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Abstract: Most service systems consist of multi-departmental structures corresponding to multiple types

of service requests, with possibly multi-skill agents that can deal with several types of service requests.

The design of flexibility in terms of agents’ skill sets and assignments of requests is a critical issue for

such systems. Managers also have a choice in determining the percentage of capacity that will have

the designed flexibility structure. A similar problem exists in the manufacturing of multiple products

in multiple plants. In this paper, we investigate two issues regarding flexibility design: what is the

amount of resource flexibility needed in each department and how does this interact with the flexibility

structure in place.
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1 Introduction

This paper considers service systems with multi-departmental structures having possibly multi-skill

servers that treat several types of service requests. In any such system, it is possible to have a different

mix of skill sets with a different number of servers belonging to each skill set. It is well known that

more flexibility leads to better operational performance. However given that there are costs associated

with creating and maintaining this flexibility, and difficulties managing the resulting more complex

system, it is desirable to understand the value of this flexibility in more depth. This paper will

focus on providing a better understanding of the relationship between different flexibility structures,

flexible capacity, and value. The following questions are relevant in this setting: Given a particular

skill set, what proportion of the servers should be cross-trained in these (as opposed to remaining

dedicated to their special skill)? In other words, how much resource flexibility should one plan for?

How does the skill set design or demand variability affect this decision? By building on earlier work

in flexibility design, we establish a structural property, and then illustrate the interactions between

flexibility structure and resource flexibility through some numerical examples.

A well known application of this flexibility design problem in a manufacturing setting is the problem

studied by Jordan and Graves [6]. In this setting, the departments are different plants or production

lines, while the customer types represent different products to be produced in these production facili-

ties. Process flexibility constitutes the ability of producing a product in multiple plants or production

lines. The model that we study in this paper is identical to the one in Jordan and Graves [6]. However,

in our setting a proportion of the plant capacity is allowed to remain dedicated to a single product.



We explore the choice of this proportion and how it interacts with the process flexibility structure in

place.

The remaining parts of this paper are organized as follows. Related literature is reviewed in the next

section. Section 3 introduces the model and presents the results on the diminishing returns property

of flexibility. The numerical results on flexibility/capacity interactions are presented in Section 4. We

end with concluding remarks in Section 5.

2 Literature Review

The importance of flexibility in service delivery is well known. A significant source of service delivery

process flexibility comes from the use of cross-trained servers. While the practice itself is widespread,

there is little formal evaluation of the value of this type of practice from an operations standpoint.

Pinker and Shumsky [9] consider trade-offs between capacity and quality for cross-trained workers

in service systems. Numerous studies in manufacturing have looked at the case of flexible workers

and their impact on performance in terms of operational measures like throughput. Most of these

studies analyze specific work-sharing schemes in queueing network models (Van Oyen et al. [11], and

references therein). Karaesmen et al. [7] investigate flexibility in the context of field service design.

These papers assess the value of certain workforce flexibility practices in given settings, however do

not tackle the broader question of designing the type of flexibility in these systems.

More generally, the benefits and design of flexibility in operations have been studied extensively

(DeGroote, [3]; Sethi and Sethi, [10]). An important stream consists of papers that address the

capacity investment problem in the presence of flexible resources (Fine and Freund [4]; Van Mieghem

[12]; Netessine et al. [8]). These papers assume a certain form of flexibility and then explore the

question of the ideal level of this flexibility and how it relates to value under uncertain demand. A

similar capacity investment (staffing) problem is addressed in Harrison and Zeevi [5] and Chevalier et

al. [2], however these papers consider queueing and loss systems respectively as the underlying service

system. The analysis in this case is further complicated by the routing and scheduling of calls to

multiple queues. Like the current paper, Chevalier et al. [2] explore the optimal proportion of flexible

and dedicated servers in a particular loss system with two types of servers. Servers can either be

dedicated or fully flexible in their analysis. We consider the possibility of having servers with partial

flexibility, by also allowing for flexibility designs where not all flexible servers are generalists. Thus

our analysis is more general in terms of the flexibility structures that are considered. However we

assume capacity to be deterministic as in Jordan and Graves [6], and only explore the value of flexible

capacity, without considering its costs.

The objective of this paper is to represent flexibility structures through a network flow model as

in Jordan and Graves [6] and Aksin and Karaesmen [1] and formulate the resource flexibility question

in terms of this model. By doing this, we are able to relate the flexible capacity question to the earlier

analyzed flexibility structure design problem. Our analysis demonstrates the close interaction between

the amount of resource flexibility and flexibility structure, thereby pointing to an important direction

for future research.
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Figure 1: An n class service system with full flexibility

3 The Model and Analysis of Process Flexibility

Consider a service system with multiple customer types. Customer types differ in terms of their service

requirements. Servers specialize by customer type, but can be flexible with overlapping skill sets,

allowing them to treat customer requests from different types. The service system can be represented

as a directed graph G = (N, A) with a set of nodes N , of which one is a source node and one a sink

node, and a set of arcs A whose elements are ordered pairs of distinct nodes. Some standard definitions

are useful to formalize the description of this network. A directed arc (i, j) emanating from node i

is said to have tail i, terminating in node j known as the head of the arc. For an arc (i, j) ∈ A, the

node j is said to be adjacent to node i. The node adjacency list A(i) is the set of adjacent nodes,

A(i) = {j ∈ N : (i, j) ∈ A}. The indegree of a node is the number of incoming arcs of that node and

its outdegree is the number of outgoing arcs.

