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Abstract—Location-based queries enable fundamental services for mobile users. While the benefits of location-based services (LBS)
are numerous, exposure of mobile users’ locations to untrusted LBS providers may lead to privacy concerns. This paper proposes
STARCLOAK, a utility-aware and attack-resilient location anonymization service for privacy-preserving LBS usage. STARCLOAK

combines several desirable properties. First, unlike conventional approaches which are indifferent to underlying road network structure,
STARCLOAK uses the concept of stars and proposes cloaking graphs for effective location cloaking on road networks. Second,
STARCLOAK supports user-specified k-user anonymity and l-segment indistinguishability, for enabling personalized privacy protection
and for serving users with varying privacy preferences. Third, STARCLOAK achieves strong attack-resilience against replay and query
injection attacks through randomized star selection and pruning. Finally, to enable efficient query processing with high throughput and
low bandwidth overhead, STARCLOAK makes cost-aware star selection decisions by considering query evaluation and network
communication costs. We evaluate STARCLOAK on two datasets using real-world road networks, under various privacy and utility
constraints. Results show that STARCLOAK achieves improved query success rate and throughput, reduced anonymization time and
network usage, and higher attack-resilience in comparison to XSTAR, its most relevant competitor.
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1 INTRODUCTION

The growth of location-based services (LBSs) is fueled by
ubiquitous wireless connectivity, universal presence of smart
mobile devices, and increased investments from industry and
government in the Internet of Things and connected vehicles. As
more and more users and vehicles are connected continuously and
automatically, they are embraced by life-enriching location-based
services, including but not limited to emergency assistance, real-
time traffic alerts, and location recommendations.

Despite growing research in providing services for mobile
users traveling on road networks [1], [2], [3], [4], users’ loca-
tion privacy poses an important concern. Unauthorized location
exposure may cause vulnerability for abuse such as unwanted
advertisement, spam, stalking, and location spoofing. In addition,
when private location data of a mobile user is linked to sensitive
public locations such as health clinics, cancer treatment centers,
nightclubs or religious organizations, such unauthorized linkage
may cause ethical, professional, and social risks both to individ-
uals and the society at large. As a result, it becomes imperative
to protect road network travelers’ location privacy as they interact
with LBS providers via service queries.

In this paper, we design and develop STARCLOAK, a loca-
tion anonymization service for protecting the location privacy of
mobile users. STARCLOAK forms a middle layer between mobile
users and untrusted LBS providers, such that for any user who
wants to issue a query to the LBS provider, the user’s query is
first intercepted by STARCLOAK, their true location is cloaked
according to user-desired privacy and utility specifications, and
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only the cloaked location is made available to the LBS provider.
The design of STARCLOAK incorporates several desirable aspects.
First, STARCLOAK takes into account the road network structure
for effective privacy protection and efficient query processing
with anonymized locations. Second, STARCLOAK supports user-
defined, personalized privacy and utility goals such as k-user
anonymity and l-segment indistinguishability to meet different
users’ different privacy preferences. Third, STARCLOAK achieves
high resilience against attacks that are relevant in the mobile
location privacy domain, such as replay attacks and query injection
attacks. Finally, STARCLOAK aims to minimize the communi-
cation and IO costs of privacy protection, i.e., it incurs a small
time overhead for anonymizing users’ locations, and anonymized
cloaked locations are compact enough to be sent through a
wireless network with little bandwidth overhead.

Efficient and effective implementation of the anonymization
services provided by STARCLOAK requires the development of
several optimized data structures and algorithms. To that end,
STARCLOAK uses optimized data structures such as star, star
graph, and cloaking graph. STARCLOAK maintains its internal
data structures as new queries are processed, and generates candi-
date star-sets as cloaked regions when it finds that certain users’
queries can be successfully served. STARCLOAK’s candidate star-
set pruner, which is implemented with high parallelism, enables
pruning of candidate star-sets to generate low-cost cloaked regions
with improved attack-resilience, thanks to randomized pruning. In
addition, we also propose two variants of STARCLOAK, namely
spatially bounded STARCLOAK and hybrid STARCLOAK, for
generating more compact cloaked regions with negligible sacrifice
in query success rate and throughput.

We evaluate STARCLOAK and its variants through extensive
experiments on real-world Georgia and California road networks
of different scales, under varying privacy and utility constraints.
We also compare STARCLOAK with two baseline anonymization
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approaches (random sampling and network expansion) as well
as XSTAR [5], which is the most relevant work to ours from
the literature. Results show that STARCLOAK offers significantly
improved query success rate and throughput. Furthermore, com-
pared to XSTAR, STARCLOAK achieves substantially reduced
anonymization time, network bandwidth usage, and improved
resilience against inference attacks.

Contributions: In summary, the novelty and contributions of
this paper can be stated as follows:

(1) We design and develop STARCLOAK, a location anony-
mization service for protecting the location privacy of mobile
travelers on road networks. The design of STARCLOAK achieves:
(i) user-defined, personalized privacy and utility goals through k-
user anonymity and l-segment indistinguishability, (ii) resilience
against correlation-based replay and query injection attacks, and
(iii) reduction of communication and time costs of anonymization.

(2) We propose several optimized data structures and algo-
rithms to implement STARCLOAK efficiently and effectively.

(3) We further propose two variants of STARCLOAK: Spatially
Bounded STARCLOAK and Hybrid STARCLOAK. These variants
enable generating more compact cloaking regions so that lower
query processing and communication costs can be attained; how-
ever, they incur increased anonymization time.

(4) We experimentally evaluate STARCLOAK and its vari-
ants against two baseline anonymization approaches and XSTAR,
which is the most relevant work to ours from the literature [5].
Experiments show that STARCLOAK can achieve substantial im-
provements compared to XSTAR, especially in terms of efficiency
and attack-resilience.

2 RELATED WORK

Location privacy has been an active research area in recent years
and several mechanisms were developed for privacy-preserving
LBS usage. We analyze related work in two categories: (i) privacy
in unconstrained geographic environments, (ii) privacy for mobile
travelers on road networks. In the former, users’ locations may be
in any point of the geographical space. However, in case of mobile
travelers on road networks, since their mobility is constrained
by the underlying road network, works under the first category
may be vulnerable to map-matching or similar attacks. In contrast,
works under the second category take into account the structure of
the road network while enforcing privacy. STARCLOAK belongs
to the second category.

2.1 Privacy in Unconstrained Environments
For preserving privacy in unconstrained environments, many ap-
proaches utilize the notion of location k-anonymity [6] with a
trusted third party (TTP) [7]. This TTP sits between the users
and the LBS provider, and acts as the anonymizer. The TTP
requirement was relaxed in [8], [9] using distributed servers and
in [10] to support peer-to-peer environments. A collaborative
peer-to-peer communication model called CAST was proposed
in [11], which leverages trusted peers and cached data to compute
results locally with lower latency. Personalized k-anonymity was
introduced in [12] so that users’ personalized privacy preferences
can be supported, e.g., different k for each user. In addition to k-
anonymity, application of l-diversity to location privacy can ensure
that the location of a user is indistinguishable between l different,
diverse locations [13]. To circumvent continuous tracking of users’
trajectories, a time-obfuscated approach was proposed by Hwang
et al. [14] which extends k-anonymity.

After the emergence of differential privacy (DP), an extension
of DP called geo-indistinguishability (GI) was developed and
applied in the LBS domain [15], [16]. An alternative to GI is
Bayesian location privacy, which obfuscates users’ locations such
that an optimal Bayesian adversary trying to reconstruct the user’s
true location from their obfuscated location will incur maximal
error [17], [18]. Yu et al. [19] proposed PIVE which considers both
GI and Bayesian location privacy. The Eclipse approach proposed
in [20] addresses a shortcoming of PIVE, which is resilience
against long-term observation attacks.

Sending fake queries to LBS providers with dummy locations
is another prominent privacy approach [21], [22]. Lu et al. [23]
segmented circular or grid regions into subregions, and distributed
dummies to radiuses or subgrids. Do et al. [24] proposed a
dummy generation method using conditional probabilities so that
dummies will remain resistant to adversaries with external spa-
tiotemporal knowledge. Liu et al. [25]’s method takes into account
spatiotemporal correlations when generating dummies. Hara et al.
[26] developed a dummy generation method to satisfy physical
constraints of the environment. Sun et al. [27] proposed a method
called PPCS to generate dummy locations while considering
semantic information of those locations, and showed that this
approach can withstand certain collusion and inference attacks.

