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W e consider a transportation station, where customers arrive according to a Poisson process, observe the delay infor-
mation and the fee imposed by the administrator and decide whether to use the facility or not. A transportation

facility visits the station according to a renewal process and serves all present customers at each visit. We assume that
every customer maximizes her individual expected utility and the administrator is a profit maximizer. We model this situ-
ation as a two-stage game among the customers and the administrator, where customer strategies depend on the level of
delay information provided by the administrator. We consider three cases distinguished by the level of delay information:
observable (the exact waiting time is announced), unobservable (no information is provided) and partially observable (the
number of waiting customers is announced). In each case, we explore how the customer reward for service, the unit wait-
ing cost, and the intervisit time distribution parameters affect the customer behavior and the fee imposed by the adminis-
trator. We then compare the three cases and show that the customers almost always prefer to know their exact waiting
times whereas the administrator prefers to provide either no information or the exact waiting time depending on system
parameters.
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1. Introduction

We consider a pricing problem for a service system
with strategic customers that are served in batches by
a large facility such as a bus or a train. Arriving cus-
tomers decide whether to join the system and wait for
the next processing instance, or to balk and seek other
outside options. While the main motivation for the
model comes from transportation systems where
vehicles visit a transportation station to pick up all
waiting passengers, the model may also be appropri-
ate for other types of batch processing.
There is a rich literature that investigates strategic

customer behavior in service systems that are mod-
eled by queues. This literature has yielded many use-
ful insights on the design of service systems with
rational customers. The analysis of these systems
combines the stochastic processes modeling the queue
with a game-theoretic approach modeling the cus-
tomer behavior. This analysis becomes very involved
and complicated as the underlying queueing model
moves away from the Markovian assumptions. For
instance, it is relatively recent that a queueing system
with general service times and strategic customers
that observe the queue length was completely ana-
lyzed in this setting (Kerner 2011). On the other hand,
for better understanding the system, it is insightful to
consider non-exponential models, where one may

explore the effects of distributional information, in
particular the variability of the processing time and
its impacts on customer behavior. This is especially
important because empirical work on public trans-
portation systems reports that users are extremely
sensitive to the frequency and the punctuality of the
service (Stradling et al. 2007).
We assume that the administrator of the system is a

profit maximizer that decides the service fee to charge
each customer to maximize the station revenue. In
this setting, the analysis is streamlined across three
different information structures. In the observable
case, arriving customers are provided the exact wait-
ing time. In the unobservable system, customers do
not have any information other than the statistical
and economic parameters of the system. Finally, in
the partially observable case, customers are not pro-
vided the exact waiting time, but do observe the num-
ber of customers waiting in the station. It turns out
that the information structure has a significant impact
on the service fee, the customer benefit and the
administrator revenue. While the information infras-
tructure or the availability of information is not a
short-term operational decision, it is insightful to
understand its effects on systems with a longer-term
design perspective. Comparing these three levels of
information, we found out that customers never pre-
fer the unobservable case, since in this case, the
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administrator sets the fee equal to the service surplus
(i.e., the difference between the service reward and
the expected waiting cost) and so each customer has
zero expected benefit in the equilibrium. Thus,
depending on the cost-reward structure and the inter-
visit time distribution, customers prefer either the
observable or the partially observable case. On the
other hand, the administrator revenue in the unob-
servable case is always greater than in the partially
observable case (provided that the intervisit times
have a strictly decreasing mean residual life distribu-
tion), since both the fee and the proportion of joining
customers are higher in the former. Consequently,
depending on system parameters, the administrator
prefers either the observable or the unobservable case.
In sum, the administrator discloses either full infor-
mation or no information at all whereas customers
prefer having full or partial information rather than
not having any.
To gain insights into the effects of information, we

consider a relatively stylized model of a transporta-
tion station which is visited by a large vehicle with
generally distributed random intervisit times. In this
model, customers arrive at the station randomly (ac-
cording to a Poisson process) and decide whether to
join and wait or to balk based on the information
available and their cost-reward structure. A vehicle
visits the station at random times (according to a
renewal process) and picks up all the customers that
are in the station, so the vehicle capacity is assumed
to be infinite. This assumption reduces the system to a
stochastic clearing system and differentiates it from
traditional queueing systems. Such a model was first
investigated by Manou et al. (2014), who established
an efficient method to analyze the key performance
measures with general intervisit times (at varying
degrees of complexity depending on the information
structure). Their results allow us to embed and
explore a service-pricing problem within this model.
In addition to the effects of information, we analyze
the effects of intervisit time variability on the equilib-
rium fee, the customer utility and the administrator
revenue. Two interesting and counterintuitive
insights emerge from this analysis in the observable
case. First, an increase in the variance of intervisit
time can cause an increase in the equilibrium fee. This
happens when the variance increases in a way that is
favorable for customers, that is, by increasing the
probability of small waiting times and not so much
the probability of large waiting times. Then customers
become more willing to join the system, and the
administrator takes advantage of this by increasing
the fee. Secondly, customers can benefit from an
increase in the intervisit time variance. This happens
when the administrator reduces the fee to eliminate
the negative effects of increasing variance.

The rest of the study is organized as follows. Sec-
tion 2 presents a literature review. Section 3 intro-
duces the model and the notation used in the study.
Sections 4–6 are devoted to the analysis of the observ-
able case, the unobservable case and the partially
observable case, respectively. Section 7 compares the
results obtained for each case through analytical
results and numerical examples. Section 8 concludes
with some directions for future research. All proofs
are included in Appendix S1.

2. Literature Review

Our work is related to three research streams: queues
with strategic customers, pricing of services, and the
effect of information. First, our model belongs to the
class of queues with strategic customers. The study of
queueing systems under a game-theoretic perspective
was initiated by Naor (1969) who studied the strategic
behavior of customers in M/M/1 queues assuming
that an arriving customer observes the number of cus-
tomers in the system and then decides whether to join
or balk. Subsequently, Edelson and Hildebrand (1975)
complemented this study by considering the same
queueing system but assuming that customers make
their decisions without being informed about the
number of customers in the system. Since then, there
has been a growing number of papers that studied the
strategic behavior of customers in variants of M/M/1
queues. The books of Hassin and Haviv (2003), Stid-
ham (2009) and Hassin (2016) present the main
approaches and several results in the area of the eco-
nomic analysis of queueing systems.
The majority of studies that consider the customer