An instance of a network that represents the service system is depicted in Figure 1. This graph

illustrates a system with n customer types given by the set of nodes I = {1, 2, ..., n}, served by

servers in n departments, given by the set of nodes J = {n + 1, n + 2, ..., 2n}. Note that since servers

are assumed to be organized by their primary skills, the number of customer types is equal to the

number of departments. The case where the number of customer types is larger than the number of

departments can also be treated within this framework, where the additional classes can be served

by dummy departments with no servers in them. The arcs emanating from the source node s and

terminating in nodes i ∈ I represent the service demand, and have capacity given by the demand

vector λ = (λ1, ..., λn). This vector represents the realization of demand for a given period. The

arcs emanating from nodes j ∈ J and terminating in the sink node z represent the capacity of each

department. These arcs have a capacity given by the vector C = (C1, ..., Cn). The arcs (i, j) with i ∈ I

and j ∈ J represent the flexibility of the system. Whenever a customer of type i ∈ I can be served by a

server of type j ∈ J , an arc (i, j) with infinite capacity is added to the network. The network in Figure

1 illustrates a case where all customers can be treated by all servers, i.e. where the system has full

flexibility. In a system with n departments, full flexibility implies that each node i ∈ I has outdegree

equal to n. In general, the outdegree of node i ∈ I represents the number of possible routings for

customers of type i, and the indegree of a node j ∈ J represents the number of skills a server of type



j has. Assuming that each customer request of type i ∈ I is worth r to the system, the problem of

maximizing the value generated by a given configuration for a demand realization λ is equivalent to

the maximum flow problem for this network. We refer to the maximal flow as the throughput and

denote it by T (λ,C). Focusing on a different context i.e. process flexibility in manufacturing, Jordan

and Graves [6] consider a random demand vector λ = (λ1, ..., λn) where the performance measure of

interest is the expected throughput E[T (λ,C)]. In this case, a maximum flow problem is solved for

each realization of the random demand vector λ and the expectation is taken over all realizations of

λ. Jordan and Graves also discuss the relevance of the expected throughput maximization objective

and relate it to a number of other possible objectives. Our main focus here is also on this random

demand model and the expected throughput criterion but unlike Jordan and Graves we allow partial

resource flexibility.

Now let s and z denote the source and sink nodes respectively, where the source node is connected

to nodes 1, 2, ..., n and the sink node is connected to nodes n + 1, n + 2, ..., 2n and let xkl denote the

flow on the arc (k, l). For a given demand vector λ, the maximum flow problem can be expressed as

the following linear program:

T = max
∑n

i=1 xsi

xsi ≤ λi for i = 1, 2, ..., n

xjz ≤ Cj−n for j = n + 1, n + 2, ..., 2n

xsi =
∑

j|(i,j)∈A xij for i = 1, 2, ..., n

xjz =
∑

i|(i,j)∈A xij for j = n + 1, n + 2, ..., 2n

xsi ≥ 0 for i = 1, 2, ..., n

xjz ≥ 0 for j = n + 1, n + 2, ..., 2n

xij ≥ 0 for all i, j|(i, j) ∈ A

Now assume that the proportion of cross-trained (flexible) capacity of resource j is α. In other

words while the total capacity of resource j is still C units, the capacity that it can allocate to other

demand types is only αC. This imposes the following additional constraint on the maximum flow

problem: ∑

i|(i,j)∈A,i 6=j−n

xij ≤ αCj−n for j = n + 1, n + 2, ..., 2n (1)

The solution of the above maximum flow problem with the additional constraint set (1) is easy

for a given demand vector. The expected throughput can then be obtained by simulation. General

properties on the structure of the solution are more difficult to obtain and will be investigated through

numerical examples in the next section. There is, however, one property on the effect of increasing α

that can be shown.

Property: The expected throughput, E[T (λ,C)], is increasing and concave in α.

Proof: α appears on the right hand side of the maximum flow LP. It is well-known that the objective

function of an LP is increasing and concave in the right-hand side. In addition, both monotonicity

and concavity are preserved under the expected value which proves the desired result.
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Figure 2: The Different Flexibility Structures Considered

4 Preliminary Numerical Results

Our numerical example considers a service system with three departments and three customer types.

