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over time for the common inventory. The demand classes are differentiated by their revenues and their
arrival distributions. We investigate monotonicity properties of varying problem parameters on the
optimal reward and the policy.
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1. Introduction

We consider a finite horizon, single-product inventory control problem in which the decision-maker accepts or rejects customer
requests coming from multiple demand classes. Customer requests can be for multiple units of the product (batch orders) and we allow
partial fulfillment of demand for accepted requests. The optimal decisions depend on factors such as the available inventory, relative
profitability of demand classes, projected volume and mix of future demand (distribution of future demand), and time-to-go till the end
of the time horizon. Clearly, this is a typical revenue management problem, which has garnered great interest from researchers (see Talluri
and van Ryzin [1] for a comprehensive survey of revenuemanagement literature). Revenuemanagement has also become a very powerful
managerial tool to exploit the revenue-enhancement potential in many businesses (Cross [2], Smith et al. [3]). Revenue management
empowers these businesses to effectively address the challenges ofmatching supply and demand. However, due to themany difficulties in
successful implementation of revenue management systems, companies have not been able to fully realize the benefits from the cutting-
edge tools that researchers have developed in the last few decades (Lahoti [4]). One of these obstacles is the estimation of parameters
used in the underlying revenue management models, which govern the principles of how to allocate and reserve resources for high profit
customers. Understanding the impact of each parameter on optimal admission policies is a key factor in successful revenue management
practices, as it allows managers to perform what-if analysis when faced with changing parameter values (possibly because of estimation
errors). This paper focuses on the structure of optimal admission policies in a well-established model of dynamic revenue management.
In particular, the investigation focuses on the effects of perturbations of the problem parameters on the optimal admission policy and the
optimal reward. The parameters of interest include arrival probabilities of different classes as well as their rewards. Such an investigation
is crucial for designing admission policies which are robust to changes in the parameters.
Revenue management literature has gone a long way in establishing the structure of optimal policies and our results complements

some of the existing results. Here, we only review work that is particularly related to our paper. The structure of the optimal admission
policy for the basic dynamic revenue management is established in Lee and Hersh [5]. Notably, Lee and Hersh establish the optimality
of a nested threshold-type admission policy. These results were later streamlined and generalized by Lautenbacher and Stidham [6].
Brumelle andWalczak [7] obtain further results in the challenging semi-Markov case. In the presence of inaccurate estimates of customer
arrival distributions, Birbil et al. [8] illustrate, using simulations, the benefit of using robust optimization techniques in reducing expected
revenue variability. Talluri and Van Ryzin [1] present a summary of the most important results in both the static and dynamic versions of
the problem.
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Among the rich literature investigating dynamic policies in revenue management, the work of Lautenbacher and Stidham [6] is of
particular importance for us for two reasons. First, we borrow their model which is versatile and subsumes some of the well-established
dynamic and staticmodels in the literature. Second, Lautenbacher and Stidhamemphasize the significance of focusing on themonotonicity
of certain operators appearing in the value function of the dynamic program. This is also the approach we take for investigating the
monotonicity properties related to changes in the problem parameters. Koole [9] presents an excellent overview of monotonicity results
in Markov Decision Process with applications in queueing. In particular, for varying arrival probabilities, we adapt some of the recent
ideas from Çil, Örmeci and Karaesmen [10] to the model of [6]. The main focus of [10] is on continuous-time infinite-horizon queueing-
inventory models with stationary parameters. The discrete-time model with non-stationary parameters considered here poses additional
challenges but it turns out that corresponding results can be obtained. We also obtain additional results pertaining to parameter effects
that are particular to the discrete-time revenue management setting. To our knowledge, the only other paper that investigates related
monotonicity issues in a revenuemanagement context is Cooper andGupta [11]. That paper investigates the effect of demand distributions
on the expected optimal reward in a single-period setting.
Designing robust policies for revenue management when problem parameters are uncertain has recently attracted attention. For

instance, Lan, Gao, Ball and Karaesmen [12] consider the casewith limited demand information employing ideas from competitive analysis
of on-line algorithms.We do not explicitly consider the challenging robust policy design problem in this paper but our results provide basic
guidelines as towhat sort of changes in the optimal policy are anticipated as problem parameters are variedwithin a given uncertainty set.