Spatial transformations can be used to transform location
coordinates and/or evaluate LBS queries in the transformed space.
Gutscher [28] proposed an approach based on coordinate transfor-
mations using rotation and translation. Khoshgozaran et al. [29]
proposed a one-way transformation to map spatial objects and
queries to another space, and use a Hilbert curve-based approach
to evaluate range and nearest neighbor queries in the transformed
space. Gupta and Rao [30] proposed VIC-PRO for protecting
users’ location vicinity using geometrical transformations such as
reflection and transformation while satisfying k-anonymity.

Works discussed in this section assume unconstrained geo-
graphic environments, i.e., user’s location can be in any point of
the geographic space. However, since the mobility of road network
travelers is constrained by the underlying roads, these works are
often not suitable for road network travelers. For example: (i) a
k-anonymous circular cloaking region could remain vulnerable if
there is only one plausible road within it; (ii) if some dummy
locations reported by the traveler do not correspond to roads or it
is physically impossible to be driving there, then the adversary
can easily filter out the dummies. Furthermore, from a utility
perspective, knowledge of the road network can improve utility
and reduce query execution costs via various optimizations. Since
STARCLOAK is a privacy mechanism for road network travelers,
it is different from the works studied in this section.

2.2 Privacy for Mobile Travelers on Road Networks
Privacy mechanisms for mobile travelers on road networks can
be divided into three subcategories: mobile permission systems,
mix-zones, and location obfuscation. Mobile permission systems
are used to prevent untrusted third-party apps or LBS providers
to access users’ locations in sensitive zones. Felt et al. [31] and
Kelley et al. [32] studied users’ preferences and interactions with
mobile permission systems. Liu et al. [33] showed that a binary
classifier can predict users’ permission decisions with high accu-
racy. Olejnik et al. [34] developed SmarPer to enable personalized
permission decision making through machine learning. Yigitoglu
et al. [35] developed PrivacyZone, which protects users’ locations
from being disclosed to third party mobile apps in privacy-
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sensitive regions called quarantine areas. The optimizations in
PrivacyZone take advantage of road network structure. However,
works that fall under the permission system category are generally
not comparable to STARCLOAK because they either completely
block location access or randomly perturb the user’s location when
the user is in a sensitive zone. They do not guarantee privacy no-
tions such as k-user anonymity or l-segment indistinguishability.

Mix-zones have been employed in several works to circumvent
the risks of continuous location tracking on road networks. After
a set of users enter a mix-zone, they change pseudonyms and exit
the mix-zone such that the mapping between users’ old and new
pseudonyms is hidden. MobiMix considers road network, time
spent in mix-zone, and travel speed constraints to build attack-
resilient mix-zones [36]. Palanisamy and Liu [37] further improve
effectiveness and attack-resilience by studying continuous query
correlation attacks and non-rectangular mix-zones. The approach
in [38] enables distribution of group secret keys in cryptographic
mix-zones in the presence of malicious eavesdroppers, without
relying on trusted dealers. Vaas et al. [39] propose using fictive
chaff vehicles to establish attack-resilient mix-zones in areas with
low traffic density. Mix-zones differ from location obfuscation and
STARCLOAK in several ways. Most importantly, mix-zones do not
anonymize users on demand (i.e., when user issues query to a
LBS) but rather when sufficiently many users enter a mix-zone.

STARCLOAK falls under the location obfuscation subcategory.
Under this subcategory, Mouratidis and Yiu [40] provide k-
anonymity for road network travelers under reciprocity require-
ment. Chow et al. [41] support personalized privacy specifications
such that a cloaked region satisfies k-anonymity and includes a to-
tal minimum segment length of L. Li and Palanisamy [42] propose
reversible cloaking such that anonymity levels can be reduced to
accommodate multi-level privacy and selective de-anonymization.
Yang et al. [43] study the orthogonal problem of path privacy,
and define the M-cut requirement to achieve path privacy. A
similar path privacy problem is studied in [44]. Another orthogonal
problem is semantic-aware sharing of sensitive locations under
road network constraints [45], [46]. In contrast, STARCLOAK does
not require semantic annotation. Qiu et al. [47] design a location
obfuscation strategy to achieve geo-indistinguishability in spatial
crowdsourcing for vehicles on road networks.

Most closely related to our work under this category is XSTAR

[5], which also achieves personalized k-user anonymity and l-
segment indistinguishability for road network travelers. However,
XSTAR does not consider resilience against the attack models in
STARCLOAK, such as correlation-based replay attack and query
injection attack (Section 3.3). Furthermore, STARCLOAK has sev-
eral internal algorithms and data structures to improve efficiency
and attack-resilience, such as cloaking graphs and star-set pruning.
As a result, our experiments comparing STARCLOAK and XSTAR

show that STARCLOAK can achieve much higher throughput and
attack-resilience while being substantially faster than XSTAR.

3 STARCLOAK OVERVIEW AND CONCEPTS

This section presents an overview of STARCLOAK’s privacy,
utility, attack, and cost models, followed by the problem statement
which combines these models. STARCLOAK can be viewed as
a location anonymization service that sits between mobile users
and untrusted LBS providers. Assume that user Alice wants
to issue a LBS query. Without STARCLOAK, Alice’s query is
directly sent to the untrusted LBS provider with her true current
location; the LBS provider executes the query based on Alice’s
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Fig. 1: Overall architecture of STARCLOAK

location and sends the results back to Alice’s device. However, if
Alice is using STARCLOAK, then STARCLOAK first computes an
anonymized location for Alice and replaces her true location with
the anonymized location (transparently from Alice), before the
query is sent to the untrusted LBS provider. Hence, the privacy of
Alice’s true location is protected from the untrusted LBS provider.

Figure 1 illustrates the reference architecture. Let q denote
the original query of mobile user u. When u issues query q with
his/her true location, the location and query are intercepted by the
location anonymization engine. The engine transforms u’s true
location to a cloaked location S while meeting the personalized
privacy and utility profile of u. Next, the engine relays the
anonymized location and query to the LBS provider. The LBS
provider computes a candidate result, and the candidate result is
received by the location anonymization engine. Since the cloaked
location often has lower spatial resolution than the actual location
to meet privacy goals, the candidate result may contain false
positives. The anonymization engine performs post-processing of
the candidate result to filter false positives and obtain the exact
result. Finally, the exact result is delivered to u.

In STARCLOAK, we use a trusted third-party anonymization
server to provide anonymization service. As shown in Figure 1,
this server handles queries from many mobile users. There are
mainly two reasons why having a trusted server is preferred. First,
in order to provide k-user anonymity, STARCLOAK needs to know
the locations of multiple users simultaneously. This would be
difficult if STARCLOAK was deployed directly and independently
on each user’s device. Second, STARCLOAK’s anonymization is
based on road network information (see the Road Network Dataset
in Figure 1), which is usually too large for mobile users to store on
their device. Furthermore, there can be frequent updates to the road
network structure (e.g., road closures) which would necessitate
frequent application updates if STARCLOAK was deployed on the
user’s device. Therefore, we prefer to deploy STARCLOAK on a
trusted third-party anonymization server.

3.1 Road Network Model

A road network is represented as an undirected graph G =
〈VG, EG〉 with node set VG denoting road junctions and edge
set EG denoting roads, respectively. Each road connects a pair
of junctions. We use dG(v) to denote the degree of a node v
with respect to G, i.e., dG(v) = |{w|(v, w) ∈ EG}|. We call
v an intersection node if dG(v) ≥ 3. For example, Figure 2
illustrates a sample road network. The road junctions are shown
as VG = {v1, v2, ..., v16}. It holds that: dG(v1) = 2 and
dG(v5) = 3, therefore v5 is an intersection node. q1 and q2 are
queries of two hypothetical users; first user is traveling on the
road between v2 and v6, and second user is traveling on the road
between v6 and v7.
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Fig. 2: Road network and query injection example

An anonymized location in the road network can be repre-
sented as a subgraph. Border nodes are nodes that connect a
subgraph S to the remainder of the main graph G.

Definition 1 (Subgraph). S is a subgraph of road network G,
denoted by S = 〈VS , ES〉, if and only if VS ⊂ VG andES ⊂ EG.

