. More precisely,

consider a series of two-period problems such that D1 = A0 and D2 = Aθ where {Aθ}θ≥0. We

further assume that Aθ ≥hr Aθ′ for 0 ≤ θ′ ≤ θ. The hr-stochastic dominance (that is simply

referred to as the stochastic dominance in the following) Aθ ≥hr Aθ′ is equivalent to hθ(ε) ≤ hθ′(ε)

for all ε ≥ 0, where hθ(.) is the hazard rate of Aθ (hθ(ε) = fθ(ε)/Gθ(ε)). (For instance, {Aθ}θ≥0

can be a series of exponentially distributed random variables with rate θ). Note that the stochastic

dominance ‘≥hr’ implies the first order stochastic dominance ‘≥st’. When θ = 0, demands in

both periods have the same distribution F0(.) and co-sourcing is not optimal (all the calls are

outsourced). As θ increases the total average demand increases while the between period stochastic

dominance becomes stronger. The following result states that the capacity decisions and the price

at the equilibrium evolve monotonically in θ. In particular, KB∗ is non-decreasing in θ.

Proposition 7 Assume that Aθ, θ ≥ 0 have IGFR with finite mean. Consider the 2 period problem

where D1 = A0 and D2 = Aθ. If Aθ >hr Aθ′ for θ > θ′ then:
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Figure 2: Impact of the between period stochastic dominance

1. The capacity levels at the equilibrium KA∗, KB∗
2 are non-decreasing in θ ≥ 0, KB∗

1 = 0, and

the equilibrium price γ∗ is non-increasing in θ,

2. There exists a threshold θ̂ such that for θ > θ̂, KA∗ and the equilibrium price γ∗ remain

constant.

In other words, the operator manages a large increase in the between period stochastic domi-

nance (i.e. θ > θ̂) by handling more calls in-house while keeping the outsourced service capacity

at a constant level. On the other hand, even for a significant surge of the total demand average,

co-sourcing is not optimal as long as demands are not too unbalanced between period (with respect

to the stochastic dominance). Figure 2 depicts this impact for a typical situation.

5.2 Characterizing The Price Per Call

A complete characterization of the optimal price is difficult in this case, however the following

bounds can be established on the optimal value of p. Let c0 = (cA + cB)/2.

Proposition 8 The price per call at the equilibrium p∗ verifies

2cA

cA + cB
r ≤ p∗ ≤ r

We next partially characterize the Stackelberg game for distributions with non-increasing failure

rate (DFR). A distribution is said to have a DFR if f(ε)/G(ε) is non-increasing. Such distributions
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usually correspond to mixtures of different populations (the class of DFR distributions is closed

under random mixtures). Characterizations of similar games have been provided before in Lariviere

and Porteus (2001) for demand distributions having IGFR, and Dong and Rudi (2004) for normally

distributed demand. Note that the problem being considered herein is significantly more difficult,

due to the fact that the contractor’s profit function (corresponding to the manufacturer in the

mentioned papers) is not deterministic. As a result, the first order conditions one gets for p∗ depend

on both the density and the distribution of the demand (and functions thereof) in a complicated

way, thus rendering the analysis less tractable. Changes of variables, as in the above papers, do

not circumvent the problem because of the complex relationship between KB and the price p.

In the following we provide sufficient conditions for which the equilibrium price is equal to r so

that the operator never prefers outsourcing the fluctuation (Contract 2).

Proposition 9 If F has DFR, the equilibrium p∗ is always equal to r and the call center operator

never prefers outsourcing the fluctuation (Contract 2) as a contract.

Depending on their parameters, the gamma, Weibull and lognormal distributions can all have

DFR. (The gamma and Weibull distributions always have IGFR so that Proposition 5 applies in

these cases.) In particular the exponential distribution has a constant failure rate, and p∗ = r from

Proposition 9. When the failure rate is increasing, the existence of p∗ is not easy to show. Our

numerical results suggest that πA can be concave or convex depending on the distribution, that is

∂2πA

∂2p
=

cA

p

∂K

∂p
− cA + cB

p

∂KB

∂p
+

rcA − cBp

p2

∂2KB

∂2p
(9)

is either negative or positive for p ∈ [ρc0, r] (from Proposition (8)). As a consequence, when

the distribution has an increasing failure rate, p∗ can be less than r. For instance, the uniform

distribution has an increasing failure rate and p∗ = 3rcA/cB as stated by the following proposition.

Proposition 10 If demand is uniformly distributed, the equilibrium p∗ is given by p∗ = min(3rcA/cB, r).

6 Model Extensions

We have modeled and analyzed two basic service outsourcing contracts in the preceding sections.

Our assumptions were driven in part by the actual problem that motivated the analysis, and

partially by our concern to keep the model as simple as possible. In this section, we discuss

some extensions that generalize our analysis to other possible applications and that question the
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simplifying assumption of no queueing that was made. We first consider the same contracts when a

service level constraint is imposed. Then we reconsider the two basic contracts when the call center

is modeled as a queue rather than a series of unlinked systems with finite capacity. Finally we

discuss the possibility of having different types of contracts when constraints about fixed capacity

levels across time periods are imposed or lifted.

6.1 Including a Service Level in the Contracts

In practice, call center outsourcing contracts may also have service level requirements. In our

setting, this corresponds to a constraint on the percentage of lost calls. We analyze the impact of

imposing such a service level constraint in the single period problem first. The numerical analysis

section explores the effect of a service level constraint on contract performance in the multiple

period setting. A service level of 1− α can be written as the following probability

P (D > KA + KB) ≤ α.

This is equivalent to

1− F (K) ≤ α.

For Contract 1, the effect of such a constraint can be analyzed directly in the single-period

setting. If the service level constraint is not binding, then the optimal price is determined by

Proposition 5. If the constraint is binding, then the contractor can set γ right below cB since the

operator has the obligation to satisfy the constraint by reserving the minimum capacity required

to meet the service level.

For Contract 2, making use of Proposition 4, a service level constraint can be expressed as,

when p ≥ rcA/cB

F (K) =
p− cA

p
≥ 1− α, (10)

Making use of this relationship, we can show the following result

Proposition 11

• If cB/r < α (resp. cA/r > α), then B does not outsource any call and F (KB) = 1 − cB/r

(resp. F (KB) = 1− α).

• If cA/r ≤ α ≤ cB/r, then the price of the contract with service level agreement is equal to

p̃ = max(p∗, cA/α) and K, KA and KB are given by Proposition 4 evaluated in p̃.
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Let us briefly discuss the implications of market-imposed service levels on the two contracts.

