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Abstract. Spatial decompositions are commonly used in the privacy literature
for various purposes such as range query answering, spatial indexing, count-of-
counts histograms, data summarization, and visualization. Among spatial decom-
position techniques, quadtrees are a popular and well-known method. In this pa-
per, we study the problem of building quadtrees for spatial data under the emerg-
ing notion of Local Differential Privacy (LDP). We first propose a baseline so-
lution inspired from a state-of-the-art method from the centralized DP literature
and adapt it to LDP. Motivated by the observation that the baseline solution causes
large noise accumulation due to its iterative strategy, we then propose a novel so-
lution which utilizes a single data collection step from users, propagates density
estimates to all nodes, and finally performs structural corrections to the quadtree.
We experimentally evaluate the baseline solution and the proposed solution us-
ing four real-world location datasets and three utility metrics. Results show that
our proposed solution consistently outperforms the baseline solution, and fur-
thermore, the resulting quadtrees provide high accuracy in practical tasks such as
spatial query answering under conventional privacy levels.

Keywords: Privacy · local differential privacy · location-based services · spatial
data · spatial decompositions.

1 Introduction

Location-based services (LBSs) have become ubiquitous, thanks to the popularity of
smartphones, GPS-equipped mobile devices, online social networks, and connected car
applications. This results in growing volumes of spatial data which are available for
collection, storage and analysis; however, the privacy of the data must be protected. A
common method to deal with big spatial data in the privacy literature has been to adopt
spatial decompositions which partition (decompose) the geometric space into smaller
subspaces through the likes of tree-based and grid-based data structures. Spatial de-
compositions have been commonly used in the differential privacy literature for various
purposes such as range query answering [8, 29, 34], spatial indexing and modeling [26,
39], count-of-counts histograms [22], data summarization and visualization [2, 27], as
well as synthetic data generation [15, 16, 19].

Among spatial decomposition techniques, quadtrees are a popular and well-known
method [8, 23, 28]. Indeed, the problem of building quadtrees under centralized dif-
ferential privacy (DP) has been actively studied [8, 24, 39, 26, 34]. However, a major
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drawback of centralized DP is that it assumes all data is collected and stored in a cen-
tralized location before the algorithm is executed (i.e., before a quadtree is built). On
the other hand, the recently emerging notion of Local Differential Privacy (LDP) en-
ables each user to locally perturb their data on their own device and send the perturbed
output to the data collector [7, 13]. This way, the data collector cannot observe the true
data (in our context, the true location) of any user; yet, the data collector can still build
a quadtree by estimating aggregate statistics pertaining to the general population. Due
to its desirable privacy guarantee, LDP has recently received significant attention from
the academia and industry [7, 14, 37]. It has also been deployed in consumer-facing
products of tech companies such as Apple, Google and Microsoft [1, 10, 13].

Motivated by the above, in this paper, we study the problem of building quadtrees
for spatial data under LDP. We first propose a baseline solution inspired from a state-
of-the-art method from the centralized DP literature [39] and adapt it to LDP by mak-
ing modifications. However, we observe that this baseline solution yields low utility in
practice. This is because the baseline solution divides the total ε privacy budget into
several pieces, each used for LDP estimation in one depth of the quadtree. Since the
privacy budget used per estimation is smaller, higher noise is added to satisfy LDP,
which causes noisy node densities and erroneous structure in the resulting quadtrees
since estimation results also affect whether an internal tree node should split (have chil-
dren). To address these weaknesses, we then develop a new, proposed solution which
performs a single LDP estimation. This single-step estimation is performed at the hy-
pothetical leaves of the quadtree and results in low noise, thereby enabling high-quality
estimates to be obtained at the leaves. Then, leaves’ densities are propagated upwards
(in bottom-up fashion) to populate the densities of remaining nodes. Finally, structural
corrections and consistency is achieved for the quadtree in top-down manner.

We experimentally evaluate the baseline solution and the proposed solution using
four real-world location datasets and three utility metrics: Average Query Error (AQE)
which measures the correctness of query results issued on the quadtrees, Tree Edit
Distance (TED) which measures the structural difference between the LDP quadtree
and a noise-free, gold-standard quadtree, and Node Density Difference (NDD) which
measures the error in the densities of quadtree nodes. Typical privacy values such as
ε = 0.1, 0.5, 1, 2 are used throughout the experiments. Results show that our pro-
posed solution consistently outperforms the baseline solution in a variety of settings and
quadtree parameters. Furthermore, in many cases, quadtrees built using our proposed
solution enable query answering with less than 5% error, demonstrating the practicality
and usefulness of our solution.

In short, the contributions of this paper can be summarized as follows:
– We formulate the problem of building quadtrees for spatial data under LDP and

propose two solutions: a baseline solution inspired from the centralized DP litera-
ture, and a proposed solution which relies on a single step of LDP data collection
to address the iterative noise accumulation in the baseline solution.

