
Beta Poisoning Attacks Against Machine Learning
Models: Extensions, Limitations and Defenses

Atakan Kara∗, Nursena Koprucu∗, and M. Emre Gursoy
Department of Computer Engineering, Koç University

Istanbul, Turkey

Abstract—The rise of machine learning (ML) has made ML
models lucrative targets for adversarial attacks. One of these
attacks is Beta Poisoning, which is a recently proposed training-
time attack based on heuristic poisoning of the training dataset.
While Beta Poisoning was shown to be effective against linear
ML models, it was originally developed with a fixed Gaussian
Kernel Density Estimator (KDE) for likelihood estimation, and its
effectiveness against more advanced, non-linear ML models has
not been explored. In this paper, we advance the state of the art in
Beta Poisoning attacks by making three novel contributions. First,
we extend the attack so that it can be executed with arbitrary
KDEs and norm functions. We integrate Gaussian, Laplacian,
Epanechnikov and Logistic KDEs with three norm functions,
and show that the choice of KDE can significantly impact attack
effectiveness, especially when attacking linear models. Second,
we empirically show that Beta Poisoning attacks are ineffective
against non-linear ML models (such as neural networks and
multi-layer perceptrons), even with our extensions. Results imply
that the effectiveness of the attack decreases as model non-
linearity and complexity increase. Finally, our third contribution
is the development of a discriminator-based defense against Beta
Poisoning attacks. Results show that our defense strategy achieves
99% and 93% accuracy in identifying poisoning samples on
MNIST and CIFAR-10 datasets, respectively.

I. INTRODUCTION

The tremendous success of machine learning (ML) in many
diverse applications has made ML models lucrative targets for
adversarial attacks and manipulation. Poisoning attacks [1],
[2] constitute one popular category of attacks – according
to a recent survey [3], poisoning is the largest concern for
ML deployments in the industry. In a poisoning attack, an
attacker tampers with the training dataset of an ML model,
e.g., by injecting poisoning samples. Since the model is trained
on poisoned data, the model itself also becomes poisoned.
The goal of the attacker could be to reduce model accuracy
indiscriminately (untargeted attack), cause misclassification
for specific classes (targeted attack), or inject a trigger pattern
which can be activated at test-time (backdoor attack).

In a poisoning attack, it is typically in the attacker’s best
interests to cause the maximum negative impact with limited
manipulation. The attacker’s goal of creating an effective
attack is often formulated as a bilevel optimization problem
in the literature; however, solving this optimization problem is
computationally expensive [1], [4], [5], [6]. Therefore, heuris-
tic and/or approximate attack algorithms have been designed,
one of which is the Beta Poisoning attack [7].

* First two authors contributed equally.

Let xp denote a poisoning sample and yt denote the targeted
class. In a Beta Poisoning attack [7], the goal is to craft
xp which maximizes P (xp|yt) where the likelihood P (xp|yt)
is estimated using kernel density estimation (KDE) methods.
Furthermore, xp is crafted using a linear combination of
existing samples, where the weight of each sample xi is de-
termined by its coefficient βi. Collectively, the β coefficients
are optimized hand-in-hand with KDE using gradient ascent.
Overall, Beta Poisoning attacks were shown to be effective
against linear ML models [7].

On the other hand, the original version of the Beta Poisoning
attack was developed with a fixed Gaussian KDE for likeli-
hood estimation, and its effectiveness against more advanced,
non-linear ML models has not been explored. Considering
the recent popularity of deep learning, it is worth exploring
extensions of Beta Poisoning so that it can be executed with
varying KDEs, and its effectiveness against non-linear ML
models (such as convolutional neural networks, multi-layer
perceptrons, etc.) can be investigated.

To that end, in this paper we aim to advance the state
of the art in Beta Poisoning attacks and make three main
contributions. First, we propose an extension to the Beta
Poisoning attack so that it can be executed with arbitrary
kernel and norm functions. We integrate Gaussian, Laplacian,
Epanechnikov and Logistic KDEs with ℓ1, ℓ2 and ℓ∞ norms.
We empirically show that the choice of KDE indeed has a
significant impact on attack effectiveness, especially when
attacking linear models. Second, we explore the effectiveness
of Beta Poisoning on non-linear ML models. We show that
Beta Poisoning is ineffective against non-linear models, even
with our extensions. Furthermore, experiment results show that
the effectiveness of Beta Poisoning decreases as model non-
linearity increases.

Our third contribution is the design and development of
a defense against Beta Poisoning attacks. We observe that
the linear combination strategy used in Beta Poisoning yields
noisy or distorted poisoning samples, which can be distin-
guished from legitimate samples. Motivated by this observa-
tion, our defense utilizes the discriminator of a Generative
Adversarial Network (GAN) to identify poisoning samples.
We empirically evaluate our defense on popular image recog-
nition datasets: MNIST and CIFAR-10. Results show that our
defense achieves 99% and 93% accuracy for the two datasets.

The rest of this paper is organized as follows. We introduce
relevant background on notation, linear and non-linear ML

models, and poisoning attacks in Section II. We present the
Beta Poisoning attack and our extensions in Section III. Empir-
ical evaluation of the attack and its components are performed
in Section IV. Our defense is presented and evaluated in
Section V. Section VI presents related work on poisoning
attacks and Section VII concludes the paper.

II. BACKGROUND

A. Notation

Consider a supervised classification task. Let X ⊆ Rd

denote the feature space, where d is the number of dimensions,
and Y ∈ R denote the label space. The training dataset is
denoted by Dtr and the validation dataset is denoted by Dval.
We define Dyt

val = {x|(x, yt) ∈ Dval} as the subset of Dval

which consists of samples belonging to class yt. A machine
learning model fθ : X → Y with parameters θ is trained using
Dtr and validated using Dval. The regularized loss which is
optimized during training is represented by L(Dtr, θ) and the
validation loss is represented by L(Dval, θ).