Definition 2 (Border Node). Let S denote a subgraph of G. The
set of border nodes of S, denoted BV (S), are nodes in both S
and G but have edges that are in EG but not in ES . Formally:

BV (S) = {v | ∃w ∈ (VG \ VS) s.t. (v, w) ∈ EG}

Equivalently, border nodes are those nodes v in S that satisfy
the condition: dG(v) > dS(v). As an example, we can construct
a subgraph S in Figure 2 as: VS = {v2, v4, v5, v6, v7, v10} and
ES = {(v4, v5), (v5, v10), (v5, v6), (v6, v7), (v2, v6)}. In Figure
2, this subgraph is marked in bold. It can serve as the anonymized
location for users with queries q1 and q2. Then, it holds that:
BV (S) = {v2, v4, v7, v10}. Finally, we define a segment to refer
to a consecutive sequence of edges.

Definition 3 (Segment). A segment, denoted by v0vL, is a se-
quence of edges (v0, v1), . . . , (vi, vi+1), . . . , (vL−1, vL), where
all vi are unique and satisfy the conditions: dG(v0) ≥ 3,
dG(vL) ≥ 3, and dG(vi) = 2 for 0 < i < L.

3.2 Personalized Privacy and Utility Model
STARCLOAK enforces location privacy for mobile users while
considering privacy and utility simultaneously. It supports person-
alized location k-user anonymity and l-segment indistinguisha-
bility, such that instead of using a system-supplied fixed k or l
for all users and queries [6], it achieves high versatility via user-
specified privacy needs and specifications [48]. In addition, we
introduce two utility metrics to capture location utility constraints:
maximum spatial and temporal cloaking resolutions. These utility
metrics constrain and regulate STARCLOAK so that it performs
anonymization while meeting the spatial and temporal tolerances.

STARCLOAK performs location anonymization via cloaking,
i.e., user’s exact location is transformed into a cloaked region with
lower spatial resolution (such as a subgraph of the road network)
to achieve privacy. There are two formal privacy notions used in
STARCLOAK: k-user anonymity and l-segment indistinguishabil-
ity. k-user anonymity protects user u’s location by “hiding u in
a crowd”, i.e., enforcing at least k − 1 other users in the vicinity
of u report the same cloaked location. We observe that k-user
anonymity is not sufficient to prevent the linkage of user u with a
sensitive public location or road segment, since the cloaked k-
anonymized region may lack sufficient segment diversity, e.g.,
it may contain only a single road segment. This motivates the
proposal of l-segment indistinguishability.

Definition 4 (k-user anonymity). An anonymized location S
satisfies k-user anonymity if at least k active users report S.

Definition 5 (l-segment indistinguishability). An anonymized lo-
cation S satisfies l-segment indistinguishability if it contains at
least l different road segments.

In STARCLOAK, a query q is allowed to specify a custom
privacy requirement as (δqk, δ

q
l ), such that δqk ≥ 1 is the desired

k-user anonymity level and δql ≥ 1 is the desired l-segment
indistinguishability level.

A trivial approach to achieve maximum protection could be to
assign the whole road network G as the anonymized location.
However, this approach clearly provides weak utility and low
quality of service. Hence, we incorporate spatial and temporal
cloaking resolutions as utility constraints. The spatial constraint
σs bounds the spatial size of the anonymized location. This is
necessary so that anonymized locations are not arbitrarily large.
The temporal constraint σt bounds the maximum time delay
resulting from anonymization. This is necessary so that the query-
issuing user receives a response in a timely manner.

Definition 6 (Query profile). For user u with query q, we denote
by (δqk, δ

q
l , σ

q
s , σ

q
t ) the complete profile of q, where δqk, δ

q
l are the

privacy parameters and σqs , σ
q
t are the utility parameters.

For query q, combining the privacy parameters (δqk, δ
q
l ) and

utility parameters (σqs , σ
q
t ), we arrive at the complete profile

of q. By allowing each of the parameters to be query-specific,
STARCLOAK provides maximum flexibility to end users so that
each user can select different, personalized privacy and utility
levels that are suitable for them.

3.3 Attack Model
While k-user anonymity and l-segment indistinguishability pro-
vide desirable privacy properties, they may still be vulnerable to
attacks, as was shown by background knowledge attacks and min-
imality attacks on tabular k-anonymity and l-diversity definitions
[49]. These attacks enable adversaries to leverage their knowledge
of the anonymization algorithm and aggregate public statistics to
violate the privacy of their victims. As a result, the adversary may
be able to predict the user’s true location with confidence higher
than the desired limit of 1/l. In order to capture an adversary’s
power of associating u with a segment in the location privacy
domain, we use the notion of linkability [5].

Definition 7 (Linkability). For user u whose anonymized location
is S, the linkability of u with a specific segment s∗ ∈ S is the prob-
ability that adversary associates u with s∗ based on adversarial
background knowledge Kad, denoted as: link[u← s∗|S,Kad].

Next, we explain how Kad can be formulated and attacks can
be executed in a mobile LBS ecosystem. In particular, we consider
2 attacks: replay attacks and query injection attacks. We design
STARCLOAK to have high resilience against these attacks.

Correlation-Based Replay Attack: In a standard replay
attack, the adversary observes the anonymized location S and
attempts to reverse-engineer the user’s true location with under-
standing of the anonymization algorithm and underlying road
network structure [5], [41]. Specifically, the adversary re-runs the
anonymization algorithm, denoted A(·), for each segment s ∈ S
that could potentially be the mobile user’s actual location. The
similarity between S and the algorithm’s output S′ generated by
A, is used to estimate the likelihood of s having generated S:

like[S|u← s,Kad] =
|S′ ∩ S|
|S|

(1)
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In this paper, we consider an enhanced version of the replay attack,
called the correlation-based replay attack, in which the adversary
also knows the statistical density distribution of users on the road
network. For example, the adversary may know the traffic density
of the city during rush hour, which enables him/her to predict that
there is higher probability that the user is actually located on a
dense segment rather than a sparse segment. This is a realistic
assumption, given that density statistics are nowadays publicly
shared by the likes of navigation services and/or Uber Movement.

In the correlation-based replay attack, the likelihood compu-
tation of Equation 1 is enhanced in two ways. First, considering
that a user’s location is cloaked together with other active users
in the vicinity to achieve k-user anonymity, the placement of the
remaining k− 1 users in S is integrated into the calculation. Note
that there are a total of

((
S
k−1

))
different possible placements of

k − 1 queries in S. We denote by mi each placement, such that
1 ≤ i ≤

((
S
k−1

))
. Second, we denote by Pr[s] the probability of

user u being located on segment s, and by Pr[mi] the probability
of remaining k− 1 users being located as in the placement of mi,
both according to the knowledge of statistical density. Then, we
compute the enhanced likec[S|u← s,Kad] as:

likec[S|u← s,Kad] =

(( S
k−1 ))∑
i=1

Pr[s] · Pr[mi] · like[S|u← s,mi,Kad]

(2)
Then, linkability is calculated as:

link[u← s∗|S,Kad] =
likec[S|u← s∗,Kad]∑
s∈S likec[S|u← s,Kad]

(3)

Query Injection Attack: In the replay attack, the adversary
is passive (i.e., observer only). In the query injection attack, the
adversary is active, i.e., he/she is also capable of injecting queries
into the system. We expect anonymization algorithms with tight
σs constraints to be more vulnerable to the query injection attack.

A typical anonymization algorithm cloaks multiple segments
into an anonymized location if and only if they include at least
one active query, and through the shortest paths between the active
queries. This minimizes the size of S by not adding any redundant
segments to S, therefore such an algorithm has higher chance
of satisfying the σs constraints. However, the query injection
attack exploits this property as follows. Consider the anonymized
location S that consists of the bold lines in Figure 2. Suppose
that q1 and q2 are the queries injected by the adversary with
privacy profiles (δk, δl) = (3, 3). Then, the adversary can infer
that the third (actual) query was issued from either segment v4v5

or segment v5v10, since the segment v5v6 would not have been
added to S otherwise.

To integrate the effects of the query injection attack, the
likec calculation in Equation 2 is modified as follows. Let q̄ be
queries injected by an adversary, i.e., the adversary knows the
true locations of these queries. Then, if the placement mi is
plausible under q̄, we use the original value of Pr[mi] in the likec

calculation. If mi is implausible, e.g., one of the queries in q̄ is
from v4v5 but mi does not assign any queries to v4v5, we set
Pr[mi] = 0. The calculation of linkability is same as Equation 3.