– We develop three utility metrics to measure the accuracy of quadtrees built under
LDP: Average Query Error (AQE), Tree Edit Distance (TED) and Node Density
Difference (NDD).

– We experimentally evaluate the baseline and proposed solutions using four-real
world location datasets and the three aforementioned metrics, under varying ε pri-



Building Quadtrees for Spatial Data under Local Differential Privacy 3

vacy budgets as well as varying quadtree parameters (max height h∗ and split
threshold θ). Results show that the proposed solution is superior to the baseline
solution, and furthermore, quadtrees built using the proposed solution can be used
in practice with low utility loss.

2 Preliminaries

2.1 Data Model and Notation

Consider a two-dimensional geolocation space Ω and let U = {u1, u2, u3, ...} be the
collection of users, where n = |U| denotes the number of users. For each user ui ∈ U ,
the user’s true location li is a tuple consisting of latitude and longitude coordinates.
Each location li falls within the boundaries of Ω. For example, if users are from the
city of London, then Ω corresponds to the geographic boundaries of London and each
location li corresponds to some GPS coordinates within London. We assume that Ω by
itself is not sensitive, as it can be learned from public resources.

2.2 Local Differential Privacy

Local Differential Privacy (LDP) has recently emerged as a popular privacy standard
and it has been deployed in consumer-facing products of companies such as Apple,
Google and Microsoft [1, 7, 10, 13, 37]. In LDP, each user locally perturbs their true data
on their own device using a randomized algorithm Ψ and sends the perturbed output to
the server (i.e., the data collector). After the server collects perturbed data from many
users, it performs estimation to recover aggregate statistics pertaining to the general user
population. The main reasons why LDP is a good fit for the problem considered in this
paper are twofold. First, since perturbation is performed on the user’s side, the server
does not observe the true location of any user, which protects the privacy of the user’s
location from a potentially untrusted server. Second, while the server cannot infer any
particular user’s true location, it can recover aggregate statistics pertaining the general
user population, which enables the server to estimate location densities and build spatial
decomposition structures pertaining to the overall population.

In our context, the sensitive data that needs to be protected using LDP is each user’s
location. Accordingly, we formalize LDP as follows.

Definition 1 (ε-LDP). A randomized algorithm Ψ satisfies ε-local differential privacy
(ε-LDP), where ε > 0, if and only if for any two inputs li, l∗i , it holds that:

∀y ∈ Range(Ψ) :
Pr[Ψ(li) = y]

Pr[Ψ(l∗i ) = y]
≤ eε (1)

where Range(Ψ) stands for the set of all possible outputs of the algorithm Ψ .

Given the perturbed output y, ε-LDP ensures that the server (or any third party who
observes y) will not be able to distinguish between user’s actual location li and fake
location l∗i beyond the probability odds ratio controlled by eε. The strength of privacy



4 E. Alptekin and M.E. Gursoy

is controlled by the parameter ε, commonly known as the privacy budget. Lower ε
yields stronger privacy.

Similar to centralized DP, LDP enjoys the sequential composition property [11, 33,
38] which can be formalized as follows.

Definition 2 (Sequential Composition). Consider algorithms Ψ1, Ψ2, ..., Ψm such that
each Ψj satisfies εj-LDP. Then, the sequential execution of Ψ1(li), Ψ2(li), ..., Ψm(li)
satisfies (

∑m
j=1 εj)-LDP.

The popularity of LDP has led to the development of several LDP protocols [3,
13, 31, 32]. New systems and applications often use these LDP protocols as building
blocks. In particular, we will use the Optimized Unary Encoding (OUE) protocol as a
building block in this paper, since it was shown to provide higher accuracy than many
other protocols [32]. As in other protocols, OUE consists of two main components: (i)
user-side encoding and perturbation to satisfy LDP on users’ devices, and (ii) server-
side estimation after collecting perturbed data from the user population.

User-Side Perturbation in OUE: OUE assumes that the user’s data is encoded as
a unary bitvector (vector of bits), i.e., only one position in the user’s vector contains a
1 bit and all remaining positions contain 0 bits. Let Bi denote user ui’s unary bitvector.
The perturbation algorithm Ψ of OUE takes Bi as input and outputs perturbed bitvector
B′

i as:

Pr
[
B′

i[j] = Ψ(Bi[j]) = 1
]
=

{
1
2 if Bi[j] = 1
1

eε+1 if Bi[j] = 0
(2)

In other words, each position j ∈ [1, |Bi|] is considered independently from others, and
the bit that exists in Bi[j] is either kept or flipped according to the above probabilities.
After this perturbation is complete, ui sends the perturbed bitvector B′

i to the server.
Server-Side Estimation in OUE: The server receives perturbed bitvectors from

many users, collectively denoted by {B′
1, B

′
2, ..., B

′
n}. Then, the server computes the

reported counts of each position j ∈ [1, |Bi|], which we denote by Ĉ(j):