2. Model

The model that we employ was first introduced, to our knowledge, by Lautenbacher and Stidham [6]. Suppose that time is divided
into decision periods such that at most one request is received in any given period but the customer can demand more than one unit of
the product. Let K be the number of decision periods. Time is indexed by k in our model, where k = K is the first period and k = 1 is
the last period after which all inventories perish. There are n demand classes, with Class i offering to pay Ri, i = 1, 2, . . . , n, for a unit of
the product. Assume that R1 ≥ R2 ≥ R3 ≥ · · · ≥ Rn, without loss of generality. Let pibk be the probability that a customer belonging to
demand Class i (referred to as a class i customer) requests b units of inventory in period k, and p0k be the probability that no customers
arrive in period k. We assume Bi is an upper bound on the batch demand size for Class i customers. Note that p0k +

∑n
i=1
∑Bi
b=1 pibk = 1

for all k = 1, 2, . . . , K . As in [6], we assume that in each period a request can be partially fulfilled. This model is fairly versatile and is
referred to as the ‘‘omnibusmodel’’ formulation in [6]. Taking the batch demand size to be at most one unit, we obtain the standard single-
arrival dynamic model. Using uniformization and discretization, stationary or non-stationary Poisson arrivals with batch requests can be
captured. In addition, the frequently employed static model which makes the assumption that lower class fares always arrive earlier than
higher class fares can also be captured by choosing the arrival probabilities such that the lower class demands arrive at earlier periods
than the higher class demands.
The decision-maker’s problem of maximizing expected revenues over the entire finite time horizon can be modeled using a dynamic

programming formulation. Let vk(x) be the expected maximum revenue-to-go in period kwhen there are x units of inventory are available.
We can express vk(x) as

vk(x) =
n∑
i=1

Bi∑
b=1

pibk

(
max

κi∈{0,1,...,min(b,x)}
κiRi + vk−1(x− κi)

)
+ p0kvk−1(x) (1)

with boundary conditions vk(0) = 0 for all k and v0(x) = 0 for all x. In the above formulation, κi is the inventory assigned to the Class
i customer, requesting b units of the product. Note that κi is an integer between 0 and min(x, b). We can rewrite the value function
in (1) as a combination of the fictitious and rationing event operators defined in [10]. The batch rationing operator Tb_RTi determines the
number of inventory units assigned to Class i customers and the fictitious operator TFIC represents the fictitious event corresponding to no
demand arrivals in the period. These two operators when applied on a function f (x) yield Tb_RTi f (x) = maxκi≤min{x,b}{κiRi + f (x− κi)} and
TFIC f (x) = f (x), respectively. Hence, we have

vk(x) =
n∑
i=1

Bi∑
b=1

pibkTb_RTivk−1(x)+ p0kTFICvk−1(x). (2)

3. Structural properties

In this section, we first describe a number of basic structural properties of the model in Section 2 that are well known in revenue
management literature.We then present our results on the impact of varying two particular problemparameters – the arrival probabilities
and the rewards. In this section, we also use numerical examples to illustrate interesting policy implications of our analytical results.

3.1. Preliminaries

To set up the stage, we first describe some properties that are well known [6,1]. We later use these preliminary results to establish our
analysis in Sections 3.2 and 3.3.

Proposition 1. Tb_RTi and TFIC event operators have the following properties:
1. If f (x) is non-decreasing in x, then the Tb_RTi f (x) and TFIC f (x) are also non-decreasing in x.
2. If f (x) is concave in x, then the Tb_RTi f (x) and TFIC f (x) are also concave in x.

As in Lautenbacher and Stidham [6], the properties of the operators Tb_RTi and TFIC can be combined to yield the properties of the value
function as summarized in the next proposition:
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Proposition 2. The maximum expected revenue-to-go function, vk(x) is
1. A non-decreasing function of the inventory level, x,
2. A non-decreasing function of the time remaining till the end of the finite time horizon, k,
3. A concave function of the inventory level, x.