B. Linear versus Non-Linear Models

ML models can be linear or non-linear. Linear models
directly work on data in the original feature space [8]. In clas-
sification tasks, linear models are most accurate when samples
with different labels can be separated using hyperplanes in
X [9], [10]. However, in many practical scenarios, training
samples from different classes may not be linearly separable.
In such cases, it is preferable to use non-linear models which
utilize various strategies (such as kernel methods) to map
samples to higher-dimensional space and/or construct non-
linear decision boundaries with high complexity. Examples of
linear models include Linear Regression, Logistic Regression,
and Linear Support Vector Machine (Linear SVM). Examples
of non-linear models include Multi-Layer Perceptron (MLP),
deep learning models such as Convolutional Neural Networks
(CNN), and SVMs with non-linear kernels.

Considering the rising popularity of deep learning and the
fact that linear separability does not hold on many datasets,
non-linear models are commonly used and often yield higher
accuracy. We demonstrate this by comparing the accuracy of a
Linear SVM with a non-linear CNN on MNIST and CIFAR-
10 datasets. We chose Linear SVM for our comparison since
it was used in the original Beta Poisoning paper [7], and we
chose CNN since it is a popular choice in image recognition.
The datasets and models will be explained in more detail
in Section IV. As the results in Table I show, the CNN
outperforms the linear SVM on both datasets. While their
accuracy difference is not too large on the MNIST dataset, the
accuracy of the CNN is more than 3x higher than Linear SVM
on CIFAR-10. Thus, the accuracy improvement and popularity
of non-linear models make them lucrative targets for poisoning
attacks, arguably even more so than linear models.

C. Poisoning Attacks

Poisoning attacks are a prominent threat to ML models
[1], [2]. In fact, according to a recent survey, among many

TABLE I
ACCURACY OF A LINEAR SVM VERSUS A CNN ON MNIST AND

CIFAR-10 DATASETS.

Model
Dataset Linear SVM CNN
MNIST 0.91 0.98

CIFAR-10 0.25 0.83

different security threats, poisoning is the largest concern for
ML deployments in the industry [3]. In a data poisoning attack,
the attacker injects one or more poisoning samples to Dtr.
Then, since the model fθ is trained on the poisoned Dtr,
the model also becomes poisoned. The attacker can aim to
achieve multiple goals by executing a data poisoning attack:
In an untargeted attack, the attacker may want to maximize
L(Dval, θ) so that the model’s accuracy will decrease across
all classes. In a targeted attack, the attacker may want to
decrease accuracy for a specific class. In a backdoor attack,
the attacker may want to inject a trigger pattern into the model.

More formally, let xp ∈ X be a poisoning sample with
label yp ∈ Y . The attacker wants to maximize the impact
of xp towards achieving his/her goal. Generally, this can be
formulated using a bilevel optimization problem [4], [5], [7]:

max
xp

L(Dval, θ
∗) (1)

s.t. θ∗ ∈ argmin
θ
L(Dtr ∪ (xp, yp), θ), (2)

xlb ⪯ xp ⪯ xub (3)

Here, Equation 1 states the goal of the attacker. In the above
example, the goal is to maximize the loss function over
the untainted validation set Dval. Since the crafted sample
xp is added to Dtr, it affects the training process of the
model, which is captured by Equation 2. In other words, the
training goal shifts from finding the optimal parameters θ∗

which minimize L(Dtr, θ) to finding the optimal parameters
θ∗ which minimize L(Dtr ∪ (xp, yp), θ). Lower and upper
bounds (xlb, xub) are specified in Equation 3 so that xp will
be a legitimate sample for the classification task in hand.

Notice that since θ∗ is first trained on poisoned data and
then used for calculating the outer validation loss, there is an
implicit dependency of the outer validation loss on xp. Also
notice that θ∗ has to be retrained for every candidate xp. As
a result, the problem of finding the optimal xp is inherently
a bilevel optimization problem. Unfortunately, solving the
bilevel optimization problem is computationally expensive [1],
[2], [5], [6], [7]; therefore, effective heuristic solutions are
sought. This was a motivating factor for the development of
the Beta Poisoning attack.

III. BETA POISONING ATTACK

A. Attack Description

Beta Poisoning, first proposed by Cinà et al. [7], is a
poisoning attack which aims to decrease the accuracy of an
ML model by injecting maliciously crafted poisoning sam-
ples into Dtr. Instead of solving the aforementioned bilevel
optimization problem, Beta Poisoning proposes a heuristic

strategy. Its strategy is to poison the target distribution yt with
sample xp by maximizing the likelihood P (xp|yt), making
the training dataset no longer linearly separable and thereby
hurting the accuracy of linear models. Two desirable properties
of Beta Poisoning are that: (i) it does not need access to Dtr,
and (ii) it does not need to re-train the model while crafting
poisoning samples. The mathematical formulation of the Beta
Poisoning attack can be stated as:

argmax
xp

P (xp|yt) (4)

s.t. xlb ⪯ xp ⪯ xub (5)

A key component of the attack is how P (xp|yt) is estimated.
While a Gaussian Kernel Density Estimator was used in [7],
we propose several alternatives as extensions of the original
Beta Poisoning attack, which will be presented and discussed
in Section III-B.

The Beta Poisoning attack also enforces that the poisoning
samples are obtained as a linear combination of other samples.
Let S = {x1, x2, ..., xk} be a set of samples selected randomly
from Dyt

val, where k = |S|. The set of samples in S are
named prototypes. Then, given coefficients β ∈ Rk, the
corresponding poisoning sample xp is obtained as:

xp = ψ(β, S) =
∑
xi∈S

βixi (6)

When this construction of xp in Equation 6 is inserted into the
original optimization problem (Equation 4), it can be observed
that the problem becomes equivalent to finding the optimal β
coefficient values. Once β coefficients are optimized, it is easy
to construct the resulting poisoning sample as xp = ψ(β, S).