Ĉ(j) =

n∑
i=1

B′
i[j] (3)

Finally, the server computes the estimate for position j, i.e., how many users have 1
bit in the j’th position of their original bitvectors. This estimate, denoted by C̄(j), is
computed as:

C̄(j) =
2 ·

(
(eε + 1) · Ĉ(j)− |U|

)
eε − 1

(4)

2.3 Spatial Decompositions and Quadtrees

A spatial decomposition decomposes a geometric space into smaller subspaces. Tree-
based (hierarchical) decompositions are quite common, in which data points are divided
among the leaf nodes [8, 19, 22, 23, 39]. Tree-based decompositions are usually com-
puted down to a level in which either the leaves contain a small number of points or
each leaf covers a small enough area.
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Fig. 1: Sample users with their locations represented as points (on the left) and the
corresponding quadtree (on the right).

Among tree-based spatial decomposition techniques, quadtrees are a popular and
well-known method [8, 23, 28]. A quadtree recursively divides the geographical space
into four equi-sized quadrants (top left, top right, bottom left, bottom right) at each step.
A sample quadtree is illustrated in Figure 1. The root corresponds to Ω as a whole. In
the next level of the tree, Ω is divided into four quadrants, each of which corresponds to
a child of the root node. The division of a node into four quadrants will keep occurring
recursively, until: (i) the maximum height limit h∗ is reached, or (ii) the current node
contains fewer number of points than a pre-defined threshold θ.

We establish some notation and terminology with the help of Figure 1. Let Q denote
a quadtree and let V = {v1, v2, v3, ...} denote the set of nodes (vertices) in Q. The
depth of a node v is denoted by h(v), e.g., in Figure 1, h(v1) = 1, h(v2) = h(v3) =
2, h(v7) = 3. Nodes with the same h(v) are found at the same depth of Q. Each
node corresponds to a region of the geographical space as shown in Figure 1, e.g., v1
corresponds to Ω, v2 corresponds to bottom left quadrant of Ω, and so forth. We denote
the geographical space corresponding to vertex v by g(v). Furthermore, the number of
data points located in the corresponding region of v is called the density of v and it is
denoted by d(v). In Figure 1, d(v1) = 20, d(v2) = 2, d(v3) = 6, etc. By definition, the
root node v1 has density d(v1) = n since all users are assumed to be located within Ω.

We denote the children of a node v by c(v), e.g., according to Figure 1, c(v4) =
{v6, v7, v8, v9}. If a node has children, it will always have exactly 4 children. If a node
does not have children, then it is called a leaf node. The parent of a node v is denoted
by p(v), e.g., p(v6) = p(v8) = v4.

In general, let vi denote a node with set of children c(vi) = {vi1, vi2, vi3, vi4}. By
definition of Q and from the example in Figure 1, it can be verified that:

g(vi) = g(vi1) ∪ g(vi2) ∪ g(vi3) ∪ g(vi4) (5)

and the pairwise intersection g(vij) ∩ g(vik) is empty for all j ̸= k. Furthermore, the
sum of densities of all children equals the density of the parent:

d(vi) = d(vi1) + d(vi2) + d(vi3) + d(vi4) (6)

One of the key applications of quadtrees is in answering spatial count (density)
queries [8, 23, 39]. Consider a query q. Initially, the answer of q is set to 0, i.e., ansq =
0. Then, starting from the root, the quadtree is traversed in-top down fashion. For each
node v that is visited:
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1. If g(v) is disjoint from q, then v is ignored.
2. If g(v) is fully contained in q, then ansq is increased by d(v).
3. If g(v) partially intersects q and v is not a leaf node, then every child of v with a

region not disjoint from q must be visited.
4. If g(v) partially intersects q and v is a leaf node, then ansq is incremented by:

ansq = ansq + d(v)× ||g(v) ∩ q||
||g(v)||

Here, || · || denotes the size of a geographical region.

We exemplify this process with the help of Figure 1. Let q be a query denoted using
the red rectangle. Starting from v1, we first find that g(v) intersects with v1, therefore
v1’s children must be visited. Since v2 and v3 have no intersection with q, they are
ignored. v5 has intersection with q and it is a leaf node, therefore ansq is incremented
by d(v5)× ||g(v5)∩q||

||g(v5)|| . v4 has intersection with q but it is not a leaf node, therefore v4’s
children must be visited next. Among v4’s children, v6, v8 and v9 are ignored. Since v7
intersects with q, ansq is incremented by d(v7)× ||g(v7)∩q||

||g(v7)|| .

