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fkaraesmen@ku.edu.tr, lormeci@ku.edu.tr

Abstract

Most service systems consist of multi-departmental structures corresponding to

multiple types of service requests, with possibly multi-skill agents that can deal with

several types of service requests. The design of flexibility in terms of agents’ skill

sets and assignments of requests is a critical issue for such systems. The objective of

this paper is to identify preferred flexibility structures when demand is random and

capacity is finite. We compare a structure recommended by the flexibility literature to

structures we observe in practice within call centers. In order to enable a comparison of

flexibility structures under optimal capacity, the capacity optimization problem for this

setting is formulated as a two-stage stochastic optimization problem. A simulation-

based optimization procedure for this problem using sample-path gradient estimation is

proposed and tested, and used in the subsequent comparison of the flexibility structures

being studied. The analysis illustrates under what conditions on demand, cost, and

human resource considerations, the structures found in practice are preferred.

Keywords: flexibility, call centers, multidimensional newsvendor, gradient estimation

via perturbation analysis
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1. Introduction

It is known that flexible resources, such as cross-trained servers or flexible equipment, mit-

igate the negative effect of demand uncertainty. This is because flexible resources can be

allocated to different tasks, thereby adjusting supply to better meet uncertain demand.

Especially for service systems like call centers, where production and consumption occur

simultaneously, flexibility is essential in meeting and satisfying customer needs.

Through resource flexibility, demand is aggregated and resources are shared. Therefore,

flexibility improves both the utilization and the throughput level of a system. Nevertheless,

it is usually expensive. Cross-training a server has a cost. Furthermore, additional skills

typically require higher compensation. While in some settings broadening the scope of a

server through cross-training can have positive effects on employee well being and produc-

tivity, there are limits to this beyond which additional flexibility may be detrimental to

individuals. This latter effect imposes constraints on the flexibility design problem which

tries to determine the appropriate skill sets for employees, and the number of employees in

each skill set, such that the benefits of flexibility are maximized while minimizing its direct

and indirect costs.

The flexibility design problem for call centers can be viewed as a hierarchical planning

problem. At a strategic level managers will try to determine the type of flexibility. This

will start out with job design which we label as skills’ definition. Each skill consists of a

set of tasks, and different skill definitions may group the tasks differently. A server who

has a particular skill will be able to perform all tasks within that skill. Different skill

definitions may be preferred for example to enable a natural career progression for agents,

to manage the total call volume of a particular skill, or to group tasks by product or service

being offered. Given a skill definition, the strategic level will then determine the skill sets

for agents. This is where the type of flexibility in a system as a function of the skills

that have been defined is determined. The tactical level problem determines the capacity

levels for each skill set. Once flexible capacity is in place, the operational control problem

which consists of skill-based routing will route incoming calls to the appropriate agent pools,
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thereby exploiting the flexible capacity. In this paper we will mostly focus on the tactical

problem of capacity optimization for a given flexibility structure, which will enable us to

make statements about preferred choices (from a profit standpoint) at the strategic level in

terms of different flexibility structures.

Our motivation to compare different flexibility structures in terms of their profit implica-

tions stems from observing different flexibility structures in real call centers. These have not

all been analyzed from a profit perspective in the extant literature. In particular, the flexi-

bility literature, building on the work by Jordan and Graves (1995), suggests that a two-skill

complete chain, where each server has two skills, with its capacity appropriately optimized,

would be an ideal structure for a call center. A chain is formally defined as a group of de-

mand and resource types that are either directly or indirectly connected by demand-resource

assignment decisions. A complete chain structure allows reallocation of demands within the

resources of the whole system. The performance of the two-skill complete chain has been

explored and confirmed in Wallace and Whitt (2005), where the capacity is determined tak-

ing staffing costs into account. In practice, flexibility structures are developed by also taking

certain human resource related issues into account, which are not explicitly considered in

the flexibility literature.

A structure which we call the nested structure is typical in many banking and insurance

contact centers. Nested structures are adopted in call centers where career planning is

extremely important. The employees have a high profile and a high potential to learn

different tasks. Their aim is to be promoted to higher positions after a certain amount of

contact-center experience. The nested structure implies a natural career progression from

being inexperienced agents with limited skills to becoming experienced multi-skill agents

by learning additional skills over time. With an appropriate skill definition upfront, this

progression can be made from simple or fundamental to more complex or advanced skills:

The most standard operations can be taught easily to the beginners, thus agents start out

with these skills. As their contact center experience grows, the agents are trained to respond

to additional more complex queries. This type of a progressive training structure results in

what we call a nested structure. Apart from the entry level agents, all agents in such a call
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center will be cross-trained in several skills.

The second type of flexibility structure, observed in technical support providing call

centers is labeled as the overflow structure. These centers have two kinds of employees,

dedicated or non-flexible agents who focus on only one type of skill, and expert or flexible

agents who can provide assistance requiring all or several types of skills. This structure seems

to acknowledge the cost and difficulty of cross-training all employees and instead adopts a

structure with a small proportion of so called super-servers.

The question of whether one would rather have cross-trained servers throughout a ser-

vice organization, or focus cross-training activities on an exclusive set of servers has been

addressed from a human resource practice standpoint before. Hunter (1999) describes two

prevailing models of work organization in retail banking (branch, call center), labeling one

as the inclusive and the other as the segmented model. In terms of cross-training practice,

the inclusive model implies cross-training for most employees throughout the organization

whereas the segmented model refers to systems with cross-training for a select few. Viewing

the above flexibility structures from this perspective, we can consider the nested structure as

an example of what one might find in an organization with inclusive work practices, whereas

an overflow structure would suggest segmented work practices.