Concavity of the value function vk(x)means that marginal value of an inventory is non-increasing with the current inventory level, x.
This has an important implication on the structure of the optimal policy. Let `∗ik be defined as follows: `

∗

ik = max{x : vk(x)−vk(x−1) > Ri}.
More explicitly, `∗ik is themaximumpossible inventory on hand such that if the current inventory on hand, x, is less than or equal to `

∗

ik, it is
optimal to reject the whole Class i batch. Similarly, if the current inventory level, x, is greater than or equal to `∗ik+1, it is optimal to satisfy
Class i demand until either the inventory level drops down to `∗ik or the whole batch is satisfied. Here, `

∗

ik is the optimal threshold value
for Class i demand such that the optimal policy will reject the whole Class i batch if x < `∗ik, partially satisfy (i.e. satisfy up to inventory
level `∗ik) the demand if `

∗

ik < x < `∗ik + b, and satisfy the entire batch if x ≥ `
∗

ik + b. Therefore, a threshold policy is the optimal policy in
our model. It is obvious that if the reward of a Class i customer is higher than the reward of a Class-j customer, then the optimal threshold
value of class-iwill be lower than that of class-j. Let us summarize these well-known results (see [6,1]). First, it can be shown that a Class
1 demand is always accepted: `∗1k = 0, for all k = 1, 2, . . . , K . Second, the thresholds have a nested structure: `

∗

1k ≤ `
∗

2k ≤ · · · ≤ `
∗

nk for
all k = 1, 2, . . . , K .

3.2. Effects of varying arrival probabilities

Let us first explain how we vary arrival probabilities in our analysis. An increase by ε in any arrival probability pibk, leads to the new
arrival probability pibk+ε and causes a corresponding decrease in the fictitious event probability; that is the new fictitious event probability
becomes p0k − ε. We assume that ε is small enough that both pibk + ε and p0k − ε stay in the interval [0, 1].
We first consider the effect of an increase in pibt on vk(x). Note that increasing pibt and thereby decreasing p0t has the effect of increasing

the probability of a controlled event (admission) and decreasing the probability of an uncontrolled event (fictitious).

Proposition 3. vk(x) is a non-decreasing function of pibt ∀k = 1, 2, . . . , K , where 1 ≤ t ≤ K.

We omit the proof of Proposition 3 which is straightforward using a sample-path argument or induction. The proposition establishes
that the optimal expected reward is non-decreasing in the arrival probabilities pibt . Next, we consider the effects of varying the arrival
probabilities on the optimal policy determined by the thresholds `∗ik. Noting that the thresholds `

∗

ik are determined by the difference
vk(x) − vk(x − 1), we focus on the monotonicity properties of these differences with respect to arrival probabilities. To clarify the
comparison, let us make the dependence on the perturbed parameter explicit by introducing v′k(x, pjbt) which is defined as the value
of vk(x) for a parameter value of pjbt .

Proposition 4. vk(x) is a supermodular function of pjbt and x, i.e. v′k(x, pjbt+ε)−v
′

k(x−1, pjbt+ε) ≥ v
′

k(x, pjbt)−v
′

k(x−1, pjbt)∀k = 1, 2, .K,
where 1 ≤ t ≤ K and 0 ≤ ε ≤ p0t .