First, a binding service level contract requires a higher total capacity investment than what is

justified by the financial parameters. In Contract 1, this seems to give the contractor higher

pricing power since the operator is obliged to meet a high service level. In general, the contractor

benefits and the operator loses in this situation. Contract 2 presents a more complicated case. For

very high and very low service levels the operator prefers not to outsource any calls. Co-sourcing

only takes place for a certain range of service levels and even then the contractor does not obtain

additional pricing power. For high service levels, we would then expect the contractor to prefer

Contract 1 whereas the operator is indifferent between the two contracts. For lower service levels

which result in co-sourcing in Contract 2, the operator may prefer this contract.

6.2 An Approximation when the Call Center is Modeled as a Queue

In this section, we illustrate how the model being analyzed in this paper can be seen as an approx-

imation to a G/G/s queueing model with abandonments as in Whitt (2006) and Ren and Zhou

(2005). As noted before, embedding an exact formulation of such a queueing system in our contract

analysis will yield an intractable problem. Instead we show the similarity of the model to a fluid

approximation of the queueing system. Our aim is to illustrate the robustness of the basic model

results to the no queueing assumption that was made.

Calls come in at a rate of λ. Different from Ren and Zhou (2004) and like Whitt (2006) we

assume that the arrival rate of calls is itself a random variable. Thus λ corresponds to the single

period demand D from before. Given the time horizon of service outsourcing contracts, it is highly

appropriate to assume an uncertain demand rate. As emphasized by Whitt (2006) indeed the

uncertainty in parameters (i.e. such as λ) tends to have a more dominant effect than stochastic

process variability (such as the variability in the queueing process itself). The same property is

used in the analysis of Harrison and Zeevi (2005), where it is argued that temporal and stochastic

variability in the arrival rates dominates all other forms of variability. These observations support

our use of a fluid approximation in place of an exact queueing analysis. As in Harrison and

Zeevi (2005) our arrival rates λt (Dt) are both temporally and stochastically variable. Green and

Kolesar (1991) show that in systems with large frequency of events and with large service rates, the

pointwise stationary approximation which ignores links between periods performs remarkably well.

Both of these characteristics are present in large call centers. Ignoring the link between periods may

distort current results only in settings where capacity shortages in one period affect the demand
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of subsequent periods. This occurs for example when abandoning or blocked customers retry in

later periods, as analyzed in Aguir et al. (2004), or due to persisting queues during times of high

congestion. For such environments, ignoring the link between periods may have an important effect

on contract performance and choice. We leave the analysis of such cases to future research.

In the queueing setting, the capacity variables K will be replaced by µs where µ is the service

rate and s the number of servers in a G/G/s queue. Now, calls will be lost essentially in the form of

customer abandonments. For the fluid model, borrowing notation from Whitt (2006), we let T (s)

denote the number of customers served in steady state and L(s) be the abandonment in steady

state. The fluid approximation then provides the following expressions:

T (s) = min(λ, µs), (11)

L(s) = (λ− µs)+. (12)

In the fluid approximation, all calls that exceed the capacity of the system will abandon. This

is exactly like our original system where demand that exceeds capacity is lost. An abandonment

cost as assumed by Whitt (2006) could easily be incorporated in our current framework if desired.

To conclude we note that a fluid approximation of a G/G/S queue with customer abandonments

behaves qualitatively the same way as our basic deterministic capacity model as long as the uncer-

tainty in the call arrival rate is significant. In addition, if the pointwise stationary approximation is

appropriate, this similarity also extends to the multi-period setting. Queueing phenomena will then

change the qualitative nature of our results only in settings where the link between periods cannot

be ignored. In this case, a numerical approach as in Aguir et al. (2004) needs to be embedded in

the contract analysis.

6.3 Having a Choice of Fixed or Variable Capacity

Contract 1 considers a setting where the operator reserves a fixed capacity level at the contractor

for the entire time horizon, while adjusting its own capacity level every period. Under this contract,

the contractor promises to dedicate servers in its call center to calls from the operator company.

Even though the latter aspect of the contract is not modeled herein, this characteristic drives the

constant capacity reservation assumption. We expect to see a preference for constant capacity

at the contractor when contracts are of a pay for capacity type as in Contract 1, and dedicated

capacity needs to be created. More generally, one could envisage an agreement as in Contract

1, where the operator reserves a different level of capacity at the contractor in each time period.
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When this is the case, the problem decomposes into N single period problems. Based on our earlier

results, we can then state that the operator will opt to outsource everything to the contractor in

all time periods and co-sourcing will not occur.

Under Contract 2, both players adjust their capacity levels in each period. Since the operator

does not guarantee a certain call volume to the contractor, it is natural for the latter to adapt its

capacity in response to demand fluctuations. In practice, this contract also allows the contractor

to pool calls from different clients using the same servers. Thus company specific training may

not be as intense, and training some servers only for certain high volume periods may be justified.

A different version of this problem would become relevant if the operator experienced a cost for

adjusting its capacity level or for managing a variable capacity level. Then in a pay for volume

environment as in Contract 2, the operator could opt to keep a fixed capacity level throughout.

Analyzing Contract 2 when B’s capacity is fixed over the entire time horizon is challenging, since

the Nash equilibrium for capacity investment does not decompose into single period problems in

this case. As a result, we leave the analysis of this version for future research. Note that a fixed

capacity level by the operator could imply more volume being outsourced to the contractor under

high between period variability, which could lead to a lowering of price by the contractor under this

contract. Whether this conjecture is true would be worth exploring since such a difference would

also affect the contract choice problem.

7 Numerical Analysis

This section will explore optimal prices, profits, and capacities for the two contracts under different

environments. These environments will be described by the variability of demand and the economic

parameters r, cA, cB that establish the margins for each party. We consider two types of demand

variability: within period variability, which is determined by the demand distribution of a given

time period and between period variability, which refers to the demand pattern across multiple

periods, captured through the change in the parameters of a particular demand distribution. Our

first objective is to develop a general understanding of each contract under steady demand (i.e. no

between period variability). We then explore the impact between period variability has on contract

behavior. Restricting our attention to a particular level of within period variability, we then

explore the role economic parameters have on these contracts. Finally, we also briefly investigate

the situation with a market-imposed service level constraint. For all settings, our ultimate objective
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is to address the contract choice problem posed in the Introduction: under what conditions does

each party prefer a particular contract?