Our research objective is to compare the two-skill chain structure recommended by the

literature with the nested and overflow structures found in practice. Figure 1 shows the three

flexibility structures to be analyzed in this paper for the case when there are three different

types of skills (used synonymously with call types or products throughout) and the flexible

agents in the overflow structure have been assumed to be fully flexible. We aim to answer

the following research questions: When capacity is optimized to maximize profits, can the

nested or overflow structures achieve the performance of the recommended structure of the

flexibility design literature? Under what conditions might the former two structures that

originate from some human resource related concerns be preferred?
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Figure 1: Different Flexibility Structures (a) Two-skill complete chain (b) Nested (c) Over-

flow

We first develop a methodology to solve the capacity optimization problem for any given

flexibility structure. This methodology is then used to investigate the flexibility structures

specified above. The remaining parts of this paper are organized as follows: A review of the

literature in Section 2 is followed by a presentation of the model in Section 3. The discus-

sion in Section 4 illustrates how time varying arrivals and abandonment from queues can be

treated within the same modeling framework. Section 5 introduces the solution method and

analyzes its theoretical background. Some benchmarks from the literature are used to numer-

ically verify this solution method. Section 6 proceeds with a numerical study that compares

the three flexibility structures under different assumptions on the number of customer types,

demand, costs, and correlation structure. Section 6.1 describes the experimental design,

while Section 6.2 gives a detailed account for the comparison of these structures. Section 6.3

presents our managerial insights based on this comparison. Conditions are identified under

which each structure may be preferred by managers. We illustrate that capacity optimiza-

tion enables the nested and overflow structures to overcome their throughput disadvantage

vis-a-vis the two-skill chain structure in some settings. The paper ends with concluding

remarks in Section 7.
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2. Related Literature

The operations management literature has mostly focused on the benefits of different flexi-

bility structures, not explicitly dealing with its costs. Within the spectrum of full-flexibility

and full-specialization, a variety of limited-flexibility structures can be built. Jordan and

Graves (1995) are the first to develop principles on the benefits of process flexibility, show-

ing that well designed limited flexibility can be as good as full flexibility. Later on, Akşin

and Karaesmen (2002), Akşin and Karaesmen (2007), Iravani et al. (2005), and Iravani

et al. (2007) analytically justify these principles, and propose methods to evaluate different

flexibility structures.

From a throughput maximization perspective, a limited flexibility structure called a com-

plete chain, first proposed by Jordan and Graves (1995), has been shown to perform almost

as well as the fully-flexible structure in a variety of different settings. The benefits of chain-

ing have been explored by many: Sheikzadeh et al. (1998) and Jordan et al. (2004) analyze

chaining within manufacturing systems, Graves and Tomlin (2003) within multi-stage sys-

tems, Inman et al. (2004) within assembly lines, Gurumurthi and Benjaafar (2004) within

service systems, Hopp et al. (2004) and Van Oyen et al. (2001) within both service and man-

ufacturing systems, and Akşin and Karaesmen (2002), Akşin and Karaesmen (2007) and

Wallace and Whitt (2005) within contact centers.

Both Jordan and Graves (1995) and Akşin and Karaesmen (2007) show the close relation-

ship to capacity design, suggesting that flexibility and capacity need to be jointly designed.

Capacity optimization prevents holding unnecessary flexible capacity, which consequently

decreases the cost of the system and prevents waste of highly-qualified resources. While

the literature focusing on the flexibility design problem typically assumes capacity is fixed,

capacity optimization problems have mostly focused on given, relatively simple flexibility

structures (see for example Fine and Freund (1990), van Mieghem (1998), Netessine et al.

(2002), Harrison and Zeevi (2005), Chevalier et al. (2004)). Two exceptions are Chevalier

and Van den Schrieck (2008) and Bassamboo et al. (2008).

In the setting being considered herein, capacity is provided by human servers. While we
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focus on flexibility benefits in terms of increased system throughput, and flexibility costs in

terms of direct staffing costs for servers, actual benefits and costs may also include human

resource related ones like motivational effects, mental load implications, career paths, etc.

These costs and benefits are reviewed in Akşin et al. (2007b). That paper and Akşin et al.

(2007a) provide detailed reviews of the call center flexibility design problem and illustrate its

close ties to human resource management. While we do not consider any of these issues ex-

plicitly in our modeling, we consider some of them in developing our managerial implications

at the end.

In this paper, we formulate a two-stage stochastic optimization model, as for example

in Fine and Freund (1990), van Mieghem (1998), Harrison and van Mieghem (1999), and

propose a solution method based on the gradient estimation via perturbation analysis (GPA)

technique. A detailed exposition of GPA can be found in Glasserman (1991). Some theo-

retical issues are investigated by Robbins and Monroe (1951), Talluri and van Ryzin (1999),

and Karaesmen and van Ryzin (2004).

3. Model Formulation

We model the capacity design with flexible resources problem as a two-stage stochastic

optimization problem. The capacities of the resources are determined in the first stage,

prior to the realization of the demand. Realized demand is allocated to the resources in the

second stage. The capacity optimization problem is a multi-dimensional newsvendor-like

problem. All of the demand is assumed to be realized at the beginning of the period, and

the demand that cannot be processed immediately due to the lack of capacity, is lost.

Consider a service or a manufacturing system with J parallel resources, which processes

I different types of jobs. The set of jobs that a resource can process will be referred to as

the skill-set of that resource. The skill-sets of the resources can be different from each other.

We represent the flexibility structure of the system by the matrix K, where kij = 1 denotes

that resource j has skill i and therefore demand i can be processed at resource j, otherwise

kij = 0. The amount of capacity available in resource j is denoted by cj and the amount of

7



job i processed by resource j is denoted by xij. The demand vector, D = (D1, . . . , DI), is

random with a joint probability density function gD(d). The demand realization of job i is

denoted by di.