3.4 Query Cost Model
An important challenge in finding an optimal anonymized location
S for a query q is to minimize the cost of the query when executed
with the anonymized location. We study two types of cost: cost of
query evaluation and cost of communication.

v1

v2

v3 v8 v13

v7
v6

v4

v5

v9

v10

v11

v12

v16

v15

v14

u

o1 o7 o8
o6

o5

o4

o2 o3

Fig. 3: Illustration of query processing on a road network

Cost of Anonymized Query Evaluation: Most query pro-
cessing approaches for road networks are based on two types
of fundamental operations: edge-based and node-based. An edge-
based operation takes a query q and an edge e as input and returns
a set of objects on e denoted Oe(q, e) which satisfy the query
condition. For segment s potentially composed of a sequence of
edges, we have: Os(q, s) = ∪e∈sOe(q, e). We denote by Cs the
average computation cost of evaluating the query on a segment.
In contrast, a node-based operation takes a query q and a node v
as input and returns a set of objects in the vicinity of v denoted
Ov(q, v) which satisfy the query condition. The computation cost
of evaluating a node-based query is denoted by Cv .

Let q denote a query issued at some position while traveling
on segment s, and let vsb and vse denote the two ends of s. The
query result R(q, s) satisfies the following:

R(q, s) ⊆ Os(q, s) ∪ Ov(q, vsb) ∪ Ov(q, vse) (4)

We give an example in Figure 3. A 3-nearest neighbor query is
issued by a user u located on segment v5v6. The exact answer
to this query is R(q, s) = {o5, o6, o7}, which is indeed a subset
of the union of Os(q, v5v6) = {o5, o6}, Ov(q, v5) = {o1, o6, o7}
and Ov(q, v6) = {o3, o4, o5}. We extend this model from a single
segment s to anonymized locations which potentially consist of
a set of segments S by employing the concept of border nodes
(see Definition 2). Concretely, the result of query q with S as its
anonymized location satisfies:

R(q, S) ⊆ (∪s∈SOs(q, s)) ∪
(
∪v∈BV (S)Ov(q, v)

)
(5)

Consequently, the evaluation cost of q with anonymized loca-
tion S, denoted by costeval(q, S) can be estimated as:

costeval(q, S) = Cs · |S|+ Cv · |BV (S)| (6)

where |BV | denotes the number of border nodes in S and |S|
denotes the number of segments in S.

Cost of Communication: We presented the architecture and
communication phases of STARCLOAK in Figure 1. Here, when
calculating the cost of communication, we focus specifically on
the cost that is added due to the usage of a location anonymization
service such as STARCLOAK.

For query q, the communication cost in mobile client’s exact
request sent and the exact result it receives do not change depend-
ing on whether an anonymization service is used or not, since
a service request takes a fixed encoded format and the size of
the exact answer is fixed. With respect to the messages exchanged
between the location anonymization service and the LBS provider,
we measure communication cost as the length of the sent and
received messages, and use ‖x‖ to denote the encoded length of
object x. For the message sent from the anonymization service to
the LBS provider, the query remains intact while the location is
anonymized by cloaking it to a set of segments S. Therefore, the
communication cost here is ‖q‖+‖S‖. The message sent from the
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LBS provider to the anonymization service contains the candidate
resultR(q, S); hence, the communication cost here is ‖R(q, S)‖.
As discussed above, a query q usually has fixed length. Also, for
given privacy requirements, the number of segments in S tends
to be fairly stable. As such, we conclude that ‖R(q, S)‖ is the
dominant and most “optimizable” communication cost.

For query q, let res size denote the average exact result size
of q, e.g., if q is the popular k-NN query, then res size = k.
Following Equation 5, given a query q and anonymized location
S, the size of the candidate result R(q, S) can be estimated as:

|R(q, S)| ≤ res size · |BV (S)|+
∑
s∈S

∑
e∈s
|Oe(q, e)| (7)

Then, denoting by ρo the average number of objects on an
edge and Co the cost of sending/receiving an object o over the
wireless channel (e.g., sending unique identifier of o), the total
communication cost for q with anonymized location S is:

costcomm(q, S) = Co ·
[
res size · |BV (S)|+ ρo ·

∑
s∈S

∑
e∈s
|e|
]

Overall Cost: It is desirable to combine costeval and
costcomm to find an estimation of the overall cost. In STAR-
CLOAK, we consider a linear combination scheme:

cost(q, S) = β · costcomm(q, S) + (1− β) · costeval(q, S)

where β is the parameter tuning the trade-off between evaluation
cost (mainly CPU computation on server side) and the communi-
cation cost (mainly bandwidth of wireless channel).

3.5 Problem Statement
Given a road network represented as a graph G with mobile users
traveling on it while issuing queries, where each user u’s query
q is associated with its profile (δqk, δ

q
l , σ

q
s , σ

q
t ), the principles and

objectives of STARCLOAK are:
• User u’s true location is transformed to an anonymized

(cloaked) location S, where S is a subgraph of G.
• S satisfies the privacy requirements of q in terms of δqk-

user anonymity and δql -segment indistinguishability.
• S satisfies the utility constraints of q, i.e., spatial size of

S is no larger than σqs and the temporal delay caused by
location anonymization is no more than σqt .

• S achieves high resilience against the replay and query
injection attacks.

• Anonymized location S yields low cost(q, S).

STARCLOAK’s objectives take multiple aspects into consid-
eration: privacy, utility, attack-resilience, and cost. However, the
key challenge lies in satisfying these objectives simultaneously, as
high privacy and attack-resilience are often in conflict with max
utility and min cost. For example, an anonymization approach
that randomly samples road segments and adds them to S can
provide high privacy and attack-resilience, but causes increased
query processing cost and decreases the likelihood of satisfying
spatial utility constraints. On the other hand, an anonymization
approach that relies on network expansion (e.g., using Dijkstra’s
deterministic network expansion algorithm) causes vulnerability
to replay and query injection attacks despite increased likelihood
of satisfying spatial utility constraints.

STARCLOAK achieves the above objectives via three novel
aspects. First, STARCLOAK introduces star graph, a road junction-
based abstraction and a cost-aware randomness in road junction-
based expansion to reduce the high query cost of random sampling
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Fig. 4: Illustration of the STAR concept

and improve the attack-resilience of baseline network expansion.
Second, STARCLOAK introduces a cloaking graph to generate
candidate star graphs by grouping queries that can be cloaked
together based on their privacy profiles. Third, STARCLOAK uses
utility-aware and cost-effective pruning strategies to generate final
cloaking star graph that has low query processing cost and high
attack-resilience among the set of candidate star graphs.

4 STARCLOAK ALGORITHMS
This section explains the STARCLOAK constructs and algorithms
in detail. We first describe star concept and other data structures
used in STARCLOAK in Section 4.1. We explain how an incoming
query q is pre-processed by STARCLOAK and added to appropriate
data structures in Section 4.2. Overview of the main STARCLOAK

algorithm is presented in Section 4.3. The main algorithm relies
on several methods, such as selecting a star, updating the cloaking
graph (adding and removing queries from the cloaking graph),
candidate star-set selection, and star-set pruning. These methods
are described in Sections 4.4, 4.5, 4.6, and 4.7, respectively.

4.1 Star Concept and STARCLOAK Data Structures
STARCLOAK introduces star as the basic unit of location cloaking
on road networks. Each star is defined by a vertex with its neighbor
segment list in G.

Definition 8 (Star). Let G = 〈VG, EG〉 denote the road network
of interest. We define a star Φi anchored at vertex vi ∈ VG as a
subgraph of G, denoted by Φi = 〈V iΦ, EiΦ〉, and V iΦ = {vi} and
EiΦ = {w|w 6= vi, w ∈ VG, (vi, w) ∈ EG}.

Accordingly, every node vi with dG(vi) ≥ 3 is associated
with a unique star Φi, which consists of vertex vi and all of its
adjacent road segments, that is, those segments with vi as one of
two end nodes. For example, in the left plot of Figure 4, star Φ5

is composed of node v5 and segments {v5v4, v5v6, v5v10}.
The road network can then be transformed into a star graph,

as shown on the right of Figure 4. Each vertex in the star graph is
a star in G, and two vertices are adjacent in the star graph if and
only if their corresponding stars in G share a segment. All edges
in the star graph are of unit length. The hop distance between two
stars Φi and Φj in a road network G is measured by the number
of hops in the shortest path between Φi and Φj . For example, in
Figure 4, the hop distance between Φ6 and Φ10 is 2, since their
shortest path in the star graph is Φ6 → Φ5 → Φ10.

In addition to the star concept, STARCLOAK uses some impor-
tant data structures for improved effectiveness and efficiency.

Query Queue,Q: A first-in-first-out (FIFO) queue that records
the incoming queries which must be anonymized before they
are relayed to the respective LBS provider. Incoming queries are
inserted into the queue from the tail. The anonymization engine
pops each query from Q to find a suitable cloaked subgraph S.