7.1 The role of within period variability

We consider the simplest multi-period setting with three time periods. In order to isolate the effect

of within period variability, this section considers an identical demand distribution in each time

period. For the experiments we use the Erlang family of distributions (a subclass of Gamma dis-

tributions). The m-stage Erlang distribution (referred to as Erlang-m) is completely characterized

by its mean and the number of stages m, and has the following probability density function:

f(x) =
xm−1e−x/θ

θm (m− 1)!
x ≥ 0

where m is positive integer and θ is a positive real number. The mean of the distribution is mθ. Note

that the Erlang-1 distribution is the simple exponential distribution. Focusing on the Erlang family

enables us to systematically investigate the effect of variability since an Erlang-m distribution is

more variable than an Erlang-m′ distribution with the same mean when m′ > m according to a

convex stochastic order. This, naturally, implies that the variance is decreasing in m (for identical

means). Finally, Erlang distributions possess the IGFR property required by Proposition 5 and the

exponential distribution has the (weak) DFR property required by Proposition 9.

We analyze four demand distributions, Exponential, Erlang-2, Erlang-10, and Erlang-100, going

from high (H) within period variability, to low (L) within period variability. The exponential

(Erlang-1) represents a highly variable demand, the Erlang-10 resembles a Normal Distribution

(with a coefficient of variation of 0.32), and Erlang-100 is used as a test case for low variability

(coefficient of variation=0.1).

When an identical demand distribution is assumed in each period, the multi-period problem is

structurally equivalent to the single-period problem. In order to compute the optimal capacities

we make use of Propositions 1 and 4. The optimal price for each contract is then calculated via a

numerical search (using discrete intervals of 0.01). For Contract 2, we also make use of the bounds

established in Proposition 8 to restrict the search region. Finally, for the exponential distribution

Proposition 9 directly yields the optimal price for Contract 2.

Demand is steady (independent and identically distributed in each period) with a mean of 30.

In these examples cA = 2, cB = 5, and r = {6, 10}. For each contract Tables 1, 2, and 3 tabulate

optimal prices, profits, and capacities.
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(r, cA, cB)=(6,2,5) (r, cA, cB)=(10,2,5)

γ∗ πA∗ πB∗ KA∗ KB∗ γ∗ πA∗ πB∗ KA∗ KB∗

Exp. 3.76 74.02 43.45 14.02 (0,0,0) 4.99 187.15 138.06 20.79 (0,0,0)

Erl-2 4.30 108.88 48.65 15.78 (0,0,0) 4.99 226.22 214.12 25.22 (0,0,0)

Erl-10 4.99 188.10 52.76 20.97 (0,0,0) 4.99 260.39 338.9 29.03 (0,0,0)

Erl-100 4.99 243.17 77.77 27.2 (0,0,0) 4.99 268.29 415.04 29.91 (0,0,0)

Table 1: Contract 1 for steady demand

Demand Dist. p∗ KA∗ KB∗ πA∗ πB∗

Exp. 6 (27.49, 27.49, 27.49) (5.47, 5.47, 5.47) 105.07 7.95

Erl-2 6 (23.37, 23.37, 23.37) (10.97, 10.97, 10.97) 97.38 20.53

Erl-10 4 (29.00,29.00,29.00) (0,0,0) 135.21 154.63

Erl-100 4 (29.90, 29.90, 29.90) (0,0,0) 165.66 172.53

Table 2: Contract 2 for steady demand: (r, cB, cA)=(6,5,2)

The following observations can be made for Contract 1:

• γ∗ can take values that are strictly less than cB. When γ∗ approaches cB, B earns its participation

profit. When γ∗ is away from its upper limit cB, B may earn more than its participation profit

under this contract.

• Both πA∗ and πB∗ are decreasing in demand variability.

• γ∗ is decreasing in demand variability. Figure 3 (left graph) illustrates that this happens as

long as margins are low. Otherwise, γ∗ remains at its boundary value even for the Exponential

distribution with high variability. Thus, γ∗ seems to be decreasing for decreasing values of r as

well, ceteris paribus.

The above observations are consistent with Proposition 5 and the results in Lariviere and

Porteus (2001).
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Figure 3: Optimal Prices for Contracts 1 (left) and 2 (right)

The following observations can be made for Contract 2 from Tables 2 and 3:
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Demand Dist. p∗ KA∗ KB∗ πA∗ πB∗

Exp. 10 (27.49, 27.49, 27.49) (20.79, 20.79, 20.79) 105.07 138.08

Erl-2 10 (19.74, 19.74, 19.74) (25.18, 25.18, 25.18) 78.04 213.37

Erl-10 10 (8.55, 8.55, 8.55) (29.00, 29.00, 29.00) 35.16 338.03

Erl-100 10 (2.59, 2.59, 2.59) (29.90, 29.90, 29.90) 10.88 414.15

Table 3: Contract 2 for steady demand (r, cB, cA)=(10,5,2)

• The optimal price p∗ is equal to r except in two instances involving low variability (Erlang-10

and Erlang-100) distributions. Thus even for increasing failure rates, i.e. when these rates are

low, we find the same result as shown in Proposition 9. As a result B can rarely earn more than

its participation constraint. The impact of r on p∗ is further explored in Figure 3 (right graph).

We see that for lower r values, p∗ remains below its boundary value r for higher levels of demand

variability, thus allowing B to earn more than its participation constraint. As margins increase, p∗

becomes equal to r even for the low variability settings like Erlang-100.

• πB∗ is decreasing in demand variability. πA∗ is increasing in demand variability when p∗ = r but

decreasing in variability when p∗ < r. This is also observed for the examples in Figure 3 (right

graph). When p∗ = r, A is used to treat the overflow, so as demand becomes less variable πA∗

decreases. When p∗ < r most calls are outsourced to A, so less variability is beneficial for the

contractor in these cases.

• p∗ is non-decreasing in demand variability, until the boundary value of p∗ = r is reached.

• B invests in some capacity unless p∗ < cB.

• Total capacity investment by both parties is higher under Contract 2 in all cases (compared to

Contract 1).

• The relationship between demand variability and total capacity investment is not monotonic

under this Contract.

The first observation implies that Contract 2 will rarely be preferred by B. This will happen

when demand variability is low and/or when margins are low, suggesting a commodity type of

service. Contrasting this to the first observation for Contract 1, we expect Contract 1 to be

preferred by B more frequently. Coupled with the differences in the response of πA∗ and πB∗ to

variability, we anticipate contract choice to change as a function of demand variability as well as

margins. This will be explored below.
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7.2 The impact of between period variability

In this section, we drop the assumption that demand is steady and consider the effect of between

period variability. The calculations are performed in a similar manner using the analytical results

in combination with a numerical search for the optimal prices. Mean demands are assumed to

be (15, 60, 15). Note that the total mean demand is the same as before, however the way it is

distributed over time is different. The between period variability notion we use here is different

from the slightly stronger between period stochastic dominance introduced before Proposition 7.

