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Abstract: In standard stochastic dynamic programming, the transition probability distributions of the underlying Markov Chains
are assumed to be known with certainty. We focus on the case where the transition probabilities or other input data are uncertain.
Robust dynamic programming addresses this problem by defining a min-max game between Nature and the controller. Considering
examples from inventory and queueing control, we examine the structure of the optimal policy in such robust dynamic programs
when event probabilities are uncertain. We identify the cases where certain monotonicity results still hold and the form of the optimal
policy is determined by a threshold. We also investigate the marginal value of time and the case of uncertain rewards. © 2017 Wiley
Periodicals, Inc. Naval Research Logistics 00: 000–000, 2017
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1. INTRODUCTION

In many practical optimization problems, the input para-
meters to the problem are not known with certainty; rather
they are either estimated from the existing data or the possible
values that they can take can be specified by expert opinions.
This uncertainty, if ignored, may cause significant subop-
timality or infeasibility for the solution considered. Robust
optimization is a specific methodology that addresses this
problem and has received much attention lately (see [2] for a
comprehensive presentation).

Our focus in this article is on a set of stochastic dynamic
problems from inventory and queueing theory where the
transition probability distributions of the underlying Markov
Chains may be uncertain. The models considered include
discrete-time versions of some well-established cases such
as service rate control and admission control problems of
Lippman [17], the stock rationing problem of Ha [9] and the
dynamic revenue management problem of Lautenbacher and
Stidham [15].

To address the uncertainty on the probability distributions
in such problems, we formulate a robust stochastic dynamic
program with a maximin approach. This approach defines a
game between the controller (system manager) and Nature.

Correspondence to: E. Lerzan Örmeci (lormeci@ku.edu.tr)

For instance, in the context of demand admission control, the
controller’s aim is to maximize the expected profit by choos-
ing the allowable actions (for example by admitting a given
class of demand or not), whereas Nature tries to minimize the
controller’s expected profit by choosing the worst-possible
parameters (for example arrival probabilities for different
classes) and acts upon observing the controller’s choice. This
formulation is known as the robust counterpart of the stan-
dard problem. The robust optimal policy designates the policy
which yields the highest expected profit result after mini-
mization by Nature. In this formulation, the controller acts
upon the worst-case scenario, which does not always happen.
Consequently, his actions can be labeled as the most conser-
vative with respect to maximizing the expected revenue. To
overcome this problem, semirobust Markov Decision Process
(MDPs) are developed, which allows the controller to have
varying degrees of conservatism.

The robust formulation of a MDP with an uncertain tran-
sition probability distribution goes back to Satia and Lave
[22] who propose a solution by a policy iteration approach.
White and Eldeib [24] present value-iteration-based numer-
ical algorithms and bounds for polyhedral uncertainty sets
on transition probabilities. Bagnell and coworkers [1] pro-
pose a robust value iteration and discuss the related com-
putational complexity issues. Nilim and El Ghaoui [18] and
Iyengar [10] simultaneously study robust stochastic dynamic
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programs and establish the existence of a robust Bellman
recursion whose solution yields the robust value function and
the corresponding optimal policy. In addition, both papers
emphasize that under appropriate choice of uncertainty sets,
the additional complexity brought by the robust formulation
is reasonable when the standard formulation has a tractable
solution. Paschalidis and Kang [19] explore the effect of
using stronger uncertainty set formulations and investigate
a specific queueing control problem. Delage and Mannor [7]
consider chance-constrained MDPs with uncertain parame-
ters and show that some important instances of this class
of problems is computationally tractable. Kardeş et al. [12]
investigate infinite horizon discounted stochastic games with
uncertain transition probabilities, and establish the existence
of equilibria and propose a method for computing the equi-
libria. Finally, Xu and Mannor [25] propose a more sophisti-
cated model of parameter uncertainty which allows multiple
nested uncertainty sets. The above papers directly take into
account the probability structure of the problem. An alterna-
tive approach is to formulate a corresponding deterministic
optimization formulation that takes into account the uncer-
tainty. Bertsimas and Thiele [4] consider such a formulation
in the context of inventory control. They are able to inter-
pret the solution obtained from the deterministic formulation
in terms of a dynamic control policy and obtain approximate
solutions to the motivating stochastic inventory problem. In a
different context, Bertsimas et al. [3] obtain bounds for queu-
ing network performance measures based on a deterministic
formulation.

In this article, we mainly focus on investigating the struc-
tural properties of optimal policies in a class of robust and
semi-robust MDPs. The queueing and inventory control lit-
erature has a strong tradition in exploring the structure of
optimal policies. This is in part due to the computational
efficiency of structured policies. However, the main moti-
vation for looking for structured policies is that they are
usually expressed in a few parameters and tend to be easy
to understand and implement. There are known effective
techniques to investigate the structure of the solution of a
stochastic dynamic program. Event-based dynamic program-
ming (EBDP) proposed by Koole [13] and further extended in
Koole [14] streamlines this procedure for a class of queueing
control problems. Recently, Çil et al. [6] use EBDP to explore
structural properties in a class of production/inventory prob-
lems and propose an extension to study the effects of pertur-
bations of input parameters. In this article, we use EBDP to
formulate the robust MDPs and investigate the structure of
their optimal policies.

There are also a number of recent papers that investi-
gate specific robust MDP problems in queueing or inventory
control. Birbil et al. [5] consider a dynamic revenue manage-
ment problem and show that there is a very efficient solution
under an ellipsoidal models of uncertainty. Turgay et al. [26]

investigate a similar problem with interval and polyhedral
uncertainty sets and establish monotonicity results for nested
uncertainty sets. Lim and Shanthikumar [16], and Jain et
al.[11] consider robust versions of dynamic pricing prob-
lems for queueing systems using entropy-based models of
uncertainty. Rusmevichientong and Topaloglu [20] explore a
robust assortment optimization problem and show that opti-
mal assortment policy can be computed efficiently by giving
a complete characterization of the optimal policy.

All of these papers obtain results on the structure of optimal
policies for specific problems by exploiting certain proper-
ties of the uncertainty set. In contrast, we consider general
models in the EBDP framework with general uncertainty
sets to establish structural results that hold for a class of
problems.

As the literature shows, the robust dynamic programming
problems have received a great interest recently. Our con-
tributions in this area can be summarized as follows: (1)
Our results on robust MDPs apply to the EBDP framework
with general uncertainty sets on the transition probabilities,
(2) Our results extend to the semirobust MDP models with
general uncertainty sets on the transition probabilities, (3)
A discussion of the robust MDPs with general uncertainty
sets on other parameters is included, where the structure of
optimal policy in a specific system is derived. By (1), our
results are valid for all models that can be generated within
the EBDP framework in addition to the models considered
in this paper, whereas (2) allows us to compare the perfor-
mances of controllers with different levels of conservatism in
a computationally efficient way. By (3), we observe the diffi-
culties for the robust MDP models when the other parameters
are uncertain.

The organization of the paper is as follows; in Section
2, we present the EBDP framework for the nominal MDPs,
while Section 3 defines the robust counterparts of the nomi-
nal MDPs. Section 4 establishes the structural properties of
both nominal and robust MDPs under certain conditions on
the underlying operators that form the EBDP framework. In
Section 5, we introduce the operators commonly used in liter-
ature within EBDP framework, and show that they all have the
desired properties that guarantee certain structural properties
of the underlying value functions. Section 6 presents mod-
els analyzed in literature that fall into the EBDP framework.
The purpose here is twofold: (1) to illustrate the intriguing
effects of our results, and (2) to show the generality of our
results. Section 7 extends our results when the uncertainty
on the parameters are represented by two or more uncer-
tainty sets, rather than one as in the regular robust definition.
However, we also show that we cannot show monotonicity
of the value functions with respect to nested uncertainty sets.
Finally, we present our conclusions and research perspectives
in Section 8 where we address two important extensions. The
first extension explores uncertainty that takes place within a
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Turgay, Karaesmen, and Lerzan: Structural Properties of Robust Control Problems 3

dynamic programming operator rather than in event proba-
bilities. The second extension considers multi-dimensional
control problems.

2. NOMINAL EBDP FRAMEWORK

In this section, we describe the EBDP framework intro-
duced by Koole [13], which provides the basis of our analysis.
The problems we consider in the scope of this paper are rep-
resented in discrete time. In our setting, the stages (time)
are denoted by t = 0, 1, . . . , T , where T is the last stage in
the horizon. Let i = 0, 1, 2, . . . , n denote the event indices,
where events 1, 2, . . . , n are events which may lead to a state
transition (if the appropriate action is selected) while event 0
corresponds to a fictitious event where no observable real
event (and therefore no state transition) occurs. The sys-
tem state x can take values in set X (i.e., x ∈ X) at any
stage t, where X is a subset of integers. We let ai denote
the controller action regarding event i, so that an action can
be defined by ai ∈ {0, 1} as in the case admission/rejection
or by ai ∈ � as in the case of pricing, where � is the
set of real numbers. Note that the controller is allowed to
choose her/his actions independently for all (x, t) pairs, and
there is no restriction among the actions regarding different
events. The action vector a = (a1, a2, . . . , an) denotes the
actions for all possible events. At each stage, depending on
the controller action, Ri(a, x) (Ci(a, x)) is gained (incurred)
as an immediate reward (cost). The randomness is charac-
terized by a transition probability distribution at each stage
which is assumed to be independent of prior uncertainties.
The probability that event i occurs at stage t is given by pi,t ,
so

∑n
i=0 pi,t = 1 for all t. When event i occurs in state x at

stage t, the conditional probability that the next state is y if
controller selects action a is denoted by qt (a, x, y|i), hence∑

y qt (a, x, y|i) = 1 for all t, a, x, and i. We express the opti-
mal value function vt (x) according to the following equation
when the time left until the end of the horizon is T – t:

vt (x) = max
a

n∑
i=0

pi,t

∑
y∈X

qt (ai , x, y|i)(vt+1(y) + Ri(ai , x)).