behavior in queues assume a Markovian framework.
The departure from the Markovian assumption
makes the analysis nontrivial while considerably
enriching the insights. Relaxing the Markovian
assumption makes the system more realistic and
allows us to explore the effect of service variability
on the behavior of customers. Economou et al. (2011)
studied the behavior of customers in a vacation
queue with general service and vacation times
assuming that arriving customers do not observe the
queue length. The extension of such an analysis to
queueing systems with general service times where
arriving customers observe the queue length requires
calculating the expected remaining service times at
arrival instants conditional on the queue length. Ker-
ner (2008, 2011) was the first who studied M/G/1
queues with strategic customers that observe the
queue length before making their decision. Kerner
used the supplementary variable technique to calcu-
late the expected conditional remaining service
times. Later, Zhang et al. (2013) studied the behavior
of customers in a queue with general service and
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setup times. They assumed that arriving customers
observe the queue length and used the same tech-
nique with Kerner. Manou et al. (2014) studied the
strategic behavior of customers that arrive at a trans-
portation station that is modeled as a clearing sys-
tem, observe or do not observe the number of
customers in the station and decide whether to join
or balk. They proposed a new probabilistic technique
to calculate the performance measures of interest
when the intervisit times of the transportation facil-
ity are generally distributed. Their model does not
assume that the facility has infinite capacity, but
their technique applies to our model which assumes
a facility with infinite capacity. Incidentally, the infi-
nite-capacity assumption differentiates our model
from traditional queues, since due to this assump-
tion, customers do not actually queue.
Our work also relates to pricing of services. This

stream is rich. For instance, Li (1988), Low (1974)
and Cil et al. (2011) provided optimal pricing poli-
cies for firms that are modeled as queueing systems.
In a service system with strategic customers the fee
has a dual role: It helps to control the queue length
and provides a revenue stream. The administrator
of such a queueing system should carefully balance
these consequences. Naor (1969), Yechiali (1971) and
Knudsen (1972) studied several queueing systems
with strategic customers that observe the queue
length at their arrival instants and proved that the
profit maximizing fee is greater than the socially
optimal fee in these systems. Edelson and Hilde-
brand (1975) also studied M/M/1 queues and
proved that if the arriving customers do not observe
the queue length and the cost-reward structure is
linear, the profit maximizing fee equals the socially
optimal fee. Chen and Frank (2004) studied the pric-
ing problem in the same model but assuming that
the cost-reward function is nonlinear. In this case,
the profit maximizing fee is not equal to the socially
optimal fee. They also explored the effects of system
parameters on the equilibrium fee. Chen and Frank
(2001) and Yildirim and Hasenbein (2010) studied
the state-dependent pricing problem in queues with
strategic customers that observe the queue length.
Zhou et al. (2013) determined the optimal uniform
pricing strategy for a service system with two
classes of customers.
Finally, this study is also related to the stream of

studies that explore the effect of information on the
performance of a system with strategic customers.
Hassin (1986) assumed that the revenue maximizing
server may suppress information about the queue
length and proved that it is not always socially opti-
mal to prevent this. Also, he proved that it is never
socially optimal to encourage suppression when the
server prefers to reveal the queue length. Guo and

Zipkin (2007, 2008, 2009) studied three queueing sys-
tems with strategic customers. For each model, they
analyzed the behavior of customers under several
levels of information and determined which level of
information is preferable for the customers, the ser-
vice provider and the society depending on the sys-
tem parameters.
As we mentioned above, there are plenty of studies

that considered the pricing problem in Markovian
systems with strategic customers. To the best of our
knowledge, this is the first work that studies the pric-
ing problem in a non-Markovian system. This is a key
contribution of our study as we are able to explore the
effect of intervisit time variability not only on the cus-
tomer behavior but also on the equilibrium fee and
the administrator revenue. This study also contributes
to the research stream that explores the effect of infor-
mation. Although Guo and Zipkin (2008) explored
the effect of information in non-Markovian systems,
this study is different in that it explores the effect of
information in a system with a profit maximizing
administrator.

3. The Model

We consider a transportation station with infinite
waiting space, where customers arrive according to a
Poisson process at rate k > 0. A transportation facility
with infinite capacity visits the station according to a
renewal process. The intervisit times (i.e., the times
between the successive visits) of the transportation
facility are assumed to be independent and identically
distributed. In the sequel, we denote the intervisit
time by X and assume that it is a continuous random
variable on [0, ∞) with distribution function F and
Laplace transform L. Discrete random variables can
also be handled with some technical changes in the
proofs. We also assume that X has finite moments. At
the visit epochs of the transportation facility, all cus-
tomers are served instantaneously and removed from
the station, so the underlying process is a stochastic
clearing process.
The transportation system is managed by an

administrator, who initially sets a service fee s ≥ 0 for
using the transportation facility. After observing this
fee and the information provided to them, arriving
customers decide whether to use the transportation
facility or not. A customer who chooses not to use the
facility earns no reward and incurs no cost whereas a
customer who chooses to use it pays the service fee s,
incurs a waiting cost at rate c > 0 per time unit spent
in the station, and earns a reward r > 0 upon service
completion. All costs and rewards are assumed to be
in utility units. Each customer makes the decision of
joining the system or balking so as to maximize her
individual expected utility, and the administrator
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wishes to maximize the expected revenue of the sta-
tion per time unit. This yields a two-stage game
between customers and the administrator. In the first
stage of the game, the administrator selects the fee
and in the second stage, arriving customers decide
whether to join or to balk after observing the fee and
the information provided by the administrator. The
second stage is indeed a simultaneous-move game
between customers.
In the two-stage game between the administrator

and the customers, an administrator strategy is a non-
negative fee, and a customer strategy is a function
that assigns a joining probability to each possible
value of the fee and of the information provided to
the customer. Since customers are assumed to be
homogeneous, the analysis in the paper restricts
attention to symmetric customer strategies; in other
words, it assumes that customers behave the same
way when they face the same fee and the same infor-
mation. An equilibrium (more precisely, a symmetric
subgame perfect Nash equilibrium) consists of a fee
and a customer strategy such that:

(I) For any given fee, the customer strategy maxi-
mizes the customer’s expected utility assuming
all other customers adopt this same strategy.
Equivalently, for any given fee, customer join-
ing probabilities prescribed by the customer
strategy form a (symmetric) Nash equilibrium
of the simultaneous-move game among
customers.

(II) The fee maximizes the administrator’s expected
revenue per time unit given the customer
strategy.

The formal description of customer strategies and
of the equilibrium is given in Appendix S1 to keep the
exposition simple.

4. Observable Case

This section analyzes the situation where every arriv-
ing customer is informed of her exact waiting time. In
this case, given the fee s ≥ 0, a customer whose wait-
ing time is w ≥ 0 experiences a utility of r � s � cw if
she joins and a utility of zero if she balks. Conse-
quently, a customer prefers to join if r � cw > s, to
balk if r � cw < s, and is indifferent between joining
and balking if r � cw = s. The administrator’s prob-
lem to maximize the expected revenue then reduces
to a convex optimization problem as shown in the
proof of Theorem 1 in Appendix S1.