Expiration Heap, H : A max-min heap that maintains the
queries in the order of their expiration time computed as: query
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arrival time + temporal delay constraint σqt . STARCLOAK checks
H to identify queries that are close to their expiration time in order
to prioritize them or to identify queries that have expired.

Cloaking Graph, GC : An undirected graph dynamically con-
structed in-memory, for recording the set of queries associated
to a star based on their similarities with respect to their privacy
requirements, their spatial proximity, and their expiration times.
The cloaking graph will be explained further in Section 4.5.

Star-Map, MS and Query-Map, MQ: We create one hash
map to index stars called a Star-Map, and similarly, one hash map
to index queries associated to a node in the cloaking graph called
Query-Map, for fast star and query look-up.

Candidate Star-Set Queue, QC : A FIFO-based queue struc-
ture that records generated candidate cloaking star-sets. The prun-
ing method in STARCLOAK pops star-sets from QC to apply ran-
domized pruning when generating the final cloaked star regions.

4.2 Incoming Query Pre-processing

Let q be an incoming query. STARCLOAK pre-processes q to
generate the internal representation of q by performing the fol-
lowing sequence of tasks. First, a unique identifier is assigned
to q using a secure hash function with user ID and query issue
time, i.e., hash(q.u||q.t). Second, using the latitude and longitude
values of q’s location together with the road network graph, the
true road segment of q is determined. Third, q is inserted to
queue Q. Fourth, q is inserted to the expiration heap H with
query expiration time as key and query identifier as value. Query
expiration time is equal to: q.t+ σqt .

4.3 Main STARCLOAK Procedure

The main STARCLOAK procedure is presented in Algorithm 1.
STARCLOAK runs actively as long as there is at least one query
in queue Q waiting to be served, i.e., Q is not empty (line
1). It continuously pops queries from Q and processes them
to find anonymized locations that fit users’ privacy and utility
requirements. First, STARCLOAK removes expired queries from
the system (lines 2-11). To find expired queries, STARCLOAK

utilizes the expiration heap H . Since this heap maintains queries
in order of their expiration time, queries that are more likely to
have expired will be closer to the beginning of the heap. Therefore,
STARCLOAK checks the first entry of the heap qe (line 4). If qe has
not expired, then the remaining entries of H need not be checked,
since the heap is sorted (hence, we break out of the loop on lines
10-11). However, if qe has expired, then it is removed from the
cloaking graph on line 6 (see Section 4.5 for details of removal).
When an expired query qe is removed from the cloaking graph,
the corresponding node vu of the cloaking graph is affected. If
this node vu is not empty, it is added to the list L on lines 7-8 so
that it can be processed later. Then, STARCLOAK pops qe from H
(line 9) and continues with the next iteration of the loop to check
if there are any other expired queries in H .

During the procedure between lines 2-11 of Algorithm 1, list
L accumulates, consisting of cloaking graph nodes. Between lines
12-15, STARCLOAK processes each cloaking graph node vu in L
by attempting to find anonymized locations for these nodes. To do
so, the candidate star-set of vu is searched (line 13). The details
of this search are presented in Section 4.6 and Algorithm 3. If a
plausible anonymized location is found by this search, then a non-
empty return value is obtained from the SearchCandidateStarSet
function. In this case, this return value can be added to the

Algorithm 1: Main STARCLOAK Procedure
Input: Q: query queue, H : expiration heap,

GC : cloaking graph
Output: QC : candidate star-set queue

1 while Q 6= ∅ do
2 L ← ∅
3 while true do
4 qe ← first entry of H
5 if qe is expired then
6 vu ← RemoveQueryFromCloakingGraph(qe)
7 if vu 6= ∅ then
8 Add vu to L
9 Pop qe from H

10 else
11 break
12 foreach vu ∈ L do
13 C ← SearchCandidateStarSet(vu)
14 if C 6= ∅ then
15 Add C to QC for pruning
16 qi ← first entry of Q
17 Φi ← SelectStar(qi)
18 vu ← AddQuerytoCloakingGraph(qi, Φi)
19 C ← SearchCandidateStarSet(vu)
20 if C 6= ∅ then
21 Add C to QC for pruning

candidate star-set queue QC for pruning and generation of the
final cloaked star region (lines 14-15).

When Algorithm 1 reaches line 16, it is ready to process a
query from the query queue Q. The first entry of Q is retrieved
and assigned to qi on line 16. Then, a star is selected to assign to it
on line 17 using the SelectStar function. The details of SelectStar
are presented in Section 4.4. Thereafter, STARCLOAK updates
the cloaking graph by adding qi and the selected star Φi to the
cloaking graph on line 18 (details of this function are presented
in Section 4.5 and Algorithm 2). Finally, the steps taken between
lines 19-21 are identical to the steps on lines 13-15.

4.4 Select Star

As shown in Algorithm 1, STARCLOAK performs anonymization
by scanning through the query queue Q. All segments that are
associated with active queries are marked as active. STARCLOAK

first selects a star to assign queries on the active segment as the
initial cloaking star. By definition, each segment has two end
nodes. If both nodes are intersection nodes, i.e., dG(vs) ≥ 3
and dG(vt) ≥ 3, STARCLOAK needs to determine to which star
this active segment should be assigned: Φs or Φt. For example,
in Figure 4 when q1 arrives and segment v5v6 becomes active,
one of the two possible stars Φ5 or Φ6 will be determined as the
initial cloaking star. When a star Φ is “selected” and segment s is
assigned to Φ, we denote this by s← Φ.

In STARCLOAK, we use a cost-aware star selection strategy,
taking into account the cost model described in Section 3.4. Let q
be the query, AS denote the set of currently active segments on
the road network G, and φ be the set of selected stars. Then, the
minimization of the overall cost can be formally stated as:

min
φ

∑
Φ∈φ

cost(q,Φ) (8)

s.t. ∀s ∈ AS,∃Φ ∈ φ, s← Φ
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This optimization problem aims at finding an assignment between
stars and segments such that the stars cover all segments with
active queries, while having the minimum total cost. It can be
shown that the optimization problem in Expression 8 is NP-Hard.
The proof follows from a reduction from the Vertex-Cover prob-
lem, which is a well-known NP-Complete problem. Specifically,
if for all stars Φ in the star graph we set cost(q,Φ) = 1, then
the problem is equivalent to the classical Vertex-Cover problem.
Motivated by the hardness of finding a globally optimal solution
to our problem, we propose a randomized algorithm called Select
Star, which finds approximate solutions with high assignment
quality. The intuition is, for each query which has two endpoints
as viable stars, the algorithm probabilistically selects one of the
two stars with probability inversely proportional to their cost.

Our Select Star algorithm works as follows. Let q be an
incoming query with travel segment s, and let Φa and Φb be
the two stars on the two endpoints of segment s. For simplicity,
we assume both endpoints are stars; if not, then s is trivially
assigned to the endpoint which is a star. If only one of Φa or Φb
is currently active, Select Star assigns s to the active star. If both
Φa and Φb are active, then s is assigned to Φa with probability
cost(q,Φb)/[cost(q,Φa) + cost(q,Φb)], or Φb otherwise. If
neither star is active, then the same probabilistic assignment to
either Φa or Φb is carried out, additionally, the assigned star
is marked as active for next iterations. This assignment has the
desirable property that the outcome of our randomized Select Star
algorithm is not far from an optimal assignment. More formally,
denoting by costopt the cost achieved by the optimal assignment,
and denoting by costrnd the cost achieved by our Select Star
algorithm, it holds in expectation that: E

[
costrnd

]
≤ 2 · costopt.

4.5 Cloaking Graph Update

We use the cloaking graph GC to group nearby queries and
efficiently index query groups that can be cloaked together. The
cloaking graph GC(VC , EC) is an undirected graph, where VC is
the set of vertices each representing a set of requests grouped by
the star they are assigned to. EC is the set of edges; there is an
edge e = (vi, vj) ∈ EC between vi and vj iff queries associated
with both vertices can be cloaked together based on k-user
anonymity, l-segment indistinguishability, and spatial tolerance.