The pseudocode of the Beta Poisoning attack is given in
Algorithm 1. The algorithm takes the validation set Dval,
target class yt, number of prototypes k, and the lower and
upper bounds xlb, xub as inputs. Its output is the poisoning
sample xp. On line 1, SAMPLE PROTOTYPES function is used
to construct the set of prototypes, S. This function constructs
S by drawing k samples uniformly at random from Dyt

val. On
line 2, INITIALIZE BETA function initializes the β coefficients
by sampling from a uniform distribution between [0,1]. The
main optimization of Beta Poisoning takes place between lines
3-7. On line 4, an initial xp is generated using the linear
combination ψ(β, S) and clipped so that its feature values
remain between xlb, xub. On line 5, ESTIMATE LIKELIHOOD
computes an estimate for P (xp|yt). As noted earlier, there
exist different density estimators to achieve this, which will
be explained in Section III-B. On line 6, based on the
estimated likelihood p, the β coefficients are updated using
gradient ascent. Here, α is the learning rate (by default,
we use α = 0.01). The optimization between lines 3-7 is
executed repeatedly until the stop condition is met (line 7).
Following [7], the stop condition we use is that the attacker’s
objective P (xp|yt) should not change more than 1e − 05 in
two consecutive iterations. Finally, on lines 8-9, the poisoning
sample xp is generated using the optimized β coefficients,
clipped, and returned.

Algorithm 1 Pseudocode of Beta Poisoning
Input: Dval, yt, k, xlb, xub

Output: Poisoning sample xp
1: S = SAMPLE PROTOTYPES(Dval, yt, k)
2: β = INITIALIZE BETA(k)
3: repeat
4: xp = CLIP(ψ(β,S), xlb, xub)
5: p = ESTIMATE LIKELIHOOD(xp|yt)
6: β = β + α∇βp
7: until stop condition is reached
8: xp = CLIP(ψ(β,S), xlb, xub)
9: return xp

B. Likelihood Estimation

The ESTIMATE LIKELIHOOD function computes an esti-
mate for P (xp|yt), which is a critical component of the
Beta Poisoning attack since it is the main factor behind the
optimization of the β coefficients. While a Gaussian estimator
was used in the original version of the attack [7], we observe
that the attack can be extended and generalized by enabling the
usage of arbitrary estimators. For this purpose, we propose the
integration of various Kernel Density Estimators (KDEs) to the
Beta Poisoning attack. KDEs are non-parametric methods to
estimate the probability density function of a random variable
using samples from the underlying distribution. They take
a free parameter h called the bandwidth which determines
the smoothness of the fitted distribution. In addition to the
Gaussian KDE, we integrated three popular KDEs to the attack
(Laplacian, Epanechnikov, Logistic), which are defined below.

Gaussian KDE: Gaussian is a popular KDE choice which
works best when the distribution is unimodal, but tends to
oversmooth multi-modal distributions [11], [12]. When the
Gaussian KDE is used, the Beta Poisoning attack estimates
P (xp|yt) as:

P (xp|yt) =
1

|S|
∑
x∈S

exp

(
− ∥xp − x∥

h

)2

(7)

where |·| denotes cardinality and ∥·∥ denotes a norm function.
Laplacian KDE: The Laplacian KDE is used for the

construction of coresets to approximate a KDE with a high
number of points [13]. It has found applications in many
practical tasks, such as integrating a low-voltage weak grid
system with a solar photovoltaic system [14], and conductive
imaging using MRI [15]. When the Laplacian KDE is used,
the Beta Poisoning attack estimates P (xp|yt) as:

P (xp|yt) =
1

|S|
∑
x∈S

exp

(
− ∥xp − x∥

h

)
(8)

Epanechnikov KDE: The Epanechnikov kernel [16] is also
a common choice for KDE. When the Epanechnikov KDE is
used, the Beta Poisoning attack estimates P (xp|yt) as:

P (xp|yt) =
1

|S|
∑
x∈S

3

4

(
1−

(
∥xp − x∥

h

)2)
(9)

Logistic KDE: The Logistic KDE has similarities to the
logistic function (sigmoid curve). When the Logistic KDE is
used, the Beta Poisoning attack estimates P (xp|yt) as:

P (xp|yt) =
1

|S|
∑
x∈S

exp(−∥xp−x∥
h)(

1 + exp(−∥xp−x∥
h)

)2 (10)

Note that norm functions are used in all KDEs, denoted by
∥ · ∥. We integrated multiple norm functions; namely the ℓ1,
ℓ2, and ℓ∞ norms. For a d-dimensional value z, its ℓ1 norm
is defined as:

∥z∥1 =

d∑
i=1

|zi| (11)

In contrast, ℓ2 norm is defined as:

∥z∥2 =

√√√√ d∑
i=1

z2i (12)

Finally, the ℓ∞ norm is defined as:

∥z∥∞ = max
1≤i≤d

|zi| (13)

IV. EXPERIMENTAL EVALUATION

A. Experiment Setup
We experimentally evaluated the effectiveness of the ex-

tended Beta Poisoning attack (with varying KDEs and norm
functions) on both linear and non-linear ML models. Two pop-
ular image recognition datasets were used in the experiments:
MNIST and CIFAR-10. MNIST [17] consists of handwritten
digits stored as gray-scale 28x28 pixel images. Each pixel
takes a value between 0 and 255. There are 10 classes in
the dataset, ranging from 0 to 9, each representing one digit.
CIFAR-10 [18] consists of colored RGB images of various
objects such as airplanes, automobiles, birds, cats and dogs.
Each image has 32x32 pixels. Similar to MNIST, there are a
total of 10 classes (10 different objects).