THEOREM 1. In any equilibrium of the observable sto-
chastic clearing system with generally distributed intervi-
sit times, the administrator sets the fee so that is the
unique nonnegative solution of the equation

Z r�s
c

0

1� FðxÞ½ �dx ¼ s
c

1� F
r� s
c

� �h i
; ð1Þ

and a customer whose waiting time is w ≥ 0 joins with
probability

qðwÞ ¼
1 if 0�w\ r� so

c ;

p if w ¼ r� so
c ;

0 if w[ r� so
c ;

8><
>: ð2Þ

where p 2 [0, 1] is arbitrary. The expected total customer
utility per time unit is

poC ¼ �

E½X�
Z r�so

c

0

r� so � cxð Þ 1� FðxÞ½ �dx; ð3Þ

the expected administrator revenue per time unit is

poA ¼ �so

E½X�
Z r�so

c

0

1� FðxÞ½ �dx ¼ �ðsoÞ2
cE½X� 1� F

r� so

c

� �� �
;

ð4Þ
and the expected social utility per time unit is

poS ¼
�

E½X�
Z r�so

c

0

r� cxð Þ 1� FðxÞ½ �dx: ð5Þ

We note that, in the observable case, there are mul-
tiple equilibria. They differ only in the joining proba-
bility of the customer who observes waiting time
equal to ðr � soÞ=c. This does not affect the expected
utilities Equations (3)–(5).
The following corollary provides a lower and an

upper bound on the equilibrium fee when customers
are provided the exact waiting time at the time of
their arrival.

COROLLARY 1. In the observable system, the equilibrium
service fee so satisfies r=2 � so \ r:

The lower bound on the equilibrium fee is in con-
trast with the unobservable system, where the fee
can be arbitrarily small, as will be shown in section
5. This can be explained by considering the cus-
tomers that arrive to the station just before the visit
of the facility. In the observable system, these cus-
tomers observe very small waiting times and are
willing to join even if the fee is large, so the admin-
istrator can charge a relatively high fee and still be
sure that some customers will join. In the unobserv-
able case, however, high fees are not justified even
for these customers when the expected waiting time
is large, since in this case, customers do not learn
their exact waiting times and decide based on their
expected waiting times.
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The following corollary states the effect of changing
the service reward on the equilibrium.

COROLLARY 2. In the equilibrium of the observable system,
the service fee so, the difference r � so, the expected total
customer utility poC, the expected administrator revenue poA,
and the expected social utility poS are increasing in r.

The insights provided by Corollary 2 are intuitive.
The administrator takes advantage of the increasing
customer satisfaction represented as an increase in the
reward, and increases the fee. This increase of the fee
could discourage the customers from joining, but it
does not. The increase of the service reward over-
weighs the increase of the fee, since r � so is increas-
ing in r. Hence, as r increases, the upper bound on the
waiting time for which customers join with probabil-
ity 1 increases, so customers can tolerate waiting
more, which yields a higher joining rate and greater
expected utilities for customers and the administrator.
One might expect that the reverse of the results sta-

ted in Corollary 2 hold for waiting cost, but they do
not all hold in general. In particular, the expected util-
ity of customers can increase as a result of an increase
in the waiting cost, when the latter causes a big reduc-
tion in the fee. Figure 1 illustrates the effect of the wait-
ing cost on the equilibrium fee, the expected total
customer utility, the expected administrator revenue,
and the expected social utility. In this example, as the
waiting cost increases, the service fee, the expected
administrator revenue, and the expected social utility
decrease. We observed this monotonicity in all our
numerical experiments, but we were not able to prove
it for the general problem. On the other hand, the
expected total customer utility depicted in Figure 1 is
not monotone in the waiting cost. Specifically, it is first
increasing, and then decreasing. This suggests that for
small waiting costs, a slight increase of the waiting
cost causes a sharp decrease of the fee and this

combination benefits customers. However, for larger
waiting costs, the increase of the cost harms cus-
tomers, as the reduction of the fee is relatively small.
We next explore the effects of changing the variance

for a fixed expected intervisit time in the observable
system. To do this, we consider two intervisit times X
and Y with distribution FX and FY respectively and
assume E[X] = E[Y]. The effect of the variance on the
fee in the observable case can be either way. The rela-
tion between the service fees soX with intervisit time X
and soY with intervisit time Y is obtained by using the
concavity of the expected administrator revenue
poA;XðsÞ in s ≥ 0 (which is shown in the proof of Theo-
rem 1) and the first-order condition. The resulting
relation is that soX is less than (equal to, greater than)
soY with Y if

Z r�so
Y

c

0

1� FXðxÞ½ �dx\ soY
c

1� FX
r� soY

c

� �� �
ð¼; [; respectivelyÞ:

The effect of increasing the variance on the expected
administrator revenue when the intervisit times are
assumed to be ordered under convex ordering is sta-
ted in the following corollary. The intervisit time X is
less than Y under convex ordering if E[g(X)] ≤ E[g(Y)]
for any convex function g. When this is the case, the
expected values of X and Y coincide, and the variance
of X is less than or equal to the variance of Y.

COROLLARY 3. In the observable system, if X is less than
Y under convex ordering,

(i) The expected administrator revenue with intervisit
time X is greater than or equal to the expected
revenue with Y.

(ii) Under the additional assumption that soX � soY, the
expected total customer utility with intervisit time
X is greater than or equal to the expected total
customer utility with Y.

Intuitively, one would expect that customers are
more willing to pay a higher fee as the variance of the
intervisit time decreases when the expected intervisit
time is preserved. A reduction in variance can be inter-
preted as an improvement in service reliability when
the expected value is preserved and consequently, the
service provider can reasonably charge a higher fee
and possibly earn a higher revenue. Corollary 3 estab-
lishes that the latter is true in the observable case
under the convex-ordering assumption; however, as
discussed before the corollary, an improvement in
variance does not always result in increasing fees
(even under the convex-ordering assumption). As
Example 1 illustrates, in some cases, decreasing the

Figure 1 Fee so ; Expected Utilities poC ; poA and poS vs. c for λ = 1,
r = 10, and X ∼ Erlang(2, 0.3)
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variance of the intervisit time will decrease the fee.
One possible explanation for this phenomenon is that
a reduction in variance can eliminate favorable devia-
tions as well unfavorable ones. In other words, the
decrease in the variance of the intervisit time may be
due to decreasing the probability of small waiting
times and not so much the probability of large waiting
times. This, in turn, can force the administrator to
lower the fee in order to attract customers. On the
other hand, when the variance decreases in a favorable
way by reducing the probability of large waiting times,
arriving customers are given smaller waiting times
more often and join the system. This encourages the
administrator to increase the fee.
Unlike the expected administrator revenue, the

expected total customer utility can increase or
decrease as a result of a reduction in the variance of
the intervisit time. Specifically, if the variance of the
intervisit time and the equilibrium fee decrease, the
expected total customer utility increases, as stated in
Corollary 3. On the other hand, if the variance of the
intervisit time decreases and the equilibrium fee
increases, the expected total customer utility may
increase or decrease, as illustrated in Example 1.