Let Φ be an active star and v ∈ VC be its corresponding
vertex in GC . For each v, the query set v.Q consists of the
queries assigned to Φ. We compute the combined privacy of
utility requirements 〈δvk , δvl , σvs 〉 for v using queries in v.Q:

〈δvk , δvl , σvs 〉 := 〈max
q∈v.Q

δqk, max
q∈v.Q

δql , min
q∈v.Q

σqs〉 (9)

We denote by v.Θ the set of stars which are within σvs distance
from Φ. Also, neighbor list v.N is stored with v, where being
neighbors indicates that requests in corresponding nodes can be
cloaked together. Two cloaking nodes vi and vj are considered
to be neighbors iff: (i) Stars associated with each node are an
element of the star-set of the other node, i.e., Φi ∈ vj .Θ and Φj ∈
vi.Θ. (ii) Number of segments that cover both nodes is enough
to satisfy their l-segment indistinguishability requirements, i.e.,
|vi.Θ ∩ vj .Θ| ≥ max{δvil , δ

vj
l }.

STARCLOAK performs two types of updates on the cloaking
graph: add query to cloaking graph, remove query from cloaking
graph. The function for adding queries to the cloaking graph is
given in Algorithm 2. When the function is called to insert a new
query, it checks all cloaking graph vertices associated with the

Algorithm 2: Add Query to Cloaking Graph
Input: q: new query, Φn: assigned star
Output: vu: updated cloaking graph node

1 vu ← ∅
2 N ←MS .get(Φn)
3 if N 6= ∅ then
4 forall vi ∈ N do
5 if σqs < σvis then
6 sc← # of segments within σqs from Φn
7 if sc ≥ max{δql , δ

vi
l } then

8 Add q to the node vi
9 vu ← vi

10 break
11 else if vi.sc ≥ δql then
12 Add q to the node vi
13 vu ← vi
14 break
15 if vu = ∅ then
16 vu ← Create new node for query q
17 return vu

corresponding star to add the new query (lines 4-14). If there is no
possible vertex to add, a new vertex is created (lines 15-16). The
new query can be added to an existing vertex only if its privacy
profile does not conflict with the profile of the existing node. A
conflict occurs when new spatial tolerance is not able to satisfy the
new l-segment indistinguishability requirement. Thus, we need to
perform the checks under lines 4-14 to avoid any conflicts.

The function for removing queries from the cloaking graph is
described verbally here, and its formal version is given in the
supplementary material. Say that qe is the expired query that
should be removed. We first perform a look-up from MQ to find
the cloaking graph node vu associated with qe. If |vu.Q| > 1, i.e.,
vu contains other queries as well, its information is updated based
on remaining queries after deletion of qe. The update is performed
according to Equation 9 to re-compute δvuk , δvul , and σvus . If the
updated vu now has either δvul < δqel or σvus > σqes , then vu.Θ,
vu.sc and vu.N are also re-computed. Note that the latter is
only necessary if segment indistinguishability or spatial tolerance
requirements are relaxed. On the other hand, if |vu.Q| = 1, i.e., qe
was the only query associated with vu, then vu is removed from
GC , and MS is updated. The return value of the function is vu,
which is an input for the next step (candidate star-set selection).

4.6 Candidate Star-Set Selection
The goal of this step is to discover a set of stars, called candi-
date star-set, which constitutes a possible anonymized sub-graph
for certain queries. In order to find such star-set, STARCLOAK

searches over the cloaking graph and identifies a set of nodes,
denoted byNS, that satisfy the privacy requirements of all queries
associated with each node. Formally, let ϑ denote a candidate
star-set, and let seg(ϑ) be a function that returns all segments
associated with input stars. NS meets k-user anonymity and l-
segment indistinguishability if and only if:

∀v ∈ NS :
[
δvk ≤

∑
v̂∈NS

|v̂.Q|
]
∧
[
δvl ≤ |seg(

⋂
v̂∈NS

v̂.Θ)|
]

(10)
Such NS forms candidate star-set ϑ with all stars shared within
the covered star-set of each node in NS:

ϑ =
⋂

v∈NS
v.Θ (11)
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Algorithm 3: Search Candidate Star-Set
Input: vu: updated vertex
Output: ϑ: candidate star-set

1 NS ← vu
2 if (ϑ← checkReqs(NS)) 6= ∅ then
3 return ϑ
4 QComb ← ∅
5 forall v ∈ vu.N do
6 NS ← vu ∪ v
7 if (ϑ← checkReqs(NS)) 6= ∅ then
8 return ϑ
9 QTemp ← QComb

10 forall C ∈ QComb do
11 if ∀vc ∈ C, vc ∈ v.N then
12 NS ← vu ∪ v ∪ C
13 if (ϑ← checkReqs(NS)) 6= ∅ then
14 return ϑ
15 else
16 QTemp ← QTemp ∪ C ∪ v
17 QComb ← QTemp

We assume the existence of a procedure named checkReqs(NS),
which takes as input a set of nodes NS, performs the privacy
check given in Equation 10, and returns either the ϑ built in
Equation 11 if NS passes the privacy check or an empty set ∅
otherwise. We use the checkReqs procedure in Algorithm 3 for
candidate star-set selection.

Algorithm 3 gives the technical details of candidate star-set
selection. Searching over the cloaking graph for finding a candi-
date star-set starts with the updated vertex vu. If the number of
queries assigned to this vertex is fewer than the k-user anonymity
requirement of the vertex, then the algorithm continues the search
process over the neighboring nodes, ordered by the hop distance
between their associated star and the star of the starting vertex.
For each neighbor node, it applies checkReqs to vu and the
neighbor node combined (lines 6-8). If a candidate star-set still
cannot be found, neighbor node is evaluated with all possible node
combinations generated with the previously processed neighbor
nodes (lines 10-16). On line 10, we denote by C a clique in
QComb, and line 11 checks if the clique satisfies the l-segment
indistinguishability requirement. The possible node combinations
are tracked by variable QComb, which is enlarged in each iteration
so that newly visited nodes are added (lines 16-17). The output of
the algorithm is ϑ, a candidate a star-set.

4.7 Star-Set Pruning
Final component of STARCLOAK is star-set pruning: pruning of
extra segments from candidate star-set. As specified in Algorithm
1, candidate star-sets found by Algorithm 3 are added to the can-
didate star-set queue denotedQC , and then they are pruned by the
star-set pruning component. Star-set pruning plays an important
role in cost reduction and improvement of attack-resilience by
randomizing the star selection from outer to center of the candidate
star-set. Note that star-set pruning is highly parallelizable, i.e., it
is possible to implement one or more pruning processes running
in parallel (each popping from QC ) while a separate process
performs remaining tasks and adds to QC .

The pruning starts by popping a candidate star-set from queue
QC . Let ϑ denote the popped star-set. We find the set of boundary
stars BS of ϑ, which are the stars that have at least one neighbor

star not in ϑ, as well as the set of active starsAS of ϑwhich cannot
be removed from the star-set. Let lmax denote the maximum l-
segment indistinguishability requirement in the star-set. We run
multiple iterations, and within each iteration, the following are
performed. First, a random star denoted Φr is selected from
BS \ AS. If ϑ still satisfies lmax-segment indistinguishability
after removing Φr from ϑ; then Φr is removed from ϑ, BS
is updated by removing Φr from BS, and we proceed to the
next iteration. However, if lmax-segment indistinguishability is
violated after removing Φr from ϑ, then the pruning stops here
and the current ϑ (without removing Φr) is produced as the final
output of the pruning process. An equivalent technical description
of the pruning algorithm, along with a visual example of star-set
pruning, can be found in the supplementary material.

5 VARIANTS AND OPTIMIZATIONS

In this section, we introduce two variants of STARCLOAK for
finding cloaking regions with lower cost, query processing time,
and network bandwidth usage without sacrificing privacy.

5.1 Spatially Bounded STARCLOAK

Basic STARCLOAK generates cloaking regions whenever it finds
a star-set that satisfies all queries’ privacy requirements. However,
this approach may cause cloaking regions that consist of stars that
are far from each other and scattered across the road network. An
example scenario is given in supplementary material.

We propose spatially bounded STARCLOAK to generate
more compact cloaking regions. Its essence is to sacrifice anony-
mization time in favor of lower query processing and commu-
nication costs. We define a system parameter λ ≥ 1 called the
compactness factor, that controls the maximum hop distance be-
tween selected vertices in the candidate star-set. To generate more
compact cloaking regions, we make some modifications to the
candidate star-set selection algorithm. First, we group neighbors
by their distance d to the starting node. bd/λc determines the level
of each group element. At each level, the algorithm only considers
neighbor nodes which can be cloaked with the node combinations
generated in the previous level. The algorithm searches level by
level iteratively in top-down manner. Then, spatially bounded
STARCLOAK enforces compactness by selecting active stars that,
for each star in the star-set there is at least one other star which is
no further than 2λ− 1 hop distance.

