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Abstract

The objective is to identify preferred flexibility structures in service or manufacturing

systems, when demand is random and capacity is finite. Considering a network flow type

model as the basis of the analysis, general structural properties of flexibility design pertain-

ing to the marginal values of flexibility and capacity are identified.
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1 Introduction

This paper considers service systems with multi-departmental structures having possibly multi-

skill servers that treat several types of service requests. In any such system, it is possible to have

a different mix of skill sets with a different number of servers belonging to each skill set. It is well

known that more flexibility leads to better operational performance. However given that there

are costs associated with creating and maintaining this flexibility, and difficulties managing the

resulting more complex system, it is desirable to understand the value of this flexibility in more

depth. This paper will focus on providing a better understanding of the relationship between

different flexibility structures and value. The following questions are relevant in this setting:

How many skills should servers have (how much flexibility)? What are the ideal skill-sets for

those that are cross-trained (what type of flexibility)? How should these skill-sets be formed
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in a multi-departmental structure, where each server has a primary skill and some secondary

skills (where)? This set of questions motivate our research and will be labeled as the flexibility

design problem in the ensuing analysis. We provide guidelines that will be useful in addressing

such a flexibility design problem.

A well known application of this flexibility design problem in a manufacturing setting is

the problem studied in [9]. In this setting, the departments are different plants or production

lines, while the customer types represent different products to be produced in these production

facilities. Process flexibility constitutes the ability of producing a product in multiple plants or

production lines. The model that we study in Section 3 is identical to the one in [9]. Using this

model as a basis, we formalize some results pertaining to the performance of different flexible

structures that were observed numerically in [9].

The remaining parts of this paper are organized as follows. Related literature is reviewed

in the next section. Section 3 introduces the model and the problem. The results on flexi-

bility/capacity interactions are presented in Section 4. Section 5 presents the results on the

diminishing returns property of flexibility. Finally in Section 6 results pertaining to balance in

flexibility structures are stated.

2 Literature Review

The importance of flexibility in service delivery is well known. A significant source of service

delivery process flexibility comes from the use of cross-trained servers. While the practice itself

is widespread, there is little formal evaluation of the value of this type of practice from an

operations standpoint. In [13] trade-offs between capacity and quality for cross-trained workers

in service systems are considered. Numerous studies in manufacturing have looked at the

case of flexible workers and their impact on performance in terms of operational measures like

throughput. Most of these studies analyze specific work-sharing schemes in queueing network

models ([16], and the references therein). Karaesmen et al. [10] investigate flexibility in the

context of field service design. These papers assess the value of certain workforce flexibility

practices in given settings, however do not tackle the broader question of designing the type of

flexibility in these systems.

More generally, the benefits and design of flexibility in operations have been studied exten-

sively ([2], [14]). An important stream consists of papers that address the capacity investment
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problem in the presence of flexible resources ([3], [17], [12]). These papers assume a certain

form of flexibility and then explore the question of the ideal level of this flexibility and how it

relates to value under uncertain demand.

In this paper, we consider capacity to be fixed and explore the relationship between different

flexibility structures and value, without explicitly addressing the optimal capacity issue. In this

regard, our analysis parallels that in [9]. Focusing on process flexibility, Jordan and Graves

explore the problem of assigning multiple products to multiple plants, where the flexibility

of the plants determines which products they can handle. The authors illustrate that well

designed limited flexibility is almost as good as full flexibility. To address the question of where

flexibility should be added in a system, the authors define a chain structure as a group of

directly or indirectly connected group of products and plants. It is shown that a structure

that enables the formation of fewer long chains is superior to one with multiple short chains.

The principles are illustrated with simulations. A similar analysis is performed for multi-stage

systems in [5] and a flexibility measure is developed for such systems. Hopp et al. [7] explore

the benefits of chaining in the context of cross-training for production lines. Gurumurthi and

Benjaafar [6] present a numerical investigation of the benefits of chaining based on a queueing

model. Finally, [8] develops a structural flexibility index that quantifies the structural flexibility

in production and service systems, and allows a ranking based on performance of these systems.