EXAMPLE 1. (ERLANG INTERVISIT TIMES). Let � = c = 1
and r = 10. Suppose the intervisit time X has Erlang
distribution with parameters n ≥ 1 and l > 0. Tables
1–3 and Figure 2 exhibit the changes in the service
fee, the throughput (or the effective arrival rate
�e ¼ poA=s

o), the expected administrator revenue, the
expected total customer utility, and the expected
social utility as the distribution parameters vary. In
each table, the expected intervisit time is set to a
constant, so as n increases, the intervisit time
decreases under convex ordering, e.g., the intervisit

time with n = 1 and l = 0.2 is greater than the one
with n = 2 and l = 0.4 under convex ordering. In
Figure 2, the coefficient of variation is fixed (equiva-
lently n is fixed), and as l increases, the expected
intervisit time decreases.

• As stated in Corollary 1, the fee is always
between r/2 = 5 and r = 10.

• As variance decreases, the fee decreases in
Table 1, first increases then decreases in
Table 2, and increases in Table 3.

• Consistently with Corollary 3, in each table, the
expected administrator revenue increases as
variance decreases (equivalently, as n increases).

• In Table 1 and in the last three rows of
Table 2, the fee decreases and the expected
total customer utility increases as variance
decreases. This illustrates Corollary 3.

• In the first three rows of Table 2, the fee and
the expected total customer utility increase as
variance decreases, whereas, in Table 3, the fee
increases and the expected total customer
utility decreases as variance decreases.

• In all tables, the throughput and the social util-
ity increase as variance decreases.

• In Figure 2, the coefficient of variation is fixed
(equivalently n is fixed). As the expected
intervisit time decreases (equivalently, as l
increases), the fee, the expected administrator
revenue, and the social utility increase. The

Table 1 Fee so; Throughput λe Expected Utilities poA; poC and poS for
λ = 1, c = 1, r = 10, and X ∼ Erlang(n, l) with E[X] = 5

n l Fee Throughput
Administrator

revenue
Customer
utility

Social
utility

1 0.2 6.0400 0.5471 3.3043 0.9936 4.2979
2 0.4 6.0190 0.6346 3.8196 1.1083 4.9279
3 0.6 5.9850 0.6787 4.0623 1.1654 5.2277
4 0.8 5.9530 0.7070 4.2089 1.2039 5.4128
5 1.0 5.9240 0.7274 4.3090 1.2326 5.5416

Table 2 Fee so; Throughput λe Expected Utilities poA; poC and poS for
λ = 1, c = 1, r = 10, and X ∼ Erlang(n, l) with E[X] = 4

n l Fee Throughput
Administrator

revenue
Customer
utility

Social
utility

1 0.25 6.2400 0.6094 3.8025 1.0441 4.8466
2 0.5 6.2820 0.6993 4.3932 1.1214 5.5146
4 1 6.2860 0.7716 4.8503 1.1605 6.0108
8 2 6.2650 0.8279 5.1868 1.1816 6.3684
16 4 6.2300 0.8713 5.4281 1.1965 6.6246

Table 3 Fee so; Throughput λe Expected Utilities poA; poC and poS for
λ = 1, c = 1, r = 10, and X ∼ Erlang(n, l) with E [X] = 2

n l Fee Throughput
Administrator

revenue
Customer
utility

Social
utility

1 0.5 6.9934 0.7776 5.4381 1.0683 6.5064
2 1 7.2270 0.8509 6.1495 1.0026 7.1521
4 2 7.4190 0.9011 6.6851 0.8909 7.5760
6 3 7.5130 0.9221 6.9274 0.8199 7.7473
8 4 7.5710 0.9342 7.0726 0.7674 7.8400

Figure 2 Fee so ; Expected Utilities poC ; poA and poS vs. l for λ = 1,
r = 10, c = 1, and X ∼ Erlang(3, l)
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expected total customer utility appears to be first
increasing then decreasing. These suggest that, in
the observable case, higher service quality may
harm the customers through increased fees.

5. Unobservable Case

This section considers the case where arriving cus-
tomers do not receive any information about the state
of the system (i.e., they do not observe the number of
customers in the station and the remaining time until
the next visit of the transportation facility). In this
case, each arriving customer makes the decision to
join or to balk based on her expected waiting time.
Since arrivals form a Poisson process, we can use

PASTA property to derive the expected waiting time
of an arriving customer, which is basically the
expected remaining time until the next visit of the
transportation facility at her arrival instant. By
PASTA property, the remaining time as observed by
a Poisson arrival has the same distribution as the
remaining time at an arbitrary instant. The remaining
time W at an arbitrary instant has density function
(1 � F(w))/E[X], so the expected waiting time of an
arriving customer is E½W � ¼ E½X2�=ð2E½X�Þ and the
expected utility of joining is r � s � cE½X2�=ð2E½X�Þ.
To exclude the trivial case where customers have no
benefit from joining even if the service is free, the rest
of this section assumes 2rE½X� [ cE½X2�. The follow-
ing theorem establishes the existence and the unique-
ness of equilibrium under this condition, and
computes the equilibrium.

THEOREM 2. Given 2rE½X� [ cE½X2�, in the unique
equilibrium of the unobservable stochastic clearing system
with generally distributed intervisit times, the adminis-
trator sets the fee

su ¼ r� c
E½X2�
2E½X� ; ð6Þ

and all customers join. The expected total customer util-
ity per time unit is

puC ¼ 0; ð7Þ
the expected administrator revenue per time unit is

puA ¼ � r� c
E½X2�
2E½X�

� �
; ð8Þ

and the expected social utility per time unit is

puS ¼ � r� c
E½X2�
2E½X�

� �
: ð9Þ

Theorem 4 establishes that in the unobservable
case, the administrator extracts all the service surplus
(viz., the difference between the utility of the service

and the expected cost of waiting for it) in the form of
a fee, and consequently, customers break even in the
equilibrium. In this case, the equilibrium is unique
and the fee can be arbitrarily small unlike in the
observable case, where there are multiple equilibria
and the fee is bounded below by r/2. The following
corollary states the effects of parameter changes on
the equilibrium.

COROLLARY 4. Given 2rE½X� [ cE½X2�, in the equilib-
rium of the unobservable system,

(i) The fee su is increasing in r and E[X], decreasing
in c and E½X2�, and independent of �.

(ii) The expected total customer utility puC is zero
independently of all model parameters.

(iii) The expected administrator revenue puA and the
expected social utility puS are increasing in �, r and
E[X], and decreasing in c and E½X2�.