5.2 Hybrid STARCLOAK

The main difficulty in spatially bounded STARCLOAK is the
choice of λ. At first sight, λ can be determined by the query
density of a general area. However, query density is often highly
dynamic and changes street-by-street or star-by-star. Even neigh-
boring segments may have different densities. Thus, the λ deter-
mined based on query density of a general area may be undesirable
for sparse sub-areas, and it is not possible to define an optimal
compactness factor for each individual star at each time. To
overcome this problem, we propose hybrid STARCLOAK, which
leverages advantages from both basic STARCLOAK and spatially
bounded STARCLOAK. In hybrid STARCLOAK, we first try to
generate cloaking regions with spatially bounded STARCLOAK,
and then for queries which could not be cloaked yet and are close
to their expiration time, we apply basic STARCLOAK. We use a
consideration factor denoted by α as the system parameter to
decide when to apply basic STARCLOAK. Hybrid STARCLOAK

periodically checks the expiration heap H to see if any query is
closer than α to their expiration time.
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TABLE 1: Default parameter settings used in our experiments

Parameter k δk δl σs σt γ λ α

Mean 5 5 5 4 10 20 1 2
Deviation 1 1.5 1.5 1 2 2 0 0

6 EXPERIMENTAL EVALUATION

6.1 Experimental Setup

We performed extensive experiments to evaluate the performance,
utility and attack-resilience of STARCLOAK using real-world road
network datasets. We implemented STARCLOAK and its variants
in Java. We deployed them on a Windows 7 computer with
4.00 GHz Intel CPU and 16GB memory. Then, we simulated
the movements of 10,000 users on two real-world road network
datasets using the Brinkhoff simulator1, which is a popular and
commonly used simulator in the literature. Considering that users
can have different types of vehicles and driving characteristics,
instead of having a single type of vehicle in the simulations, we
defined two types of vehicles: slow vehicles (e.g., trucks) and fast
vehicles (e.g., passenger cars). As users are moving on the road
network, they send k-nearest neighbor (k-NN) queries to retrieve
information of k nearest points of interest to their current location.
These queries need to be anonymized to protect privacy.

The two real-world road network datasets used in the experi-
mentation are California2 and Georgia3. California road network
contains only highways with 21,693 edges and 21,048 nodes.
87,635 points of interest from 62 different classes (e.g., hospital,
school, etc.) are associated with the road network. Georgia is the
larger road network dataset, which contains primary and secondary
roads with 430,849 edges and 428,708 nodes. Notice that the
Georgia road network has substantially larger number of nodes
and edges compared to California. By using two road network
datasets that have substantially different size, we aimed to observe
the effect of map density on the effectiveness of STARCLOAK.

Default values of the parameters used in our experiments are
listed in Table 1. To mimic users’ varying query times, privacy
and utility constraints; instead of using fixed values for all queries,
the values for each query are drawn independently from Gaussian
distributions with mean and standard deviation listed in Table 1.

• k: As noted earlier, as users are moving on the road
network, they send k-NN queries. Here, k is the number
of points of interest requested.

• δk, δl, σs, σt: Recall from Definition 6 that the com-
bination of these parameters make up the query profile.
δk is the k-user anonymity parameter, δl is the l-segment
indistinguishability parameter, σs is the spatial constraint,
and σt is the temporal constraint.

• γ: Each user waits for a certain amount of time before
issuing his/her next query. γ captures the waiting time.

• λ is the compactness factor used in spatially bounded
STARCLOAK.

• α is the consideration factor used in hybrid STARCLOAK.

6.2 Compared Approaches

In our evaluation, we compare multiple approaches. Random
sampling and network expansion serve as two baseline anony-
mization approaches. XSTAR [5] is the most relevant system to

1. http://iapg.jade-hs.de/personen/brinkhoff/generator/
2. http://www.cs.utah.edu/∼lifeifei/SpatialDataset.htm
3. https://www.census.gov/geo/maps-data/data/tiger-geodatabases.html

STARCLOAK. We also include the three variants of STARCLOAK

in our comparison: basic, spatially bounded, and hybrid.
Random Sampling: Given an incoming query with profile

(δqk, δ
q
l , σ

q
s , σ

q
t ), this approach iteratively samples segments ran-

domly from the spatial region within σqs one-by-one, and adds
them to the anonymized location. It terminates when (δqk, δ

q
l )

privacy requirements are satisfied. Since random sampling picks
segments randomly, it is highly attack-resilient by nature. When
measuring attack-resilience it serves as an “upper bound”, since
we would not expect any other approach to beat random sampling
in terms of attack-resilience. However, the random selection of
segments hurts utility and query processing cost; therefore, ran-
dom sampling is typically not ideal in practice.

Network Expansion: Network expansion-based approaches
have been popularly used for query processing on road networks
[50]. For incoming query q, this approach starts from the actual
segment of the query and incrementally adds a neighboring seg-
ment using Dijkstra’s deterministic network expansion algorithm.
The order of expansion is based on the distance between q’s focal
position and neighboring segments’ midpoints. The approach ter-
minates when (δqk, δ

q
l ) privacy requirements are satisfied. Network

expansion results in an anonymized location that is a densely
connected, compact subgraph. Its advantage is low query process-
ing cost. Its main weakness is vulnerability to attack since the
expansion follows a deterministic best-first search, which can be
inferred and reverse-engineered by an adversary who knows the
road network structure.

XSTAR: The most related work to STARCLOAK in the litera-
ture is XSTAR [5], which performs road network anonymization
under utility and privacy constraints. We include it in our compar-
ison and show the superiority of STARCLOAK over XSTAR.

STARCLOAK and Variants: We denote by STARCLOAK the
basic version of STARCLOAK. We also include its two variants,
which are spatially bounded STARCLOAK and hybrid STAR-
CLOAK, in our experimental comparison.

6.3 Evaluation Metrics
To evaluate the performance of different approaches, we use
multiple metrics: success rate in anonymization, anonymization
time, query processing time, size of candidate result set, successful
throughput, and entropy against inference attacks.

Success Rate: An effective anonymization approach should
be successful in anonymizing as many of the received queries as
possible. We say that a query has been successfully anonymized
if and only if: (i) an anonymized (cloaked) location was generated
for it by the location anonymization engine, (ii) it was sent to
the LBS provider with the anonymized location and its result was
received back, (iii) final result was successfully delivered to the
end user. Then, Success Rate is measured as:

Success Rate =
Number of successfully anonymized queries

Total number of queries

Successful Throughput: We use this metric to evaluate the
scalability of the anonymization approaches. Let NQPS denote the
Number of Queries Processed per Second by an anonymization
engine. Then, Successful Throughput is the multiplication of the
previously defined Success Rate metric with NQPS:

Successful Throughput = Success Rate× NQPS

Anonymization Time: When users issue queries, they want
fast answers. However, an anonymization engine needs a certain
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amount of time to perform the anonymization. The Anonymization
Time metric measures the average time elapsed from the query
issue time until successful anonymization. Let q1, q2, ..., qN
denote successfully anonymized queries. Recall that qi.t denotes
the timestamp at which query qi was issued by the user. Let
qi.t
∗ denote the timestamp at which the anonymization engine

completes anonymizing qi. Then:

Anonymization Time =

N∑
i=1

(qi.t− qi.t∗)

N

Query Processing Time: This metric measures the query
processing time at the LBS provider. Without anonymization
(i.e., without any privacy protection), the LBS provider receives
queries’ exact locations and computes the response using the exact
location. For query qi, let ϕ(qi) denote the time it takes for the
LBS provider to compute the response using qi’s exact location.
However, with anonymization, qi is sent to the LBS provider not
with the exact location but with an anonymized location. Let ψ(qi)
denote the time it takes for the LBS provider to compute the
response using qi’s anonymized location. Then:

Query Processing Time =

N∑
i=1

(ψ(qi)− ϕ(qi))

N

Candidate Result Size: Recall from Figure 1 that the LBS
provider sends a candidate result to the location anonymization
engine after processing a query. As explained at the beginning of
Section 3, due to the locations being anonymized, the candidate
result may contain false positives. To measure the impact of
this, the Candidate Result Size metric computes the cardinality
of the candidate result. Larger the cardinality, higher the network
communication cost.

Entropy: We use entropy as a quantitative measure of ad-
versarial uncertainty achieved by anonymization, where higher
entropy means higher attack-resilience. Given an anonymized lo-
cation S for user u as a subgraph consisting of multiple segments,
the entropy of S can be calculated by:

H(S) = −
∑
s∈S

link[u← s] · log2(link[u← s])

Here, linkability (link) is calculated as explained in the attack mod-
els (Section 3.3). Since the size of S can change, we normalize
H(S) similar to [51], and report normalized entropies calculated
as: H(S)/ log2(|S|).