2.4 Problem Formulation

Let U be the collection of users where li denotes the location of user ui. Let Ω, θ and
h∗ parameters be known by the server. The server would like to construct a quadtree
according to these parameters. If the server was able to access the real location li of each
user, then a noise-free quadtree Q can be built. However, each user’s location must be
protected by ε-LDP, which causes users’ responses to the server to be perturbed (noisy)
to achieve privacy protection. Given the noisy responses, the server can build a noisy
quadtree, denoted by Q′. For Q′ to be useful in practice, it is desired that Q′ has high
similarity to Q. In other words, it is desired to build a quadtree Q′ while satisfying ε-
LDP, such that Q′ has high similarity to the hypothetical, noise-free Q that would have
been built if privacy protection did not exist.

In short, the problem that we study in this paper is to design and develop a solution
in which: (i) the privacy of each user’s location li is protected via ε-LDP, and (ii) the
server is able to build a quadtree Q′ such that Q′ has high similarity to quadtree Q
which would have been built if privacy protection had not been applied.

3 Building Quadtrees under LDP

In this section, we describe two solutions for the problem formulated in Section 2.4. Our
first solution is inspired by a differentially private quadtree building algorithm from the
centralized DP literature, which we modify in order to adapt to LDP. We explain the
centralized algorithm and the key modifications we need to perform to adapt it to LDP
in Section 3.1. Then, our baseline solution is given in 3.2. However, we observe that
although the iterative noise addition approach used in the baseline solution satisfies
LDP, it is not a desirable solution in practice since it causes large noise accumulation
and therefore low utility. This motivates the proposal of our new approach in Section
3.3, which yields higher utility than the baseline solution.
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3.1 Quadtrees under Centralized DP

Consider the quadtree building algorithm presented in [39], which satisfies centralized
DP. The algorithm starts by initializing quadtree Q with a root node v1 such that g(v1) =
Ω and marks v1 as unvisited. Then, the algorithm proceeds iteratively, and at each
iteration, it checks if there is any unvisited node v ∈ Q. If there is an unvisited node,
the algorithm computes the noisy density of v. For this purpose, the Laplace mechanism
of DP can be used [11]. The noisy density is determined as: d̂(v) = d(v) + Lap(λ),
where Lap(λ) is a Laplace random variable with mean 0 and scale λ. Afterwards, node
v is checked regarding whether it satisfies the splitting conditions, i.e., its noisy density
is higher than split threshold θ and depth of resulting children will not exceed max depth
limit h∗. Indeed, if d̂(v) ≥ θ and h(v) + 1 ≤ h∗, then v is split into four children, the
children are inserted to Q, and they are marked as unvisited. Otherwise, v is not split
and becomes a leaf node. At this point, v has been processed; it is marked as visited and
the algorithm proceeds to the next iteration (next unvisited node in Q). When all nodes
in Q eventually become visited, the algorithm terminates and returns Q.

It can be shown that this algorithm satisfies ε-DP in the centralized setting when
λ ≥ h∗/ε. To verify this, let a new user with an arbitrary location be inserted (removal
of an arbitrary user is very similar). This insertion will impact the noisy densities of
nodes residing in exactly one root-to-leaf path in Q; since by properties of quadtrees,
nodes with the same depth do not have any intersection in their geographic coverages
g(·). Then, since the number of nodes residing in one root-to-leaf path in Q is at most
h∗, adding Laplace noise calibrated to h∗/ε is sufficient to achieve ε-DP.

Our baseline solution for building quadtrees with LDP adapts the aforementioned
algorithm from the centralized DP literature to LDP. Two key modifications are needed
in this adaptation. First, the above algorithm visits nodes one-by-one in arbitrary order,
as long as they are unvisited. In contrast, our baseline solution visits nodes in breadth-
first order, i.e., depth = 1 in the first iteration, depth = 2 in the second iteration, and
so forth. Notice that this has no adverse impact on utility or privacy (the aforemen-
tioned algorithm can be trivially modified to act in breadth-first order), but it offers us
an important convenience in LDP: It enables us to estimate node densities with LDP
iteratively such that in the first iteration all nodes with depth = 1 are estimated, in the
second iteration all nodes with depth = 2 are estimated, and so forth. The second modi-
fication we perform is that instead of adding Laplace noise, we execute an LDP protocol
(OUE) to perform node density estimation. While Laplace noise addition is a de facto
mechanism to achieve centralized DP, it is not directly applicable to LDP, therefore the
usage of an LDP protocol becomes necessary.

3.2 Baseline Solution for Building Quadtrees under LDP

Our baseline solution for building a quadtree under LDP is shown in Algorithm 1.
Given the total privacy budget ε, on line 1, the algorithm computes ε̂ = ε/(h∗ − 1).
Here, considering that the algorithm will traverse the quadtree depth by depth and h∗

is the max depth parameter, ε̂ is the privacy budget that the algorithm will spend at
each depth. Since the density of the root node is always equal to |U| and the server
can trivially know the size of the user population, no privacy budget is spent at depth
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Algorithm 1: Baseline solution
Input : U , Ω, θ, h∗, ε
Output : Quadtree Q

1 ε̂← ε/(h∗ − 1)
2 Initalize quadtree Q with root node v1
3 Set g(v1) = Ω
4 i← 1 // current depth
5 while i ≤ h∗ do