This is so because we want to explore settings where total mean demand remains constant once

multiple period fluctuations are introduced. All other parameters are the same. For each contract

Tables 4, 5 and 6 tabulate optimal prices, profits, and capacities.

(r, cA, cB)=(6,2,5) (r, cA, cB)=(10,2,5)

γ∗ πA∗ πB∗ KA∗ KB∗ γ∗ πA∗ πB∗ KA∗ KB∗

Exp. 3.68 52.46 32.50 10.41 (0, 0.53, 0) 4.79 136.40 138.13 16.30 (0, 25.29, 0)

Erl-2 4 64.14 44.74 10.69 (0, 11.24, 0) 4.99 113.20 213.74 12.62 (0, 37.73, 0)

Erl-10 4.99 94.18 52.45 10.5 (0, 31.33, 0) 4.99 130.24 338.47 14.52 (0, 43.49, 0)

Erl-100 4.99 121.63 77.36 13.56 (0, 40.63, 0) 4.99 134.19 414.59 14.96 (0, 44.84, 0)

Table 4: Contract 1 under fluctuating demand

Demand Dist. p∗ KA∗ KB∗ πA∗ πB∗

Exp. 6 (13.74, 54.98, 13.74) (2.73, 10.94, 2.73) 105.07 7.95

Erl-2 6 (11.68, 46.74,11.68) (5.48, 21.93, 5.48) 97.38 20. 53

Erl-10 4 (14.50,58.01,14.50) (0,0,0) 135.21 154.63

Erl-100 4 (14.95, 59.80, 14.95) (0,0,0) 165.66 172.53

Table 5: Contract 2 under fluctuating demand: (r, cB, cA)=(6,5,2)

Demand Dist. p∗ KA∗ KB∗ πA∗ πB∗

Exp. 10 (13.74, 54.98, 13.74) (10.40, 41.59, 10.40) 105.07 138.08

Erl-2 10 (9.87, 39.48, 9.87) (12.59, 50.35, 12.59) 78.04 213.37

Erl-10 10 (4.28, 17.10, 4.28) (14.50,58.01,14.50) 35.16 338.03

Erl-100 10 (1.29, 5.18, 1.29) (14.95,59.80,14.95) 10.88 414.15

Table 6: Contract 2 under fluctuating demand: (r, cB, cA)=(10,5,2)

Comparing the results in this Section to the previous one, we note the following:

• γ∗ is also decreasing as a function of between period demand variability.

• πA∗ and πB∗ under Contract 2 do not depend on how demand is allocated between periods.

(This follows from the fact that for Erlang distributions the optimal capacity in each period can

be written as the product of expected demand in that period and an identical safety factor that
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depends on the financial parameters.)

• As predicted by Proposition 7 under stronger assumptions, co-sourcing can take place even under

Contract 1.

• With between period variability, both parties’ profits are down under Contract 1. Given that B is

already close to its participation constraint it does not lose much. A suffers more since co-sourcing

increases as between period variability is introduced.

• Comparing Tables 1 and 4 we note that total capacity can increase as in the case with Exponential

demand and parameters (6, 5, 2) or decrease in the case with Exponential demand and parameters

(10, 5, 2).

These observations imply that there is an important effect that between period variability has

on contract characteristics. This in turn suggests that between period variability will play a role

in determining contract choice.

7.3 Contract choice

Based on the profits tabulated for the previous set of examples, Table 7 summarizes contract choice

by each party. Whenever B appears in both the columns for Contract 1 and Contract 2, this means

that both contracts force B to its participation constraint, and it is assumed that B is indifferent

between these contracts. The following observations can be made:

• Focusing on the steady demand cases in the first two columns, we observe that within period

variability can change preferences for contracts. This is due to the opposite effect within period

variability has on the optimal price of the two contracts. However as noted in the steady demand

examples, as r increases (while costs remain the same) optimal price reaches its boundary under

both contracts, thus making B indifferent between the two contracts (rows 5-8) irrespective of

within period variability.

• Rows two through four show that between period variability can change only one party’s preference

(A in this instance), thus enabling a clear preference for one of the contracts by both parties. The

switch in preference from Contract 1 to Contract 2 occurs for A in these cases, because its profits

under Contract 1 become less attractive compared to the steady demand case. γ∗ is lower in one

case, and B opts to invest in capacity during the peak period, thus decreasing A’s volume compared

to the steady demand case. Thus, with a lower (or same) price and lower demand volumes A earns

less under Contract 1 once between period variability is introduced. Between period variability

does not affect A’s profits under Contract 2, so the preference for this contract is purely a function
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of the change in profits under Contract 1.

• Contract preferences differ as a function of margins, as demonstrated by the cases for r = 6 and

r = 10.

• In these examples, the margin effect seems to dominate the earlier mentioned variability effects.

For the high margin cases (r = 10), B is forced to its participation constraint in both contracts under

almost all demand scenarios. A prefers Contract 1 even when there is between period variability,

because B invests much more in internal capacity when margins, and as a result optimal prices

are high under Contract 2, thus outsourcing very little to A compared to Contract 1. Assuming

B is indifferent, we can state that Contract 1 is preferred in all these cases. Supposing that high

margins represent a complex and/or valuable service, we can state that for such environments B

would be inclined to do things in house irrespective of demand structure.

• In the low margin cases, joint contract preferences are more difficult to obtain.

• Contract 2 is preferred by both parties only in cases that combine low margins, low within period

variability, and high between period variability.

(30,30,30) (15,60,15)

(r, cB , cA) Contract 1 Contract 2 Contract 1 Contract 2

(6,5,2)

Exp.

Erl-2

Erl-10

Erl-100

B

A,B

A

A

A

-

B

B

B

B

-

-

A

A

A,B

A,B

(10,5,2)

Exp.

Erl-2

Erl-10

Erl-100

A,B

A,B

A,B

A,B

B

B

B

B

A,B

A,B

A,B

A,B

-

B

B

B

Table 7: Contract choice by A and B

7.4 The impact of economic parameters

In this section we focus on the Exponential demand distribution case, and explore the role of cost

parameters cA, cB and revenue r further. As shown before, p∗ = r in all cases. Rather than

reporting detailed profit and capacity results, we tabulate contract choice for these examples.