6.4 Experiment Results
Results on Success Rate: Figure 5 shows the percentage success
rates of compared approaches with respect to varying δk, δl, σs,
and σt for California and Georgia maps. Generally, STARCLOAK

and its optimized variants have high success rates because of their
ability in handling different user requirements effectively. Results
show that increasing the privacy requirements often decreases
success rate, but the effects are different for different maps and
different privacy requirements. For example, when δk increases,
success rate decreases faster on the Georgia compared to Califor-
nia. The reason for this is the query density of the maps. Keeping
the number of queries constant across maps, since the Georgia
map is more detailed than California, the distribution of query
density on Georgia is sparser. Thus, on Georgia, the chance of
finding enough queries to cloak together under the same spatial

constraint is smaller, causing lowered success rate. Yet, for XS-
TAR, increasing δl impacts success rate on California more than
Georgia, unlike STARCLOAK. This is because XSTAR anonymizes
queries on the same star together, whereas in STARCLOAK if there
is a conflict between two queries’ l-segment indistinguishability
and σs spatial tolerance, they are cloaked on different vertices
of the cloaking graph. This allows STARCLOAK to maintain high
success rates despite increasing δl.

Comparing the three STARCLOAK variants, the basic version
achieves highest success rate, followed by hybrid STARCLOAK

and then spatially bounded STARCLOAK. This is expected because
spatially bounded STARCLOAK aims at finding compact cloak
regions, whereas basic STARCLOAK allows suboptimal regions
for higher success rate. Hybrid STARCLOAK achieves a trade-off
between success rate and compactness of a cloak region. The right-
most two graphs within Figure 5 display the impact of changing
spatial and temporal tolerance constraints on success rate. When
users have higher tolerance, their queries are anonymized with
higher success rate. We see clearly that lower spatial tolerance
affects XSTAR’s success rate negatively far more than it affects
STARCLOAK, once again showing STARCLOAK’s superiority.

Results on Successful Throughput: The throughputs of
compared approaches with respect to varying δk, δl, σs and σt are
shown in Figure 6 for California and Georgia maps. We observe
that throughputs of the baseline approaches (random sampling
and network expansion) are often significantly lower than XSTAR

and STARCLOAK. While XSTAR and STARCLOAK maintain high
throughput despite increasing δk (stricter privacy), the throughput
of XSTAR drops when δl is increased. Hence, we find that
STARCLOAK is much more capable of satisfying challenging l-
segment indistinguishability requirements than other approaches.

With respect to varying spatial and temporal tolerances, we
observe that STARCLOAK variants are capable of handling a
variety of tolerance values without significant degradation in
throughput. In contrast, the throughputs of the baseline approaches
are often 5-6 times smaller than STARCLOAK. Furthermore, while
XSTAR’s throughput is comparable to STARCLOAK when σs is
high, XSTAR may perform even worse than the baselines for small
σs (see Figure 6). Collectively, these results show the superiority
of STARCLOAK and its variants in query service and scalability
compared to both XSTAR and baseline approaches, under varying
privacy and utility settings.

Results on Anonymization Time: In Figure 7, we report the
average anonymization times for the California map. Results show
that STARCLOAK variants have significantly better anonymization
time than compared approaches under various settings. XSTAR

often has the highest anonymization time. Among STARCLOAK

variants, hybrid STARCLOAK and spatially bounded STARCLOAK

are similar, whereas basic STARCLOAK has lowest anonymization
time. This is because basic STARCLOAK has no preference
towards “waiting for a better opportunity” to generate cloaked
regions for incoming queries, whereas the other two variants can
wait closer until the query expiration time before anonymization.

Results on Query Processing Time: The results are reported
in Figure 8. Since each compared anonymization approach may
have different success rate, in order to ensure a fair comparison,
we pick the same number of anonymized locations across all ap-
proaches in this set of experiments and those experiments reported
for the next metric. First, we observe that STARCLOAK’s results
are often significantly better than its main competitor XSTAR.
Second, among the three STARCLOAK variants, basic STAR-
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Fig. 5: Success rate for California map (four graphs in top row) and Georgia map (four graphs in bottom row)
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Fig. 6: Successful throughput for California map (four graphs in top row) and Georgia map (four graphs in bottom row)
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Fig. 7: Anonymization time for California map

3 6 9 1 2 1 5
0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

 S t a r C l o a k
 B o u n d e d  S t a r C l o a k
 H y b r i d  S t a r C l o a kQu

ery
 Pr

oc
es

sin
g T

im
e (

ms
)

m e a n  o f  δk

 R a n d o m
 N e t w o r k
 X S t a r

3 6 9 1 2 1 5
0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

Qu
ery

 Pr
oc

es
sin

g T
im

e (
ms

)

m e a n  o f  δl

1 2 3 4 5
0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

Qu
ery

 Pr
oc

es
sin

g T
im

e (
ms

)

m e a n  o f  σs

2 4 6 8 1 0
0 . 0 0

0 . 0 4

0 . 0 8

0 . 1 2

Qu
ery

 Pr
oc

es
sin

g T
im

e (
ms

)

m e a n  o f  k
Fig. 8: Query processing time for California map

CLOAK has highest query processing time, whereas the hybrid and
spatially bounded versions have similar processing time, because
of their more compact cloaked regions. The improvement of
spatially bounded STARCLOAK becomes significant particularly
when σs is increased. These findings confirm that cloaking regions
with scattered segments cause higher query processing time.

Results on Candidate Result Size: We measure the candidate
result set size under varying δk, δl, σs, and k parameters, and
report the results in Figure 9. Spatially bounded and hybrid
STARCLOAK often provide the best results due to their compact
output cloak regions. STARCLOAK’s competitors are comparable
when the δk, δl privacy requirements are relaxed, but as we make
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Fig. 9: Candidate result size for California map
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Fig. 10: Average entropy for California map

the privacy requirements stricter, the bandwidth cost of XSTAR in
particular becomes significantly large. The increase in candidate
result size caused by large σs can be explained by the fact
that relaxed spatial tolerance inevitably causes the STARCLOAK

approaches to be more relaxed regarding the compactness of the
output cloak regions, thus result sets are also more scattered and
diverse. The increase in candidate result size due to increased
k is expected, since k is the parameter controlling the number
of nearest neighbors returned by the k-NN query. Naturally, with
higher k, more candidates have to be returned, hence the candidate
result set has larger size.

Results on Entropy (Attack-Resilience): We use the nor-
malized entropy metric to measure attack-resilience, with higher
entropy meaning higher attack-resilience. The results are shown
in Figure 10. In this set of experiments, it is expected that random
sampling will yield highest entropy, whereas network expansion
will yield lowest entropy. The results in Figure 10 confirm these
expectations, and show that the entropy of STARCLOAK variants
and XSTAR are between random sampling and network expansion.
An important note is that STARCLOAK has higher entropy than
XSTAR. Furthermore, STARCLOAK’s entropy values are similar
to random sampling, showing that it achieves near-optimal attack
resilience. As δk increases, since more users are cloaked together,
entropy increases. The increase in entropy is more clear for spa-
tially bounded STARCLOAK and hybrid STARCLOAK compared
to basic STARCLOAK, as their output cloak regions are more
compact (focused on the users’ actual locations) with small δk
in the first place. In the rightmost graph in Figure 10, we show the
impact of the number of injected queries on entropy in the query
injection attack. In XSTAR and STARCLOAK, while more injec-
tions generally cause a more successful attack, the vulnerability
of XSTAR becomes significantly higher than STARCLOAK when
4 or more queries are injected. Unlike XSTAR and STARCLOAK,
random sampling and network expansion do not consider nearby
queries’ locations during cloaking, thus their entropy remains
unaffected by query injections.

7 CONCLUSION

In this paper, we designed and developed STARCLOAK, a loca-
tion privacy protection service for mobile users. STARCLOAK

has an array of desirable features, including utility-aware and

personalized privacy protection, cost-aware star selection, and
randomized star-set pruning for improved attack-resilience. The
two optimized variants of STARCLOAK, namely spatially bounded
STARCLOAK and hybrid STARCLOAK, improve network band-
width usage and query processing time, with small sacrifice in
success rate, throughput, and anonymization time. In comparison
to XSTAR, STARCLOAK achieves reduced query processing and
anonymization time, higher success rate in anonymization, and
higher resilience against replay and query injection attacks.
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