Proof. Consider two systems, system 1 and system 2. All model parameters of these two systems, aswell as their demand distributions are
identical except for some period t , where 1 ≤ t ≤ K . In the tth period, the arrival probability of a particular Class j customer with a batch
demand of size b̃ units is given by pjb̃t in system 1, whereas the likelihood of the same event in system 2 is given by pjb̃t+ε. Let vk(x) be the
optimal value function of system 1 in period k and vεk (x) be the optimal value function of system 2. From the definition of supermodularity,
we need to show vεk (x)− v

ε
k (x− 1) ≥ vk(x)− vk(x− 1). Let us define the marginal value function∆f = f (x)− f (x− 1). Hence, the above

expression can be written as ∆vεk (x) ≥ ∆vk(x). For k = 0, 1, . . . , t − 1, supermodularity holds trivially since vk(x) = v
ε
k (x). Hence, we

next verify∆vεt (x) ≥ ∆vt(x), i.e., k = t , which can be written as∆Tb̃_RTjv
ε
t−1(x)−∆TFICv

ε
t−1(x) ≥ 0, or equivalently as:

max
κj≤min{x,b̃}

{κjRj + vεt−1(x− κj)} − max
κj≤min{x−1,b̃}

{κjRj + vεt−1(x− 1− κj)} ≥ v
ε
t−1(x)− v

ε
t−1(x− 1). (3)

Let κ∗jx be the optimal number of units of Class j demand filled out of a batch of size b̃ in period t when the inventory level is x. Due to the
concavity of vεt−1(x) in x, there are only three possibilities for the pair (κ

∗

j(x−1), κ
∗

jx): (0,0), (b̃, b̃), or (κ
∗

jx − 1, κ
∗

jx). For the cases (0,0) and
(b̃, b̃), the desired equality holds by concavity. For the case (κ∗j(x−1), κ

∗

jx), the inequality becomes Rj ≥ v
ε
t−1(x)− v

ε
t−1(x− 1)which is true

if any admission is to take place. This proves statement (3).
Now, let k = t + 1. The statement in the proposition can be stated as

n∑
i=1
i6=j

Bi∑
b=1

pib(t+1)∆Tb_RTiv
ε
t (x)+

Bj∑
b=1
b6=b̃

pjb(t+1)∆Tb_RTjv
ε
t (x)+ pjb̃(t+1)∆Tb̃_RTjv

ε
t (x)+ p0(t+1)∆TFICv

ε
t (x)

≥

n∑
i=1
i6=j

Bi∑
b=1

pib(t+1)∆Tb_RTivt(x)+
Bj∑
b=1
b6=b̃

pjb(t+1)∆Tb_RTjvt(x)+ pjb̃(t+1)∆Tb̃_RTjvt(x)+ p0(t+1)∆TFICvt(x).

Since supermodularity holds in period t , we know that ∆vεt (x) ≥ ∆vt(x). Hence, the above inequality would hold if ∆Tb_RTiv
ε
t (x) ≥

∆Tb_RTivt(x) for all i = 1, . . . , n. Based on the definition of the batch rationing operator, this expression is equivalent to

max
κi≤min{x−1,b}

{κiRi + vt(x− 1− κi)} + max
κi≤min{x,b}

{κiRi + vεt (x− κi)}

≥ max
κi≤min{x−1,b}

{κiRi + vεt (x− 1− κi)} + max
κi≤min{x,b}

{κiRi + vt(x− κix)}.
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Table 1
Optimal threshold levels for Example 1.

t 1 2 3 4 5 6 7 8 9 10

`∗2t (min) 0 1 1 2 2 2 3 3 3 4
`∗2t 1 1 2 2 3 3 4 4 5 5
`∗2t (max) 1 2 2 3 4 4 5 6 6 7

Let κix be the optimal number of units of inventory allocated to Class i demand in system 1, and κεix be the optimal number of units of
inventory allocated to Class-i demand in system 2, with x units of available inventory in period t + 1 in both systems. Consequently,

κi(x−1)Ri + vt(x− 1− κi(x−1))+ κεixRi + v
ε
t (x− κ

ε
ix) ≥ κ

ε
i(x−1)Ri + v

ε
t (x− 1− κ

ε
i(x−1))+ κixRi + vt(x− κix). (4)

Next,we prove the validity of the above inequality by considering all possible values for κix and κεix. First note that κix and κi(x−1) can differ
at most by 1 unit due to the concavity of the value function vt(x). Further, if κix = κi(x−1), then it should be true that either κix = κi(x−1) = 0
or κix = κi(x−1) = b (same property holds for κεix). Also, due to the optimality of κix and κ

ε
ix, and our hypothesis in period t , we have

Ri ≥ vεt (x)− v
ε
t (x− 1) ≥ vt(x)− vt(x− 1)

Ri ≥ vεt (x− 1)− v
ε
t (x− 2) ≥ vt(x− 1)− vt(x− 2)

. . .
Ri ≥ vεt (x− κ

ε
ix + 1)− v

ε
t (x− κ

ε
ix) ≥ vt(x− κεix + 1)− vt(x− κ

ε
ix).