(1)

Note that the action vector a is a function of x and t, but
we suppress this for notational simplicity. The event-based
approach allows us to define the value function vt (x) as a
convex combination of operators, Ti , where Ti is defined as
follows:

Tivt+1(x) = max
ai

∑
y∈X

qt (ai , x, y|i)(vt+1(y) + Ri(ai , x)),

hence vt (x) can be written as:

vt (x) =
n∑

i=0

pi,tmax
ai

∑
y∈X

qt (ai , x, y|i)(vt+1(y) + Ri(ai , x))

=
n∑

i=0

pi,t Tivt+1(x). (2)

3. ROBUST COUNTERPART OF NOMINAL
FRAMEWORK

This section introduces a robust version of the dynamic
program (which will be referred to as the nominal prob-
lem) described in Section 2. The robust formulation assumes
that a subset of the problem parameters is uncertain, where
robustness is captured as a game between the controller and
an adversary (Nature) that chooses parameters and takes the
min-max approach as in [2]. In this section, we assume that
the transition probability distributions are uncertain. Typi-
cally, the system controller decides on his actions before
observing the uncertain parameters. Once his decisions are
taken, Nature selects these parameters from an uncertainty set
in order to minimize the expected profit of the system. Hence,
the controller has to consider the worst-case scenario in terms
of the transition probability distribution when choosing his
actions. Our robust formulations for stochastic dynamic pro-
grams are based on the maximin approach suggested by Nilim
and El Ghaoui [18] and Iyengar [10].

In the robust formulation, the transition probabilities
belong to an uncertainty set, rather than being fixed values as
in the nominal problem. In the EBDP approach, the transi-
tion probabilities consist of two components as observed in
Eq. (1): qt (ai , x, y|i) and pi,t . We assume that qt (ai , x, y|i)
is known with certainty and pi,t is uncertain and can depend
on the chosen action and the system state.

We let pi,t (x, a) be the probability of observing event i
when the system is in state x and action vector a is cho-
sen at stage t. Note that a = (a1, . . . , an), so a specifies the
actions for all possible events. Naturally, a depends on state
x and stage t. However, as in the previous section, we sup-
press this dependency for notational simplicity. We assume
that pi,t (x, a) belongs to an uncertainty set Pt , where Pt

represents the available information on the event probabil-
ity distribution. Our uncertainty model is based on the model
proposed by Nilim and El Ghaoui [18], where the so-called
rectangularity property is the main condition for obtaining a
recursive solution. When the rectangularity property holds,
nature can independently select its action for every stage,
state and the controller action. This assumption essentially
implies that Nature’s choice of a particular distribution at
time t or in state x does not limit its choices in the future
or in other states. In addition to this basic assumption, we
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4 Naval Research Logistics, Vol. 00 (2017)

also assume that the uncertainty set at each stage t, Pt , is
independent of the controller’s action vector a as well as
the state x. Note that this additional assumption is not very
restrictive when handling queueing/inventory problems: The
state-dependent event probability distribution is difficult to
estimate from limited statistical data. Therefore, it is natural
to assume that uncertainty sets depend on common global
estimates rather than on state-dependent estimates. Moreover,
in typical examples, these probabilities represent demand or
processing rates which do not depend on the state of the
system or the actions taken.

Now, we let wt(x) be the robust counterpart of the value
function given in (2), and consider the following robust DP
equation:

wt(x) = max
a

{
min
pt (x,a)

n∑
i=0

pi,t (x, a)
∑
y∈X

qt (ai , x, y|i)

× (wt+1(y) + Ri(ai , x))

}
, (3)

where pt (x, a) = (p1,t (x, a), p2,t (x, a), . . . , pn,t (x, a)). This
problem can be solved recursively due to the above assump-
tions, as shown by Nilim and El Ghaoui [18] and Iyengar
[10].

Our next result, Theorem 1, shows that the optimal action
at any stage never depends on the choice of the event prob-
ability distribution at that stage. This allows to change the
order of maximization and minimization in Eq. (3). Then
the robust value functions can be presented analogously to
the nominal value functions, as shown in the second part of
Theorem 1. In Section 4.2, this result will play a key role in
extending the structural properties of the nominal MDPs to
the corresponding robust MDPs.

THEOREM 1: (i) The optimal policy of the controller
does not depend on the Nature’s posteriori decision.

(ii) The robust value function wt(x) can be expressed as:

wt(x) = min
pt (x)

{
n∑

i=0

pi,t (x)Tiwt+1(x)

}
. (4)

PROOF: Before proceeding with the proof, we state the
following observation that will be used below: Let’s suppose
f (x, y) ∈ � is any function. Further suppose that for every
y ∈ �, argmaxxf (x, y) = x∗ corresponds to a specific value
x∗ ∈ �. Then it is easy to show that maxx

{
minyf (x, y)

} =
minyf (x∗, y).

(i) Let pt = (p1,t , . . . , pn,t ) be any transition probability
distribution in uncertainty set Pt . If Nature decides to use p
before observing the controller’s action, the controller’s opti-
mal policy is determined by the solution of the following

problem:

max
a

n∑
i=0

pi,t

∑
y∈X

qt (ai , x, y|i)(wt+1(y) + Ri(ai , x)), (5)

by Eq. (3). We first observe that the optimal action corre-
sponding to an event does not have any effect on the optimal
actions of other events. Then, by the above observation, it is
clear that the controller’s optimal decision is unaffected by
the Nature’s choice of pt . This allows us to change the order
of maximization and summation in (5):

n∑
i=0

pi,tmax
a

∑
y∈X

qt (ai , x, y|i)(wt+1(y) + Ri(ai , x)), (6)

which can then be written in terms of operators Ti’s as
follows:

n∑
i=0

pi,t Tiwt+1(x). (7)

The optimal actions of the controller are the outputs of the
operators, which are the same for each possible choice of
pt = (p1,t , . . . , pn,t ). Hence, we can conclude that the opti-
mal policy of the controller does not depend on the Nature’s
posteriori decision.

(ii) Let a∗
t (x) = a∗ = (a∗

1 , . . . , a∗
n) be the optimal action

of the controller found as a result of the operators. From part
(1), we know that a∗

t (x) determines the controller’s optimal
policy, regardless of the Nature’s posteriori decision. Then,
in Eq. (3), it is enough for Nature to find the action which
minimizes the expected revenue of the controller for a∗

t (x)

only. Hence, Eq. (3) can be written as:

wt(x) = min
pt (x,a∗)

n∑
i=0

pi,t (x, a∗)
∑
y∈X

qt (a
∗
i , x, y|i)

× (wt+1(y) + Ri(a
∗
i , x)), (8)

But then we haveTiwt+1(x) = ∑
y∈X qt (a

∗
i , x, y|i)(wt+1(y)+

Ri(a
∗
i , x)) by definition. Moreover, a∗

t (x) is a function of x
and t, so that the original action-dependent probability distrib-
ution, pi,t (x, a) in (3) can be replaced by pi,t (x). Accordingly,
Eq. (8) can be expressed as follows:

wt(x) = min
pt (x)

n∑
i=0

pi,t (x)Tiwt+1(x). (9)

This completes the proof. �

By Theorem 1, we establish that the controller’s action
does not depend on the Nature’s posteriori action for all mod-
els that can be constructed within EBDP framework. This
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enables us to define the optimality equation as in (4). Con-
sequently, it is enough to solve the inner problem of Nature
only for one action of the controller, instead of solving it for
all possible actions of the controller, at each stage and state.
This not only improves the solution time significantly espe-
cially when the controller’s action set is large, but also leads
to useful structural properties.

Finally, we would like to remark about what this result
does not mean: Theorem 1 does not imply that actions at (x)

does not depend on Nature’s choices in all stages. Nature’s
actions in stages t ′ with t ′ > t , pi,t ′(x), affect the value func-
tions wt(x), which, in turn, influence actions at (x). More
specifically, actions at (x) depend on both the uncertainty sets
and Nature’s choices in stages t + 1, t + 2, . . . , T . Moreover,
Nature’s optimal actions, pi,t (x), depend on the controller’s
actions, at (x), unless some special conditions hold. To sum-
marize: (1) at (x) does not depend on pi,t (x), but it depends
on pi,t ′(x) and Pt ′ with t ′ > t . (2) at (x) does not depend on
pi,t (x), but pi,t (x) depends on at (x).

4. STRUCTURAL PROPERTIES FOR NOMINAL
AND ROBUST MDPS

In this section, we first present the structural properties of
nominal MDPs, then extend these to robust MDPs within the
EBDP framework. For this purpose, we first define the prop-
erties of the value functions that can guarantee the existence
of monotone optimal policies. In an EBDP framework, if the
operators preserve these properties, then the value functions
will also have them due to the construction of EBDP and the
value iteration algorithm.

4.1. Structural Properties for Nominal MDPs

We are interested in the following properties of the value
function: (1) Nonincreasingness (nondecreasingness) in x
refers to vt (x) ≤ (≥)vt (x − 1) for all x ≥ 1 and all t, and
(2) concavity (convexity) in x refers to: vt (x + 1) − vt (x) ≤
(≥)vt (x) − vt (x − 1) for all x ≥ 1 and all t. Concavity and
monotonicity properties of the value functions determine the
structure of the optimal policies as well, for example, concav-
ity of the value function leads to the optimality of threshold
policies for admission control and optimal base stock policies
for inventory control.