It is assumed that each job i has an associated revenue pi per unit, and each specialized

resource j has an associated cost sj per unit capacity. Similar to Chevalier et al. (2004),

we assume that flexibility increases the cost of capacity in an amount proportional to the

additional skills of the corresponding resource. Thereby, the unit cost of a flexible resource

is denoted by the expression sj + fj (
∑

i kij − 1) where fj denotes the cost of flexibility at

resource j for each additional skill. Then, we can formulate the problem as follows:

Stage I : max
{cj , xij}

Ω(c) = max
{cj , xij}

{
E

[
Φ(c,D)−

∑
j

cjsj −
∑

j

cj

(∑
i

kij − 1

)
fj

]}
,(1)

Stage II : Φ(c,d) = max
{xij}

∑
i

∑
j

xijpi, (2)

subject to :
∑

i

xij ≤ cj ∀j, (3)

∑
j

xij ≤ di ∀i, (4)

0 ≤ xij ≤ M × kij ∀i, j, (5)

where M is a large number, c = (c1, . . . , cJ) and kij is taken as a parameter. xij is a decision

variable in both stages while cj becomes a parameter in the second stage. The capacity

should be decided at the beginning of the period so that the expected profit of the system,

Ω, is maximized. The first term of (1) represents the expected revenue for a given capacity

c. The second and the third terms represent the total cost of the capacity. Since the cost is

constant for a given capacity value, the first stage problem can be reformulated as follows:

max
{cj , xij}

Ω(c) = max
{cj , xij}

{
E [Φ(c,D)]−

∑
j

cjsj −
∑

j

cj

(∑
i

kij − 1

)
fj

}
(6)

The second stage maximizes the revenue of the system for any demand realization, d, and

capacity level, c. Inequality (3) guarantees that the number of jobs handled by any resource

is not more than its capacity, whereas inequality (4) prevents the number of processed i jobs
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from exceeding the corresponding demand. Finally, (5) ensures that the jobs are assigned to

the capable resources.

4. Time Varying Demands and Abandonment

In reality, call centers are queueing systems with abandonments, that experience time varying

demand rates. In this section we illustrate to what extent the proposed model and analysis

can accommodate these features.

Implicit in our formulation is the assumption that capacity is set once at the beginning

of a time period. This suggests that time periods should be viewed as short durations, for

example one day. During a day, demand arrival rates change, exhibiting a pattern with

respect to time. Paralleling Harrison and Zeevi (2005), one can define a mean arrival rate

vector Λ = (Λ(t) : 0 ≤ t ≤ T ) with Λ(t) = (Λ1(t), . . . , ΛI(t)). Note that t = 0 represents

the beginning and t = T the end of the time period in question. It is then possible to define

a cumulative demand distribution at a demand level λ = (λ1, . . . , λI) as F (λ), representing

the percentage of time that demand is less than or equal to λ as:

F (λ) =
1

T

∫ T

0

P{Λ(t) ≤ λ}dt for λ ∈ Rm
+ .

Defined this way, F (λ) corresponds to GD(d), the cumulative demand distribution, in our

setting. This equivalence implies that as long as it is meaningful to consider capacity opti-

mization once at the beginning of a time period as in Harrison and Zeevi (2005), it is possible

to consider time varying demand rates in our model. Our modeling framework thus allows

us to capture either temporal or stochastic variability in demand. In fact, even both types

of variability can be captured at the expense of defining more complicated joint random

variables.

A second assumption we make is the loss of all calls upon arrival, if capacity is not avail-

able. The model under this assumption ignores the queueing effects, and related phenomena

such as abandonments and retrials but retains the essence of the capacity design problem.

This type of model may be motivated by a fluid-approximation of the queueing system as in

Harrison and Zeevi (2005). In the fluid-approximation, all calls that exceed the capacity of
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the system abandon. Thus associating a revenue loss with lost demand in our setting, that

is equal to the abandonment penalty in Harrison and Zeevi (2005), allows the possibility of

building an equivalent objective function to theirs (see Çakan (2006)). Numerical compar-

isons between the fluid approximation in Harrison and Zeevi (2005) and a simulation of the

original queueing system illustrate that this approximation works quite well for a capacity

optimization objective. Given the possibility to construct an equivalent objective function in

our setting, these comparisons also lend support to the model proposed herein for capacity

optimization. As argued in Akşin et al. (2008), this type of a model is appropriate when the

uncertainty in the demand rate is more significant than the short term queueing fluctuations.

5. The Solution Method

In this section, we propose a solution method to the capacity optimization problem, which is

based on the gradient estimation via perturbation analysis technique. We then numerically

compare capacity vectors obtained via this method to certain benchmark problems for which

the optimal capacities are known.

5.1 The GPA technique

The GPA technique estimates the gradient of the objective function in consecutive experi-

ments. The decision variable is then changed in the direction of the estimator with a certain

step-size.

Let c = [c1, . . ., cJ ] denote the capacity vector, ∇ = [(∂Ω/∂c1), . . ., (∂Ω/∂cJ)] denote the

gradient vector and ∇̃ denote the gradient estimator. Beginning from an arbitrary initial

capacity level, the method searches for an optimal level by successively perturbing c in the

direction of ∇̃ with a certain step size bk, where k denotes the iteration number.

This approach is similar to the steepest descent algorithm. However, instead of the

gradient, an estimator is employed. Ω(c) depends on the random demand distribution due

to the first term of (6), E [Φ(c,D)]. However, stage 2 is solved for each realization of d, so

that it is not possible to derive the probability distribution or the expected value of Φ(c,D).
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Hence, the exact gradient of E [Φ(c,D)], and so of Ω(c), cannot be calculated. Thus, we

estimate ∇cE [Φ(c,D)] by simulation. The second and third terms of (6), on the other hand,

have fixed values for a given c, so their gradients are easily computed.

The estimation procedure begins with the solution of the second stage problem for an

initial capacity vector. At each iteration k, R realizations of the demand vector are generated

in a common probability space, where we denote the rth realization of the demand vector

at iteration k by dk
r . For each realization r, we solve stage 2, and calculate the shadow price

of the capacity constraint j, uj(c,d
k
r), where uj(c,d) denotes the partial derivative of the

total profit with respect to the capacity of the jth resource for a given demand realization d,

i.e., uj(c,d) = ∂Φ(c,d)/∂cj. Let u(c,d) be the vector of shadow prices associated with the

capacity constraints. We use the average shadow price of R experiments as the estimator

of the gradient. Therefore, 1
R

R∑
r=1

uj(c,d
k
r) represents the estimator for the partial derivative

of the total profit with respect to the capacity of the jth resource in iteration k. Then, the

gradient estimator of E [Φ(c,D)] at iteration k is given by:

∇̃k
cE [Φ(c,D)] =

1

R

R∑
r=1

u(c,dk
r).