The objective of this paper is to represent flexibility structures through a network flow model

as in [9] and formalize earlier observations on flexibility using this model. By doing this, we

will establish certain flexibility design principles for service and manufacturing systems. To our

knowledge, this is the only paper providing analytical comparison results on flexibility structure

in the literature. In particular, we focus on three sets of design issues: flexibility/capacity

interactions, diminishing returns to increased flexibility, and the value of balance in flexibility

structures.

3 Modeling Process Flexibility

Consider a service system with multiple customer types. Customer types differ in terms of their

service requirements. Servers specialize by customer type, but can be flexible with overlapping

skill sets, allowing them to treat customer requests from different types. The service system can

be represented as a directed graph G = (N, A) with a set of nodes N , of which one is a source
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Figure 1: An n class service system with full flexibility

node and one a sink node, and a set of arcs A whose elements are ordered pairs of distinct

nodes. Some standard definitions are useful to formalize the description of this network. A

directed arc (i, j) emanating from node i is said to have tail i, terminating in node j known as

the head of the arc. For an arc (i, j) ∈ A, the node j is said to be adjacent to node i. The node

adjacency list A(i) is the set of adjacent nodes, A(i) = {j ∈ N : (i, j) ∈ A}. The indegree of a

node is the number of incoming arcs of that node and its outdegree is the number of outgoing

arcs.

An instance of a network that represents the service system is depicted in Figure 3. This

graph illustrates a system with n customer types given by the set of nodes I = {1, 2, ..., n},
served by servers in n departments, given by the set of nodes J = {n+1, n+2, ..., 2n}. Note that

since servers are assumed to be organized by their primary skills, the number of customer types

is equal to the number of departments. The case where the number of customer types is larger

than the number of departments can also be treated within this framework, where the additional

classes can be served by dummy departments with no servers in them. The arcs emanating

from the source node s and terminating in nodes i ∈ I represent the service demand, and have

capacity given by the demand vector λ = (λ1, ..., λn). This vector represents the realization

of demand for a given period. The arcs emanating from nodes j ∈ J and terminating in the

sink node z represent the capacity of each department. These arcs have a capacity given by

the vector C = (C1, ..., Cn). The arcs (i, j) with i ∈ I and j ∈ J represent the flexibility of the
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system. Whenever a customer of type i ∈ I can be served by a server of type j ∈ J , an arc

(i, j) with infinite capacity is added to the network. The network in Figure 3 illustrates a case

where all customers can be treated by all servers, i.e. where the system has full flexibility. In

a system with n departments, full flexibility implies that each node i ∈ I has outdegree equal

to n. In general, the outdegree of node i ∈ I represents the number of possible routings for

customers of type i, and the indegree of a node j ∈ J represents the number of skills a server

of type j has. Assuming that each customer request of type i ∈ I is worth r to the system, the

problem of maximizing the value generated by a given configuration for a demand realization

λ is equivalent to the maximum flow problem for this network. We refer to the maximal flow

as the throughput and denote it by T (λ,C). A closely related problem, first studied in [9],

considers a random demand vector λ = (λ1, ..., λn) where the performance measure of interest

is the expected throughput E[T (λ,C)]. In this case, a maximum flow problem is solved for each

realization of the random demand vector λ and the expectation is taken over all realizations

of λ. Jordan and Graves also discuss the relevance of the expected throughput maximization

objective and relate it to a number of other possible objectives.

As in [9], the emphasis will be on a special class of processing network which is defined

below:

Definition 1 An arc (i, j) is flexible if i ∈ I and j ∈ J . The flexibility of a network is defined

as the set of arcs F between the node set I and the node set J . All arcs in F are in parallel

(i.e. there is no directed cycle in the graph in which both arcs have the same direction).