Next, we consider the supermodularity/submodularity of
the value functions in x and t, which has not been studied
in this perspective to our knowledge: Supermodularity (sub-
modularity) (in (x, t)) refers to vt (x) − vt (x − 1) ≥ (≤)

vt+1(x)−vt+1(x −1) for all x ≥ 1 and all t. These properties
ensure that optimal thresholds of structured optimal policies
are also monotone in time. The preservation of supermodu-
larity is related to the marginal benefit (MB) of the operator,

which is first defined by Çil et al. [6]. MB of an operator
indicates the difference of the value functions between the
two systems, where one system observes the event that cor-
responds to the operator and the other system remains in the
same state. Hence, the MB of the operator, Bi , is given by:

Biv(x) = Tiv(x) − v(x). (10)

Then, Eq. (2) can be written in terms of Bi as follows:

vt (x) =
n∑

i=0

pi,tBivt+1(x) + vt+1(x), (11)

since
∑n

i=0 pi,t = 1 for all t. This representation of the value
function sets a direct relationship between the MB function
and the supermodularity/submodularity properties in the con-
text of these systems. If the MB function of an operator
Ti , Bivt (x), is nonincreasing (nondecreasing) in x, then sub-
modularity (supermodularity) in x and t is preserved by the
corresponding operator, Tivt (x).

To summarize, we are interested in the operators which
preserve the following properties: nonincreasingness (NI),
nondecreasingness (ND), concavity (C). Moreover, the MB
functions of the operators should be either nonincreasing
(MB-NI) or nondecreasing (MB-ND). Properties NI, ND,
and C are well studied in the EBDP framework. In particular,
part (i) of Theorem 2 is established by Koole [13], which is
included for completeness. Part (ii) of Theorem 2 establishes
the link between the monotonicity of MB functions and the
submodularity (supermodularity) of the value functions.

THEOREM 2:

(i) If a nominal value function, vt (x), can be represented
as a convex combination of operators with properties
NI (ND) and C, then vt (x) is NI (ND) and C.

(ii) Furthermore, if all the operators that constitute the
nominal value function have property MB-ND (MB-
NI), then vt (x) is supermodular (submodular) in x,
t.

PROOF: We provide only the proof of part (ii) when all
the operators have property MB-ND, that is, Bivt (x) is ND
in x for all t, since the other case is similar. Then, we have:

vt (x) − vt+1(x) =
n∑

i=0

pi,tBivt+1(x)

≥
n∑

i=0

pi,tBivt+1(x − 1)

= vt (x − 1) − vt+1(x − 1), (12)
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6 Naval Research Logistics, Vol. 00 (2017)

where the first and last equalities are due to Eq. (11) and the
inequality follows from the assumption that MB functions,
Bivt (x), are ND in x for all t. This completes the proof. �

REMARK: Theorem 2 establishes concavity under
fairly general conditions, so that threshold policies are opti-
mal for all models that can be represented by a convex combi-
nation of the operators above. It also ensures the supermodu-
larity (submodularity) property for a general class of models
under the limitation that all the operators of a given model
should have ND (NI) MB functions. However, this limitation
turns out to be more restrictive and problem-dependent. For
instance, it is not natural to conceive a queueing system that
consists of operators whose MB functions are all NI (or ND).
By nature, queueing systems do not possess this property
(see the queueing operators in Section 5). There are, however,
plausible inventory systems that support the property.

4.2. Structural Properties for Robust MDPs

In this section, we show that the robust value functions
have similar properties as nominal value functions for the
problems of interest, regardless of the shape of the uncer-
tainty set. Our main result extends Theorem 2 to the robust
counterparts of the nominal problems under consideration.
More explicitly, for any problem that can be expressed in the
form of Eq. (2), all the structural results given in Theorem 2
extend to the value function of the robust counterpart, wt(x).

THEOREM 3:

(i) If a robust value function, wt(x), can be represented
as a convex combination of operators with properties
NI (ND) and C, then wt(x) is NI (ND) and C.

(ii) Furthermore, if all the operators that constitute the
robust value function have property MB-ND (MB-
NI), then wt(x) is supermodular (submodular) in x,
t.

PROOF: Let p∗
t (x−1), p∗

t (x), p∗
t (x+1) denote the optimal

choices of Nature in states x–1, x and x + 1, respectively, at
stage t, in the rest of the proof.

We first establish concavity. Assume that wt+1(x) is con-
cave in x at stage t + 1. By assumption, all operators that
constitute the value function preserve concavity in x. Then,
the convex combination of these operators also preserve this
property. Hence, we can write the following inequality:

∑
i

p∗
i,t (x)Tiwt+1(x − 1) +

∑
i

p∗
i,t (x)Tiwt+1(x + 1)

≤ 2

[∑
i

p∗
i,t (x)Tiwt+1(x)

]
. (13)

We know that:∑
i

p∗
i,t (x − 1)Tiwt+1(x − 1) ≤

∑
i

p∗
i,t (x)Tiwt+1(x − 1),

by the optimality of p∗
t (x − 1) in state x – 1, and:∑

i

p∗
i,t (x + 1)Tiwt+1(x + 1) ≤

∑
i

p∗
i,t (x)Tiwt+1(x + 1),

by the optimality of p∗
t (x + 1) in state x + 1. Then, the sum

of the left-hand-sides (LHSs) of these two inequalities is less
than the LHS of inequality (13), which proves that wt(x) is
concave in x at stage t.

Next, we prove that the robust value function, wt (x) which
is represented as a convex combination of operators with
properties ND and C is also ND and C. The result for oper-
ators with properties NI and C can be proven similarly. We
suppose that wt+1(x) is ND in x. Then Tiwt+1(x) is ND in x,
since Ti is one of the operators defined in Table 1. Hence, we T1
have:∑

i

p∗
i,t (x − 1)Tiwt+1(x − 1) ≤

∑
i

p∗
i,t (x)Tiwt+1(x − 1)

≤
∑

i

p∗
i,t (x)Tiwt+1(x),

(14)

where the first inequality is due to the optimality of p∗
t (x −

1) in state x–1, and the second inequality follows since
Tiwt+1(x) is ND in x. This completes the proof of Part (i).

We prove part (2) only for the case when MB functions of
all the operators are ND, since the proof of the other case is
similar. First, let us note that by Eqs. (11) and (9), we have:

wt(x) − wt+1(x) =
∑

i

p∗
i,t (x)Biwt+1(x).

On the other hand:∑
i

p∗
i,t (x)Biwt+1(x) ≥

∑
i

p∗
i,t (x)Biwt+1(x − 1)

≥
∑

i

p∗
i,t (x − 1)Biwt+1(x − 1),

where the first inequality follows since Biwt+1(x) is ND in x,
and the second inequality is due to the optimality of p∗

t (x−1)

in state x–1, and. Therefore:

wt(x) − wt+1(x) =
∑

i

p∗
i,t (x)Biwt+1(x)

≥
∑

i

p∗
i,t (x − 1)Biwt+1(x − 1)

= wt(x − 1) − wt+1(x − 1).

This completes the proof. �
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Turgay, Karaesmen, and Lerzan: Structural Properties of Robust Control Problems 7

Table 1. Definitions for the operators (Q denotes a queueing operator and I denotes an inventory operator, see Appendix A for more details).

Type Operator name Notation Definition

I Rationing TRi
v(x) Special case of TBRi

where B = 1
I Batch rationing TBRi

v(x) maxκi∈min(x,B) {κiRi + v(x − κi)}
I Production rate TPRi

v(x) max�∈[0,1]
{−C�i

+ �iv(x + 1) + (1 − �i)v(x)
}

I Production TPi
v(x) max {v(x + 1) − Ci , v(x)}

I Inventory pricing TIPv(x) maxR

{
F̄Z(R)[v(x − 1) + R] + FZ(R)v(x)

}
Q Admission TADMi

v(x) Special case of TBADMi
where B = 1

Q Batch admission TBADMi
v(x) maxκi

{κiRi + v(x + κi)}
Q Controlled departure TCDi

v(x) max {v(x − 1) − Ci , v(x)}
Q Departure rate TDRi

v(x) max�∈[0,1] {−C� + �v(x − 1) + (1 − �)v(x)}
Q Queue pricing TQPv(x) maxR

{
F̄Z(R)[v(x + 1) + R] + FZ(R)v(x)

}
Q Uncontrolled arrival TARRv(x) a(x)v(x + 1) + (1 − a(x))v(x)
Q Uncontrolled departure TDEPv(x) b(x)v(x − 1) + (1 − b(x))v(x)
- Cost TCOSTv(x) v(x) − h(x)
- Fictitious TFICv(x) v(x)

Theorem 3 establishes a general result: the robust value
function wt(x) has the same monotonicity properties with the
nominal value function vt (x), regardless of the uncertainty
set in stage t. Particularly, this result implies that the structure
of the optimal policy of the robust problem is the same with
the nominal problem. Hence, the robust problem could have
the same computing cost with its nominal counterpart.