By adding this term to the gradient of the second and third terms with respect to c, ∇̃ is

estimated.

The algorithm stops when the magnitude of the step size times the gradient estimator

(||bk×∇̃||) becomes smaller than a specified ε > 0, or when a specified number of iterations,

say N , is exceeded. The details of the step-size selection rule are explained in Appendix B.

The procedure is summarized in Figure 2.

There are some technical issues related to the convergence of the algorithm. First, the

steepest-descent approach leads to a globally optimal solution only if the objective function

is jointly concave in the decision variables. This is easy to verify since the cj variables appear

on the right hand side of the constraints in Stage 2 which is a linear program. This implies

that Φ(c,d) is jointly concave in c for a fixed demand vector d. Since the expected value

operator preserves convexity, the objective function in (6) is also jointly concave in c. The

other technical issue is related to the validity of the GPA method, which is discussed in
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c = c + ∇~ /||∇~ ||
Gradient 

estimation

Capacity
initialization

∇~ < ε
OR

k > N

Gradient 

estimation

STOP

YES

 NO

k~∇ 1k~ −∇ < 0

NO

YES

∇~ < ε
OR

k > N

YES

c = c + ∇ ~
/(||∇~ ||/(t-k))

STOP

Figure 2: Summary of the procedure

Appendix B.

5.2 Verifying GPA results

The verification process consists of ensuring that the method based on GPA converges to

the optimal capacity levels. To test the accuracy of the method and to observe the effects

of some problem parameters on the performance of the method, we benchmark our results

to those from the existing literature. The criterion of the absolute percentage error is used
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in this evaluation, where we set the absolute percentage error as:

% error = 100× capacity by our method− capacity by existing result

capacity by existing result
.

We first compare the results of our method with the optimal newsvendor problem results

in a set of experiments and then solve two benchmark problems defined by Netessine et al.

(2002).

demand resource

1 1

2 2

I I

demand resource

1 1

2 2

I I

(a) (b)

Figure 3: (a) Fully-specialized structure (b) Fully-flexible structure

We focus on the two flexibility structures demonstrated in Figure 3 as bipartite graphs

with nodes standing for the demand types and the resources; and arcs standing for the skills.

The first structure represents a fully-specialized system, where each resource has only one

skill, and the second structure represents a fully-flexible system, where each resource has all

the skills. In the classical newsvendor problem, the optimal capacity of a resource is given by

the formula G−1
D [(p−v)/p ], where G−1

D is the inverse of the cumulative demand distribution,

GD, v is the unit cost and p is the unit price. To find the optimal newsvendor solution to

the fully-specialized structure, each resource-demand pair is treated independently. In the

fully-flexible case, the resource capacities are aggregated and the whole system is treated

like a single resource-demand pair.

For simplicity, the unit specialized capacity cost, s, of the resources are assumed to be

identical. Also, the cost of unit flexible capacity for any additional skill is assumed to be

the same for each resource, so it is set to f . Hence, v = s in fully-specialized systems, and
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v = s+f×(I−1) in fully-flexible systems, where I is the total number of the demand-types.

We also note that p = pi for fully-specialized resource i, and p = (
∑

i E[Di]pi)/(
∑

i E[Di])

in fully-flexible systems.

For each combination of the system parameters given in Table 1, four different types of

problems are solved; fully-flexible with 2 and 3 resources, and fully-specialized with 2 and 3

resources. The number of demand types is taken to be equal to the number of resources in

each case. The demand scenarios are created using a truncated normal distribution, N(µ, σ),

to ensure positive demand values. We set µ = 50 in all experiments, whereas σ has two levels:

σ = 5 and σ = 10.

initial specialized additional

capacity price capacity cost skill cost

(c0) (p) (s) (f)

100 50 15 5

50 40 10 2

0 30 5

Table 1: System parameters

As a result, each of the fully-flexible structures is evaluated in a total of 2× 3× 3× 3×
2 = 108 experiments, and each of the fully-specialized is evaluated in 2 × 3 × 3 × 3 = 54

experiments. Table 2 presents the summary of percentage errors. The maximum percentage

error is 3.48%, and all but 3 of the problem instances have less than 2% of percentage error.

We conclude that our method converges to the right values.

Problem Minimum Maximum Average
3-3 flexible 0.00 3.48 0.37

3-3 specialized 0.00 2.27 0.80
2-2 flexible 0.00 1.97 0.49

2-2 specialized 0.00 1.83 0.83

Table 2: Summary of percentage errors

Next, we implement our method to find optimal capacity levels for the resources in

the structures of Netessine et al. (2002) (see Figure 4). We slightly modified the objective

function of our model in order to incorporate the different pricing scheme of Netessine et al.
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(2002). The demands of all types in both systems arrive according to truncated normal

distributions. The numerical results from our method are compared to the analytically

optimal capacity levels found for these structures in Netessine et al. (2002) . The results in

Table 3 show that the capacity levels found by our algorithm are close to those found to be

optimal in Netessine et al. (2002). In the second problem, the initial capacity choice affected

the performance of the algorithm. Various experiments with different initial capacity values

revealed that setting initial capacities equal to the expected demand of the corresponding

demand type improves the convergence and the quality of the solution.