Hence, in the first system, the optimal number of units of inventory allocated to Class i demand in period t + 1 with x units of available
inventory, κix, is at least κεix, i.e. κ

ε
ix ≤ κix. Now for any two integersw1 andw2, such that 0 ≤ w1 ≤ b− 1 andw1 ≤ w2 ≤ b− 1, consider

the following cases

Case (κix, κi(x−1), κ
ε
ix, κ

ε
i(x−1)) Supermodularity Inequality

1 (0, 0, 0, 0) vt(x− 1)+ vεt (x) ≥ vt(x)+ v
ε
t (x− 1)

2 (w1 + 1, w1, 0, 0) vεt (x)− v
ε
t (x− 1) ≥ Ri

3 (b, b, 0, 0) vεt (x)− v
ε
t (x− 1) ≥ vt(x− b)− vt(x− 1− b)

4 (w1 + 1, w1, w2 +
1, w2)

Ri ≥ Ri

5 (b, b, w2 + 1, w2) Ri ≥ vt(x− b)− vt(x− 1− b)
6 (b, b, b, b) vεt (x−b)+vt(x−1−b) ≥ vk(x−b)+v

ε
k (x−1−b)

Cases 1 and 6 are true due to the supermodularity of vk(x) in period k and x. Case 2 is satisfied since no Class i demand is filled in the
second system. In Case 3, the left hand side of the inequality is greater than or equal to than Ri, whereas the left hand side is less than or
equal to Ri, hence is true. Case 4 trivially holds. In Case 5, the inequality is true since all type-i demand is filled in the first system. As a
result, vt+1(x) is supermodular with respect in x and pib(t+1). Clearly, the supermodularity property is also valid for any k > t + 1. �

Let us discuss the implications of Proposition 4. Since the admission thresholds `∗ik are determined by the difference vk(x)− vk(x− 1) and
further this difference is shown to be non-decreasing in the probability of arrival pibt , we conclude that increasing pibt causes the admission
thresholds `∗ik to be non-decreasing for all i and for all k > t .
Now consider a ten-period (K = 10) problem scenario with two classes of arrivals with unit demands (B1 = B2 = 1), which are

stationary over time and bring respective rewards of R1 = 3 and R2 = 1. The arrival probability of more valuable customer class is equal
to 0.2, whereas the arrival probability of less valuable customer class is equal to 0.6, i.e., p1 = 0.2, p2 = 0.6. The initial inventory level is
10. We refer to this particular scenario as the base case, and consider its variations of to illustrate implications of Proposition 4.

Example 1. Suppose in the base case, we let the arrival probability of Class 1 customers assume values between 0.1 and 0.3. Proposition 4
establishes that the optimal threshold `∗2t in each period is non-decreasing in p1. This implies that when p1 ∈ [0.1, 0.3], `

∗

2t takes its
lowest value when p1 = 0.1 and its highest value when p1 = 0.3. Table 1 reports these upper and lower bounds for the optimal threshold,
denoted by `∗2t(min) and `

∗

2t(max) respectively, as well as the optimal threshold for the base case, `∗2t . We conclude, for instance, that
despite the uncertainty in p1, the optimal threshold for period 10 is between 4 and 7.

In Example 1, the uncertain parameter p1 pertains to the higher reward customer class. The intuition that is exhibited in Table 1 is that
increasing the arrival probability (or availability of demand) for this class should lead to increased protection of the inventory from other
classes, thereby resulting in higher thresholds. Nevertheless, Proposition 4 establishes a much stronger result, stating that increasing the
arrival probability of any demand class leads to higher levels of protection for all classes. To observe this interesting result numerically,
we vary p2, the arrival probability of the less valuable class, in the next example.