The statements (i) and (iii) imply that for fixed
expected intervisit time E[X], the equilibrium service
fee and the expected administrator revenue are
decreasing in the variance of the intervisit time,
Var½X� ¼ E½X2� � E2½X�. That is, the administrator
suffers from increasing the variance of the intervisit
time. This result intuitively makes sense as an
increase in the variance of the intervisit time can be
interpreted as a reduction in service reliability, which
would make the offered service less attractive for cus-
tomers; to make up for this, the administrator lowers
the fee and, since the joining rate remains the same,
his expected revenue decreases. Hence, in the unob-
servable case, the monotonicity of the fee and the
expected administrator revenue in intervisit time
variance holds in general unlike the observable case,
where an increase in the variance can increase or
decrease the fee, and the monotonicity of the expected
administrator revenue is shown under the convex-
ordering assumption.
Similarly, for fixed coefficient of variationffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½X�p

=E½X�, the equilibrium service fee and the
expected administrator revenue diminish as the
expected intervisit time E[X] increases, since

su ¼ r� c
E½X2�
2E½X� ¼ r� c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½X�p
E½X�

 !2
E½X�
2

� �
� c

E½X�
2

:

In this case, however, the reason why the service
becomes less attractive for customers is the long
expected service time rather than the variability.

6. Partially Observable Case

This section examines the partially observable case,
where every arriving customer decides whether to
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join or to balk after observing the fee and the num-
ber of customers in the station. In this case, the
expected utility of a joining customer depends on
the expected waiting time conditional on the num-
ber of customers that are in the station at her arrival
instant.
Determining the expected waiting time given the

information provided to the customer was straight-
forward in the observable and unobservable cases,
as the exact waiting time was given in the former
case and PASTA property applied in the latter. The
partially observable case calls for evaluating the
expected waiting time conditional on the number of
customers observed upon arrival. We do this by
using the results of Manou et al. (2014), who devel-
oped an iterative procedure to calculate this condi-
tional expectation for a fixed service fee and
characterized the unique equilibrium joining strat-
egy of customers under the assumption that the
intervisit time has a strictly decreasing mean resid-
ual life distribution. A nonnegative random variable
X is said to have a (strictly) decreasing mean residual
life (DMRL) distribution, if the function E[X � x|X
≥ x] is (strictly) decreasing in x ≥ 0. This assump-
tion is reasonable in transportation systems, as the
longer the time elapsed from the previous visit of
the transportation facility is, the shorter the
expected time till its next visit will be. Under this
assumption, Manou et al. proved that the unique
equilibrium strategy of customers is of the reverse-
threshold type, that is, there exists a threshold n
such that an arriving customer balks if she observes
less than n customers in the station and joins with
probability 1 if she observes more than n customers.
This result is essential in the proof of the main the-
orem of this section.
For the analysis of customer behavior in the par-

tially observable case, we exclude the trivial cases
where an arriving customer has no benefit from join-
ing even when all customers balk and the service fee
is zero. Manou et al. (2014) proved that the expected
waiting time of a joining customer given that all other
customers balk is E½X2�=ð2E½X�Þ, so the nontriviality
condition becomes 2rE½X� [ cE½X2�, which is the non-
triviality condition in the unobservable case. The fol-
lowing theorem characterizes the equilibria in the
partially observable case under this condition.

THEOREM 3. Given 2rE½X� [ cE½X2�, in any equilib-
rium of the partially observable stochastic clearing system
with intervisit times that follow a strictly DMRL distri-
bution, the administrator sets the fee sp that maximizes

�s
r�s
c �þ 1

r�s
c �þ 1

qðsÞ

 !
ð10Þ

over max
n
0; r � c

h
E½X�

1�Lð�Þ � 1
�

io
� s\ r � c E½X2�

2E½X�
with q(s) 2 (0, 1] being the unique solution of

r� s� c
E½X�

1� Lð�qÞ �
1

�q

� �
¼ 0 ð11Þ

with respect to q 2 [0, 1] for given s. Arriving customers
join with probability

qn ¼ qðspÞ if n ¼ 0;
1 if n ¼ 1; 2; . . .:

	
ð12Þ

The expected total customer utility per time unit is

ppC ¼ � r� sp � c
E½X2�
2E½X�

� �
; ð13Þ

the expected administrator revenue per time unit is

ppA ¼ �sp
r�sp
c �þ 1

r�sp
c �þ 1

q0

 !
; ð14Þ

and the expected social utility per time unit is

ppS ¼ � r� sp
1
q0
� 1

r�sp
c �þ 1

q0

 !
� c

E½X2�
2E½X�

" #
: ð15Þ

The rest of this section presents several numerical
examples that shed light on the effect of changing
system parameters on the equilibrium fee and the
expected utilities. In these examples, we used
MATLAB to solve (2) and to maximize (1).

EXAMPLE 2. (EFFECT OF SERVICE REWARD). Let the inter-
visit time follow Erlang(2, 0.5) distribution, the arrival
rate be � = 2 and the waiting cost be c = 1. The nontri-
viality condition 2rE½X� [ cE½X2� is satisfied if and
only if r > 3. Figure 3 presents the fee sp, the expected
total customer utility ppC, the expected administrator
revenue ppA and the expected social utility ppS for
r 2 (3, 10]. We have the following observations.

• sp; ppC; p
p
A and ppS are nondecreasing in r.

• When the service reward r is small:
– The fee sp is strictly between

r � c
h

E½X�
1�Lð�Þ � 1

�

i
and r � c E½X2�

2E½X�.

– An arriving customer who finds the station
empty joins with probability 0\ q0 \ 1.

• When the service reward r is large:
– All customers join with probability 1.

– The fee is sp ¼ r � c
h

E½X�
1�Lð�Þ � 1

�

i
¼ r � 11

3 ,
which is linearly increasing in r.

– The expected total customer utility ppC ¼
�
�
r � sp � c E½X2�

2E½X�
�

¼ 4
3 does not depend on r.
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– The expected administrator revenue ppA ¼
�sp ¼ 2ðr � 11

3 Þ is linearly increasing in r.
– The expected social utility ppS ¼ ppC þ

ppA ¼ 2ðr � 3Þ is linearly increasing in r.
– If the service reward increases by D, the

administrator, knowing that all customers
will join, increases the fee by the same
amount D. Thus, the administrator receives
all the extra utility that results from the
increase of the reward. Customers do not ben-
efit from the increase of the service reward, as
their expected utility remains the same.

EXAMPLE 3. (EFFECT OF WAITING COST). Let the intervi-
sit time follow Erlang(2, 0.5) distribution, the arrival
rate be � = 2 and the service reward be r = 9. The
nontriviality condition is satisfied if and only if
c < 3. Figure 4 presents the fee sp, the expected total
customer utility ppC, the expected administrator rev-
enue ppA and the expected social utility ppS for
c 2 (0, 3). We have the following observations.

• sp; ppA and ppS are nonincreasing in c.

• When the waiting cost is small:
– All customers join with probability 1.