The examples in rows 1-3 and 4-6 have r and cA fixed for different values of cB. A comparison

of each party’s choice demonstrates that the relative value of cB, through its impact on both A’s

and B’s margins, can change contract preferences. These examples also show that cB needs to

be high enough relative to r and cA (like in 6,5,2 or 10,8,2) to make outsourcing worth pursuing

for B. Rows 1 and 6 as well as 5 and 7 keep the cost structure the same while varying r. These
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(30,30,30) (15,60,15)

(r, cB , cA) Contract 1 Contract 2 Contract 1 Contract 2

(6,5,2) B A B A

(6,4,2) A,B B B A,B

(6,3,2) A,B B A,B B

(10,8,2) B A B A

(10,6,2) A,B - B A

(10,5,2) A,B B A,B B

(20,6,2) A,B - A,B B

Table 8: Contract choice under an Exponential demand distribution

examples confirm earlier observations that changing the value of r impacts contract preferences.

Finally, rows 2 and 5 demonstrate how A’s preference can change as a function of between period

variability. Based on these examples, we can state that all economic parameters have an important

role in determining contract choice by defining profit margins available to each party. It is difficult

to generalize these choices independent of demand variability effects.

7.5 The Effect of Service Levels

In this section, we briefly focus on the extension with service levels described in Section 6.1 and

present a set of numerical results for both contracts with service level constraints. As before,

we focus on three-period examples. Demand is assumed to be steady and two different demand

distributions are used: exponential with mean 30 and Erlang-10 with mean 30. There are two

different sets of financial parameters: (r, cA, cB)=(6,2,5) and (r, cA, cB)=(10,2,5). In Tables 9 and

10, for Contract 1, we report the optimal capacities and profits for both the contractor and the

operator for three different service level requirements: 95%, 90%, and 80% (i.e. α=0.05, 0.1, and

0.2).

Exp. Erl-10

α γ∗ πA∗ πB∗ KA∗ KB∗ γ∗ πA∗ πB∗ KA∗ KB∗

0.05 4.99 805.51 -832.39 89.87 0 4.99 422.49 -170.45 47.12 0

0.1 4.99 618.93 -548.09 69.08 0 4.99 382.12 -108.99 42.6 0

0.2 4.99 432.35 -292.25 48.28 0 4.99 336.38 -46.47 37.56 0

Table 9: Contract 1 with service levels for steady demand (r, cA, cB)=(6,2,5)

Let us summarize the main observations from Tables 9 and 10. Recall that whenever the service

level constraint is binding, the contractor can set γ∗ just below cB and leave the operator indifferent

between outsourcing everything and not outsourcing at all. Because of this, the contractor is better

off as service levels are increased (i.e. as α shrinks) since it can sell more capacity at the same
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Exp. Erl-10

α γ∗ πA∗ πB∗ KA∗ KB∗ γ∗ πA∗ πB∗ KA∗ KB∗

0.05 4.99 805.51 -490.39 89.87 0 4.99 422.49 186.14 47.12 0

0.1 4.99 618.93 -224 69.08 0 4.99 382.12 243.68 42.6 0

0.2 4.99 432.35 -2.80 48.28 0 4.99 336.38 297.36 37.56 0

Table 10: Contract 1 with service levels for steady demand (r, cA, cB)=(10,2,5)

price. On the other hand, the operator’s profit improves as the service level constraint is relaxed.

Another observation from Tables 9 and 10 is that, as expected, the contractor prefers higher demand

variability which requires a higher capacity as long as the service level constraint is binding, and

the operator prefers lower demand variability.

The corresponding results for Contract 2 are presented in Tables 11 and 12. Since this contract

results in more complicated cases, we report results for a larger set of service level requirements:

from 95% to 40%.

Exp. Erl-10

α p∗ πA∗ πB∗ KA∗ KB∗ p∗ πA∗ πB∗ KA∗ KB∗

0.05 - 0 -835.08 0 89.87 - 0 -171.86 0 47.12

0.1 6 0 -550.16 0 69.08 - 0 -110.27 0 42.62

0.2 6 0 -292.25 0 48.28 - 0 -47.60 0 37.56

0.3 - 0 -163.79 0 36.12 - 0 -11.81 0 34.16

0.4 6 105.07 7.95 27.49 5.47 5 57.14 77.31 13.60 17.83

0.5 6 105.07 7.95 27.49 5.47 4 135.21 154.63 29 0

0.6 6 105.07 7.95 27.49 5.47 4 135.21 154.63 29 0

Table 11: Contract 2 with service levels for steady demand (r, cA, cB)=(6,2,5)

Exp. Erl-10

α p∗ πA∗ πB∗ KA∗ KB∗ p∗ πA∗ πB∗ KA∗ KB∗

0.05 - 0 -493.08 0 89.87 - 0 184.72 0 47.12

0.1 - 0 -226.16 0 69.08 - 0 242.40 0 42.62

0.2 10 105.07 138.08 27.49 20.79 10 35.16 338.03 8.55 29.00

0.3 10 105.07 138.08 27.49 20.79 10 35.16 338.03 8.55 29.00

0.4 10 105.07 138.08 27.49 20.79 10 35.16 338.03 8.55 29.00

0.5 10 105.07 138.08 27.49 20.79 10 35.16 338.03 8.55 29.00

0.6 10 0 138.08 0 27.49 10 0 338.03 0 29.00

Table 12: Contract 2 with service levels for steady demand (r, cA, cB)=(10,2,5)

The main observations from Tables 11 and 12 can be summarized as follows. As established

in Proposition 11, if the service level is too high (i.e. α is small) B does not outsource any calls

despite the high cost of meeting the service level. As the desired service level falls, B outsources

some calls and both parties make a positive profit. In a more extreme situation, if the desired
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service level is very low (the row corresponding to α = 0.6 in Table 12), it becomes optimal for B

not to outsource any calls, this time making a positive profit. In addition B, is observed to benefit

from reduced demand variability whereas A may or may not experience a gain depending on the

equilibrium price.

Finally, as for the contract choice problem, in our limited set of examples, the operator is

indifferent between the two contracts for high service levels but prefers Contract 2 for lower service

levels and the contractor always prefers Contract 1. This should not imply that different choices

cannot be observed for other parameters. For instance, if the service levels are not binding, then

the arguments outlined in Section 7.3 prevail.

7.6 Summary

The numerical analysis has explored the contract choice problem under different settings. In doing

this, contracts were compared based on optimal capacity choices by both players and optimal price

when analyzed separately. In practice, the contractor may have the freedom of offering the two

contracts to the operator first, and then asking the operator to choose one. In that case it may

be optimal for the contractor to offer a non-optimal price under one of the contracts if this choice

implies the selection of the contract that provides higher profits for the contractor by the operator.