Here, we note the role of the assumption that event prob-
abilities belong to the same uncertainty set for all states x in
each period, that is, pi,t (x) ∈ Pt for all x for given i and t.
Theorem 3 will not be true when this assumption is relaxed.
Consider the following counter example to the simplest prop-
erty ND in the rationing problem defined by Eq. (2), where
the controller aims to maximize the total expected reward
over a finite horizon, N. We set the value function at the end
of the horizon to 0 for all states, that is, VN(x) = 0 for all x.
In period N–1, it will be optimal for the controller to satisfy
the demand for all types when x > 0, so that TiwN−1(x) > 0
for all i and x > 0 in (14). Then, Nature will aim to minimize
the probability that a type-i demand occurs in period N–1 for
all i. Now assume that there are two different uncertainty sets
for states x and x–1 for all demand types i: pi,N−1(x) ∈ (0, 1)

and pi,N−1(x−1) ∈ (0.4, 0.6) for all i. Note that for the nom-
inal problem which uses the expectation over an uncertainty
set, all of these sets will have the same demand probability
0.5. Hence, the structure of the nominal problem will not be
affected. It is easy to see that Nature will select p∗

i,N−1(x) = 0
and p∗

i,N−1(x − 1) = 0.4 for all i, which makes the right-
hand side of (14) zero whereas the left-hand side will be
strictly positive. Similar sets can be found for other proper-
ties also. Hence, the results of the theorem are violated when
the uncertainty sets are allowed to change with respect to
state x.

Finally, let us briefly discuss the infinite horizon exten-
sion. Iyengar [10] and Nilim and El Ghaoui [18] establish

that the respective controller and nature policies are station-
ary for the infinite horizon problem. Moreover, Nilim and
El Ghaoui [18] show that the optimal value function of the
infinite horizon problem with a discounted cost function can
be obtained as the unique limit of the finite horizon problem.
This implies that the optimal policy structure can be extended
to the infinite horizon case.

5. STRUCTURAL PROPERTIES OF SOME
QUEUEING AND INVENTORY CONTROL

PROBLEMS

In this section, we introduce a number of commonly-used
operators for queueing and inventory problems as in Koole
[13, 14] and Çil et al. [6]. Table 1 presents type (“I” for inven- T1
tory and “Q” for queueing), names, notations, and definitions
of these operators. Their detailed definitions as well as the
structural properties they preserve are summarized in Table
4 in Appendix A. T4

From Koole [13] and Çil et al. [6], it is known that if an
initial value function v(x) is concave in x, then the operators
in Table 1 preserve concavity in x. In addition, the queue- T1
ing operators preserve the NI property whereas the inventory
operators preserve the ND property in x. Note that addi-
tional conditions are necessary for general forms of TARR

and TDEP , and for TCOST to preserve these properties as
given in Çil et al. [6]. Çil et al. [6] showed the following
properties of the MB function:

PROPERTY 1 (Properties of the MB function):
1. The MB functions of the below operators are nonin-

creasing (NI) in x.

(a) The queueing operators, admission control BAi
v(x),

batch admission BBAi
v(x), queue pricing BQPi

v(x),

and uncontrolled arrival BUAi
v(x),
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8 Naval Research Logistics, Vol. 00 (2017)

(b) The inventory operators, production control BPi
v(x)

and production rate control BPRi
v(x).

2. The MB functions of the below operators are nonde-
creasing (ND) in x.

(a) The queueing operators, controlled departure
BCDi

v(x), departure rate BDRi
v(x), uncontrolled

departure BUDi
v(x),

(b) The inventory operators, rationing BRi
v(x), batch

rationing BBRi
v(x) and inventory pricing BIPi

v(x).

Property 1 shows that these operators have all the proper-
ties that satisfy the assumptions of Theorems 2 and 3, so that
all the nominal and robust MDP models that can be repre-
sented by a combination of these operators have monotone
and concave value functions. Moreover, if all the operators
in a certain model have MB-NI (MB-ND) property, then the
corresponding value functions are also supermodular (sub-
modular) in x and t. However, note that, as remarked above,
it is not possible to represent a meaningful queueing system
with only the operators having MB-NI or MB-ND properties.
Hence, queueing systems do not possess supermodularity
or submodularity. There are, however, plausible inventory
systems that support the property.

6. ILLUSTRATION OF THE FRAMEWORK

The aim of this section is to illustrate our results in well-
known models. The illustrative example in Section 6.1 points
out why our results are interesting even in a simple setting.
Section 6.2, on the other hand, presents well-known problems
in the literature that can be analyzed within our framework.

6.1. An Illustrative Example: Robust Capacity Control

To illustrate the type of results that we seek in the sequel,
let us take the example of single-resource capacity control
problem from revenue management Lautenbacher and Stid-
ham [15], where the objective is to admit or reject demands
from customer classes with different rewards to maximize the
expected reward until the end of the horizon. This problem
is modeled using multiple inventory rationing operators. The
nominal value function can be expressed as:

vt (x) =
n∑

i=1

pi,t TRi
vt+1(x) + p0,t vt+1(x) for x > 0

where x denotes the number of available inventory (seats) and
pi,t is the probability of a class-i arrival with a corresponding
reward of Ri in period t (p0,t corresponds to the probabil-
ity that there are no arrivals in period t). Note that a similar

problem in revenue management is analyzed by Turgay et al.
[23].

Following the results in Cil et al. [6] and Theorem 2, it is
easily seen that vt (x) is concave in x for all t and is super-
modular in (x, t). Using these properties, we conclude that a
threshold (protection level) policy is optimal due to concavity
and that the optimal thresholds are monotone over time due
to supermodularity. This formulation naturally assumes that
the event probabilities pi,t do not depend on the state of the
system.

To obtain numerical results, let us focus on a particular
case of the above problem with two customer classes where
the arriving batch size is equal to one (single arrivals) and
p1,t = p1, p2,t = p2 for all t. For each demand class ai = 1
denotes the action that admits the arriving demand, and ai = 0
corresponds to rejecting the customer. The nominal problem
is then represented by:

vt (x) = p1 max {a1(vt+1(x − 1) + R1) + (1 − a1)vt+1(x)}
+ p2 max {a2(vt+1(x − 1) + R2) + (1 − a2)vt+1(x)}
+ p3vt+1(x) for x = 1, 2, ..., Q.

with vT (x) = 0, for all x, and vt (0) = 0 for all t.
Let us next consider the robust version where the uncer-

tainty set P consists of two vectors: p1 = (p1, p2, p3) =
(0.48, 0.2, 0.32) and p2 = (p1, p2, p3) = (0.45, 0.55, 0).
There are clearly four admissible actions as a = (a1, a2).
In summary, Nature is allowed to choose the probabil-
ity distributions at each stage, state and action from P:
(p1,t (x, a), p2,t (x, a), p3,t (x, a)) ∈ P = {p1, p2}.

Then the robust value function is given by the following
recursion.

wt(x) = max
a

{
min

pt (x,a)∈P
p1,t (x, a)

× (a1(wt+1(x − 1) + R1) + (1 − a1)wt+1(x))

+ p2(x, a) (a2(wt+1(x − 1) + R1)

+(1 − a2)wt+1(x)) + p3(x, a)wt+1(x)

}
. (15)

with wT (x) = 0, for all x, and wt(0) = 0 for all t.
Let us further assume that T = 20, R1 = 10, R2 = 1 and

that the starting inventory level is 12. We solve the resulting
robust MDP numerically. Let a∗

t (x) denote the optimal action
selected by controller at time t and state x and p∗

t (x) denote
the optimal event probability distribution selected by Nature
for that action. Table 2 reports p∗

t (x) and a∗
t (x) for t = 5, 10, T2

15, and x = 1, 2, . . . , 12.
The numerical solution reveals an interesting property for

this example. It is observed from Table 2 that both the con- T2
troller’s and Nature’s optimal policies are state and time
dependent. In particular, for Nature, different probability dis-
tributions may be optimal at different states and at different
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Turgay, Karaesmen, and Lerzan: Structural Properties of Robust Control Problems 9

Table 2. Controller’s and Nature’s optimal policies for the example.

t ↓ | x → 1 2 3 4 5 6

5 (1, 0), p2 (1, 0), p2 (1, 0), p2 (1, 0), p2 (1, 0), p2 (1, 0), p2
10 (1, 0), p2 (1, 0), p2 (1, 0), p2 (1, 0), p2 (1, 0), p2 (1, 0), p2
15 (1, 0), p2 (1, 0), p2 (1, 0), p2 (1, 0), p2 (1, 1), p1 (1, 1), p1
t ↓ | x → 7 8 9 10 11 12
5 (1, 0), p2 (1, 0), p2 (1, 0), p2 (1, 0), p2 (1, 0), p2 (1, 0), p2
10 (1, 0), p2 (1, 0), p2 (1, 1), p2 (1, 1), p1 (1, 1), p1 (1, 1), p1
15 (1, 1), p1 (1, 1), p1 (1, 1), p1 (1, 1), p1 (1, 1), p1 (1, 1), p1

times. Regardless, as established by Theorem 3, the robust
value function is concave in x for all t and is supermodular in
x and t just like the nominal value function. As a result, the
optimal policy of the controller is of threshold type. For each
t, there is a protection level for Class-2 demand arrivals below
which they are rejected. In addition, these protection levels
are nonincreasing in t. This is an interesting result because
the robust problem has the same optimal policy structure as
the nominal problem even though the event probability dis-
tributions chosen by Nature do depend on t and on x in the
robust case.

6.2. Illustrations from the Literature

In this section, we present some results on the structure
of optimal policies for robust versions of some well-known
examples from the literature using the earlier results.

We first consider an extended version of the single-
resource capacity control problem introduced in Section 6.1
by adding dynamic pricing. In this case, rationing operators
and dynamic pricing operators are used together in order to
model a special customer segment (class n + 1 that is offered
a spot price). A typical value function is then given by:

vt (x) =
n∑

i=1

pi,t TBRi
vt+1(x) + pn+1,t TIPvt+1(x)

+ p0,t vt+1(x),

By Theorem 3, the value function of the robust version is
concave, so that optimal admission policies are of threshold
type, and the thresholds are monotone over time. Moreover,
optimal prices to charge to class n + 1 are nonincreasing in x
and in t.