Problem Method Pool size % error
1 Netessine (138, 168) –

GPA (137, 171) (0.629, 1.661)
2 Netessine (127, 145, 165) –

GPA (125, 156, 166) (1.118, 7.428, 0.745)

Table 3: Comparison of the results for problems in Netessine et al. (2002)

In Table 3, the maximum error in capacity levels is over 7%. However, further experiments

revealed that the objective function is fairly flat in that region. Therefore, this difference

in capacity levels translates into a very small difference in terms of the resulting objective

function. The above experiments provide evidence that solving the two-stage stochastic

optimization problem via the GPA method yields reliable solutions in a range of different

flexibility designs.

demand resource

1 1

2 2

demand resource

1 1

2 2

(a) (b)

3 3

Figure 4: (a) Structure 1 in Netessine et al. (2002) (b) Structure 2 in Netessine et al. (2002)
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6. Evaluating the Performance of the Flexibility Struc-

tures

This section compares the profits of the three flexibility structures (two-skill complete chain,

C, nested, N, and overflow, O) in different environments. We explore the effects of the

number of skills, as well as the intensity, variability and correlation of the demands for

different skills on these performances.

6.1 Experimental design and evaluation

All demands in the numerical experiments are assumed to be normally distributed. We

construct two sets of inputs representing systems with low and high number of skills: (I)

a system with three demand types {A,B,C}, and (II) a system with eight demand types

{A,B, . . . , H}. We denote by µi the mean arrival rate of demand type i. In order to observe

the effect of demand variability, two levels of the coefficient of variation, Cv = 1 or Cv = 2,

are considered in both data sets.

Without loss of generality, assume that the call types are ordered such that skill C in

the three skill case, and skill H in the eight skill case are learned first, and skill A is the last

skill learned in both systems if agents follow a career path as implied by a nested structure.

Another way of interpreting this ordering is to consider type A calls to be the most complex

when call types are ordered by complexity. The arrival rates in the experiments have one of

the following orderings: (O1) µA < µB < . . . ; (O2) µA > µB > . . . ; (O3) µA = µB = . . . . We

will equivalently label O1 as the unbalanced-Pareto ordering, O2 as the unbalanced ordering,

and O3 as the balanced ordering. The unbalanced-Pareto ordering represents a setting where

the most complex calls, or the calls that only the most experienced agents can answer in a

nested structure, have the lowest volume of calls. This type of inverse relationship between

call complexity and call volume is a common situation in practice. The unbalanced ordering

is the reverse of this case. The balanced ordering represents the setting analyzed in most

papers in the flexibility literature.

In both data sets, we use 10 different cost configurations, where we specify different values
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for (p, s, f) as shown in Table 4. These configurations will enable evaluation of the effect

of high versus low resource capacity costs relative to the revenue, where configurations 1-5

correspond to high and the rest to low.

1 2 3 4 5 6 7 8 9 10
p 50 50 50 60 50 50 50 100 100 100
s 15 15 15 20 30 5 5 5 5 5
f 5 10 15 10 5 1 4 1 4 5

Table 4: Cost configurations

In data set I, designed for a system with three demand types, there are 6 different demand

volume scenarios for each ordering of the mean arrival rates, so a total of 18 scenarios (see

Table 9 in the Appendix). This way 18 × 2 × 10 = 360 experiments are set up for each

flexibility structure, in which all the demands are independent.

We would further like to investigate the effect of correlation within the demands, if

any. In data set I, we generate correlated random demands when (µA, µB, µC) is equal to

(10, 30, 90), (30, 30, 30) and (90, 30, 10). It is assumed that the demand for the simple calls

is independent from the other demand types. Hence the influence of the correlation between

the demand types A and B, ρAB is investigated. We let ρAB ∈ {−1,−0.5, 0.5, 1}, so that the

effect of perfect positive and negative correlations, as well as any trends as the correlation

changes from -1 to 1 can be observed. The number of experiments with correlations is

3× 2× 4× 10 = 240 for each flexibility structure.

In data set II, designed for a system with eight demand types, there is one scenario for

each ordering of the mean demand rates (see Table 10 in the Appendix). All demands are

assumed to be independent, so a total of 3× 2× 10 = 60 experiments are conducted in this

set for each flexibility structure.

In each experiment, the optimal capacity allocations for each flexibility structure are

computed. In order to compare the overall system performances, the experiments are re-

peated 1000 times when optimal capacity levels are implemented in each problem. These

experiments provide 90 % confidence intervals on the real mean value of the profits as

well as the real mean of the throughputs. Whenever the confidence intervals on the mean

profit (throughput) value of different structures overlap, it is not possible to conclude that
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one structure performs statistically better than the other, even though the average profits

(throughputs) may be different.

6.2 Comparison of flexibility structures

The design of the experiments allows us to evaluate the effects of demand rate orderings,

variability, correlation, different ratios of capacity cost to price, and the number of demand

types. Within these factors, we identify the ordering of the demand rates as the one influenc-

ing the performances the most, while the number of demand types is a close follower. The

performance rankings of the structures do not change with the correlation and the variance

of demands. We observe only that high variability in the demands increases the capacity

levels in all structures. The effect of the cost-price ratios, on the other hand, is significant in

only one situation, as mentioned below. Consequently, we organize the presentation of the

results according to the demand rate orderings.

Table 5 gives the number of the experiments in which the average profit of each structure

ranks as the 1st, 2nd and 3rd for data set I with independent demands. Each cell in the

table contains two entries, where the first one counts the experiments with non-overlapping

confidence intervals (these are the statistically significant differences) and the second simply

counts the ranks according to the average profits. So, for instance, for the ordering µA =

µB = . . . , all confidence intervals around the average profits overlap with each other. Hence,

even though the overflow structure performs the best in all 120 experiments in terms of the

average profit, it is safer to conclude that the performance of this structure is not significantly

better than the other two. Table 6 presents the same information as Table 5 for data set II.

The secondary criterion we employ to investigate the performances of different flexibility

structures is the average throughput (i.e. total flow) of the corresponding systems, for which

the rankings of the structures for data set I and II is given in Table 7 and Table 8, respectively.

Note that these are not the optimal throughput levels but the throughputs that result from

the capacity levels that optimize profit in each system.