Definition 2 A symmetric network is defined as a network where i) every customer type can

be processed by the same number of server types (departments), i.e. each node i ∈ I has the

same outdegree and ii) every department treats the same number of customer types, i.e. every

node j ∈ J has the same indegree.

Finally, let us define a specific class of symmetric networks that are indexed by a single

integer value k.

Definition 3 A k-flexible network has a flexible arc set denoted by Fk. F1 = {(1, n+1), (2, n+

2), ...., (n, 2n)} represents the case of specialized servers. Fk is constructed on Fk−1 as follows:

Fk = Fk−1 ∪ {(1, n + k), (2, n + k + 1), (n, n + k + n − 1)} where the labeling of the nodes is

such that whenever j > 2n we take j − n.
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Note that in a k-flexible network k indexes the number of server types that a customer

type can be served by (which is equal to the outdegree of the nodes i ∈ I), or equivalently the

number of customer types that a server type can treat (which is equal to the indegree of the

nodes j ∈ J). In addition, by definition k-flexible networks are always connected.

Throughout, the maximum flow of a network G is denoted by TG(F , λ,C). For notational

compactness, these are replaced by TG and T (F) whenever possible.

4 Some Properties on Flexibility/Capacity Interactions

One way of improving performance in flexible systems is by adding capacity. For example, one

may choose to invest in additional capacity rather than investing in additional flexibility. The

close interactions between flexibility and capacity are evident. The following result formalizes

this relationship:

Theorem 1 Consider a symmetric service network with demand vector λ and symmetric ca-

pacity vector C. If
∑n

i=1 λi >
∑n

i=1 Ci then T (Fk,λ,C+ ∆C)−T (Fk, λ,C) ≥ T (Fk−1, λ,C+

∆C)− T (Fk−1, λ,C) for small enough ∆C such that one still has
∑n

i=1 λi ≥
∑n

i=1 Ci + ∆C
i .

Proof: To show the inequality in the Proposition, we first transform all the networks G with

flexibility Fk into equivalent networks G′ with flexibility Fk−1. Consider G with demand

vector λ and capacity vector C. As noted before, T (Fk,λ,C) is the maximum flow of this

network. Let x∗ denote the vector of optimum flows in this maximum flow problem. Recall

that Fk = Fk−1 ∪ {(1, n + k), (2, n + k + 1), ..., (n, n + k + n − 1)}. For simplicity denote the

arc set {(1, n + k), (2, n + k + 1), ..., (n, n + k + n− 1)} as the set B. Construct a new network

G′ by taking Fk\B. By definition, this will have the same arc set as Fk−1. Let

λ′j = λj +
∑

∀i|(i,j)∈{B}
x∗ij , j = n + 1, . . . , 2n.

Note that as constructed λ′ ≥ λ. Whenever x∗ij for(i, j) ∈ B > 0 in the maximum flow problem

of G then in the maximum flow problem of G′ with Fk−1, λ,C, there will be a slack in capacity

at least as large as that in G. By replacing λ with λ′ as constructed, we can ensure filling this

slack in capacity. By construction we then have

T (Fk,λ,C) = T (Fk−1, λ
′,C).
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For the network with Fk,λ,C + ∆C construct λ′′ in a similar fashion for the corresponding

network with flexibility Fk−1. By construction we will then have

T (Fk, λ,C + ∆C) = T (Fk−1,λ
′′,C + ∆C).

Since C+∆C ≥ C, x∗ for the network with C+∆C will be greater than or equal to the x∗ for

the network with C. As a result λ′′ ≥ λ′. Thus we know that for the maximum flow problem

T (Fk−1, λ
′′,C + ∆C) ≥ T (Fk−1, λ

′,C + ∆C). (1)

Using our construction, the condition we want to prove is equivalent to

T (Fk−1, λ
′′,C + ∆C)− T (Fk−1, λ

′,C) ≥ T (Fk−1, λ,C + ∆C)− T (Fk−1, λ,C). (2)

By Equation (1) we have

T (Fk−1, λ
′′,C + ∆C)− T (Fk−1, λ

′,C) ≥ T (Fk−1, λ
′,C + ∆C)− T (Fk−1, λ

′,C).