We evaluate the attack by training various types of ML
models on both datasets. Our linear models include Linear
SVM (with regularization parameter C=1 and C=100) and
Logistic Regression. Our non-linear models include multi-
layer perceptron (MLP), convolutional neural network (CNN),
and SVMs with non-linear kernels. Our MLPs have 1, 2 or 3
hidden layers with 256, 128 and 64 units. CNNs consist of two
convolution layers, each followed by an activation function
and a max pooling layer. Kernels of non-linear SVMs include
Laplacian, Polynomial, and RBF kernels.

In order to perform a fair comparison with [7], we focused
on the binary classification problem similar to [7], [4], [19],
and selected the same pairs of classes with [7] for poisoning.
Also, we compare the attack with a baseline attack strategy,
random label flipping. Results for this baseline attack is
denoted by Random Flip in the figures.

Attack effectiveness is measured using test accuracy, i.e.,
the accuracy of the poisoned model on a previously unseen
test dataset. Lower the test accuracy, higher the effectiveness
of the attack. Each experiment was repeated five times and
results were averaged.

Fig. 1. Attack effectiveness on linear models (Linear SVM and Logistic
Regression), MNIST dataset.

Fig. 2. Attack effectiveness on linear models (Linear SVM and Logistic
Regression), CIFAR-10 dataset.

B. Attack Effectiveness on Linear vs Non-Linear Models

We first evaluate the effectiveness of the attack on linear
versus non-linear ML models. Results with linear models are
reported in Figures 1 and 2 for the MNIST and CIFAR-
10 datasets, respectively. The findings in these two figures
are consistent with the findings of [7]: As the fraction of
attack points (poisoning samples) in Dtr increases, the attack
becomes more effective since test accuracy decreases. Also,
we observe that the Beta Poisoning attack is more effective
than the Random Flip attack on linear models.

In contrast, results with non-linear models are reported in
Figures 3 and 4. Interestingly, results show that the Beta
Poisoning attack is not effective on non-linear models. Despite
introducing up to 20% poisoning data into Dtr, test accuracy
does not drop more than 10% in any one of the MLPs or
the CNN. This is very different from the linear models in
which up to 30-40% drop in test accuracy was observed. It
can also be deduced from Figure 3 that as the non-linearity
in the models increase, attack effectiveness decreases. For
example, up to 10% drop in test accuracy is achieved on an
MLP with 1 hidden layer, but the drop is around 7-8% for an
MLP with 2 hidden layers, around 4-5% for an MLP with 3
hidden layers, and less than 2-3% for a CNN. Thus, a highly
non-linear model with increased complexity seems to be more
resilient against the Beta Poisoning attack. Another interesting
observation is that even the Random Flip attack, which is a
baseline attack strategy, often performs comparable to or better
than Beta Poisoning. This again shows the ineffectiveness of
Beta Poisoning on non-linear models.

Considering that the attack is effective on a linear SVM,
we also performed experiments with non-linear SVMs for

Fig. 3. Attack effectiveness on non-linear models (MLP with 1, 2, 3 layers and CNN), MNIST dataset.

Fig. 4. Attack effectiveness on non-linear models (MLP with 1, 2, 3 layers and CNN), CIFAR-10 dataset.

Fig. 5. Accuracy of SVMs with non-linear kernels for various gamma parameters, with regularization C = 1.

Fig. 6. Accuracy of SVMs with non-linear kernels for various gamma parameters, with regularization C = 100.

comparison. In particular, we trained SVMs with 3 commonly
used kernels: Laplacian, Polynomial and RBF. In addition,
there are two relevant parameters in the construction of non-
linear SVMs: regularization parameter C and kernel coefficient
gamma. Results with C=1 are reported in Figure 5 and results
with C=100 are reported in Figure 6. In each figure, different
gamma values including 0.1, 0.01, 0.001, 0.0001 are tested.
Darker colors indicate lower test accuracy whereas lighter
colors indicate higher test accuracy.

It can be observed from Figures 5 and 6 that there are
different scenarios depending on the SVM kernel, C and
gamma values. First, there are certain settings in which the

models are quite inaccurate to begin with (i.e., without attack).
This is true, for example, when gamma = 0.1 and either
the Laplacian or Polynomial kernel is used. In such cases,
increasing the fraction of attack points in Dtr does not cause
any further decrease in test accuracy, due to the initial accuracy
being low. Second, in certain settings, the model is quite
affected by the increase in the fraction of attack points, e.g.,
C=1 and gamma = 0.0001, or C=100, gamma = 0.01 or 0.001
and Polynomial kernel is used. In these settings, we observe
that the non-poisoned model (fraction of attack points = 0)
has fairly high test accuracy, but accuracy keeps decreasing
as the fraction of attack points is increased. We can conclude

that in this scenario, the Beta Poisoning attack is effective.
Third, there are cases in which the non-poisoned model is
highly accurate, and its accuracy does not decrease despite
a high fraction of attack points. For example, this happens
when the Laplacian kernel is used with C=100 and gamma =
0.01, 0.001 or 0.0001. Since the attack is unable to cause any
decrease in test accuracy in these cases, we can conclude that
it is ineffective in this scenario.

Overall, based on the experiments conducted in this section,
we arrive at the following takeaway messages: While the
Beta Poisoning attack is effective on linear models, it is
not effective on non-linear models. This is evidenced by
the notable difference between the results in Figures 1+2
versus those in Figures 3+4. Furthermore, the effectiveness of
the attack typically decreases as the amount of non-linearity
increases. For example, the attack is partially effective on a
subset of non-linear SVMs and with an MLP with 1 hidden
layer. However, as we increase the number of hidden layers in
the MLPs or use a CNN (a highly non-linear model), attack
effectiveness becomes limited.