– The fee is sp ¼ r � c
h

E½X�
1�Lð�Þ � 1

�

i
¼ 9 � 11

3 c,

which is linearly decreasing in c.
– The expected total customer utility ppC ¼

�
�
r � sp � c E½X2�

2E½X�
�

¼ 4
3 c is linearly increas-

ing in c.
– The expected administrator revenue ppA ¼

�sp ¼ 2ð9 � 11
3 cÞ is linearly decreasing in c.

– The expected social utility ppS ¼ ppC þ
ppA ¼ 2ð9 � 3cÞ is linearly decreasing in c.

– If the waiting cost increases by D, the
administrator reduces the fee by more than
D to attract all the customers. This fee

reduction harms the administrator, but
benefits the customers.

• When the waiting cost is large:
– The fee sp is strictly between

r � c
h

E½X�
1�Lð�Þ � 1

�

i
and r � c E½X2�

2E½X�. It

decreases as c increases, but not as sharply as
in the case when the waiting cost is small.

– The expected utilities ppC; ppA and ppS are all
decreasing in c.

– Although the administrator reduces the fee
as c increases, customers do not benefit from
this reduction. This happens because the
negative effect (increase of the waiting cost)
overweighs the positive effect (fee reduction).

EXAMPLE 4. (EFFECT OF VARIANCE). Let the intervisit
time follow Erlang(n, l) distribution with n ≥ 1 and
l > 0, the arrival rate be � = 2, the service reward be
r = 5, and the waiting cost be c = 1. The mean is fixed
at E[X] = 4. Table 4 presents the fee sp, the through-
put (or the effective arrival rate �e ¼ ppA=s

p), the
expected total customer utility ppC, the expected
administrator revenue ppA and the expected social
utility ppS for n = 1, 2, 4, 8, 16. As n increases, the
variance of the intervisit time decreases, which can be
interpreted as an improvement in service reliability.

• The administrator takes advantage of a vari-
ance reduction by increasing the fee.

• The increase of the fee, in turn, makes the cus-
tomers less willing to join. Indeed, the
throughput �e decreases as variance decreases.

• Although the throughput decreases, the
expected total customer utility and the admin-
istrator revenue increase.

EXAMPLE 5. (EFFECT OF EXPECTED INTERVISIT TIME). Let
the intervisit time follow Erlang(2, l) distribution

Figure 3 Fee sp and Expected Utilities p
p
C ; p

p
A and p

p
S vs. r for λ = 2,

c = 1, and X ∼ Erlang(2, 0.5)
Figure 4 Fee sp and Expected Utilities p

p
C ; p

p
A and ppS vs. c for λ = 2,

r = 9, and X ∼ Erlang(2, 0.5)
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with l > 0, the arrival rate be � = 2, the service
reward be r = 5, and the waiting cost be c = 1. In

this case, the coefficient of variation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½X�p

=E½X�
remains fixed at 1=

ffiffiffi
2

p
. The nontriviality condition is

satisfied if l > 0.3. Figure 5 presents the fee sp, the
expected total customer utility ppC, the expected

administrator revenue ppA and the expected social

utility ppS for l > 0.3.

• As l increases, that is, the frequency of the vis-
its of the transportation facility increases, the
fee and the administrator revenue increase.

• The customers benefit from a higher service
frequency when l is small. However, when l
is large, an increase of the visit frequency
harms the customers as the administrator
imposes a very high fee.

7. Comparison

In this section, we aim to determine which level of
information is preferable for the customers, which is
preferable for the administrator and which is socially
preferable. In general, the answer depends on the
specific values of the system parameters. Subsection
7.1 compares the three cases assuming that the inter-
visit times are exponentially distributed. Subsection
7.2 compares the three cases under the assumption

that the intervisit times have a strictly DMRL
distribution.

7.1. Exponential Intervisit Times
When the intervisit times are exponential, the par-
tially observable case reduces to the unobservable
case, so this section compares the observable and
unobservable cases. Let l denote the rate of the inter-
visit times. For the observable case, by Theorem 1, the
fee so is the unique nonnegative solution to the
equation

el
r�so
cð Þ ¼ 1þ lso

c
;

and the expected utilities are

poA ¼�lðsoÞ2
c

e�l r�so
cð Þ ¼ �lðsoÞ2

cþ lso
;

poS ¼�l
Z r�so

c

0

r� cxð Þe�lxdx ¼ �r� 2�cso

cþ lso
;

poC ¼poS � poA ¼ �ðr� soÞ � �cso

cþ lso
:

By Theorem 4, for the unobservable case under the
condition r > c/l, the fee is su ¼ r � ðc=lÞ, and the
expected utilities are puC ¼ 0, and puA ¼ puS ¼
�ðr � ðc=lÞÞ.
The value of (r � (c/l))/r, which is increasing in r

and l, and decreasing in c, turns out to be determina-
tive in the comparison of these expressions. We refer
to this ratio as the normalized service surplus and
denote it by d. We note that 0 < d < 1 when the non-
triviality assumption holds. Proposition 1 compares
the fee and the expected utilities in the observable
and unobservable cases. These findings are summa-
rized in Table 5.

PROPOSITION 1. Given exponentially distributed intervi-
sit times with rate l and the normalized service surplus

0\ d ¼ r�c
l

r \ 1,

(i) The fee in the unobservable case is less than (equal
to, greater than) the fee in the observable case if
d\ 1 � e�1 � 0:6321 (=, >, respectively).

(ii) The expected total customer utility is always greater
in the observable case than in the unobservable case.

(iii) The expected administrator revenue in the
unobservable case is less than (equal to, greater
than) the expected administrator revenue in the
observable case if d < K � 0.2483 (=, >,
respectively).

(iv) The expected social utility in the unobservable case
is less than (equal to, greater than) the expected
social utility in the observable case if
d\ ln 2

1þln 2 � 0:4094 (=, >, respectively).

Table 4 Fee sp; Throughput λe Expected Utilities p
p
A; p

p
C and poS for

λ = 2, c = 1, r = 5, and X ∼ Erlang(n, l) with E [X] = 4

n l Fee Throughput
Administrator

revenue
Customer
utility

Social
utility

1 0.25 0.9990 2.0000 1.9980 0.0020 2.0000
2 0.5 1.4200 1.8958 2.6921 1.1600 3.8521
4 1 1.7340 1.7649 3.0604 1.5320 4.5924
8 2 1.8990 1.7068 3.2413 1.7020 4.9433
16 4 1.9850 1.6767 3.3283 1.7800 5.1083

Figure 5 Fee sp and Expected Utilities p
p
C ; p

p
A and p

p
S vs. l for λ = 2,

c = 1, r = 5, and X ∼ Erlang(2, l)
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According to Table 5, customers always prefer
having information whereas what is best for the
administrator and what is socially best depend on
the value of the normalized service surplus. If the
normalized service surplus is small enough, the
administrator prefers disclosing information, which
turns out to be also socially optimal. Hassin (1986)
showed these same results for the comparison of the
unobservable and partially observable (which he
refers to as observable) M/M/1 queues with strategic
customers and a profit maximizing administrator.
For large values of the normalized service surplus,
Hassin proved that the administrator’s preference
and what is socially best depend also on the arrival
rate k. Our results do not depend on k, since we con-
sider a clearing system. Table 5 shows that when the
normalized service surplus is sufficiently large, the
administrator prefers hiding information, which is
also socially optimal. We also note that our results
compare the observable and unobservable cases
whereas Hassin compares the unobservable and par-
tially observable cases, which are equivalent for the
clearing model with exponential intervisit times. Guo
and Zipkin (2007) compared the three cases for the
M/M/1 queue with heterogeneous customers with-
out pricing, showed that the preferences of customers
and of the administrator depend on the shape of the
customer-type distribution.