Showing

T (Fk−1, λ
′,C + ∆C)− T (Fk−1, λ

′,C) ≥ T (Fk−1, λ,C + ∆C)− T (Fk−1, λ,C) (3)

will ensure that the desired condition in (2) holds. It is known that the optimal value of

the objective function in the minimum cut problem (T (F i, λ,C)) is submodular in (λ,−C)

(Theorem 3.7.1 in [15]) which implies inequality (3). 2

Theorem 1 demonstrates that flexibility and capacity are complements up to a certain

threshold, parameterized by the demand and capacity vectors. Note that this threshold is

equal to T (Fn, λ,C), the throughput of the fully flexible system (recalling that T (Fn, λ,C) =

min(
∑n

i=1 λi,
∑n

i=1 Ci)). Beyond the threshold, capacity may act as a substitute to flexibility.

For the case with random demand, this result can only be stated for ’chronically overloaded’

systems where total demand always exceeds total capacity for all possible demand realizations.

Informally, for heavily utilized systems, which are also those systems where system flexibility

is sought most, one will mostly be in the former region with capacity and flexibility acting as

complements. For these types of systems, the result suggests that an additional server is more

valuable in the system with superior flexibility. Thus flexibility and capacity should be jointly

designed. For systems with lower utilization, the result may be reversed, and an additional

person can be worth more in a system with less flexibility, reflecting a positive marginal value

for capacity.
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5 Diminishing Returns to Increased Flexibility

It is well known that the performance of a service system with limited flexibility rapidly ap-

proaches that of a system with full flexibility. Numerical examples in a number of articles

(e.g. [9], [10]) support this point. This issue will be explored next by investigating structural

properties of the maximum flow as a function of F .

The following theorem which establishes the submodularity of the throughput in F is an

adaptation of Theorem 20 in [4]. In order to adapt their result, let Xm (m = 1, 2, .., n2) be 1 if

flexible arc m ∈ F and 0 otherwise. Note that Xm is a chain in the sense of partially ordered

sets (see [15]). Now let X = ×n2

i=1Xm. It is shown in [4] that for sets of substitute arcs (such

as those in F), the minimum cost flow is supermodular in X. Since X and F are equivalent

representations of the flexible arc set and the minimum cost flow problem can be converted to

a maximum flow problem, we reach the following:

Theorem 2 : The throughput (maximum flow) of the network, TG(F) is submodular in F .

Most manufacturing or service flexibility applications consider the case where the demand,

λ, is a random vector. The following corollary establishes the result in the random demand

case.

Corollary 1 : The expected throughput of the network is E[TG(F)] is submodular in F .

Proof: For any realization of the random vector λ, the throughput is submodular in F by

Theorem 2. Because submodularity is preserved under the expected value operation ([15]), the

expected throughput is also submodular in F . 2

In most flexibility applications (as in [9]), λ is a random vector whereas C is assumed to

be constant. Nevertheless, Corollary 1 directly extends to the case where both λ and C are

random.

Submodularity implies that all marginal flexibility improvements are substitutes of each

other, thereby suggesting the effectiveness of smart limited flexibility. Submodularity of the

expected throughput in terms of the arc set F reflects one side of the diminishing returns prop-

erty: marginal additions of flexibility (in terms of arcs) are relatively more beneficial in terms

8



of throughput than combined additions. In general, however, the diminishing returns property

is not interpreted in terms of submodularity, but in terms of concavity of the throughput as

flexibility increases. Next, we investigate the concavity properties.

Proposition 1 : If C = (C, ..., C) and λi (i = 1, 2, .., n) are independent and identically

distributed random variables, then the expected throughput of the network as a function of Fk

is nondecreasing and concave in k (for k = 2, ..., n− 1).