C. Impact of Attack Components

We now evaluate the impacts of various attack components
on attack effectiveness. In these experiments, we purposefully
choose 3 representative models as follows: one model is a
linear model on which the Beta Poisoning attack was found
to be effective (Linear SVM), one model is a simple non-
linear model on which the attack was found to be partially
effective (MLP with 1 hidden layer), and one model is a more
complex non-linear model on which the attack was found to
be ineffective (MLP with 3 hidden layers).

Impact of KDEs: Recall from Section III-B that we
proposed an extension to the original Beta Poisoning attack to
support varying KDEs and norm functions for likelihood es-
timation. Results with varying KDEs on MNIST and CIFAR-
10 datasets are shown in Figures 7 and 8. It can be observed
that the choice of KDE has a substantial impact on attack
effectiveness when the model is Linear SVM. If the attacker
makes a “bad” choice by choosing Logistic KDE, then the
attack only yields 5% reduction in test accuracy. In contrast,
remaining KDEs can cause up to 40% reduction in test
accuracy. However, when the model is MLP with 1 or 3 hidden
layers, since the attack is not as effective as Linear SVM in the
first place, the choice of KDE has relatively smaller impact.
Interestingly, Logistic KDE becomes a good choice here. In
addition to yielding the highest reduction in test accuracy
in many cases, the variance of Logistic KDE is also high,
meaning that it has a higher risk of causing a strong impact.

Impact of Norm Functions: Recall from Section III-B that
we integrated three different norm functions: ℓ1, ℓ2, and ℓ∞
norms. Results with these three norm functions are shown in
Figures 9 and 10. When the model is Linear SVM, we observe
a trait that is similar to KDEs – ℓ2 and ℓ∞ norms have similar
effectiveness, whereas ℓ1 norm is ineffective. Considering the
substantial difference between ℓ1 norm and the other norms,
we again see that it is in the best interest of the attacker to

choose a good norm function. When the model is MLP with 1
hidden layer, ℓ2 and ℓ∞ norms again behave similarly, whereas
ℓ1 norm oftentimes behaves differently. ℓ1 norm seems to yield
higher accuracy reduction in almost half the cases, while ℓ2
and ℓ∞ norms yield higher reduction in the other half. Finally,
when the model is MLP with 3 hidden layers, ℓ1 norm seems
to be better on MNIST, whereas ℓ2 and ℓ∞ norms seem to
be better on CIFAR-10. However, note that their difference on
MNIST is no larger than 1%, whereas it is often 2-3% in case
of CIFAR-10. Thus, we can conclude that while ℓ1 norm can
be better in some cases, generally ℓ2 and ℓ∞ norms should be
preferred by attackers to maximize attack effectiveness.

Overall, we would like to highlight two takeaway messages
based on the experiments we conducted in this section. First,
the KDE and norm function chosen by the attacker can have
substantial impact on the effectiveness of the Beta Poisoning
attack. For example, an attacker should not choose the Logistic
KDE and ℓ1 norm when attacking a Linear SVM. KDEs and
norm functions we integrated in Section III-B, together with
other KDEs and norm functions that may be integrated in
the future, can be used towards improving Beta Poisoning
attacks by offering various options towards increasing attack
effectiveness in different scenarios. Second, although different
KDEs and norm functions show some impact on non-linear
models such as MLPs, their impacts are limited. Thus, the Beta
Poisoning attack still remains ineffective on non-linear models,
despite our extension with new KDEs and norm functions.

V. DEFENDING AGAINST BETA POISONING ATTACKS

A. Intuition Behind Our Defense

In this section, we propose an effective defense strategy
against Beta Poisoning attacks. Consider a data collector who
has a dataset and wants to build an ML model. However,
the data collector suspects that his/her dataset may have
been contaminated with poisoning samples. The data collector
will be able to use our defense strategy to check which
samples in his/her dataset are legitimate versus poisonous. The
intuition behind our defense stems from our observation that
the poisoning samples xp generated by the Beta Poisoning
attack are typically unrealistic in comparison to legitimate
samples. The reason is because Algorithm 1 uses the linear
combination function ψ (Equation 6) when generating xp.
While the combination of ψ with clipping ensures that xp will
be syntactically valid, its semantic properties are not similar
to legitimate samples.

In Figure 11, we illustrate our observation using some
randomly selected poisoning samples generated by the Beta
Poisoning attack. It can be observed that most of the images
are indeed not realistic, e.g., the CIFAR-10 images do not seem
to contain any real-world objects, and some MNIST digits look
like multiple images superimposed over one another. These
observations are caused by ψ: since ψ generates poisoning
samples by multiplying k real samples with learned β coef-
ficients and summing them index-wise, samples generated by
the Beta Poisoning attack look like noisy or distorted versions
of combinations of legitimate images. There is no mechanism

Fig. 7. Accuracy of Beta Poisoning attack with different KDEs on Linear SVM, MLP-1 and MLP-3 (MNIST dataset)

Fig. 8. Accuracy of Beta Poisoning attack with different KDEs on Linear SVM, MLP-1 and MLP-3 (CIFAR-10 dataset)

Fig. 9. Accuracy of Beta Poisoning attack with different norm functions on Linear SVM, MLP-1 and MLP-3 (MNIST dataset)

Fig. 10. Accuracy of Beta Poisoning attack with different norm functions on Linear SVM, MLP-1 and MLP-3 (CIFAR-10 dataset)

Fig. 11. Poisoning samples on the MNIST dataset (first row) and CIFAR-10
dataset (second row).

to ensure photorealism or guarantee that nearby pixels in the
final sample will be cohesive.

Our defense intuition, therefore, is to separate poisoning
samples from legitimate samples based on how realistic they
are. In particular, we leverage the discriminator component of
Generative Adversarial Networks (GANs) towards this goal.