Now we are ready to comment on how different parameters affect the structures and the

capacity levels in detail. We do so for each demand rate ordering separately.
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µA < µB < . . . µA > µB > . . . µA = µB = . . .

Rank O N C O N C O N C

# 1 5/20 50/100 0/0 16/25 0/0 83/95 0/120 0/0 0/0

# 2 4/5 5/20 46/95 83/95 0/0 16/25 0/0 0/109 0/11

# 3 46/95 0/0 9/25 0/0 99/120 0/0 0/0 0/11 0/109

Total 55/120 55/120 55/120 99/120 99/120 99/120 0/120 0/120 0/120

Table 5: Data set I: The average profit rankings for O(verflow), N(ested), (2-)C(hain)

µA < µB < . . . µA > µB > . . . µA = µB = . . .

Rank O N C O N C O N C

# 1 1/1 14/14 5/5 11/11 0/0 8/9 9/18 0/0 2/2

# 2 14/14 0/0 6/6 8/9 0/0 11/11 2/2 0/0 9/18

# 3 5/5 6/6 9/9 0/0 19/20 0/0 0/0 11/20 0/0

Total 20/20 20/20 20/20 19/20 19/20 19/20 11/20 11/20 11/20

Table 6: Data set II: The average profit rankings for O(verflow), N(ested), (2-)C(hain)

µA < µB < . . . µA > µB > . . . µA = µB = . . .

Rank O N C O N C O N C

# 1 0/14 29/64 3/42 0/14 0/0 101/106 3/70 0/6 5/44

# 2 1/6 2/41 29/73 101/106 0/0 0/14 4/15 1/47 3/58

# 3 31/100 1/15 0/5 0/0 101/120 0/0 1/35 7/67 0/18

Total 32/120 32/120 32/120 101/120 101/120 101/120 8/120 8/120 8/120

Table 7: Data set I: The average throughput rankings for O(verflow), N(ested), (2-)C(hain)

µA < µB < . . . µA > µB > . . . µA = µB = . . .

Rank O N C O N C O N C

# 1 0/0 14/14 6/6 5/5 0/0 14/15 7/13 0/0 2/7

# 2 12/12 0/0 8/8 14/15 0/0 5/5 2/2 0/5 7/13

# 3 8/8 6/6 6/6 0/0 19/20 0/0 0/5 9/15 0/0

Total 20/20 20/20 20/20 19/20 19/20 19/20 9/20 9/20 9/20

Table 8: Data set II: The average throughput rankings for O(verflow), N(ested), (2-)C(hain)
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6.2.1 Unbalanced-Pareto Ordering: µA < µB < . . .

Given the earlier stated match between this demand ordering and the career paths implied

by the nested structure, it is not surprising to see that this structure performs the best in

terms of profit for this demand order, as confirmed by both Tables 5 and 6. The main reason

is that the capacity required in each resource decreases with the level of flexibility. As a

result, optimal resource planning for the nested structure allocates the highest capacity to

the resource with one skill and the least capacity to the one having all skills. Since the

capacity costs, skill sets and demand rates are all aligned, unbalanced-Pareto ordering, i.e.,

µA < µB < . . . is the ideal case for the nested structure. A closer look at the details of the

experiments summarized in Table 5 reveals that in all 20 cases where the nested structure is

not the best (overflow is better) the demand rates are (30, 40, 50), the most balanced demand

rate configuration of this ordering. Hence, we can state that the nested structure is better

when the demand rate asymmetry is higher.

Now let us consider the effect of the number of skills. In systems with three demand

types, the nested structure never performs the worst, whereas with eight demand types it

performs the worst 6 times. In all of these 6 problem instances the capacity costs are high.

When the capacity cost is high in systems with many demand types, flexibility becomes very

expensive for the nested structure since these systems have pools of agents ranging from one

skill to eight skills. The capacity cost is increased for all but one type of resource in this

structure.

Our other criterion is the average throughput obtained when capacities are set to profit

maximizing levels. The nested structure performs the best under this criterion as well in both

systems with 3 and 8 demand types (see Table 7 and 8). Now we can state our observation:

Observation 1 When the demands are ordered as µA < µB < . . . , the nested structure

performs the best in terms of average profit and resulting average throughput in all systems

except for those with high number of demand types, high capacity costs, and relatively balanced

demand rates.

The performances of the other two structures under this ordering can be summarized

as follows: In systems with 3 demand types, the average profit of the 2-chain structure is
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higher than that of the overflow, whereas this is reversed in systems with 8 types. The main

reason for this change is the ability of the overflow structure to control the flexible capacity

levels and so the associated costs. In the 2-chain structure, any capacity increase in one of

the resources is actually an increase in the flexible resources. In the overflow structure, on

the other hand, it is possible to increase the capacity of the specialized resources separately.

In terms of throughput, the 2-chain structure performs better than the overflow in both

systems with 3 and 8 demand types, confirming our capacity cost interpretation.

6.2.2 Unbalanced Ordering: µA > µB > . . . :

For the 2-chain and overflow structures, this ordering is in fact equivalent to the unbalanced-

Pareto ordering, since relabeling the demand types does not affect these structures. For the

nested structure, on the other hand, this ordering is completely the reverse of the unbalanced-

Pareto ordering, and consequently the nested structure performs the worst both in the av-

erage profit and the resulting average throughput criteria when µA > µB > . . . .

As a natural consequence of the above discussion, comparing the performance of the 2-

chain and overflow structures in systems with the unbalanced demand rate ordering results

in the same observations with those under the unbalanced-Pareto ordering: The 2-chain

structure achieves higher throughput in both systems with 3 and 8 demand types with

higher flexible capacity cost. In terms of the average profit the 2-chain structure is better

when the number of demand types is 3, and the overflow structure dominates in systems

with 8 demand types. We summarize our observations as follows:

Observation 2 When the demands are ordered as µA > µB > . . . , the 2-chain structure

performs the best in terms of average profit when the number of demand types is low, whereas

the overflow structure achieves higher average profits when the number of demand types is

high.