Formally, this contract choice problem would result in a different Stackelberg game, not analyzed

herein. The statements about contract choice in this section should be interpreted with this in

mind. They can be viewed as guidelines about contract choice, to be used in a negotiation process

with the contractor.

In these examples, the within period demand variability is observed to have an impact on the

optimal price. Thus, under Contract 1, as also in Proposition 5, lower within period demand

variability implies higher γ values in equilibrium, approaching the cB upper limit. The optimal

price p under Contract 2 on the other hand, approaches its upper value r for environments with

high within period demand variability. Whenever p = r or γ approaches cB the operator earns

profits equal to the case when everything is performed in-house.

By construction, the contractor offers to absorb variability in demand under Contract 2, thus

allowing it to charge a high price per call (for example p = r). Under Contract 1, the contractor is

essentially offering a low price (γ ≤ cB) and not absorbing any of the operator’s demand variability.

It is then not surprising to observe that as r increases, Contract 1 with its price capped by cB,

becomes more attractive for the operator. The operator’s choice of Contract 1 turns out to be
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also the contractor’s choice in high margin settings, or under particular variability conditions when

margins are low.

The contractor’s preference also depends on the between period variability effect. Indeed we

find both in some low within period, low revenue cases and some high within period, high revenue

cases that the contractor’s preference switches from one contract to the other as a function of the

between period demand variability. This underlines the importance of considering the multi-period

effect in such outsourcing contract choice problems. For some cases the switch occurs because an

increase in between period variability may decrease outsourcing by the operator under Contract

1. As is also evident from Proposition 1, in the multi-period setting with fluctuating demand, the

operator may choose to invest in capacity under both contracts. Unless call volumes are steady

across periods (under Contract 1) or within period variability and margins are low (under Contract

2), B will not prefer to outsource all calls to A.

By allowing the outsourcing of individual calls, Contract 2 offers additional flexibility compared

to Contract 1. As observed in the examples, total capacity investment by the operator and con-

tractor in each period is also higher under Contract 2. Thus customer service is better when this

Contract is preferred by both parties. Despite its attractiveness in terms of flexibility and customer

service, conditions that ensure a joint choice of Contract 2 are found to be quite restrictive: set-

tings with commoditized services with seasonalities in their demand. Low within period demand

variability and low revenues make the price under Contract 2 more affordable for the operator,

while high between period fluctuations make the flexibility offered by this contract more attractive

thus resulting in the outsourcing of a higher volume of calls.

Market-imposed service levels have an effect on the contract choice only if the market’s service

level requirement is higher than what is achieved by purely economic considerations. In this case,

our brief investigation reveals that for these examples A always prefers Contract 1 while B prefers

Contract 2 whenever cosourcing is optimal in this contract and is indifferent otherwise.

In summary, we find that none of the contracts are universally preferred, and that preferences

change as a function of within period variability, between period variability, and profit margins.

Our results further demonstrate that the pricing decision plays an important role in this choice,

and that taking price as an exogenously given parameter could be misleading. The analysis points

to the need for a good understanding of the operating environment of service companies, before

contract decisions are made for outsourcing.
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8 Concluding Remarks

This paper is among the first to model call center outsourcing contracts, and to explore these

in terms of design and contract choice. While the motivating example came from a call center,

the results would also be applicable to other types of service outsourcing like the outsourcing

of back-office functions. Key distinguishing features of the model are the presence of multiple

decision makers, uncertain demand, endogenous pricing decisions, and most importantly a multi-

period decision horizon. We find that all of these features have an important impact on the contract

choice problem, and that the qualitative nature of the results change as a function of these features.

This points to the importance of taking them into account in answering questions about service

outsourcing contracts. From a modeling standpoint, one can conclude that the endogenous pricing

feature is the one that complicates the analysis the most. Whenever the contractor is a price taker,

our analysis fully characterizes both contracts.

For managers who face these types of contract design and choice problems, our analysis demon-

strates that in addition to a knowledge of economic parameters like costs, managers need to have a

very good understanding of the underlying demand uncertainties. Evaluation of different contract

choices should not be simplified to a cost per transaction basis.

There are several modeling extensions some of which have been discussed in Section 6. While

all of these extensions merit deeper investigation, we are able to provide some basic insights.

The consideration of market-imposed service-level constraints is observed to a have an effect on

the contract choice problem. On the other hand, if service levels are negotiated as part of the

contract, the modeling and analysis become much more challenging. Another important extension

is to address the queueing dimension of the problem. Our approach, with some modifications,

can be employed to obtain basic qualitative insights provided that main cause of uncertainty in

the queueing model is in the mean arrival rate of calls as is argued in several recent call center

papers. Other types of contracts can be investigated. Some of these can be analyzed using a similar

approach while others require a completely different investigation. Finally, imposing a penalty for

lost calls in these contracts will influence the results relating to contract comparisons, given that

the two contracts differ in the service level they provide.

Acknowledgments: The authors thank two anonymous referees for many insightful remarks and

suggestions that significantly improved the paper.
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A Appendix

Proof of Proposition 1: Assume that the first four steps have been completed. The derivative

of πB with respect to KB
t is equal to,

∂πB

∂KB
t

= rGt(Kt)− cB (13)

with Kt = KA
t + KB

t ≥ 0. Hence πB is concave in KB
t and the optimal capacity of the operator

is equal to [φt −KA]+ when all other capacity levels are fixed. It remains to compute the value of

KA which maximizes π̃B(KA) := πB(KA,KB
1 (KA), . . . , KB

N (KA)) = πB(KA, [φ1−KA]+, . . . , [φN −
KA]+).

For a given τ ∈ [0, . . . , N +1], consider values of KA in the interval [φτ , φτ+1) (with φ0 = 0, φN+1 =

+∞). For all t ≤ τ , KB
t = [φt − KA]+ = 0 and Kt = KA. For all t ≥ τ + 1, KB

t and Kt are

respectively equal to φt −KA and φt. Hence the profit function is equal to:

π̃B(KA) =
τ∑

t=1

(
r

∫ KA

0
xft(x)dx + (rGt(KA)− γ)KA

)

+
N∑

τ+1

(
r

∫ φt

0
xft(x)dx + (rGt(φt)− cB)φt

)

+(N − τ)(cB − γ)KA. (14)

This function is twice differentiable for φτ ≤ KA < φτ+1, and we have for the first and second

order derivatives, (we assume in the rest of the proof that derivatives computed on the lower-bound

(resp. upper-bound) of an interval correspond to the right (resp. left) hand derivatives)

π̃B′(KA) = rG̃τ (KA)− cBτ + N(cB − γ) (15)

π̃B′′(KA) = −r
τ∑

t=1

ft(KA). (16)

Hence, over the interval [φτ , φτ+1), π̃B is strictly concave, increasing if and only if KA ≤ κτ .