B. Discriminator-Based Defense Strategy

GANs are unsupervised generative models used for gener-
ating realistic samples [20], [21]. They consist of two sub-
models: a generator which is trained to generate realistic
samples and a discriminator which aims to distinguish be-
tween real versus generated samples. The loss function of the
discriminator measures how well the discriminator can distin-
guish between real versus generated samples. The generator
does not have direct access to real samples; instead, it learns
from the predictions (or the loss function) of the discriminator.
In essence, the core idea behind a GAN is to facilitate
a “contest” between the generator and the discriminator –
the discriminator gets progressively better at distinguishing
between real versus generated samples and the generator gets
progressively better at generating more realistic samples that
can fool the discriminator.

Our defense against Beta Poisoning attacks is presented
in Algorithm 2 and explained verbally as follows. Consider
that we have a pre-trained GAN available. This GAN can be
obtained in multiple ways, e.g., there are several open-source
resources [22], [23], [24]; alternatively, the data collector may
have a small, non-poisoned gold standard dataset Dgs which
can be used to train a GAN. We extract the discriminator of
this GAN, which is capable of distinguishing between real and
fake samples accurately. Discriminator Φ, suspicious dataset
Dsp (the dataset which is suspected of containing both real
and poisoning samples) and the threshold τ become inputs
to Algorithm 2. The algorithm returns an array v, such that
v[i] = 1 means that the i’th sample in Dsp is a poisoning
sample, and v[i] = 0 otherwise. Between lines 3-9, the
defense algorithm feeds each sample in Dsp into Φ and Φ
outputs a score for each sample. Higher the score, higher
the discriminator’s belief that the given sample is a poisoning
sample. If the sample’s score is higher than threshold τ , our
defense labels it as a poisoning sample; otherwise, the sample
is labeled as legitimate.

Algorithm 2 Discriminator-Based Defense
Input: Suspicious dataset Dsp, discriminator Φ,

threshold τ
Output: Array v

1: size = |Dsp|
2: v = zeros(0, size− 1) ▷ zero array with length size
3: for i← 0 to size do
4: xi = Dsp[i]
5: if Φ(xi) ≥ τ then
6: v[i] = 1
7: else
8: v[i] = 0
9: end if

10: end for
11: return v

C. Experimental Setup for Defense Evaluation

We experimentally evaluated the effectiveness of our pro-
posed defense using the same datasets and similar setup as in
Section IV. In order to train GAN models and extract their
discriminator, we separated a portion of the original samples
from MNIST and CIFAR-10 datasets, and used these samples
only for training the GANs. (These samples are not included in
training, validation or test sets.) The trained GANs were Deep
Convolutional Generative Adversarial Networks (DCGANs).
The architectures of the DCGANs were inspired by Tensorflow
and PyTorch tutorials. In particular, the MNIST architecture
was based on the Tensorflow DCGAN Tutorial1. A sigmoid
layer was added as the last layer of the discriminator so that
the defense parameter τ becomes bounded. The CIFAR-10
architecture was based on the PyTorch tutorial2.

To construct suspicious datasets Dsp, we generated N poi-
soning samples using the Beta Poisoning attack and combined
them with N legitimate samples from Dtr. Consequently, we
ensured that Dsp consists of an equal number of legitimate
and poisoning samples. The type of ML model (e.g., linear on
non-linear) was not important for this set of experiments, since
it does not impact the poisoning sample generation algorithm
of the Beta Poisoning attack.

Consider a sample xi ∈ Dsp. We define True Positive (TP),
False Positive (FP), True Negative (TN) and False Negative
(FN) as follows:

• TP: xi was generated by the Beta Poisoning attack and
our defense correctly labels it as a poisoning sample.

• FP: xi is a legitimate training sample but our defense
incorrectly labels it as a poisoning sample.

• TN: xi is a legitimate training sample and our defense
correctly labels it as a legitimate sample.

• FN: xi was generated by the Beta Poisoning attack but
our defense incorrectly labels it as a legitimate sample.

Precision, recall, F1 score and accuracy of the defense are
measured according to the above definitions.

1https://www.tensorflow.org/tutorials/generative/dcgan
2https://pytorch.org/tutorials/beginner/dcgan faces tutorial

TABLE II
PRECISION, RECALL, F1 AND ACCURACY OF OUR DEFENSE ON MNIST

AND CIFAR-10 DATASETS.

Precision Recall F1 Accuracy
CIFAR-10 0.90 0.97 0.94 0.93

MNIST 0.99 1.0 0.99 0.99

Fig. 12. F1 score and accuracy of our defense under varying values of the
threshold parameter τ .

D. Results and Discussion

In Table II, we provide a summary of the precision, recall,
F1 score and accuracy values achieved by our defense. We
observe that on both datasets, the recall of our defense is
strong (0.97 on CIFAR-10 and 1.0 on MNIST), meaning that
the defense has a very low number of false negatives, i.e.,
very few number of poisoning samples remain undetected by
the defense. Precision is slightly lower than recall (0.90 on
CIFAR-10 and 0.99 on MNIST), which means that the defense
can raise some false positives. Overall, with F1 scores of 0.94
and 0.99, and accuracy of 0.93 and 0.99 for the CIFAR-10
and MNIST datasets respectively, we can conclude that our
defense is indeed quite successful.

In Figure 12, we explore the impact of varying the τ
parameter on the effectiveness of the defense. Note that, since
our suspicious datasets contain an equal number of legitimate
and poisoning samples, the defense has a base accuracy of
0.5. We observe that the accuracy of the defense is indeed
impacted by τ . When τ is too small or too large, defense
accuracy converges to 0.5. The reason is because when τ is
extremely small (or large), the defense always outputs that xi
is legitimate (or poisoning), thereby predicting exactly half of
the suspicious dataset correctly. The predictions of the defense
become non-trivial between τ values of 0 and 1. Between these
values, we observe that accuracy makes a reverse U-shaped
curve for both MNIST and CIFAR-10. We experimentally find
that the optimal τ value for MNIST is close to 0.10, whereas
the optimal τ value for CIFAR-10 is close to 0.36.