Example 2. Suppose in the base casewe let the arrival probability of Class 2 customers range between 0.5 and 0.7. Similar to our notation
in Example 1, `∗2t(min) corresponds to the case with p2 = 0.5 and `

∗

2t(max) corresponds to the case with p2 = 0.7. Table 2 reports these
results, along with the optimal thresholds for the base case, `∗2t . The increase in p2 leads to a similar effect on the threshold levels as the
increase in p1. However, the intuition is somewhat different. The marginal value of an additional inventory is increasing when demand
availability is higher. This may make the marginal inventory too valuable for a Class 2 demand. Therefore, additional protection for the
marginal inventory is needed which is achieved by increasing the threshold.

Next, we investigate the second order properties of the value function vk(x) as a function of the arrival probability pibk.

Proposition 5. vk(x) is neither concave nor convex in pibk.
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Table 2
Optimal threshold levels for Example 2.

t 1 2 3 4 5 6 7 8 9 10

`∗2t (min) 1 1 2 2 2 3 3 4 4 5
`∗2t 1 1 2 2 3 3 4 4 5 5
`∗2t (max) 1 1 2 3 3 4 4 5 6 6

Proposition 5, which we state here without a proof (but can easily be verified with a counterexample), establishes that, in general,
the optimal reward does not have nice second-order properties despite being non-decreasing in pibt . The next proposition establishes the
supermodularity of the value function in k and x.

Proposition 6. vk(x) is a supermodular function of x and k.

Proof. We would like to show that vk(x) − vk(x − 1) ≥ vk−1(x) − vk−1(x − 1). Let ∆vmk (x) be defined as the marginal value per unit of
inventory whenm units out of x units of available inventory is allocated to demand in period k, i.e.,

∆vmk (x) =
vk(x)− vk(x−m)

m
. (5)

Based on this definition, we can express∆vk(x) = vk(x)− vk(x− 1) as follows:

∆vk(x) =
n∑
i=1

Bi∑
b=1

pibk

(
max

κi≤min(b,x)
κiRi + vk−1(x− κi)

)
+ p0kvk−1(x)

−

n∑
i=1

Bi∑
b=1

pibk

(
max

κi≤min(b,x−1)
κiRi + vk−1(x− κi − 1)

)
+ p0kvk−1(x− 1).

Substituting p0k = 1−
∑n
i=1
∑Bi
b=1 pibk into the above equation, we can simplify∆vk(x) as

∆vk(x) = ∆vk−1(x)+
n∑
i=1

Bi∑
b=1

pibk

{
max

κi≤min(b,x)
κiRi − κi∆v

κi
k−1(x)− max

κi≤min(b,x−1)
κiRi − κi∆v

κi
k−1(x− 1)

}
. (6)

Note that, in order to show the supermodularity of vk(x) it suffices to show in Eq. (6) that

n∑
i=1

Bi∑
b=1

pibk

{
max

κi≤min(b,x)
κiRi − κi∆v

κi
k−1(x)− max

κi≤min(b,x−1)
κiRi − κi∆v

κi
k−1(x− 1)

}
≥ 0. (7)

Due to concavity of vk(x) as a function of x, we know that

vk−1(x)− vk−1(x− κi) ≤ vk−1(x− 1)− vk−1(x− κi − 1)⇒ ∆v
κi
k−1(x) ≤ ∆v

κi
k−1(x− 1). (8)

Let κ∗i be the optimal number of units of inventory assigned to Class i in period k with x units of inventory available. Similarly, let κ̃i
∗ be

the optimal number of units of inventory assigned to Class i in period k with x − 1 units of inventory available. Then, we can rewrite (7)
as follows

n∑
i=1

Bi∑
b=1

pibk
{
[κ∗i Ri − κ

∗

i ∆v
κ∗i
k−1(x)] − [κ̃

∗

i Ri − κ̃
∗

i ∆v
κ̃∗i
k−1(x− 1)]