Furthermore, noting that rG̃τ+1(φτ+1) = rG̃τ (φτ+1) + cB, one can easily check using (15) that

limx→φ+
τ+1

π̃B′(x) = limx→φ−τ+1
π̃B′(x). Thus, π̃B′ is continuous and π̃B is strictly concave. Since

furthermore π̃B′(0) = (r−cB)+N(cB−γ) > 0, the first order condition rG̃τ (KA) = cBτ−N(cB−γ)

subject to KA ∈ [φτ , φτ+1) has a unique solution which corresponds to the optimal capacity level.

In other words, there is a unique τ∗ such that κτ∗ ∈ [φτ∗ , φτ∗+1] and KA∗ = τ∗. Note finally that

κt is non-increasing in t and φt is non-decreasing in t so that τ∗ is also the largest t such that

φt ≤ κt−1 (or equivalently, the smallest t such that φt+1 > κt). 2
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Proof of Proposition 2: Note first that D1 ≤st D2 implies that φ2 ≥ φ1. In order to apply

Proposition 1, we need to compare φ2 with κ1. We have

φ2 > κ1 ⇔ F−1
2 (1− cB/r) > G−1

1 [(2γ − cB)/r]

⇔ γ > γ̃

It follows then that t∗ = 1 if and only if γ > γ̃ and the result is obtained from the direct application

of Proposition 1. 2

Proof of Proposition 3: Note first that F−1
θ (ε) and 1 − F−θ(ε) are respectively non-decreasing

and non-increasing in θ ≥ 0 from the first order stochastic dominance Aθ ≥st Aθ′ for θ ≥ θ′. It

follows that 1 − F−θ(Fθ(ε)) and hence γ̃ are non-increasing in θ > 0. The second part of the

proposition follows from Proposition 2 by defining θ̃ := minθ≥0{γ > γ̃}. A similar approach shows

the first part. 2

Proof of Proposition 4: In each period, the game between the operator and the contractor is

equivalent to the capacity game between a manufacturer and a subcontractor described by Van

Mieghem (1999), where the market demand for the subcontractor is zero. More precisely, consider

the production-subcontracting subgame in Section 3.1 of Van Mieghem (1999) and the notations

within. When the market demand for the subcontractor is zero (DS = 0), the supplier does not

produce goods for this market (xS = 0) but produces at capacity for the manufacturer (xS
t = KS).

It follows that the manufacturer outsources the surplus of his market demands (xt = min([DM −
KM ]+,KS)) and the capacity investment game described in Section 3.2 of Van Mieghem (1999) (the

choice of the capacities (KM ,KS)) is equivalent to our operator-contractor game (determination

of (KB
t ,KA

t )). Van Mieghem (1999) shows that a unique Nash equilibrium exists for the capacity

investment game. We can hence deduce a similar result for the operator-contractor capacity game.

Furthermore, noting that

πA
t = p

∫ Kt

KB
t

(x−KB
t )f(x)dx + pKA

t [1− F (Kt)]− cAKA
t

the best-response curve of the contractor is given by the positive solution of the following first order

condition
∂πA

t

∂KA
t

= p(1− F (Kt))− cA = 0 (17)

for a given KB
t (where Kt = KA

t + KB
t ), and with KA

t = 0 when p < cA that is when (17) does not

admit a solution.
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Similarly, the best-response curve of the operator is given by the following first order condition,

after some simplifications,

∂πB
t

∂KB
t

= r[1− F (Kt)]− cB + p[F (Kt)− F (KB
t )] = 0 (18)

subject to KB
t ≤ Kt. When p > rcA/cB > cA, plugging (17) in (18), we obtain

F (KB
t ) = 1− cA + cB

p
+

rcA

p2
. (19)

Note that the right hand-side of (19) is negative or null if and only if rcA ≤ c2
0, with c0 := (cA+cB)/2,

and p ∈ [p1, p2] where p1 = c0

(
1−

√
1− rcA/c2

0

)
and p2 = c0

(
1 +

√
1− rcA/c2

0

)
. Noting that

p2 < rcA/cB, we can then deduce KB
t and KA

t of Proposition 4 from (17) and (19) when p > rcA/cB,

which also implies that the constraint KB
t ≤ Kt is satisfied. On the other hand when p < rcA/cB,

the constraint KB
t ≤ Kt is binding and KA

t = 0 so that KB∗
t = F−1

t (1− cB/r).

Proof of Proposition 5: For any given γ, Proposition 1 implies that the corresponding optimal

capacity levels KA and KB are equal to κ1 and 0 respectively, since κ1 > φ1 from cB > γ. But when

KB is zero, the contract is equivalent to the supply chain wholesale contract for a supplier-vendor

in Lariviere and Porteus (2001), where the operator is a retailer, the contractor a manufacturer,

and KA a quantity of products. Applying Theorem 1 of Lariviere and Porteus (2001) leads then

to the result. 2

Proof of Proposition 6: We show in the following the first part of the result. The proof for the

two last parts is similar. Assume then that J1(φ2) < (2cA − cB)/r.

For γ > γ̃, the optimal capacity verifies γ =
(
rG1(KA) + cB

)
/2 from Proposition 2. The profit

of the contractor is then equal to πA(KA) = (γ − cA)KA =
(
rG1(KA) + cB − 2cA

)
KA. The first

order condition yields

J1(KA) =
2cA − cB

r
. (20)

Since J1 is non-increasing when it is positive and since J1(0) = 1 ≥ (2cA − cB)/r, Equation (20)

admits a unique solution such that J1(KA∗) = 2cA − cB/r > J1(φ2). It follows that KA∗ < φ2

which is equivalent to γ∗ > γ̃. In other words there exists a Stackelberg equilibrium such that

γ∗ > γ̃.

Consider now prices such that γ ≤ γ̃. Following a similar approach using the second part of

Proposition 2, we have γ = r/2G̃2(KA) and we can deduce the following first order condition in

KA,

J1(KA) + J2(KA) =
2cA

r
. (21)
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But if J1(φ2) < (2cA−cB)/r, then J1(φ2)+J2(φ2) < 2cA/r since J2(φ2) = G2(φ2)−φ2f2(φ2) < cB/r

from the definition of φ2. Thus, the optimal capacity is in this case the smallest KA such that

γ = r/2G̃2(KA) ≤ γ̃, which is equal to φ2 from the definition of γ̃.