// find densities at current depth
6 nodes← list of nodes in Q with depth = i
7 if |nodes| == 1 then
8 Set d(nodes[1]) = |U| // i = 1, root node only
9 else

10 estimates← GET_ESTIMATES(nodes,U , ε̂)
11 for j = 1 to |nodes| do
12 Set d(nodes[j]) = estimates[j]

// for each node at current depth, determine if it
should split or not

13 for j = 1 to |nodes| do
14 if d(nodes[j]) ≥ θ and i+ 1 ≤ h∗ then
15 Split nodes[j] into its four children and add the children to Q
16 else
17 Do not split nodes[j]
18 i← i+ 1

19 return Q

= 1 (only the root node exists at depth = 1). Thus, dividing ε into h∗ − 1 pieces is
sufficient. On lines 2-3, the algorithm initializes the root node. Then, the main loop
of the algorithm (lines 5-18) iterates depth-by-depth, and at each iteration, it estimates
the densities of nodes at the current depth. The case where depth = 1 (only the root
node exists) is handled between lines 7-8. At every other depth value, nodes’ densities
at that depth are computed with the help of the GET_ESTIMATES function (lines
10-12), which is explained below. GET_ESTIMATES satisfies ε̂-LDP, and note that
Algorithm 1 invokes it at most h∗ − 1 times; thus, the overall algorithm satisfies ε-LDP
by sequential composition. Finally, lines 13-17 are devoted to checking which nodes
should split and which ones should not split. If and only if a node satisfies the splitting
conditions, i.e., its noisy density is ≥ θ and the height of its children will not exceed
h∗, then the node will split.

The GET_ESTIMATES function, which is used by our baseline solution as well
as our proposed solution, is described in Algorithm 2. Its inputs are the list of nodes
N , list of users U , and privacy budget ε̂. It returns a list called estimates, such that
estimates[j] is the estimated noisy density of node N [j]. The execution of the GET-
_ESTIMATES function can be broken down into three steps. First, the server sends
N to each user. Second, on the user side, each user ui constructs a bitvector Bi, where
|Bi| = |N |. For each position j, Bi[j] is determined according to whether ui’s real
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Algorithm 2: Get_Estimates function
Input : N , U , ε̂
Output: estimates

// Server-side
1 Server sendsN to each user in U
// User-side

2 foreach ui ∈ U do
3 ui constructs his/her bitvector Bi with length |N | such that:

∀j ∈ [1, |N |] : Bi[j] =

{
1 if li ∈ g(N [j])

0 otherwise
4 ui perturbs Bi to satisfy ε̂-LDP according to Equation 2
5 ui sends resulting perturbed bitvector B′

i to server
// Server-side

6 estimates← [ ] // initialize empty
7 for j = 1 to |N | do

8 Server computes reported count of position j as: Ĉ(j) =
|U|∑
i=1

B′
i[j]

9 Server computes estimate C̄(j) as: C̄(j) =
2·
(
(eε̂+1)·Ĉ(j)−|U|

)
eε̂−1

10 Server appends C̄(j) to estimates

11 return estimates

location li falls within the geographic boundaries of node N [j]. That is, if li falls within
g(N [j]) then the j’th position of Bi is set to 1, otherwise it is 0. After constructing the
Bi, it must be perturbed probabilistically in order to satisfy ε̂-LDP. To do so, the user-
side perturbation process of the OUE protocol is executed, as shown in Equation 2. The
output of this process is the perturbed bitvector B′

i, which is sent to the server. Finally,
the third step begins after the server receives perturbed bitvectors from all users. The
server initializes estimates as an empty list. Afterwards, for j between 1 and |N |,
the server first computes Ĉ(j) and then uses Ĉ(j) to compute C̄(j) according to the
equations on lines 8-9. C̄(j) is appended to estimates in each iteration, and eventually,
estimates is returned by Algorithm 2.

3.3 Proposed Solution for Building Quadtrees under LDP

The main weakness of the baseline solution is that it divides the total ε privacy bud-
get into h∗ − 1 pieces, each to be used in one depth of estimation. Since the privacy
budget used per estimation is smaller, higher noise gets added to satisfy privacy. This
causes resulting node density estimations to contain large amounts of noise. Excessively
noisy densities are also used in the decision to split or not split a node, further causing
structural inaccuracies in the resulting quadtree, since a node that should not be split
according to its real density ends up being split due its noisy density (or vice versa).
Consequently, although ε-LDP is achieved, the quadtrees built using our baseline so-
lution can have low similarity in terms of structure and node densities compared to a
noise-free quadtree.
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Algorithm 3: Proposed solution
Input : U , Ω, θ, h∗, ε
Output: Quadtree Q

// Step 1: Construct initial tree
1 Initalize quadtree Q with root node v1
2 Set g(v1) = Ω
3 for i = 1 to h∗ − 1 do
4 foreach node v in Q with h(v) = i do
5 Split v into its four children and add the children to Q