}
≥ 0. (9)

Since we already know that vk(x) is concave in x, it should be true that either κ∗i = κ̃i
∗ or κ∗i = κ̃i

∗
+ 1 for all i = 1, . . . , n. If κ∗i = κ̃i

∗,
then

[κ∗i Ri − κ
∗

i ∆v
κ∗i
k−1(x)] − [κ̃

∗

i Ri − κ̃
∗

i ∆v
κ̃∗i
k−1(x− 1)] = κ

∗

i (∆v
κ∗i
k−1(x− 1)−∆v

κ∗i
k−1(x))

which is nonnegative due to (8). On the other hand, if κ∗i = κ̃i
∗
+ 1, we have

[κ∗i Ri − κ
∗

i ∆v
κ∗i
k−1(x)] − [κ̃

∗

i Ri − κ̃
∗

i ∆v
κ̃∗i
k−1(x− 1)] = Ri + (κ

∗

i − 1)∆v
κ∗i −1
k−1 (x− 1)− κ

∗

i ∆v
κ∗i
k−1(x).

We can simplify (κ∗i −1)∆v
κ∗i −1
k−1 (x−1)−κ

∗

i ∆v
κ∗i
k−1(x), using the definition in (5) and some simplemanipulations as (κ

∗

i −1)∆v
κ∗i −1
k−1 (x−1)

− κ∗i ∆v
κ∗i
k−1(x) = vk−1(x − 1) − vk−1(x). Therefore, Ri + (κ

∗

i − 1)∆v
κ∗i −1
k−1 (x − 1) − κ

∗

i ∆v
κ∗i
k−1(x) = Ri + vk−1(x − 1) − vk−1(x). Clearly,

Ri + vk−1(x − 1) − vk−1(x) is nonnegative since at least one unit of inventory is assigned to Class i demand, i.e., κ∗i > 0. As a result, the
inequality in (9) is satisfied, which implies supermodularity of vk(x) in k and x. �

By Proposition 6, the marginal value of an additional inventory is non-decreasing in the time remaining. In terms of the thresholds, the
immediate conclusion is that `∗ik are non-decreasing in k for all i. Our numerical results for Examples 1 and 2, shown in Tables 1 and 2,
clearly illustrate this fact.
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Table 3
Optimal threshold levels for Example 3.

t 1 2 3 4 5 6 7 8 9 10

`∗2t (min) 0 0 1 1 1 2 2 2 3 3
`∗2t 1 1 2 2 3 3 4 4 5 5
`∗2t (min) 1 2 3 4 5 6 7 8 9 10

3.3. Effects of varying rewards

In this section, we focus on perturbations of the reward parameters Ri. An increase by ε to the reward of Class i has a similar
interpretation to that of the variations we made for arrival probabilities in Section 3.2. The new reward is given by Ri + ε with the
assumption that Ri + ε < Ri−1 (without loss of generality). It is obvious that the optimal reward is non-decreasing in Ri which can be
shown by a simple sample path argument. The next proposition establishes a related second order property.

Proposition 7. vk(x) is a convex function of Ri.
Proof. We only provide a sketch of the proof here. Using the standard linear programming (LP) formulation of the optimality equation
(see [13] for details), it can be seen that Ri appears as a coefficient on the right hand side of an LP. Since the optimal value of a linear
program is a convex function of its right-hand-side coefficients [14], we conclude that vk(x) is convex in Ri, for all i = 1, . . . , n. �

Proposition 7 establishes that the expected optimal reward is increasing and convex in Ri. Next, we focus on the effects of increasing
Ri on the optimal thresholds.

Proposition 8. vk(x) is
1. supermodular with respect to R1 and x,
2. submodular with respect to Rn and x (as long as Rn < Rn−1).