It follows that the Stackelberg game has a unique equilibrium such that KA∗ satisfies Equation

(20) with

γ∗ =
(
rG1(KA∗) + cB

)
/2 > γ̃.

KB∗
1 and KB∗

2 are then given by the first part of Proposition 2. 2

Proof of Proposition 7: Consider φ2,θ = F−1
θ (1 − cB/r) as defined in Proposition 2. (In the

following, we sometimes add the subscript θ to the quantities that depend on this parameter, for

the sake of clarity.). Since the distribution of D1 = A0 has an IGFR, J1(ε) is non-increasing in ε

when it is positive. Furthermore, from the first order stochastic dominance Aθ >st Aθ′ for θ > θ′,

φ2,θ is non-decreasing in θ and J1(φ2,θ) is non-increasing in θ as long as J1(φ2,θ) > 0. Hence there

exist a unique threshold θ̂ such that θ̂ is the minimum value of θ satisfying J1(φ2,θ) ≤ (2cA−cB)/r.

For θ > θ̂, J1(φ2,θ) < (2cA − cB)/r so that at the equilibrium, KA∗ and γ∗ do not depend on θ

according to the first part of Proposition 6. Furthermore, KB∗
1 = 0 and KB∗

2 is non-decreasing in

θ since Fθ(ε) decreases in θ from the first order stochastic dominance Aθ >st Aθ′ , θ > θ′.

It remains to show the first part of the proposition for θ < θ̂ which corresponds to the two last

cases of Proposition 6. Since KA∗
θ , KB∗

2,θ and γ∗θ are continuous in θ, it suffices to show the result

for each case. The second case is similar to the first one. For the last case we have

KB∗
1 = KB∗

2 = 0 (22)

J1(KA∗
θ ) + J2,θ(KA∗

θ ) = 2cA/r (23)

γ∗ =
r

2
G̃2,θ(KA∗θ). (24)

From the stochastic dominance Aθ >hr Aθ′ (and hence Aθ >st Aθ′ ) with θ > θ′, for any ε such

that J1(ε) ≥ 0, we have J2,θ(ε) > J2,θ′(ε) ≥ J2,0(ε) = J1(ε) ≥ 0 and J2,θ(ε) is non-increasing in ε.

It follows that J1(ε) + J2,θ(ε) is non-increasing in ε and non-decreasing in θ so that KA∗
θ is non-

decreasing in θ as long as J1(KA∗
θ ) ≥ 0. Note however that J1(φ2,θ̂) + J2,θ̂(φ2,θ̂) = 2cA/r from the

definitions of φ2,θ̂ and θ̂. Hence, for θ ≤ θ̂, KA∗
θ ≤ φ2,θ̂ and J1(KA∗

θ ) ≥ J1(φ2,θ̂) = (2cA−cB)/r > 0.

2

Proof of Proposition 8: p∗ is the maxima of πA = p min([D − KB(p)]+,KA(p)) − cAKA(p)),

subject to πB(p) being larger than the profit of the call center operator when it does not outsource
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any calls. We can then restrict p such that p ≥ rcA/cB, since KA and then πA are zero otherwise

from the expression of KA of Proposition 4.

Note then that

∂πA

∂p
=

∫ K

KB
G(x)dx + p

(
G(K)

∂K

∂p
−G(KB)

∂KB

∂p

)

−cA ∂(K −KB)
∂p

=
∫ K

KB
G(x)dx + p

(
F (KB)− F (K)

) ∂KB

∂p
(25)

where the last equality is true since pG(K) = cA from Proposition 4. Since p ≥ rcA/cB, we have

F (KB)−F (K) ≤ 0. As a result, if ∂KB/∂p is negative for a given p then ∂πA/∂p is positive, and

p cannot be an equilibrium. A direct computation leads then to

∂KB

∂p
= 2

(
c0

p2
− rcA

p3

)
1

f(KB)
(26)

which is negative or zero if and only if p ≤ rcA/c0. It follows that p∗ ≥ rcA/c0.

Finally, let us show that p∗ ≤ r. From the definition of πB and Proposition 4, we have

∂πB

∂p
= (r − p)G(K)

∂K

∂p
+

p− r

p
cA ∂KB

∂p
−

∫ K

KB
G(x)dx. (27)

which is negative for p ≥ r (∂KB/∂p is negative since p ≥ r ≥ rcA/c0). In this case, πB(p) is then

less or equal to πB(r) which is also the profit of the call center operator when it does not outsource

calls. Hence p∗ ≤ r. 2

Proof of Proposition 9: If F has DFR then for all KB ≥ x, G(KB)/f(KB) ≤ G(x)/f(x). As a

result, ∫ K

KB
G(x)dx =

∫ K

KB

G(x)
f(x)

f(x)dx ≥ G(KB)
f(KB)

(
F (K)− F (KB)

)
(28)

From Equation (25) and Proposition 4 we have

∂πA

∂p
≥ F (K)− F (KB)

f(KB)
rcA

p2
> 0 (29)

Hence πA is strictly increasing and p∗ = r, which is also the operator’s profit when it does not

outsource calls and the operator never prefers outsourcing the fluctuation (Contract 2). 2

Proof of Proposition 10: Assume that demand has an uniform distribution over [a, b]. It

follows that when x ∈ [a, b], G(x) = (b − x)/d with d = b − a,
∫ x
0 G(u)du = (1 − x/2)x/d and

f(G−1(x)) = dx + a. Using (25), (26) and Proposition 4, we compute

∂πA

∂p
=

F (K)− F (KB)
2ap2

(3rcA − cBp)
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which is positive if and only if p < 3rcA/cB. From Proposition 8, p∗ ∈ [2rcA/(cA + cB), r] where

3rcA/cB > 2rcA/(cA + cB) and the result directly follows. 2

Proof of Proposition 11: Denote by p∗ the equilibrium price of the unconstrained problem. When

cAr/cB > p, B does not outsource any call from Proposition 4. Combined with the constraint (10)

this implies then that if cB/r < α, F (KB) = F (K) = 1 − cB/r (with F (K) > 1 − α). Similarly,

when cA/r > α, the price of the contract with service level agreement should be equal to cA/α

which is larger than r. But from Proposition 8, p∗ ≤ r and the equilibrium price does not achieve

the required capacity level. It follows that for the constrained problem, the profit of B is always

higher when going solo and we have F (K) = F (KB) = 1 − α (since 1 − α > 1 − cB/r). Finally,

when cA/r ≤ α ≤ cB/r, the constraint is binding if and only if the equilibrium price cannot achieve

the service constraint, that is if and only if p∗ ≤ cA/α, from which we obtain the result directly.2
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