Apart from discrete-time models, our results apply for
continuous-time models under certain assumptions. In partic-
ular, a class of continuous-time problems can be converted to
equivalent discrete time problems using uniformization [17].
Uniformization converts the transition rates of a continuous-
time model to the transition probabilities of an equivalent

discrete-time model. The basic assumption needed in the uni-
formization technique is the existence of a bound on the total
potential transition rates in all states and time periods of the
continuous-time model under consideration. To be able to use
uniformization in a robust setting, the total potential transition
rate should continue to be bounded over all the uncertainty
sets in all time periods. If the uncertainty in the model can be
represented after the conversion in discrete time, the results
continue to apply directly. As an example, let us consider the
uniformized version of a typical admission control problem
to a single-server Markovian queue [13]:

vt (x) = −h(x) + p1,t TADMvt+1(x) + p2,t TDEPvt+1(x)

+ p0,t vt+1(x),

where x denotes the number of customers in the system, p1,t

is the probability of an arrival, p2,t is the probability of a
service completion and h(x) is a nondecreasing and convex
holding cost function.

From Theorem 3, the optimal admission control policy of
the robust version of the above problem is a threshold pol-
icy but optimal thresholds are not necessarily monotone over
time because the MBs of the two operators have monotonicity
properties in opposing directions.

Now, let us consider a dynamic pricing and production
control problem for a make-to-stock queue with lost sales
(see Gayon et al. [8] for example). After uniformization, the
value function is expressed as:

vt (x) = −h(x) + p1,t TIP vt+1(x) + p2,t TP vt+1(x)

+ p0,t vt+1(x),

where x denotes the available inventory, p1,t is the probability
of a potential demand arrival, p2,t is the probability of pro-
duction completion and h(x) is a nondecreasing and convex
holding cost function.

Using Theorem 3, we observe that the optimal production
policy is determined by a threshold and that the optimal prices
are nondecreasing in x for the robust version of this problem.
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10 Naval Research Logistics, Vol. 00 (2017)

7. NESTED UNCERTAINTY SETS: STRUCTURE
OF OPTIMAL POLICIES

In this section, we aim to investigate the conditions under
which the monotonicity results shown in the previous section
can be extended. It has been shown by several authors that
less conservative robust policies are more adaptive to volatile
conditions than both nominal and absolute robust policies.
Examples can be found in [19, 23, 25]. We focus on a spe-
cial formulation -S-robust policy-, an extended robust for-
mulation recently proposed by Xu and Mannor [25], and
explore the structure of the robust value function for nested
uncertainty sets. In this formulation, the uncertainty is not
represented by a single uncertainty set, but by a number of
uncertainty sets that have a nested structure. Each uncertainty
set corresponds to a probabilistic guarantee for a different
confidence level. Then, the corresponding optimal policy,
which is called S-robust, must take into account these dif-
ferent probabilistic guarantees. In this section, we show that,
for the class of problems treated in this paper, the structural
properties of the standard and robust problem are retained for
the S-robust counterpart.

Similarly to Xu and Mannor [25], we define the nested
uncertainty sets as follows P1

t ⊆ P2
t ⊆ · · · ⊆ PK

t for
all t, so that the uncertain transition probability distribution
belongs to set Pk

t with probability λk , where λk ≥ λk−1 and∑K
k=1(λk − λk−1) = 1 by setting λ0 = 0. In this context,

a policy is said to be S-robust if it satisfies the following
condition:

wt(x) = max
a

{ K∑
k=1

(λk − λk−1)

(
min

pt (x,a)∈Pk
t

n∑
i=0

pi,t (x, a)

∑
y∈X

qt (ai , x, y|i)(wt+1(y) + Ri(ai , x))

)}
, (16)

Eq. (16) is a convex combination of K expressions with the
same structural properties. It is clear that Theorem 3 is also
valid for this equation. The S-robust value function wt(x) can
then be represented as follows:

wt(x) =
K∑

k=1

(λk − λk−1)

(
min

pk
t (x)∈Pk

t

{∑
i

pk
i,t (x)Tiwt+1(x)

})
,

(17)

where pk
t (x) = (pk

1,t (x), . . . , pk
n,t (x)) is the transition proba-

bility distribution that Nature will select from uncertainty set
Pk

t . Note that (17) can also be expressed as:

wt(x) =
K∑

k=1

(λk − λk−1)

(
min

pk
t (x)∈Pk

t

{∑
i

pk
i,t (x)Biwt+1(x)

})

+ wt+1(x).

REMARK: We note the extension of the structural
results to S-robust policies has not used the assumption that
the sets are nested. Consequently, the structural results will
still be valid when there are K different uncertainty sets Pt

for all t, where Pt ’s are completely arbitrary. We let γk be the
probability that uncertainty set k is used in any period, where∑K

k=1 γk = 1. Then replacing (λk −λk−1) with γk in Eq. (17)
will give the desired result.

REMARK: S-robust policies can be used to reflect varying
degrees of conservatism. As a simple example, consider the
case where the controller believes that a certain probability
distribution (nominal parameter) will occur with probability
λ1, and with probability 1 − λ1 the probability distribution
will be chosen from an uncertainty set (which includes the
nominal parameter) by Nature in order to minimize the con-
troller’s expected revenue. Then, taking λ1 = 0 corresponds
to the robust problem, where the controller is the most con-
servative, while λ1 = 1 corresponds to the nominal problem,
where the controller is the least conservative. Hence, increas-
ing values of λ1 shows decreasing degrees of conservatism.
By using more than one λ1, we can model even more com-
plicated conservatism types and degrees. With this approach,
we can define a set of comparable robust strategies system-
atically and evaluate their performance with respect to other
parameters such as variance, fill rates, service level etc.

Now we investigate the possibility of having some monot-
onicity results with respect to uncertainty sets. In this case,
we consider two similar robust MDP models, identical except
for their uncertainty sets which are nested, that is, P1

t ⊆ P2
t

for all t. Let wk
t (x) denote the robust value function corre-

sponding to Pk
t . Intuitively, we expect that the value function

of the system with a bigger uncertainty set should be greater,
that is, w1

t (x) ≤ w2
t (x) for all x and t. This can be formally

proven by induction as in Paschalidis and Kang [19].
On the other hand, establishing monotonicity of optimal

policies, which require second order comparisons turns out
to be much more challenging, see Turgay [26]. In particu-
lar, nested uncertainty sets do not imply monotone control
policies in general. However, it is possible to show such
monotonicity holds for special cases of uncertainty sets, see
Turgay et al. [23].

8. CONCLUSIONS AND PERSPECTIVES ON
FUTURE RESEARCH DIRECTIONS

We considered robust versions of a class of event-based
DPs frequently encountered in queueing and inventory con-
trol. Under event probability uncertainty, we were able to
show that robust optimal policies have the same structure
as nominal optimal policies. This is very appealing from a

Naval Research Logistics DOI 10.1002/nav

Naval Research Logistics, Vol. 65 (2018)708

Naval Research Logistics DOI 10.1002/nav



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Turgay, Karaesmen, and Lerzan: Structural Properties of Robust Control Problems 11

practical point of view because simple policies are easier to
communicate, parameterize and adjust.

In this section, we look into two challenging directions for
extending our results. Under other uncertain parameters than
event probabilities, general results appear difficult to obtain
and simple policies may no longer be optimal. Section 8.1
considers such a case when the uncertainty affects the rewards
of the model.

Multidimensional problems in queueing and inventory
control bring significant additional challenges because estab-
lishing structural properties usually requires verifying multi-
ple conditions that should hold simultaneously. Investigating
the structure of robust optimal policies for multi-dimensional
problems is an important avenue for further research. In
Section 8.2, we present a first step to tackle this kind of
problems.

8.1. Uncertainty on the Parameters of the Operators

So far we have considered the uncertainty affecting transi-
tion probability distributions, for which we are able to show
that the action of the controller does not depend on the
Nature’s posteriori action. However, this is not necessarily
true when problem parameters that appear in the operators,
such as costs or rewards, are subject to uncertainty. Conse-
quently, uncertainty on these parameters leads to a more chal-
lenging situation, and our previous results do not generalize
easily.

In this section, we illustrate one way of modeling uncer-
tainties affecting other parameters, which may lead to a more
systematic analysis in the future. Specifically, we consider an
uncertainty on the reward parameter of the rationing opera-
tor in a model which consists of a number of such operators,
and assume that the corresponding transition probability dis-
tributions are fixed and known. We first observe that if we
define a separate uncertainty set on the reward for each oper-
ator, then Nature will choose the minimal reward, so that
the controller can solve the problem for only these parame-
ters. Consequently, this case leads to a trivial solution and is
not interesting. However, an intriguing situation arises when
Nature has to decide on the reward for a group of operators
simultaneously within a given uncertainty set. As before, let
us assume that the uncertainty sets for rewards do not depend
on the state and the controller’s action. This is plausible when
the rewards fluctuate according to state-independent exter-
nal factors. However, there might be other interesting cases
where this assumption may not hold. For instance, if there
are discounts or surcharges that apply to customers depend-
ing on the inventory level or queue length in addition to the
state-independent reward fluctuations, the below results do
not apply.

To represent this case, we define a super-rationing operator
as follows:

TRwt+1(x)

= max
a

{
min
Rt (x,a)

nR∑
i=1

pi,t (aiRi,t (x, a) + wt+1(x − ai))

}
,

(18)

where nR is the number of rationing operators, a =
(a1, . . . , anR

) with ai = 1 if an incoming type-i demand
is satisfied, and ai = 0 otherwise, and Rt (x, a) =
(R1,t (x, a), . . . , RnR ,t (x, a)). Hence, Nature will decide on a
set of rewards once he sees the actions of the controller. In
other words, Rt (a, x) is the response of Nature to controller’s
action a in state x at stage t.