Proof: Recall that Fk = Fk−1∪{(1, n+k), (2, n+k+1), (n, n+k+n−1)}. Since Fk−1 ⊂ Fk,

the nondecreasing part of the statement is obvious. Now let us consider the following set:

F ′k = Fk−1 ∪ {(1, n + k + 1), (2, n + k + 2), ..., (n, n + n + k)}. By Theorem 2 and Corollary 1

we obtain:

E[T (Fk ∪ F ′k)] + E[T (Fk ∩ F ′k)] ≤ E[T (Fk))] + E[T (F ′k)]. (4)

Now note that, by construction : Fk ∩ F ′k = Fk−1 and Fk ∪ F ′k = Fk+1. In addition, F ′k
and Fk have identical structures by a relabeling of the nodes, which implies that: E[T (F ′k)] =

E[T (Fk)]. Using these equalities, inequality (4) can be expressed as:

E[T (Fk+1)] + E[T (Fk−1)] ≤ 2E[T (Fk))]

which is the desired result. 2

Proposition 1 proves the concavity property that is observed in the numerical examples of [9]

for independent and identically distributed demands. On the other hand, all numerical results

seem to indicate that the above concavity holds under even weaker assumptions on the demand

distributions. Unfortunately, a general proof under weaker assumptions eludes us. Nevertheless,

the next proposition establishes that, in the special case of a 3 by 3 network, concavity of the

expected throughput (in terms of the flexibility index) holds for any joint demand distribution.

The complete proof can be found in [1].

Proposition 2 : If C = (C, C,C) and λi (i = 1, 2, 3) are jointly distributed random variables,

then the expected throughput of the network has the following diminishing returns property:

E[T (F3)]−E[T (F2)] ≤ E[T (F2)]− E[T (F1)]
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6 On the Value of Balance in Flexibility Structures

So far, we have shown basic features of flexibility that would be useful in answering the how

much flexibility type of question. Next, the theory of majorization [11] is used to explore the

type of flexibility, thereby further refining the notion of smart limited flexibility.

Definition 4 For a vector x ∈ Rn, let [i] denote a permutation of the indices {1, 2, ..., n} such

that x[1] ≥ x[2] ≥ . . . ≥ x[n]. Then, for x, y ∈ Rn, x is said to be majorized by y, x ≺ y, if
∑n

i=1 x[i] =
∑n

i=1 y[i] and for all k = 1, . . . , n− 1,
∑k

i=1 x[i] ≤
∑k

i=1 y[i].

Let id(J) ∈ Rn be the vector of indegrees for j ∈ J , and od(I) ∈ Rn be the vector of

outdegrees for i ∈ I. Recall that the former represents a vector with the number of skills of the

servers in each department, and the latter the number of possible routings for each customer

class. The following definitions are proposed for the graph G = (N, A).

Definition 5 If id(J) has id(n + 1) = id(n + 2) = . . . = id(2n), the service system is said

to have balanced skill diversity. Symmetrically, if od(I) has od(1) = od(2) = . . . = od(n), the

system is said to have balanced routings. For two networks G = (N, A) and G′(N,A′), and

skill diversity vectors id(J) and i′d(J) (routing vectors od(I) and o′d(I)), whenever id(J) ≺ i′d(J)

(od(I) ≺ o′d(I)) the system G(N,A) is said to have more balanced skill diversity (more balanced

routings) than G′(N, A′).

Theorem 3 Consider a network G(N,A) with demand vector λ = (λ1, ..., λn), symmetric

capacity vector C = (C, ..., C), and routing vector od(I). Whenever G(N,A) does not have

balanced skill diversity, one can find G′(N ′, A′) with demand vector λ = (λ1, ..., λn), symmetric

capacity vector C = (C, ..., C), routing vector o′d(I
′) = od(I), and i′d(J

′) ≺ id(J) such that

TG′ ≥ TG, as long as the new network G′ remains connected.