Once again, our focus is on systems where each department has servers who have one main skill which

coincides with customer types. Figure 2 presents the four different flexibility structures that will be

considered. In the first structure, all servers are dedicated. This is a structure with no flexibility. The

other three structures are so-called chain structures (Jordan and Graves [6]). The authors define a

chain structure as a group of directly or indirectly connected products (customer types) and plants

(departments). Structures 2 and 3 are symmetrical chains where the servers have respectively 2 and 3

different skills. Structure 4 is an extreme case where department 1 has servers that are cross-trained

in all three skills but departments 2 and 3 are dedicated.

The service capacities are assumed to be 20 units per period in each of the departments. Demand

for each skill is exponentially distributed with mean 20 units per period. The expected throughput

is estimated by simulation. We report the normalized expected throughput which is the ratio of the

expected throughput to the total available capacity.

The first set of results pertains to the monotonicity in α. The results are depicted in Figure

3, where Flexj denotes the expected throughput of a system with flexibility structure j, as shown

in Figure 2. As shown, the expected throughput increases in a concave manner as a function of α

regardless of the flexibility structure. When structures 2 and 3 are compared, it is observed that

the initial investment in flexible capacity (going from no flexible capacity to 20% flexible capacity)

is more beneficial in terms of expected throughput in structure 3. However at 100% flexibility, the

performance of the two structures are very close. Structure 4 manifests a different behavior. Its

performance is significantly inferior to the symmetrical structures in 2 and 3. It also benefits little

from additional flexible resources. This implies that flexibility structure and the amount of resource

flexibility have joint effects. More flexible structures not only have better performance but also benefit

from additional investments in flexible capacity.

The second set of results investigates the effects of the flexibility structure for a given resource

flexibility level. In Figure 4, we compare the expected throughput of structures 1, 2, and 3. For 100%

resource flexibility, it was proven in Aksin and Karaesmen [1] that the marginal increase in expected

throughput in going from structure 1 to structure 2 is higher than the marginal increase in going

from structure 2 to structure 3. The corresponding curve in the figure indicates that the marginal

increase in going from structure 1 to 2 is indeed much more significant. Moreover, this property is
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Figure 3: The Expected Throughput as a Function of the Proportion of Flexible Resources
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Figure 4: The Expected Throughput as a Function of Flexibility Structure

observed to be true regardless of the resource flexibility level. Relatively small but well designed

improvements in flexibility structure (structure 2 instead of structure 1) bring significant benefits in

terms of performance.

The final issue we investigate is demand variability. In order to perform this, we compare the

performance of the system with exponentially distributed demand with that of an identical system

with a less variable demand distribution. In particular, the reference demand distribution is a Gamma

distribution with shape parameter 2 and scale parameter 10. Note that the two distributions have

identical means but the Gamma distribution not only has a lower variance (200 compared to 400 for

the exponential distribution) but is also less variable than the exponential distribution in the sense of

a convex stochastic order. Figure 5 summarizes the results. The first immediate observation is that

increased demand variability hurts performance in a significant manner as expected. Moreover, there

is little difference in the performance of structures 2 and 3 when demand variability is low but the

difference is more pronounced when demand variability is high. Increased resource flexibility is always

beneficial for the high variability system. For the low variability system, increased resource flexibility
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beyond α > 0.6 has little benefit. It seems like when the demand variability is high and the flexibility

structure is limited, additional resource flexibility always pays off.

5 Conclusion and Perspectives

In this paper, we investigated the interaction between resource flexibility levels and flexibility struc-

tures, and their effects on system performance using a single-period network flow model with random

demand. This investigation has revealed a number of interesting preliminary results that should be

verified more thoroughly in future work.

The interaction effect between flexibility structure and the amount of resource flexibility points

to a need for the joint optimization of these two features in such systems. In Chevalier et al. [2] an

optimization problem is formulated to determine the optimal proportion of fully flexible and dedicated

servers. A cost structure, wherein each additional skill has a cost in addition to the cost of a dedicated

server is assumed. A rule where 20 percent of the servers are flexible is shown to be near-optimal in

most cases. While the underlying system, a loss system with overflow from dedicated to fully flexible

servers, is different from ours, a comparison of the results is instructive. Our concavity property

supports their general result of a limited amount of resource flexibility to obtain most of the benefits

while keeping costs to a minimum. However, we think that the consideration of limited flexibility

structures may lead to a different proportion of flexible servers in their results, since the same benefits

may be obtained at much lower cost in this case. The interaction effect indicates that managers should

first design their flexibility structure, and then address the question of amount of resource flexibility.

Our numerical examples also indicate that the variability in customer arrivals may further emphasize

this interaction.

The single-period model here is a simplified version of the stochastic dynamic problem where

demand is distributed to different departments depending on the workloads over time. In general, this

latter problem takes the form of a queueing control problem. Future work will focus on verifying the



properties observed here for that problem.
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