// Step 2: Density estimation for leaf nodes with LDP
6 leaves← list of nodes in Q with depth = h∗

7 estimates← GET_ESTIMATES(leaves,U , ε)
8 for j = 1 to |leaves| do
9 Set d(leaves[j]) = estimates[j]
// Step 3: Bottom-up propagation of densities

10 for i = h∗ − 1 to 1 do
11 foreach node v in Q with h(v) = i do
12 Initialize d(v)← 0
13 for vchild ∈ c(v) do
14 d(v)← d(v) + d(vchild)

// Step 4: Top-down correction
15 for i = 1 to h∗ − 1 do
16 foreach node v in Q with h(v) = i do
17 if d(v) < θ then
18 Remove all children c(v) and all subtrees rooted at those children from Q

19 return Q

In order to address this problem, the key insight of our proposed solution is that
instead of dividing ε into h∗− 1 pieces, it uses the whole ε in a single step. This single-
step estimation is performed at the leaves of the quadtree (depth = h∗) and contains low
noise, therefore the leaves contain high quality density estimates. Then, leaves’ densi-
ties are propagated upwards (in bottom-up fashion) towards the root, to populate the
densities of remaining nodes. Finally, in top-down fashion, corrections and refinements
are made in the structure of the quadtree.

The pseudocode of our proposed solution is shown in Algorithm 3. Its inputs and
outputs are same as the baseline solution. It can be observed from Algorithm 3 that the
proposed solution consists of four main steps, which are explained below.

Step 1: Construct initial, balanced quadtree with height = h∗. We construct an
initial quadtree Q that is fully-grown until height h∗. That is, we let each node in the
quadtree split into its four children until h∗ is reached. The resulting Q is fully balanced.
Note that the θ threshold is not taken into account in constructing this initial Q.

Step 2: Density estimation for leaf nodes with LDP. In the second step, we retrieve
all leaf nodes in Q and obtain density estimates for each of them using the full privacy
budget ε. This is achieved by a single invocation of the GET_ESTIMATES function
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with all leaves and full privacy budget ε. After this step is complete, for each leaf node
v ∈ Q, its density d(v) is determined.

Step 3: Bottom-up propagation of densities. While densities of the leaves have
been determined in step 2, densities of all remaining nodes (non-leaf nodes) are un-
known. In this step, densities of non-leaf nodes are determined in bottom-up fashion.
First, all nodes with depth h∗ − 1 are handled, then, all nodes with depth h∗ − 2 are
handled, ... until the root node. For each non-leaf node, recall from Equation 6 that its
density is equal to the sum of the densities of its four children.

Step 4: Top-down correction. The initial quadtree Q constructed in step 1 is fully-
balanced rather than taking into account the density threshold θ. As a result, it is possi-
ble that a node v which should not have children (because it fails the d(v) ≥ θ condi-
tion) actually has children in Q. The goal of step 4 is to iterate through Q in top-down
fashion and fix such situations. To do so, the algorithm starts at depth = 1 and moves
down iteratively (depth = 2, depth = 3, ..., depth = h∗ − 1). For each node at the current
depth, if node v does not satisfy the d(v) ≥ θ condition, its children along with the
subtrees rooted at those children (i.e., if the child has any descendants) are removed
from Q.

4 Experimental Evaluation

4.1 Experiment Setup

We implemented the baseline and proposed solutions in Python. We experimentally
compare them under varying ε, θ, and h∗ parameters using multiple evaluation met-
rics. We use four real-world location datasets in our experiments: Kaggle, Brightkite,
Gowalla, and Foursquare.

Kaggle: The Kaggle dataset contains trips of 442 taxis driving in the city of Porto.
The dataset was originally made public for the taxi service prediction competition in
ECML-PKDD; we downloaded it from Kaggle [12]. While the dataset contains full
taxi trips (multiple location reading per trip), we pre-processed it by keeping only the
starting location of each trip, and treated the trip starting locations as the current loca-
tions of users in the user population. At the end of this processing, we ended up with
1,048,575 users and their latitude, longitude locations.

Brightkite: The Brightkite dataset contains users’ location check-ins from a so-
cial network service provider called Brightkite [6]. From the full dataset, we extracted
check-ins made in the United States, between longitudes -124.26 and -71.87 and lati-
tudes 25.45 and 47.44.

Gowalla was also a location-based social network site where users contributed their
data by sharing their locations [6]. Similar to Brightkite, we extracted check-ins made
in the United States using the same latitude and longitude boundaries.

Foursquare: The Foursquare dataset contains location check-ins of users in Tokyo,
between the time period from 12 April 2012 to 16 February 2013 [35]. We used this
dataset without any pre-processing. It contains a total of 573,703 location check-ins.
The minimum latitude is 35.51, maximum latitude is 35.87, minimum longitude is
139.47, and maximum longitude is 139.91.