Our second observation is that wt+1(x) is not a coeffi-
cient in Nature’s objective function. Hence, Nature’s response
depends only on the controller’s action a, which allows us to
modify Nature’s decision as Ri,t (a):

TRwt+1(x)

= max
a

{
min
Rt (a)

nRi∑
i=1

pi,t (aiRi,t (a) + wt+1(x − ai))

}
.

(19)

Finally, we define MB of the super-rationing operator as
follows:

BRw(x) = TRw(x) −
nR∑
i=1

piw(x).

Now we are ready to present the main result of this section:

LEMMA 4: If w(x) is ND and concave in x for all x at
stage t + 1, then the super-rationing operator TRw(x) has the
following properties:

1. TRw(x) is ND in x,
2. TRw(x) is concave in x,
3. BRw(x) is ND in x.

PROOF: The proof is given in Appendix B.

Lemma 4 implies that the super-rationing operator
TRwt+1(x) can be incorporated in any robust value func-
tion wt(x) consisting of the operators given in Table 5 with T5
certain (or uncertain) event probabilities without violating
the structural properties of wt(x). Hence, in the presence of
this super-operator, the structure of the optimal policy corre-
sponding to the regular operators remains the same. However,
Lemma 4 does not guarantee that the optimal policy cor-
responding to the super-operator has a monotone structure,
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12 Naval Research Logistics, Vol. 00 (2017)

as the example given in Appendix C demonstrates. In this
example, we demonstrate that the optimal rationing policy
is not always monotone even though the value function w(x)
has the same mathematical properties with the nominal value
function v(x).

In this section, we propose a specific way to represent
an uncertainty on rewards through a so-called super oper-
ator which consists of a number of the same operators. This
representation is a novel idea, which presents a vast set of pos-
sibilities through combining different types of operators by
defining appropriate super operators. Another approach can
be accounting for uncertainties which affect the parameters of
the operators and the transition probabilities at the same time.
These approaches can be explored further in future research.

8.2. Monotonicity Properties in Multidimensional
Systems

In this section, we point out another research direction
with the aim of extending our results on uncertain transition
probabilities to settings with multi-dimensional states. The
systems that can be represented in this setting include, but
are not limited to, tandem queues, queueing networks and
parallel queues. We consider some of the first and second-
order inequalities considered by Koole [14]. In this section,
we prove that an operator which preserves these properties in
the EBDP framework will continue to preserve them in the
robust EBDP framework. The first half of the section presents
the formal definitions of the properties that are considered,
while the second half illustrates our results through specific
operators.

Let x = (x1, . . . , xm) denote the state of the system, where
xi is the number of type-i customers in the system. The cus-
tomer types can be associated with a set of parameters or with
the position of customers in the system, such as the number
of customers at a certain node of a network. We set ei as
the i th unit vector, and e0 as the zero vector. Now, we are
ready to present the formal definitions of the properties that
are adopted from [14] when the objective is maximization,
as opposed to minimization in [14]:

Property 8.1:
1. A function f has nonincreasing property (NI) if for all

1 ≤ j < m:

f (x + ej ) ≤ f (x). (20)

2. A function f has upstream-nonincreasing property
(UNI) if for all 1 ≤ j < m:

f (x + ej ) ≤ f (x + ej+1). (21)

3. A function f has Schur concavity property (SC) if for all
x and k, j with k �= j and xk ≤ xj :

f (x + ej ) ≤ f (x + ek), (22)

and for all x and k, j with k �= j and xk =xj , and all b> 0:

f (x + bek) = f (x + bej ). (23)

4. A function f has asymmetric Schur concavity property
(ASC) if for all x and k, j with k< j and xk ≤ xj :

f (x + ej ) ≤ f (x + ek), (24)

and for all x and k, j with k< j and xk =xj , and all b> 0:

f (x + bej ) ≤ f (x + bek). (25)

5. A function f has componentwise-concavity property
(CCv) if for all 1 ≤ j < m:

f (x + 2ej ) + f (x) ≤ 2f (x + ej ). (26)

The following theorem represents the main result of this
section, as it extends the EBDP framework from a nominal
setting to robust setting:

THEOREM 5: Let T = {Ti}ni=1 be a set of operators that
preserve Property 8.1.� for � = 1, . . . , 5. Then a robust MDP
model that consists of any combination of operators in T will
induce a robust value function wt(x) that has Property 8.1.�.

PROOF: We prove the statement for properties (2), (4) and
(5), where the others can be proven similarly.

(2) Since all operators preserve UNI property, the follow-
ing inequality holds for any element p ∈ Pt , in particular,
for Nature’s choice in state x + ej+1, pi

t (x + ej+1):

n∑
i=1

pi
t (x + ej+1)Tiwt (x + ej )

≤
n∑

i=1

pi
t (x + ej+1)Tiwt (x + ej+1).

However, Nature’s choice in x + ej , pi
t (x + ej ) will achieve

a lower value for the LHS of this inequality:

n∑
i=1

pi
t (x + ej )Tiwt (x + ej )

≤
n∑

i=1

pi
t (x + ej+1)Tiwt (x + ej ),
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Turgay, Karaesmen, and Lerzan: Structural Properties of Robust Control Problems 13

Table 3. Definitions for multi-dimensional operators, where Rj is the reward of admitting a type-j job, and a+ = max {0, a}. Note that
μ ≤ 1 in operator TMS and cj+1 ≤ cj in operator TC .

Operator name Notation Definition

Admission TAj
f (x) max

{
f (x), f (x + ej ) + Rj

}
Uncontrolled arrival TUAj

f (x) f (x + ej )

Uncontrolled departure TUDj
f (x) f

(
(x − ej )

+)
Moving server TMSf (x) max{

j :xj >0
} {

μ
(
(x − ej )

+) + (1 − μ)f (x)
}

Routing TRf (x) max1≤j≤m

{
f

(
x + ej

)}
Cost TCf (x) f (x) − c(x), where c(x) = ∑

j cj xj

which proves that the robust value function wt(x) that has
Property 8.1. (2).

(4) Let k, j and x be such that k < j and xk ≤ xj . Since
all operators preserve ASC property, the following inequal-
ity holds for any element p ∈ Pt , in particular, for Nature’s
choice in state x + ek , pi

t (x + ek) :

n∑
i=1

pi
t (x + ek)Tiwt (x + ej ) ≤

n∑
i=1

pi
t (x + ek)Tiwt (x + ek).

But Nature’s choice in state x + ej , pi
t (x + ej ) will achieve a

lower value for the LHS of this inequality:

n∑
i=1

pi
t (x + ej )Tiwt (x + ej ) ≤

n∑
i=1

pi
t (x + ek)Tiwt (x + ej ),

which proves the first inequality required for Property 8.1.
(4).

Now we consider the second inequality. We let k, j and x
be such that k < j and xk = xj , and b > 0. Then we have:

n∑
i=1

pi
t (x + bej )Tiwt (x + bej )

≤
n∑

i=1

pi
t (x + bek)Tiwt (x + bej )

≤
n∑

i=1

pi
t (x + bek)Tiwt (x + bek),

where the first inequality is due to the optimality of Nature’s
choice in state x+bej , and the other holds since all operators
preserve ASC property.

(5) All operators preserve CCv property, so that the follow-
ing inequality holds for any element p ∈ Pt , in particular,
for Nature’s choice in state x + ej , pi

t (x + ej ):

n∑
i=1

pi
t (x + ej )Tiwt (x + 2ej ) +

n∑
i=1

pi
t (x + ej )Tiwt (x)

≤ 2
n∑

i=1

pi
t (x + ej )Tiwt (x + ej ).

Nature’s choice in states x+2ej and x, pi
t (x+2ej ) and pi

t (x),
respectively, will achieve a lower value for the LHS of this
inequality:

n∑
i=1

pi
t (x + 2ej )Tiwt (x + 2ej ) +

n∑
i=1

pi
t (x)Tiwt (x)

≤
n∑

i=1

pi
t (x + ej )Tiwt (x + 2ej ) +

n∑
i=1

pi
t (x + ej )Tiwt (x),

which proves that the robust value function wt(x) has
Property 8.1. (5). �

Now we illustrate the impact of these results by consid-
ering some of the operators analyzed for the nominal MDP
models by Koole [14]. We present the operators, which are
updated according to the objective of maximizing profits in
Table 3. A system which can be represented as a combination T3
of these operators can serve m customer types, where type j
can be characterized by its holding cost (cj ) and instantaneous
reward (Rj ).

In the admission operator TAj
, the controller decides

whether to admit an incoming type-j job and earn an instan-
taneous reward Rj or reject the customer. The uncontrolled
arrival operator TUAj

admits all incoming customers, whereas
the uncontrolled departure operator TUDj

serves a type-j cus-
tomer. The moving server operatorTMS chooses the customer
type to be served next. In this setting, service preemption is
allowed, so the departure operators may interrupt an ongoing
service if necessary. Note that the operators are defined in a
slightly more general manner in Koole [14], here we assume
that the holding costs are linear, that is, c(x) = ∑

j cj xj ,
and the service rate is the same for all types of customers.
Koole [14] shows that the above operators preserve almost
all of the properties defined in Property 8.1 when ci+1 ≤ ci

(please see Koole [14] for specific results). Then, Theorem 12
guarantees that these operators will continue preserving these
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14 Naval Research Logistics, Vol. 00 (2017)

properties in the robust setting. Accordingly, all systems that
can be represented by these operators will have their value
functions satisfy the relevant properties of Property 8.1 in the
corresponding robust counterpart.