Proof: The proof requires some additional definitions and notation and is provided in the

Appendix. 2

Remark: The final requirement that the new network remains connected is an important

one. Without this condition, one could envision a new network with a more balanced skill

set, however which consists of multiple shorter chains rather than one long chain as in the
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original network. When this happens, optimal throughput can be less in the new network,

despite the improved skill balance. The following example illustrates this, and provides fur-

ther support to the earlier claim that longer-fewer chains are better. Consider a symmetric

network with n = 4. Assume that the flexible arcs are: {(1, 5), (2, 6), (3, 7), (3, 5), (4, 8), (4, 5)}.
Let λ = (0, a, 2a, a) and C = (a, a, a, a). This network can satisfy all the demand, i.e. the

maximum flow is 4a. Now construct the following network which is majorized by the original

one {(1, 5), (2, 6), (3, 7), (3, 6), (4, 8), (4, 5)}. Note that this new network consist of two chains

rather than just one, and is not connected. Its maximum flow is 3a < 4a.

Corollary 2 Consider a network G(N, A) with symmetric demand vector λ = (λ, ..., λ), ca-

pacity vector C = (C1, ..., Cn), and skill diversity vector id(J). Whenever G(N, A) does not

have balanced routing, one can find G′(N ′, A′) with symmetric demand vector λ = (λ, ..., λ),

capacity vector C = (C1, ..., Cn), skill diversity vector i′d(J
′) = id(J), and o′d(I

′) ≺ od(I) such

that TG′ ≥ TG, as long as the new network G′ remains connected.

The results in Theorem 3 (and Corollary 2) continue to hold for the expected throughput

when the demand (respectively the capacity) is random. They formalize similar guidelines

suggested in [9], that recommend “equalizing the number of plants (measured in total units

of capacity) to which each product in the chain is connected” and “equalizing the number of

products (measured in total units of expected demand) to which each plant in the chain is

directly connected”.

Acknowledgement: The authors would like to thank an anonymous referee for several useful

suggestions and the example in Section 6.
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A Proofs

The following additional notation and definitions are used in the proof Theorem 3: For a set

of nodes I and J , (I, J) = {(i, j) : i ∈ I, j ∈ J} represents the set of all arcs between I and J .

The capacity of an arc (i, j) is given by the capacity function c(i, j). For subsets I and J of

N , denote the sum of all capacities on all arcs (I, J) by c(I, J) =
∑

i∈I,j∈J c(i, j). Let X be a

subset of N . Then X is a cut if it contains the source but not the sink of the network. The cut

capacity function is given by f(X) = c(X,N \X). For X being a cut, the minimum of f(X)

over all X is known as a minimum cut.

The following lemma is used in the proof of Theorem 3.

Lemma 1 For the graph G = (N, A) representing the flexible service system, any cut that

satisfies at least one of the conditions below cannot be a minimum cut: i) There exists an i ∈ X

with j ∈ J and j 6∈ X ii) f(X) > min(
∑n

i=1 λi,
∑n

i=1 Ci).

Proof: Any cut X that satisfies i) will have f(X) = ∞. Since there exists cuts with finite

capacity, X cannot be the minimum cut of this network. To show that any cut X that satisfies

ii) cannot be a minimum cut, note that both
∑n

i=1 λi and
∑n

i=1 Ci are cuts of this network. 2

A.1 Proof of Theorem 3

Take any connected network, characterized by the graph G(N, A). Let NAG denote the set of

cuts of this network, which cannot be eliminated by one of the rules in Lemma 1. This set will

be called the set of uneliminated cuts. By Lemma 1, the minimum cut of the network G is a

cut in NAG. Now consider a second network G′(N,A′), where an arc (a, b) has been replaced

by arc (a, b′) and everything else is the same. The nodes b ∈ J and b′ ∈ J ′ are chosen such

that i′d(J
′) ≺ id(J), and the network remains connected . Then according to Definition 5, the

network G′ is said to have more balanced skill diversity. It is next shown that G′ thus obtained

has maximum flow TG′ ≥ TG.
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For any cut X ∈ NAG let XI denote the nodes of X that are in the set I, i.e. XI = {x ∈
X : x ∈ I}. Recall that A(XI) denotes the set of adjacent nodes to the nodes in XI . By Lemma