7.2. Strictly DMRL Intervisit Times
This subsection explores the effect of information
when the intervisit times have a strictly DMRL distri-
bution. Proposition 2 compares the fee and the
expected utilities in the unobservable and partially
observable cases. We compare the observable case
with the other two cases numerically and present our
observations in Table 6.

PROPOSITION 2. Given intervisit times with a strictly
DMRL distribution and 2rE½X� [ cE½X2�,
(i) The fee in the unobservable case is greater than the

fee in the partially observable case.
(ii) The expected total customer utility is greater in the

partially observable case than in the unobservable
case.

(iii) The expected administrator revenue is more in the
unobservable case than in the partially observable
case.

(iv) The expected social utility in the unobservable case
is at least as much as the expected social utility in
the partially observable case.

Proposition 2 establishes that when intervisit times
have a strictly DMRL distribution, customers always
prefer to have partial information over not having
any information, and the administrator always pre-
fers hiding information over disclosing it partially.
Hiding information is also socially better than disclos-
ing it partially. Hence, the assumption of strictly
DMRL intervisit times in the clearing system elimi-
nates the possibility that customers’ preference
between no information and partial information coin-
cides with the administrator’s preference. This differs
the results of Hassin (1986), and Guo and Zipkin
(2007) for the M/M/1 queue. Both papers showed
that when the system parameters satisfy certain con-
ditions, both the customers and the administrator pre-
fer the partially observable case over the
unobservable one.

EXAMPLE 6. (ERLANG INTERVISIT TIMES). Let the intervi-
sit time follow Erlang(2, l) distribution with
l 2 (0, 3), the arrival rate be � = 1, the service
reward be r = 5, and the waiting cost be c = 1. Fig-
ures 6–8 present the expected total customer utility,
the expected administrator revenue and the
expected social utility per time unit, respectively, for
the three levels of information.

• For large values of expected waiting time
(equivalently, for small l):
– Customers prefer the observable case, that

is, they want to know their exact waiting
time. This can be explained by the large
utilities experienced by customers that
arrive just before the visit of the facility.

Table 5 System in Which the Corresponding Value is Greater Depending on d ¼ r�c
l

r

d 2 (0, 0.2483) d 2 (0.2483, 0.4094) d 2 (0.4094, 0.6321) d 2 (0.6321, 1)

Fee o o o u
Customer utility o o o o
Administrator revenue o u u u
Social utility o o u u

Table 6 System in Which the Corresponding Value is Greater

Depending on d ¼ r � cE ½X 2�
E ½X �

� �
=r

Small
d

Large
d

Fee o u
Customer utility o o
Administrator revenue o u
Social utility o u
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– The administrator prefers to reveal the full
information because in the observable case,
he receives a high fee from the few custo-
mers that join.

– The socially optimal level of information is
provided in the observable case.

• For small values of expected waiting time
(equivalently, for large l):
– Customers prefer to be fully informed

because the imposed fee is lower in the
observable case.

– The administrator prefers to hide the infor-
mation, since in the unobservable case, all
customers join and the fee is high enough.

– The socially optimal level of information is
provided in the unobservable case.

• For intermediate values of expected waiting
time (equivalently, for intermediate l):
– Customers prefer the partially observable

case, where the fee almost equals the fee in
the observable case, but the fraction of
joining customers is greater.

– The administrator prefers to hide the infor-
mation.

– The socially optimal level of information is
provided in the unobservable or in the
observable case.

In our numerical experiments, we noticed that for
small and large values of r and c, customers prefer to
know their exact waiting time, whereas for intermedi-
ate values of r and c, they prefer to know only the
number of customers in the system. Also, in these
experiments, the observable case turns out to be opti-
mal for the administrator and the society when the
service reward is small and the waiting cost is large.
On the other hand, the unobservable case turns out to
be optimal for the administrator and the society when
the service reward is large and the waiting cost is
small. Table 6 summarizes some of our numerical
findings for small and large values of the normalized

service surplus d ¼ r � cE½X2�
E½X�

� �
=r. Observations

summarized in Table 6 for strictly DMRL intervisit
times are same as the results for small and large val-
ues of the normalized service surplus when intervisit
times are exponential as presented in Table 5.

8. Conclusion

In this study, we considered the strategic behavior of
the customers and the administrator in a transporta-
tion station. We modeled the situation as a two-stage
game for the three different levels of delay informa-
tion. In each one of the observable, unobservable, and
partially observable cases, we studied the equilibrium
behavior, assuming generally distributed intervisit
times of the transportation facility and we explored
the effects of the changes in system parameters on the
administrator and the customers. Our analytical

Figure 7 Expected Administrator Revenue puA; poA and p
p
A vs. l for

λ = 1, c = 1, r = 5, and X ∼ Erlang(2, l)

Figure 6 Expected Total Customer Utility puC ; poC and p
p
C vs. l for

λ = 1, c = 1, r = 5, and X ∼ Erlang(2, l)
Figure 8 Expected Social Utility puS ; p

o
S and p

p
S vs. l for λ = 1, c = 1,

r = 5, and X ∼ Erlang(2, l)
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results in the observable and unobservable cases
showed that an increase in the service reward can
benefit some or all of the involved parties, but it does
not harm anyone. However, a reduction in the wait-
ing cost, an increase in the service frequency, or a
reduction in the intervisit time variance benefits the
administrator and the society, but can harm the cus-
tomers as illustrated by our numerical examples. The
comparison of the three cases with different levels of
information provided to customers upon their arrival
suggests that in most cases, the customers prefer to
know their exact waiting times. For the administrator
and the society, either the observable or the unobserv-
able case is optimal depending on the system parame-
ters. In particular, when the unobservable case is
socially optimal, the administrator also prefers to hide
the information.
We next discuss some extensions of our work and

some research directions for future.

Heterogeneous Customers. In this study, we assumed
that customers have the same reward and cost
parameters. In practice, customers can have different
service rewards and/or waiting costs. In a forth-
coming paper, we extend our results to the setting
with heterogeneous customers assuming that the
fee is fixed.