6.2.3 Balanced Ordering: µA = µB = . . . :

This ordering is the one most commonly studied in the flexibility literature. The symmetric

demand structure implied by the balanced ordering is also where one expects the benefits
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of flexibility to be the highest. It presents an interesting situation for systems with three

demand types: Although the overflow structure generates the highest profit in all experi-

ments, we cannot claim that it performs the best statistically. In fact, none of the rankings

are statistically significant; in other words all three structures perform equivalently in terms

of average profit.

When the number of demand types increases, the average profit of the overflow structure

becomes significantly the highest, followed by the 2-chain. The performance of the nested

structure deteriorates with higher number of demand types in terms of the average profit.

These observations can be explained by our earlier discussion. The overflow structure has

the highest capability to control the flexible capacity, and so the flexibility costs. The unit

cost of all resources in the 2-chain structure remains the same, although the associated

capacities may need to be large. Since all resources are flexible having 2 skills, this creates

an unnecessarily high flexibility cost. Finally, in the nested structure the unit flexibility

costs for almost all resources increases with the number of demand types. Then, except for

the case when µA < µB < . . . , it cannot balance this increase by adjusting the capacities

according to the flexibility levels. As a result, the nested structure suffers the most from the

increasing number of demand types, followed by the 2-chain. The relative performance of

the overflow structure increases considerably with the number of demand types.

The above discussion highlights the performance of the overflow structure, which can be

stated as:

Observation 3 When the demand rates satisfy µA = µB = . . . , the overflow structure

performs the best in terms of average profit.

6.3 Managerial insights on flexibility design

In practice, each system brings with it certain constraints. Sometimes the skill definitions

are strictly protected. Sometimes the organizational structure of the system is established

and cannot be changed. Driven by these constraints, for each system we need to identify a

different managerial view and an opportunity to apply our results.

When the system has no constraints, flexibility design starts with the strategic issue of
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skills definition. Our results suggest that in this case, the best strategy is to define the skills

such that demand rates are balanced. This is in line with the intuition that the benefits

of flexibility are highest in settings with high symmetry. Systems which receive the same

total mean demand with balanced rates generate more average profit than systems with

unbalanced rates, especially when the flexibility costs are high. For example, consider the

demand rates (10, 30, 90) and (40, 40, 40), where the former is asymmetric with total demand

130 and the latter is balanced with total demand 120. Now we will compare two systems with

these two demand rates in an environment operating with low variance and high capacity

costs (configuration 3). When the system receives the asymmetric demand rates, the nested

structure gives the best profit performance with an average profit of 3368.74 and an average

throughput of 123.05. On the other hand, the same environment with the balanced demand

rates leads to the best profit with the overflow structure generating an average profit of

3746.06 and an average throughput of 111.46. Even though the latter system receives less

demand on average and so generates less throughput, it has higher average profit (these

comparisons are statistically significant). We also observe that it is, in general, best to

choose the overflow structure to maximize the profit, once skills have been defined to ensure

a balanced ordering for the demand rates.

Certain settings may not allow for free regrouping of tasks in skills to obtain the desired

balanced structure for demand rates. An extreme example for this inflexibility at the skill

definition level is the one offered by multi-language call centers, where each language has to

constitute a different skill. Systems which cannot change their skill definitions, and so the

demand rates, need to choose server skill sets given skill definitions. If the demand rates

are balanced, then the overflow structure should be adopted to maximize the average profit.

When the demand rates are unbalanced, the system should induce the nested structure

aligned according to the demand rates. This is true as long as the number of skills is

relatively low, and the recommended structure becomes an overflow structure once again if

the number of skills is high.

What can we recommend to managers who manage centers where skill sets have already

been established? First consider a call center that offers its employees a career path based
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on a progressive expansion of their skills. Such a system is organized according to a nested

structure, which also becomes its major constraint. In this setting, managers need to control

the demand arrival rates. We know that the nested structure does not perform well, unless

the demand rates are ordered as µA < µB < . . . with large enough differences between

them. If the current skill definitions induce this order, all is fine; otherwise there may be a

need to re-define the skills and re-build training programs accordingly. As a simple example,

consider a bank contact center, where the current types include financial investments as

type A, credit cards as type B, and banking as type C, with µA < µB ≈ µC . In order to

induce the above order, we can identify different requests within credit cards and banking,

and re-group these requests as type B′ and type C ′, such that, for example, type C ′ agents

need to learn basic information about credits cards in addition to banking, which leads to

the order µA < µB′ < µC′ . Such a change will create a system that operates more efficiently,

possibly at the expense of longer initial training.

Next consider a center with an overflow structure, which basically consists of two types

of agents: generalists and specialists. If the number of demand types is high, the system

can keep the overflow structure since this structure is quite robust in terms of maximizing

the profit. If the demand rates are ordered as µA < µB < . . . with large differences, the

nested structure performs better. However, establishing a nested structure in such a system

will require a high investment in training. When the number of demand types is low, and

skills are defined to result in an unbalanced-Pareto ordering, the 2-chain structure can be

implemented. This would require training the specialist agents in another skill. Organizing

such a training program may be relatively easy and cheap.

Since the flexibility design problem in call centers concerns resources that are human,

there are indirect human resource related costs and benefits associated with different flexi-

bility structures that may drive the choice for a particular structure. As already mentioned

in the Introduction, if managers want to pursue an inclusive human resource strategy, the

2-chain or nested structures provide alternatives that are more consistent with this strat-

egy. The overflow structure is consistent with a segmented human resource strategy. While

the overflow structure comes out as a robust flexibility structure, as the number of skills
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Figure 5: An overflow structure having flexible pools with 2-skill agents

increases, job scope for the flexible agents might become excessive. In general, job scope has

been shown to have positive effects on performance (Hackman and Oldham (1976); Ilgen

and Hollenbeck (1991)). Xie and Johns (1995) demonstrates that there is a limit on the

positive impact of job scope, and that beyond a threshold, job scope can become excessive

and induce stress which is dysfunctional for the organization. If this is the case, the 2-chain

structure may be preferred, or the overflow structure needs to be adapted such that there

are several partially flexible overflow pools instead of one fully flexible overflow pool (see

e.g., Figure 5).