VI. RELATED WORK

Poisoning attacks constitute a prominent category of attacks
which can be executed on ML models [1], [2], [3]. One way
to perform poisoning attacks is label flipping, which does
not perturb feature values of training samples, but mislabels
a subset of them so that the accuracy of the ML model
will decrease [25], [26], [27]. However, label flipping can be
suboptimal when ML models are more complex or when the

flipped samples are not chosen effectively. Thus, a common
strategy in the literature has been to formulate poisoning
attacks as bilevel optimization problems.

Biggio et al. [4] proposed one of the first works on bilevel
optimization-based poisoning. In this work, a gradient was
derived to optimize the poisoning attack, which was then used
to iteratively update poisoning samples towards maximizing
the target model’s validation error. Similar optimization for-
mulations were applied to attack feature selection algorithms
in [28] and [29]. Motivated by the hardness of solving the
bilevel optimization problem, Mei and Zhu [30] used machine
teaching and Krush-Kahn-Tucker (KKT) conditions. Munoz-
Gonzalez et al. [5] used back-gradient optimization, aiming to
attack a wider class of ML models (such as neural networks)
and multi-class classification. MetaPoison [6] used a first-order
method to approximate the bilevel problem via meta-learning.
Geiping et al. [31] aimed to make attacks less expensive and
more visually imperceptible, and proposed a method based on
gradient matching.

Instead of solving the bilevel optimization problem, a
heuristic strategy called feature collision can be used. A key
work in this direction was Poison Frogs, proposed by Shafahi
et al. [32]. The aim of this work is to create poisoning samples
which collide with target test samples in the feature space
so that the ML model predicts the test sample according to
the poisoned label. While this strategy is effective when the
feature extractor is fixed and/or known by the attacker, its
effectiveness decreases in more general scenarios [33], [34],
[35]. To overcome this problem, [34] and [35] proposed to
optimize poisoning samples on ensemble models such that
they will become more general and transferable. The concept
of transferability is further studied in [19], for both poisoning
and evasion attacks.

The computational complexity of solving the bilevel op-
timization problem has indeed been a recurring challenge
[1], [7], which motivated the development of some of the
aforementioned heuristic strategies. Among those strategies,
most closely related to our work is Beta Poisoning attacks, pro-
posed in [7]. We advance the state-of-the-art in Beta Poisoning
attacks in three ways: (i) We extend Beta Poisoning attacks
to arbitrary kernel and norm functions. (ii) We show that
while Beta Poisoning is effective against linear ML models,
it is ineffective against non-linear models. (iii) We propose an
effective defense against Beta Poisoning.

Finally, most poisoning attacks in the literature (such as
those surveyed above) target classification models in central-
ized settings. Recently, it was shown that it is also possible
to poison regression models [36], [37] and distributed ML
settings such as federated learning [38], [39], [40]. Exploring
the applicability of Beta Poisoning or other attacks to these
scenarios can be investigated in future work.

VII. CONCLUSION

In this paper, we studied Beta Poisoning attacks and made
three main contributions. First, we extended the original Beta

Poisoning attack by integrating various KDEs and norm func-
tions (such as Gaussian, Laplacian, Epanechnikov, and Logis-
tic KDE) for likelihood estimation. Second, we showed that
although Beta Poisoning attacks are effective against linear
ML models, they remain ineffective against non-linear models
despite our extensions. Third, we proposed a defense algorithm
against Beta Poisoning attacks and showed that it is indeed
effective. In future work, we will explore the applications of
Beta Poisoning attacks to regression and federated learning.

REFERENCES

[1] A. E. Cinà, K. Grosse, A. Demontis, S. Vascon, W. Zellinger, B. A.
Moser, A. Oprea, B. Biggio, M. Pelillo, and F. Roli, “Wild patterns
reloaded: A survey of machine learning security against training data
poisoning,” arXiv preprint arXiv:2205.01992, 2022.

[2] M. Goldblum, D. Tsipras, C. Xie, X. Chen, A. Schwarzschild, D. Song,
A. Madry, B. Li, and T. Goldstein, “Dataset security for machine learn-
ing: Data poisoning, backdoor attacks, and defenses,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2022.

[3] R. S. S. Kumar, M. Nyström, J. Lambert, A. Marshall, M. Goertzel,
A. Comissoneru, M. Swann, and S. Xia, “Adversarial machine learning-
industry perspectives,” in 2020 IEEE Security and Privacy Workshops
(SPW). IEEE, 2020, pp. 69–75.

[4] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” in Proceedings of the 29th International Conference
on Machine Learning, 2012, pp. 1467–1474.

[5] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice, V. Wongras-
samee, E. C. Lupu, and F. Roli, “Towards poisoning of deep learning
algorithms with back-gradient optimization,” in Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security, 2017, pp. 27–38.

[6] W. R. Huang, J. Geiping, L. Fowl, G. Taylor, and T. Goldstein, “Metapoi-
son: Practical general-purpose clean-label data poisoning,” Advances
in Neural Information Processing Systems, vol. 33, pp. 12 080–12 091,
2020.

[7] A. E. Cinà, S. Vascon, A. Demontis, B. Biggio, F. Roli, and M. Pelillo,
“The hammer and the nut: Is bilevel optimization really needed to poison
linear classifiers?” in 2021 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2021, pp. 1–8.

[8] G.-X. Yuan, C.-H. Ho, and C.-J. Lin, “Recent advances of large-scale
linear classification,” Proceedings of the IEEE, vol. 100, no. 9, pp. 2584–
2603, 2012.

[9] M. Vidal-Naquet and S. Ullman, “Object recognition with informative
features and linear classification,” in ICCV, vol. 3, 2003, p. 281.

[10] C. J. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp.
121–167, 1998.