State-Dependent Fees. Our analysis of the observ-
able and partially observable cases assumed that the
administrator charges the same fee independently of
the state of the system. This assumption is quite real-
istic for public transportation systems, but it is also
interesting to explore the effect of state-dependent
pricing on the equilibrium. If the administrator can
charge a fee that depends on the waiting time in the
observable case, he will charge r � cw for the waiting
time w < r/c and receive all the service surplus. Con-
sequently, the expected total customer utility becomes
zero as in the unobservable case. The expected admin-
istrator revenue po;sdA and the expected social utility
po;sdS are equal in the observable case with state-depen-
dent fees and

po;sdA ¼ �

E½X�
Z r

c

0

r� cxð Þ 1� FðxÞ½ �dx

� �

E½X�
Z r�so

c

0

r� cxð Þ 1� FðxÞ½ �dx ¼ poS � poA:

Hence, allowing the administrator to charge fees that
depend on the waiting time improves the expected
administrator revenue and the expected social utility;
however, it harms customers by allocating all the
social utility to the administrator. Also, a similar argu-
ment yields po;sdA � puA; so the administrator generates

a greater revenue in the observable case with state-
dependent fees as compared to the unobservable case.
Finding out the effects of state-dependent pricing for
the partially observable case is more complicated, so
we leave it for future research.

Administrator Objectives and Constraints. Our
analysis assumed that the administrator is a profit
maximizer. In practice, transportation administrators
may not be pure profit maximizers and their actions
can be subject to governmental regulations such as
price caps, subsidies, and quality constraints. Study-
ing the effect of such regulations and other objectives
pursued by the administrator is an interesting
research question.

Capacity Constraints. An assumption that greatly
simplified the analysis in this study was that the ser-
vice facility has infinite capacity. This assumption can
be justified when the transportation facility has a very
large capacity. But relaxing it would make the model
much more realistic in general; however, the analysis
of the relaxed model would be very complicated.

Information Structures. Including different informa-
tion structures such as those providing real-time
information to customers is another possible research
direction. As the information structure gets more
complicated, obtaining analytical results is likely to
get more challenging.

Competition among Service Providers. We restricted
attention to the modeling and analysis of a single
transportation station. In practice, there are usually
several transportation alternatives, so strategic cus-
tomers may also choose between the alternatives. This
adds another layer of competition to the model. How
this competition affects the fees and the expected util-
ities is another interesting research question.

Acknowledgments

The authors are grateful to the editor and the referees for
their constructive comments and suggestions, which have
helped us to improve both the quality and the exposition of
the study. Athanasia Manou was supported by AXA
Research Fund. The second author was supported by Marie
Curie Career Integration Grant from the European Union’s
Seventh Framework Programme (FP7-PEOPLE-2013-CIG,
Proposal No. 618853, Acronym RISK).

References
Chen, H., M. Frank. 2001. State dependent pricing with a queue.

IIE Trans. 33(10): 847–860.

Chen, H., M. Frank. 2004. Monopoly pricing when customers
queue. IIE Trans. 36(6): 1–13.

Manou, Canbolat, and Karaesmen: Pricing in a Transportation Station
1644 Production and Operations Management 26(9), pp. 1632–1645, © 2017 Production and Operations Management Society



Cil, E. B., F. Karaesmen, L. Ormeci. 2011. Dynamic pricing and
scheduling in a multi-class single-server queueing system.
Queueing Syst. 67(4): 305–331.

Economou, A., A. Gomez-Corral, S. Kanta. 2011. Optimal balking
strategies in single-server queues with general service and
vacation times. Perform. Eval. 68(10): 967–982.

Edelson, N. M., K. Hildebrand. 1975. Congestion tolls for Poisson
queueing processes. Econometrica 43(1): 81–92.

Guo, P., P. Zipkin, 2007. Analysis and comparison of queues with
different levels of delay information. Management Sci. 53(6):
962–970.

Guo, P., P. Zipkin. 2008. The effects of information on a queue
with balking and phase-type service times. Nav. Res. Logistics
55(5): 406–411.

Guo, P., P. Zipkin. 2009. The effects of the availability of waiting-
time information on a balking queue. Eur. J. Oper. Res. 198(1):
199–209.

Hassin, R. 1986. Consumer information in markets with random
products quality: The case of queues and balking. Economet-
rica 54(5): 1185–1195.

Hassin, R. 2016. Rational Queueing. CRC Press, Taylor and Francis
Group, Boca Raton, FL.

Hassin, R., M. Haviv. 2003. To Queue or Not to Queue: Equilibrium
Behavior in Queueing Systems. Kluwer Academic Publishers,
Boston.

Kerner, Y. 2008. The conditional distribution of the residual
service time in the Mn/G/1 queue. Stoch. Models 24(3):
364–375.

Kerner, Y. 2011. Equilibrium joining probabilities for an M/G/1
queue. Games Econ. Behav. 71(2): 521–526.

Knudsen, N. C. 1972. Individual and social optimization in a mul-
ti-server queue with a general cost-benefit structure. Econo-
metrica 40(3): 515–528.

Li, L. 1988. A stochastic theory of the firm. Math. Oper. Res. 13(3):
447–466.

Low, D. W. 1974. Optimal dynamic pricing policies for an M/M/s
queue. Oper. Res. 22(3): 545–561.

Manou, A., A. Economou, F. Karaesmen. 2014. Strategic customers
in a transportation station: When is it optimal to wait? Oper.
Res. 62(4): 910–925.

Naor, P. 1969. The regulation of queue size by levying tolls.
Econometrica 37(1): 15–24.

Stidham Jr., S. 2009. Optimal Design of Queueing Systems. CRC
Press, Taylor and Francis Group, Boca Raton, FL.

Stradling, S., M. Carreno, T. Rye, A. Noble. 2007. Passenger per-
ceptions and ideal urban bus journey experience. Transport
Policy 14(4): 283–292.

Yechiali, U. 1971. On optimal balking rules and toll charges in the
GI/M/1 queue. Oper. Res. 19(2): 349–370.

Yildirim, U., J. J. Hasenbein. 2010. Admission control and pric-
ing in a queue with batch arrivals. Oper. Res. Lett. 38(5):
427–431.

Zhang, F., J. Wang, B. Liu. 2013. Equilibrium joining probabilities
in observable queues with general service and setup times.
J. Ind. Manag. Optimiz. 9(4): 901–917.

Zhou, W., X. Chao, X. Gong. 2013. Optimal uniform pricing strat-
egy of a service firm when facing two classes of customers.
Prod. Oper. Manag. 23(4): 676–688.

Supporting Information
Additional supporting information may be found online
in the supporting information tab for this article:

Appendix S1: On Line Supplement.

Manou, Canbolat, and Karaesmen: Pricing in a Transportation Station
Production and Operations Management 26(9), pp. 1632–1645, © 2017 Production and Operations Management Society 1645