1, all y ∈ A(XI) are also in X, i.e. y ∈ X. NAG′ can be obtained from NAG, by noting that

the cuts in NAG fall into three distinct sets: 1) The set of cuts that do not change as a result

of the arc replacement being considered 2) The set of cuts that change, however have the same

value as before 3) The set of cuts that are eliminated by Lemma 1 in the new network. In

addition, there may be some new cuts.

More precisely, the cuts in NAG can be grouped as follows. 1) All cuts X ∈ NAG such that

a 6∈ X belong to the first group, since the proposed change in the network only impacts A(a).

All such cuts will also be in NAG′ . 2) The cuts in the second group are those that are obtained

from a cut X ∈ NAG by replacing the node b in the cut by b′, i.e. X ′ = X − b + b′, such that

for all x ∈ X ′
I′ A(X ′

I′) ∈ X ′. Thus, these cuts cannot be eliminated by Lemma 1. Note that for

this group of cuts, f(X) = f(X ′) by symmetry of the capacity vector C. 3) Consider a cut X

with nodes x1 ∈ XI and x2 ∈ XI , and b ∈ {A(x1)∩A(x2)}. If for this cut b′ 6∈ {A(x1)∪A(x2)},
then one will have {A′(x1)∪A′(x2)} ⊃ {A(x1)∪A(x2)}. Thus any cut X ∈ NAG with x1 ∈ X

and x2 ∈ X will have A′(X ′
I) ⊃ A(XI) in the new network G′. But then all of these cuts will be

eliminated by condition i) of Lemma 1. 4) The argument for the third group of cuts shows that

there may be some new cuts X ′ in NAG′ with x1, x2 ∈ X ′ and A′(X ′
I) ∈ X ′. In other words,

these cuts X ′ contain all the nodes of cuts X that are in group three above, and in addition

also contain node b′. Note that for these additional cuts f(X) + C = f(X ′). Finally observe

that if the arc replacement is performed without ensuring that the new network is connected,

there may be some cuts X such that A(XI) ∩ b = ∅, that were eliminated by Lemma 1 in G

(i.e. X 6∈ NAG) but that can become feasible (i.e. X ∈ NAG′) in the new network. One can

then no longer guarantee f(X) ≤ f(X ′) for any λ. Such cuts are avoided by imposing the

connectedness condition.

Characterizing the cuts of the new network, using the set of uneliminated cuts for the

initial network, one observes that some cuts of G are eliminated in G′, while those that are not

eliminated preserve the same value f(X) = f(X ′). All additional cuts that can be added to G′

without being eliminated by Lemma 1 are shown to have f(X ′) > f(X) for some X ∈ NAG, 6∈
NAG′ . Thus one has that the minimum cut of G′ is greater than or equal to the minimum cut

of G, which implies that TG′ ≥ TG. The same argument can be repeated for another arc change

that induces more balanced skill sets. Thus any connected network G′ can be obtained from a

connected network G through a finite number of arc changes, each improving throughput. This
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proves the result. 2

A.2 Proof of Corollary 2

Note that the service networks represented by graphs G(N, A) are fully symmetric in λ and

C. In other words, a network where the flow is from the sink node towards the source node,

and where the capacity vector C has been replaced by the demand vector λ and vice versa,

has identical maximum flow with the original network. These latter types of networks can be

labeled as the reversed networks. Observe, furthermore, that in the reversed network, all results

previously shown for skill sets hold, and these are equivalent to results in terms of routings in

the original network. Using this equivalence, and noting that the λ and C vectors in the

corollary ensure that the reversed network has the same characteristics as the original network

(any demand vector, symmetric capacity vector), the result stated in the Corollary follows by

the proof for Theorem 3. 2
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