[11] Z. I. Botev, J. F. Grotowski, and D. P. Kroese, “Kernel density estimation
via diffusion,” The Annals of Statistics, vol. 38, no. 5, pp. 2916–2957,
2010.

[12] M. Zhou, X. Li, Y. Wang, S. Li, Y. Ding, and W. Nie, “6g multisource-
information-fusion-based indoor positioning via gaussian kernel density
estimation,” IEEE Internet of Things Journal, vol. 8, no. 20, pp. 15 117–
15 125, 2021.

[13] J. M. Phillips and W. M. Tai, Improved Coresets for Kernel Density
Estimates, pp. 2718–2727. [Online]. Available: https://epubs.siam.org/
doi/abs/10.1137/1.9781611975031.173

[14] N. Kumar, B. Singh, B. K. Panigrahi, C. Chakraborty, H. M. Suryawan-
shi, and V. Verma, “Integration of solar pv with low-voltage weak grid
system: Using normalized laplacian kernel adaptive kalman filter and
learning based inc algorithm,” IEEE Transactions on Power Electronics,
vol. 34, no. 11, pp. 10 746–10 758, 2019.

[15] J. Shin, J.-H. Kim, and D.-H. Kim, “Redesign of the laplacian
kernel for improvements in conductivity imaging using mri,” Magnetic
Resonance in Medicine, vol. 81, no. 3, pp. 2167–2175, 2019. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.27528

[16] V. A. Epanechnikov, “Non-parametric estimation of a multivariate prob-
ability density,” Theory of Probability & Its Applications, vol. 14, no. 1,
pp. 153–158, 1969.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[18] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[19] A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Biggio, A. Oprea,
C. Nita-Rotaru, and F. Roli, “Why do adversarial attacks transfer?
explaining transferability of evasion and poisoning attacks,” in 28th
USENIX security symposium (USENIX security 19), 2019, pp. 321–338.

[20] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and
A. A. Bharath, “Generative adversarial networks: An overview,” IEEE
Signal Processing Magazine, vol. 35, no. 1, pp. 53–65, 2018.

[21] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

[22] M. Zoo, “Generative models: Deep learning models and code,” 2022,
https://modelzoo.co/category/generative-models.

[23] Github, “Pytorch-gan: Pytorch implementations of generative adversarial
networks,” 2022, https://github.com/eriklindernoren/PyTorch-GAN.

[24] ——, “The-gan-zoo: A list of all named gans,” 2022, https://github.com/
hindupuravinash/the-gan-zoo.

[25] B. Biggio, B. Nelson, and P. Laskov, “Support vector machines under
adversarial label noise,” in Asian Conference on Machine Learning.
PMLR, 2011, pp. 97–112.

[26] H. Xiao, B. Biggio, B. Nelson, H. Xiao, C. Eckert, and F. Roli, “Support
vector machines under adversarial label contamination,” Neurocomput-
ing, vol. 160, pp. 53–62, 2015.

[27] H. Xiao, H. Xiao, and C. Eckert, “Adversarial label flips attack on
support vector machines,” in ECAI 2012. IOS Press, 2012, pp. 870–875.

[28] C. Frederickson, M. Moore, G. Dawson, and R. Polikar, “Attack strength
vs. detectability dilemma in adversarial machine learning,” in 2018
International Joint Conference on Neural Networks (IJCNN). IEEE,
2018, pp. 1–8.

[29] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli, “Is fea-
ture selection secure against training data poisoning?” in International
Conference on Machine Learning. PMLR, 2015, pp. 1689–1698.

[30] S. Mei and X. Zhu, “Using machine teaching to identify optimal
training-set attacks on machine learners,” in Twenty-Ninth AAAI Con-
ference on Artificial Intelligence, 2015.

[31] J. Geiping, L. H. Fowl, W. R. Huang, W. Czaja, G. Taylor, M. Moeller,
and T. Goldstein, “Witches’ brew: Industrial scale data poisoning via
gradient matching,” in International Conference on Learning Represen-
tations, 2020.

[32] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras,
and T. Goldstein, “Poison frogs! targeted clean-label poisoning attacks
on neural networks,” Advances in Neural Information Processing Sys-
tems, vol. 31, 2018.

[33] O. Suciu, R. Marginean, Y. Kaya, H. Daume III, and T. Dumitras, “When
does machine learning fail? generalized transferability for evasion and
poisoning attacks,” in 27th USENIX Security Symposium (USENIX
Security 18), 2018, pp. 1299–1316.

[34] H. Aghakhani, D. Meng, Y.-X. Wang, C. Kruegel, and G. Vigna, “Bulls-
eye polytope: A scalable clean-label poisoning attack with improved
transferability,” in 2021 IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE, 2021, pp. 159–178.

[35] C. Zhu, W. R. Huang, H. Li, G. Taylor, C. Studer, and T. Goldstein,
“Transferable clean-label poisoning attacks on deep neural nets,” in
International Conference on Machine Learning. PMLR, 2019, pp.
7614–7623.

[36] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li,
“Manipulating machine learning: Poisoning attacks and countermeasures
for regression learning,” in 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 2018, pp. 19–35.

[37] J. Wen, B. Z. H. Zhao, M. Xue, A. Oprea, and H. Qian, “With great
dispersion comes greater resilience: Efficient poisoning attacks and de-
fenses for linear regression models,” IEEE Transactions on Information
Forensics and Security, vol. 16, pp. 3709–3723, 2021.

[38] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo, “Analyzing feder-
ated learning through an adversarial lens,” in International Conference
on Machine Learning. PMLR, 2019, pp. 634–643.

[39] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning
attacks against federated learning systems,” in European Symposium on
Research in Computer Security. Springer, 2020, pp. 480–501.

[40] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning
attacks to byzantine-robust federated learning,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 1605–1622.