7. Concluding Remarks

We analyzed the capacity decision of multi-resource service or production systems considering

the flexibility structure and the cost of capacity. A solution method that determines the

capacities of the resources under uncertain demand is proposed. The modeling approach we

select allows us to capture temporal and stochastic demand variability found in call centers.

Suppressing the randomness in capacity simplifies the analysis, and enables us to propose a

method that is generally applicable to any flexibility structure or setting.

The numerical comparison of the three flexibility structures, found in practice or recom-
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mended by the literature, illustrates the importance of optimizing capacity given a flexibility

structure and shows that profit and throughput performance are not necessarily the same.

A nested skill-set structure, preferred due to the ease with which it offers a career path to

employees, is shown to perform well in settings with matching nested demand rates. On the

other hand, a structure with a select group of flexible experts supported by specialists is

shown to be essential in settings where additional server skill costs are high. The overflow

structure can be implemented as long as the scope of the skills does not exceed one server’s

learning capabilities. Balanced skill sets will be preferred in settings where costs are not that

important, while good customer service levels are essential.

Even though our model does not consider queueing for capacity, comparisons to other

models and results from the literature provide support for the use of such modeling in the

analysis of flexibility structure. The result that systems that can combine a high capacity in

specialized resources with a lower level of flexible capacity (as found in the overflow structure)

provide superior profit performance, is consistent with the 80-20 rule observed in Chevalier

et al. (2004), as well as with the related results in Chevalier and Van den Schrieck (2008) and

Bassamboo et al. (2008). Analyzing queueing systems in heavy traffic, with their capacity

optimized, under the assumption of balanced demand rates, Bassamboo et al. (2008) show

the optimality of flexibility structures that are consistent with the overflow structure having

flexible pools with 2-skill agents (see Figure 5). The fact that different modeling approaches,

like the loss systems analyzed via approximations in Chevalier and Van den Schrieck (2008),

or the queueing systems under heavy traffic in Bassamboo et al. (2008) lead to consistent

results with our observations lends further support to the robustness of these with respect

to modeling specifics.
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A. Data Sets Used

µA < µB < . . . µA > µB > . . . µA = µB = . . .

Set 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A 30 10 5 10 10 10 50 90 80 160 70 90 5 10 30 40 80 160

B 40 30 15 40 50 50 40 30 15 40 50 50 5 10 30 40 80 160

C 50 90 80 160 70 90 30 10 5 10 10 10 5 10 30 40 80 160

Table 9: Mean demand rates, µA, µB, µC , in data set I

µA < µB < . . . µA > µB > . . . µA = µB = . . .

A 5 640 80

B 10 320 80

C 20 160 80

... ... ... ...

H 640 5 80

Table 10: Mean demand rates, µA, µB, . . . , µH , in data set II

B. Validity of the GPA Approach

Glasserman Glasserman (1991) draws attention to the importance of two theoretical issues

concerning the validity of the GPA method, unbiasedness and convergence. We investigate

these issues in detail below.

First, consider the unbiasedness of the estimator. Let X(θ) be a random function of

parameter θ. If ∇θX (θ) is an unbiased estimator of ∇θ E [X (θ)], the following is true by

definition:

E [∇θX(θ)] = ∇θE [X(θ)] . (7)

In our setting, this condition can be written as:

E

[
1

R

R∑
r=1

u(c,Dk
r)

]
= ∇cE [Φ(c,D)] .
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It is known that (Glasserman (1994)) if X(θ) is almost surely (a.s.) differentiable at θ,

and X(θ) satisfies the Lipschitz condition, then the estimator is unbiased. We first show

that Φ(c,d) is a.s. differentiable with respect to c for any given realization d. Φ(c,d) is

piecewise linear and concave with respect to c, since it is the objective function of a linear

maximization problem and c is the right-hand-side of the constraints. Clearly Φ(c,d) fails

to be differentiable at a finite number of points. But since the average of R paths is taken

and the demand is continuous, the non-differentiable points smooth-out (see Glasserman

(1994)). Now we are ready to prove the following lemma.

Lemma 1 1
R

R∑
r=1

u(c,dk
r) is an unbiased estimator of ∇cE [Φ(c,D)].

Proof. We know from the above discussion that Φ(c,d) is almost surely differentiable with

respect to c for any given realization d. Then we only need to show that Φ(c,d) satisfies the

Lipschitz condition for each cj and for all d.

Let c be a point at which Φ(c,d) is differentiable. At point c, the effect of a small increase

in the capacity cannot be more than the profit gained by the same amount of increase in

the throughput of the most expensive job in the skill-set of the corresponding resource.

Moreover, this effect is also bounded by the unit capacity cost of resource j.

Let ε be the amount of increase in the capacity of resource j, p̄j be the highest contribution

margin among all jobs that the additional capacity can process, and fj + tj be the unit

capacity cost of resource j. Then, we have the following:

|Φ(c + εej,d)− Φ(c,d)| ≤ ε min{p̄j, fj + tj}, (8)

where ej is the jth unit vector. Consequently, Φ(c,d) satisfies the Lipschitz condition.

2

The second important theoretical issue is related to the convergence of the method closely

related to the step-size selection rule. Considering the possibility that the initial capacity

is too far from the optimal, we implement the method by starting with a big step size to

accelerate the convergence. Until any of the gradients change sign at an iteration t, which

means that one of the capacity values passes over the optimal point, a fixed step-size of 1 is
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used. After that point, we begin decreasing the step-size according to the rule bk = 1/(k−t).

According to the conditions given below:

∞∑
k=1

bk = ∞
∞∑

k=1

b2
k < +∞, (9)

which were established by Robbins and Monroe Robbins and Monroe (1951) to guarantee

the convergence. Our implementation satisfied the two condition and therefore converges.
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