For instance, take the dynamic scheduling problem of a
server that serves multiple classes of customers in their sepa-
rate queues. Typical models involve the operators TUAj

, TMS

and TC . By Theorem 12, it is better to be in state x + ej+1

rather than in x + ej , which immediately translates to the
well-known cμ rule through operator TMS : The cμ rule gives
service priority to type-j customers whenever the product of
the holding cost cj and the service rate μj for type j has
the largest value among all types. In this section, we assume
equal service rates for all types and cj+1 ≤ cj , so Theorem
12 guarantees the optimality of the cμ rule in all models that
can be represented by the above operators. As an example
of going further, we can get additional results if we add the
admission control operator TAj

, then because of componen-
twise concavity, there is an admission threshold for queue j
whenever all other queue lengths are constant.

Schur Concavity and Almost Schur Concavity is about the
preference for more balanced queueing loads across different
queues. They are typically useful in admission control prob-
lems. For instance, combiningTR ,TUAj

andTC , we can model
a routing problem to multiple parallel queues. Thanks to SC
and increasingness, the optimal policy routes to the short-
est queue whenever the service rates in the parallel queues
are identical. For asymmetric service rates, ASC along with
increasingness establishes that it is preferable to route to the
faster server if it has a shorter queue.

We consider only a subset of the operators and the prop-
erties to be preserved by these operators. Extending differ-
ent monotonicity results of the value functions to a multi-
dimensional setting for a larger set of operators is an inter-
esting and challenging problem even for the standard setting
(see [21] for some recent results). Obviously, this presents a
much bigger challenge in a robust formulation.

APPENDIX A: STRUCTURAL PROPERTIES OF
THE NOMINAL PROBLEM

In this section, we give the following monotonicity properties of the
operators introduced in Table 1.T1

A.1. Inventory Control Operators

Batch Rationing Operator

The batch rationing operator represents the choice of the number of cus-
tomers to be admitted from an arriving batch of class-i customers with batch
size Bi in inventory systems. Some of the customers in a batch can be
admitted while the remaining ones are rejected, which is defined as par-
tial acceptance. κi is the number of class-i customers admitted from this
batch, and Ri is the reward obtained by admitting one class-i customer.

Definition of the Operator

TBRi
v(x) = maxκi∈min(x,B) {κiRi + v(x − κi} ,

TBRi
v(x) = maxκi∈min(x,B) {v(x − κi) − v(x) + κiRi} + v(x)

Rationing Operator

The rationing operator is a special case of the batch rationing operator
where the batch size B is exactly 1. However, we provide separate proofs for
this operator as well in this section.

Definition of the Operator
TRi

v(x) = max {Ri + v(x − 1), v(x)} for x > 0,
TRi

v(x) = {v(x − 1) − v(x) + Ri}+ + v(x) for x > 0, TRi
v(x) = v(x)

for x = 0

Production Rate Operator

Production rate operator represents the choice of optimal service rate in
production-inventory systems for production unit i. If the system uses �i

portion of the service rate, then a nonnegative cost of C�i
is incurred.

Definition of the Operator
TPRi

v(x) = max�∈[0,1]
{−C�i

+ �iv(x + 1) + (1 − �i)v(x)
}

,
TPRi

v(x) = max�i∈[0,1]
{
�i {v(x + 1) − v(x)} − C�i

} + v(x)

Production Operator

The production operator is a special case of production rate operator where
�i = {0, 1} and Ci0 = 0.

Definition of the Operator
TPi

v(x) = max {v(x + 1) − Ci , v(x)} ,
TPi

v(x) = {v(x + 1) − v(x) − Ci}+ + v(x)

Inventory Pricing Operator

The inventory pricing operator represents the optimal price to be charged
for the arriving customers in inventory systems. FZ(.) is the cumulative dis-
tribution function of the reservation price of an arriving customer, where R
is the maximum price a customer is willing to pay.

Definition of the Operator
TIPv(x) = maxR

{
F̄Z(R)[v(x − 1) + R] + FZ(R)v(x)

}
for x > 0,

TIPv(x) = maxRF̄Z(R) {v(x − 1) − v(x) + R} + v(x) for x > 0,
TIPv(x) = v(x) for x = 0.

A.2. Queueing Operators

The queueing operators we consider throughout the article are given in
the following. It is important to note that the waiting room is infinite.

Batch Admission

The batch admission operator represents the choice of the number of the
customers to be admitted from an arriving batch of class-i customers with
batch size B in queueing systems. Some of the customers in a batch can be
admitted while the remaining ones are rejected, which is defined as partial
acceptance κi is the number of class-i customers admitted from this batch,
and Ri is the reward obtained by admitting one class-i customer.
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Table 4. Monotonicity results.

Operator name Supermodularity in (x, t) Bv(x) Tv(x)

Rationing Supermodular ND. in x ND. in x
Batch rationing Supermodular ND. in x ND. in x
Production Submodular NI. in x ND. in x
Production rate Submodular NI. in x ND. in x
Inventory pricing Supermodular ND. in x ND. in x
Admission Submodular NI. in x NI. in x
Batch admission Submodular NI. in x NI. in x
Controlled departure Supermodular ND. in x NI. in x
Departure rate Supermodular ND. in x NI. in x
Queue pricing Submodular NI. in x NI. in x
Uncontrolled arrival to a queue Submodular NI. in x NI. in x
Uncontrolled departure from a queue Supermodular ND. in x NI. in x

Definition of the Operator

TBADMi
v(x) = maxκi∈min(x,B) {κiRi + v(x + κi} .

TBADMi
v(x) = maxκi∈min(x,B) {v(x + κi) − v(x) + κiRi} + v (x)

Admission

The admission operator is a special case of the batch admission operator
where the batch size B is exactly 1.

Definition of the Operator
TADMi

vt (x) = max {Ri + vt+1(x + 1), vt+1(x)} ,
TADMi

vt (x) = {vt+1(x + 1) − vt+1(x) + Ri}+ + vt+1(x).

Departure Rate Operator

The departure rate operator represents the choice of the best service rate
in queueing systems. If the system uses � portion of the service rate, then a
nonnegative cost of C� is incurred.

Definition of the Operator
TDRi

v(x) = max�∈[0,1] {−C� + �v(x − 1) + (1 − �)v(x)} for x > 0,
TDRi

v(x) = max�∈[0,1] {� {v(x − 1) − v(x)} − C�} + v(x) for x > 0,
TDRi

v(x) = v(x) for x = 0

Controlled Departure Operator

The controlled departure operator is a special case of the departure rate
operator where � = {0, 1} and C0 = 0.

Definition of the Operator
TCDi

v(x) = max {v(x − 1) − Ci , v(x)} for x > 0,
TCDi

v(x) = {v(x − 1) − v(x) − Ci}+ + v(x) for x > 0,
TCDi

v(x) = v(x) for x = 0.

Queue Pricing Operator

The queue pricing operator represent the optimal price to be charged for
the arriving customers in queueing systems. FZ(.) is the cumulative distri-
bution function of the reservation price of an arriving customer, where R is
the maximum price a customer is willing to pay.

Definition of the Operator

TQPv(x) = maxR

{
F̄Z(R)[v(x + 1) + R] + FZ(R)v(x)

}
,

TQPv(x) = maxRF̄Z(R) {v(x + 1) − v(x) + R} + v(x)

Uncontrolled Arrival to a Queue

The uncontrolled arrival operator represents the arrival process to a queue-
ing system. The function a(x) is, the probability that an arriving customer
joins the system when there are x customers, which we refer to as the join-
ing probability. We assume that a(x) is NI in x. When a is constant, arrival
operator models a system where customers enter the system with a fixed
probability, independent of the state, or choose not to enter the system with
probability 1 − a. We will call this type of arrivals as regular arrivals, since
they do not depend on the state of the system.

Definition of the Operator

TARRv(x) = a(x)v(x + 1) + (1 − a(x))v(x),

TARRv(x) = a(x) {v(x + 1) − v(x)} + v(x)

Uncontrolled Departure to a Queue

The uncontrolled departure operator represents the departure of an exist-
ing customer from the system, where the service rate may depend on the
state of the system. The function b(x) corresponds to the probability of a
service completion when the system has x customers. We assume that b(x)
is an ND function of x.

Definition of the Operator
TDEPv(x) = b(x)v(x − 1) + (1 − b(x))v(x) for x > 0,
TDEPv(x) = b(x) {v(x − 1) − v(x)} + v(x) for x > 0,
TDEPv(x) = v(x) for x > 0.

APPENDIX B: PROOF OF LEMMA 4

LEMMA 4: If w(x) is ND and concave in x for all x at stage t + 1, then
the super-rationing operator TRw(x) has the following properties:

1. TRw(x) is ND in x,
2. TRw(x) is concave in x,
3. BRw(x) is ND in x.

PROOF: We give the details of the proof for concavity, the proof of ND
is similar and simpler.
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Table 5. Demonstration of concavity.

Case ai(x − 1) ai(x + 1) Inequality

I 0 0 w(x) + w(x) ≥ w(x − 1) + w(x + 1)

II 1 1 w(x − 1) + Ri(a−1) + w(x − 1) + Ri(a1) ≥
w(x − 2) + Ri(a−1) + w(x) + Ri(a1)

III 0 1 w(x − 1) + w(x) + Ri(a1) ≥ w(x − 1) + w(x) + Ri(a1)

IV 1 0 w(x − 1) + Ri(a−1) + w(x) ≥ w(x − 2) + Ri(a−1) + w(x + 1)
w(x − 1) − w(x − 2) ≥ w(x) − w(x − 1) ≥ w(x + 1) − w(x)

For notational simplicity, suppose that we define aj as the optimal action
in state x + j with j = −1, 0, 1, where aj = (a

j

1 , . . . , aj
nR

). We note that the
corresponding optimal action of Nature depends only on the action of the
controller a, that is, it does not depend on state x. Accordingly, we can let
R(aj ) = (R1(aj ), R2(aj ), . . . , RnR

(aj )) for j = −1, 0, 1 denote Nature’s
corresponding optimal decisions in states x – 1, x and x + 1, respectively.