12 E. Alptekin and M.E. Gursoy

4.2 Utility Metrics

Let Q denote the gold standard, noise-free quadtree that would be built without privacy
protection. Let Q′ denote the noisy quadtree built under ε-LDP. We use three utility
metrics to measure the difference between Q and Q′. Higher the values of these metrics,
higher the difference between Q and Q′, and therefore higher the amount of utility loss.

Average Query Error (AQE): We generate N = 100 random queries and compute
their answers on the actual quadtree Q and the noisy quadtree Q′, denoted by ansq
and ans′q respectively. Then, AQE measures the average error between ansq and ans′q
across all queries as follows:

AQE =

N∑
i=1

|ansqi−ans′qi
|

max{ansqi ,b}

N

where qi denotes the i’th query and b denotes a sanity bound that mitigates the effect
of queries with extremely high selectivities (extremely low answers) [4, 16, 39]. We set
the value of b as: b = 2%× |U|.

Tree Edit Distance (TED): TED measures the structural difference between Q and
Q′. Consider that we want to measure TED between two subtrees rooted at nodes v and
v′, such that g(v) = g(v′). TED(v, v′) is defined recursively as follows:

TED(v, v′) =



0 if |c(v)| = 0 and |c(v′)| = 0
num_desc(v) if |c(v)| > 0 and |c(v′)| = 0
num_desc(v′) if |c(v)| = 0 and |c(v′)| > 0∑

x∈c(v), x′∈c(v′)
s.t. g(x)=g(x′)

TED(x, x′) if |c(v)| > 0 and |c(v′)| > 0

where num_desc(v) denotes the number of descendent nodes that v has (excluding
itself). The rationale is as follows: If both v and v′ do not have any children, then they
have zero TED (no structural difference). If one of them has children but the other does
not, then all descendents must be counted as part of TED. If both v and v′ has children,
then their TED is computed recursively on pairs (x, x′) where x and x′ have matching
geographical regions, i.e., x′ in Q′ is the noisy counterpart of x from Q.

Once TED between v and v′ is defined as above, it can be used to measure TED
between two quadtrees Q and Q′ as: TED(Q,Q′) = TED(vroot, v

′
root) where vroot

is the root node of Q and v′root is the root node of Q′.
Node Density Difference (NDD): NDD measures the difference between Q and Q′

by computing the differences between corresponding nodes’ densities.

NDD(Q,Q′) =
∑
v∈Q

φ(v)

where:

φ(v) =

{
|d(v)− d(v′)| if ∃ v′ ∈ Q′ s.t. g(v) = g(v′)

d(v) otherwise
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Fig. 2: Results with AQE, TED and NDD metrics (one metric each row) on Brightkite,
Gowalla, Kaggle and Foursquare datasets (left to right).

In other words, NDD iterates over each node v ∈ Q and checks if its counterpart
exists in Q′, i.e., v′ ∈ Q′ with g(v) = g(v′). If it exists, then the difference between
their densities is computed and added to NDD. However, due to structural differences
between Q and Q′, it is also possible that such a v′ does not exist. In that case, d(v′) is
assumed to be 0 and therefore d(v) is added directly to NDD.

4.3 Results and Discussion

We first keep the h∗ and θ parameters constant and vary the ε parameter to observe
its impact. The results are reported in Figure 2 (h∗ = 4, θ = 10000). Four popular
(conventional) ε values are used: ε = 0.1, 0.5, 1, 2. Each experiment is repeated 10
times and their average results are reported.

Across all datasets and metrics, we observe that: (i) errors decrease as ε is increased,
and (ii) the proposed solution yields lower errors than the baseline solution. The prior
is an intuitive result because as ε increases, the noise caused by LDP decreases, there-
fore it becomes possible to build more accurate quadtrees. With regards to the latter,
especially on Brightkite and Gowalla datasets, the proposed solution makes remarkable
improvement in terms of the AQE and NDD metrics when ε is low. The difference
between the two solutions is relatively lower in terms of the TED metric. Similar ob-
servation holds for the Foursquare dataset – while the difference between the baseline
solution and proposed solution is high in terms of AQE and NDD metrics, it is relatively
less pronounced in terms of the TED metric. The only exception in which the proposed
solution yields higher error than the baseline solution is the Kaggle dataset and the TED
metric. The reason behind this observation is the significant skew in the spatial distri-
bution of the Kaggle dataset. Users’ locations in this dataset are heavily accumulated
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Table 1: AQE, TED and NDD of different heights h∗ with threshold θ = 10000.
AQE TED NDD (x104)

ε = 0.1 ε = 0.5 ε = 1 ε = 2 ε = 0.1 ε = 0.5 ε = 1 ε = 2 ε = 0.1 ε = 0.5 ε = 1 ε = 2