Proof. We present the proof of part (1). The proof of part (2) is similar. As before consider two systems, system 1 and system 2. All model
parameters of these two systems are identical except the reward of a particular Class 1 customer. In system 1, the Class 1 reward is R1,
whereas the reward of the same class of customer in system 2 is given by R1 + ε. Let vk(x) be the optimal value function of system 1 in
period k and vεk (x) be the optimal value function of system 2. For k = 0, supermodularity holds trivially since v0(x) = vε0(x) = 0 ∀x.
Assume that for k = t − 1,∆vεt−1(x) ≥ ∆vt−1(x) is true. Hence, we next need to verify for k = t .
The operators TbRTi (i = 2 . . . n) and TFIC are not directly affected by an increase in R1 and were already shown to preserve

supermodularity in the proof of property 4. We only need to verify that supermodularity holds for TbRT1 corresponding to Class 1. For
this class, it was already shown that it is optimal to accept the entire batch, if sufficient inventory is available and as much of the batch as
possible otherwise. In short,

∆vεt (x) = v
ε
t−1(max(x− b, 0))+max(x, b)(R1 + ε)− v

ε
t−1(max(x− b− 1, 0))+max(x− 1, b)(R1 + ε)

and

∆vt(x) = vt−1(max(x− b, 0))+max(x, b)R1 − vt−1(max(x− b− 1, 0))+max(x− 1, b)R1.

Using the induction assumption, and since ε > 0, we directly obtain:∆vεt (x)−∆vt(x) ≥ 0. �

Proposition 8 establishes that the optimal thresholds `∗ik are non-decreasing in R1 and non-increasing in Rn for all i and for all k. Our next
example illustrates how structural properties we proved in our paper can be employed in a setting that exhibits uncertainty in multiple
problem parameters.

Example 3. Suppose that in our base case, the arrival probabilities for the two demand classes in each period, p1 and p2, are uncertain but
lie in the following intervals: p1 ∈ [0.1, 0.3] and p2 ∈ [0.5, 0.7]. R2 = 1 but R1 is anticipated to vary between 2 and 4, i.e., R1 ∈ [2, 4]. By
Propositions 4 and 8, the optimal thresholds for Class 2, `∗2t are monotone in p1, p2 and R1. This implies that, as long as these parameters lie
in the above uncertainty sets, the optimal thresholds will lie in intervals corresponding to the extreme values of the parameter uncertainty
sets. Therefore, in order to find theminimumvalues of the thresholds, denoted by `∗2t(min), it is sufficient to solve a single dynamic program
with parameters p1 = 0.1, p2 = 0.5, and R1 = 2. Similarly, to find the maximum values of the thresholds, denoted by `∗2t(max), it suffices
to solve the problemwith p1 = 0.3, p2 = 0.7, and R1 = 4. Table 3 reports these two threshold levels, and the thresholds for the base case.

4. Extensions and discussion

Certain extensions to themodel are straightforward. For instance, all of the properties go through if non-zero salvage values are assumed
at the end of the horizon as long as the salvage value function satisfies the required properties for induction (i.e. concavity in the inventory
level). Holding costs can also be handled in a straightforward manner for most properties as long as the holding cost function is increasing
and convex. On the other hand, since the holding cost function applies over time, time related properties such as part 2 of Propositions 2
and 6 fail to hold.
The partial admission (or batch splitting) assumption which is frequently made in the revenue management literature is critical to

most of the results in the paper. It appears that complete admission (no batch splitting) extensions are difficult even for some of the basic
properties. First, the complete admission operator does not preserve concavity which is crucial for most of the result in this paper. In
addition, Cil, Ormeci and Karaesmen [15] show that even a weaker result, the optimality of threshold policies, is only guaranteed under
very restrictive assumptions (i.e. constant and identical batch sizes for all classes). Only a few properties that do not rely on concavity such
as Propositions 3 and 7 continue to hold under the complete batch admission assumption.
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Finally, a recent paper by Armony, Plambeck and Seshadri [16] shows that anticipated monotonicity results may not hold when
customers renege from a queueing system. This implies that in our contextmonotonicity results under order cancelationsmay not be true.
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