We first observe that replacing the optimal pair (a0, R(a0)), denoting the
controller’s action and Nature’s choice in state x, by the pairs (a−1R(a−1))

and (a1, R(a1)) will lead to a smaller revenue, so that:

2
nR∑
i=1

a0
i pi (w(x − 1) + Ri(a0)) + pi(1 − a0

i )w(x) ≥
nR∑
i=1

a−1
i pi (w(x − 1) + Ri(a−1)) + pi(1 − a−1

i )w(x)+
nR∑
i=1

a1
i pi (w(x − 1) + Ri(a1)) + pi(1 − a1

i )w(x). (27)

Now we would like to show that the right-hand side of (27) satisfies the
following inequality, which establishes the concavity of the value functions:

nR∑
i=1

a−1
i pi (w(x − 1) + Ri(a−1)) + pi(1 − a−1

i )w(x)+
nR∑
i=1

a1
i pi (w(x − 1) + Ri(a1)) + pi(1 − a1

i )w(x) ≥
nR∑
i=1

a−1
i pi (w(x − 2) + Ri(a−1)) + pi(1 − a−1

i )w(x − 1)+
nR∑
i=1

a1
i pi (w(x) + Ri(a1)) + pi(1 − a1

i )w(x + 1).

We analyze the four different cases for each operator i separately, where
Table 5 presents the results. In Cases I and II, the inequality is satisfied dueT5
to the concavity of w, whereas it is obvious in Case III. In Case IV, concavity
is used twice, once for state x – 1 and then for x.

We note that concavity does not imply the following argument:

[
w(x − 1) + Ri(a0)

]
≤ w(x) ⇒

[
w(x − 2) + Ri(a−1)

]
≤ w(x − 1).

In other words, although the value functions are concave in x, the cor-
responding optimal actions are not necessarily monotone, see the counter
example in the next section.

Now we prove that BRw(x) is ND in x. We first observe that BRw(x) =
TRw(x) − w(x) can be written as follows:

nR∑
i=1

(
a0

i pi (w(x − 1) + Ri(a0)) + pi(1 − a0
i )w(x)

)
− w(x)

=
nR∑
i=1

a0
i pi (Ri(a0) + w(x − 1) − w(x)).

Then we need to show that the following inequality holds:

nR∑
i=0

piai [Ri(a0) − �w(x)] ≥
nR∑
i=0

piai [Ri(a−1) − �w(x − 1)].

The left-hand side of this inequality is always larger when the optimal pair
(a0, R(a0)) is replaced by the optimal pair in state x – 1, (a−1R(a−1)). Hence,
the result will be established if the following inequality holds:

nR∑
i=0

piai [Ri(a−1) − �w(x)] ≥
nR∑
i=0

piai [Ri(a−1) − �w(x − 1)],

But this is always true by the concavity of w. �

APPENDIX C: COUNTER EXAMPLES

C.1 Counter Example for Monotonicity of Thresholds

We consider a single-resource revenue management system with 4 cus-
tomer classes and compare two systems. The admission reward of each class
is as follows: R1 = 40, R2 = 35, R3 = 30, R4 = 20 and is identical for the
two systems.

The uncertainty set defining probabilities are denoted as P and defined as
follows:

P = {(p1, p2, p3, p4) : 4p1 + 2p2 + 3p3 + p4 ≥ 1.65,

0.1 ≤ pi ≤ 0.2i = 1, . . . , 4} .

Now consider the second system. The uncertainty set P ′ of that system
includes the uncertainty set of the first system P ′ ⊇ P . The definition of P ′
is as follows:

P ′ = {(p1, p2, p3, p4) : 4p1 + 2p2 + 3p3 + p4 ≥ 1.65,

0.1 ≤ pi,t ≤ 0.2i = 1, . . . , 4, t �= T − 5,

0.05 ≤ pi,t ≤ 0.325i = 1, 2, 0.1 ≤ pi,t ≤ 0.2i = 3, 4 t = T − 5
}

.

If we denote the value function and probabilities of the second system with
w′

t (x) and p′
i,t (x), it is apparent that w′

t (x) = wt (x) and p′
t (x) = pt (x) for

t = T − 1, . . . , T − 4.
We then numerically calculate the values for wT −5(x) and w′

T −5(x) for
x = 1, 2. The results are as follows where the greater values between the
systems are shown with boldface letters:
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x wT −5(x) w′
T −5(x) �wT −5(x) �w′

T −5(x)

1 33.68 33.54 33.68 33.54
2 61.53 61.40 27.85 27.86

Therefore, in the above example, neither of the �wP ≥ (≤)�wP ′

statements are true.

C.2. Counter Example: Optimal Action Depends on
Nature’s Decision When Rewards Are Uncertain

We consider a revenue management problem with a five customer classes
and represent it by a super-rationing operator TR . Suppose each class has
an arrival probability of 0.10 and the uncertainty set for rewards con-
sists of two distinct points over the horizon, that is, R = {

R1, R2
}

and
R1 = (60, 40, 45, 10, 10) and R2 = (60, 40, 42.5, 20, 10). Consider stage
T–1, when it is optimal to accept all classes regardless of Nature’s posteri-
ori decision, so that the optimal solution aT −1(R1, x) and aT −1(R2, x) are
both (1, 1, 1, 1, 1) and the corresponding Nature choice is R1. We obtain
the optimal solution by enumerating all possible actions, and compute
wT −1(x) = 16.5, �wT −1(x) = 16.5 for all x > 0.

Now consider the next stage and suppose the inventory level is 1. We
obtain wT −2(x) similarly by enumerating all possible actions a. The opti-
mal actions of the controller and Nature are (1, 1, 1, 0, 0) and R2, respectively,
with the corresponding value function 25.8. The optimal actions of the
controller aT −2(R1, 1) and aT −2(R2, 1) are different for R1 and R2 : If
Nature selects R1, the optimal action aT −2(R1, 1) is (1, 1, 1, 0, 0), whereas if
Nature selects R2, the optimal action is aT −2(R2, 1) is (1, 1, 1, 1, 0). Finally,
note that the fourth class with a reward R4 = 20 is rejected although
20 > wT −1(x) = 16.5.

C.3. Counter Example for Optimality of Threshold
Policy When Rewards are Uncertain

We, again, consider a revenue management problem with a five customer
classes, represented by a super-rationing operator TR . Now we set the time
horizon as T = 15, where the first decision epoch is t = 0. The uncertainty
affects only the rewards generated by the customer classes, so that the para-
meters regarding the event probabilities are certain. Moreover, we assume
that the rewards at stages t = 3, . . . , 15 are also known and fixed. The
parameters of the model are given in the following table:

Operator (i) Ri,t pi,t

1 60 0.1
2 50 0.1
3 45 0.1
4 23 0.13
5 20 0.1

Now suppose that at t = 2 the rewards may take values according to the
four different scenarios given below without any change in the transition
probabilities:

Scenario R1 R2 R3 R4 R5

1 45 50 40 46 50
2 60 50 42 31 20
3 50 55 40 27 30
4 50 60 45 23 20

At t = 1, the optimal admission policy of the controller and the optimal
scenario chosen by the Nature at x = 4 and x = 5 are given as follows, which
shows that optimal policy does not have a threshold structure.

x Admission Policy Scenario

4 (11101) 2
5 (11110) 3

Finally, we note the following: If a production operator were added to
the above model, the resulting optimal production policy would still be a
base-stock policy for all t, since the robust value functions are concave in
the presence of the super-rationing operator.

REFERENCES

[1] J. Bagnell, A. Ng, and J. Schneider, Solving uncertain Markov
decision problems, Technical Report, CMU-RI-TR-01-25,
Robotics Institute, Carnegie Mellon University, 2001.

[2] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust opti-
mization, Princeton University Press, Princeton, USA, 2009.

[3] D. Bertsimas, D. Gamarnik, and A.A. Rikun, Performance
analysis of queueing networks via robust optimization, Oper
Res 59 (2011), 455–466.

[4] D. Bertsimas and A. Thiele, A robust optimization approach
to inventory theory, Oper Res 54 (2006), 150–168.

[5] S.I. Birbil, J.B.G. Frenk, J.A.S. Gromicho, and S. Zhang,
The role of robust optimization in single-leg airline revenue
management, Manage Sci 55 (2009), 148.

[6] E.B. Cil, E.L. Ormeci, and F. Karaesmen, Effects of sys-
tem parameters on the optimal policy structure in a class of
queueing control problems, Queue Syst 61 (2009), 273–304.

[7] E. Delage and S. Mannor, Percentile optimization for Markov
decision processes with parameter uncertainty, Oper Res 58
(2010), 203–213.

[8] J.P. Gayon, I. Talay Degirmenci, F. Karaesmen, and E.L.
Örmeci, Dynamic pricing and replenishment in a pro-
duction/inventory system with Markov-modulated demand,
Probab Eng Inform Sci 33 (2009), 205–230.

[9] A.Y. Ha, Inventory rationing in a make-to-stock production
system with several demand classes and lost sales, Manage
Sci 43 (1997), 1093–1103.

[10] G.N. Iyengar, Robust dynamic programming, Math Oper Res
30 (2005), 257.

[11] A. Jain, A.E.B. Lim, and J.G. Shanthikumar, On the optimality
of threshold control in queues with model uncertainty, Queue
Syst 65 (2010), 157–174.
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