Brightkite

h∗ = 3 Baseline 0.317 0.056 0.028 0.014 0.0 0.0 0.0 0.0 60.2 10.4 5.5 2.3
Proposed 0.156 0.030 0.014 0.006 0.0 0.0 0.0 0.0 30.1 5.2 2.5 1.2

h∗ = 4 Baseline 0.941 0.189 0.095 0.046 18.8 6.0 2.4 2.0 229.5 51.7 26.0 13.8
Proposed 0.369 0.067 0.032 0.015 16.0 3.2 2.0 0.8 94.1 18.5 9.7 4.0

h∗ = 5 Baseline 1.924 0.423 0.213 0.092 105.2 66.8 41.2 19.2 499.1 139.9 74.7 38.8
Proposed 0.637 0.146 0.080 0.036 110.4 55.2 16.0 4.8 258.3 58.6 27.3 11.7

Gowalla

h∗ = 3 Baseline 0.292 0.053 0.026 0.011 0.0 0.0 0.0 0.0 50.7 10.4 4.8 2.4
Proposed 0.140 0.022 0.013 0.005 0.0 0.0 0.0 0.0 24.8 4.8 2.5 1.1

h∗ = 4 Baseline 1.015 0.201 0.108 0.057 18.4 4.0 1.2 0.0 234.2 56.5 28.4 14.0
Proposed 0.313 0.069 0.039 0.016 14.0 2.4 0.0 0.0 95.9 20.9 9.5 4.3

h∗ = 5 Baseline 2.076 0.436 0.215 0.094 118.4 68.8 40.0 17.6 554.0 151.7 80.5 42.3
Proposed 0.850 0.172 0.074 0.032 122.4 49.2 17.6 7.6 285.5 62.1 29.6 13.0

Kaggle

h∗ = 3 Baseline 0.396 0.058 0.025 0.011 4.0 1.2 0.0 0.0 20.5 4.9 2.2 1.1
Proposed 0.296 0.051 0.020 0.008 5.2 1.6 0.0 0.0 17.8 3.4 1.5 0.6

h∗ = 4 Baseline 1.302 0.155 0.085 0.039 12.0 6.4 0.4 0.0 47.0 9.4 5.1 2.5
Proposed 0.885 0.137 0.065 0.026 31.6 8.8 1.6 0.0 37.2 7.4 3.2 1.4

h∗ = 5 Baseline 3.823 0.562 0.145 0.064 52.0 31.2 4.0 0.0 95.7 16.0 8.5 4.2
Proposed 1.815 0.290 0.133 0.054 74.0 29.6 8.8 0.8 73.0 14.7 7.6 2.8

Foursquare

h∗ = 3 Baseline 0.373 0.062 0.038 0.019 0.0 0.0 0.0 0.0 38.5 7.3 3.9 1.8
Proposed 0.154 0.033 0.017 0.008 0.0 0.0 0.0 0.0 19.5 3.5 1.8 0.8

h∗ = 4 Baseline 1.085 0.249 0.128 0.060 21.6 11.6 6.0 4.8 149.5 36.0 20.1 9.8
Proposed 0.462 0.084 0.045 0.024 19.6 6.8 4.8 3.6 65.8 14.4 8.0 3.8

h∗ = 5 Baseline 2.334 0.455 0.207 0.098 94.8 58.4 44.0 22.4 275.3 68.7 37.8 19.5
Proposed 0.883 0.195 0.087 0.046 109.2 56.0 25.6 17.2 146.2 38.4 17.7 8.9

within a small range of latitude and longitude coordinates, and much fewer location
readings exist outside this range. Consequently, in the noise-free quadtree, there exist
few branches with high depth whereas remaining branches are shallow. However, the
proposed solution which constructs a fully balanced quadtree first and then performs
top-down structural corrections in its final step has a higher tendency to end up with a
more breadth-balanced quadtree than the noise-free version, thus causing high TED.

Next, we fix θ = 10000 and vary the h∗ and ε parameters. The results are shown in
Table 1. We again observe that the proposed solution performs better than the baseline
solution. For both solutions, it seems that as we increase h∗, errors tend to increase. For
the baseline solution, this shows the ineffectiveness of splitting the original ε budget
into h∗− 1 parts. Another interesting observation is that TED results are good when h∗

is low, such as h∗ = 3. This shows that for the first few levels of the quadtree (which are
close to the root node), there is relatively small structural error. For example, when h∗ =
3, TEDs are usually 0 meaning that our LDP quadtrees have identical structure to noise-
free quadtrees. However, as we increase h∗ to 4 and 5, there is an increasing amount of
structural inequality as demonstrated by increasing TEDs. Overall, this shows that LDP
quadtrees are more likely to have structural errors towards their leaf nodes whereas their
structure close to the root node remains more accurate.
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Table 2: AQE with privacy budget ε = 1, varying h∗ and θ.
Baseline Proposed

θ = 1000 θ = 5000 θ = 10000 θ = 20000 θ = 1000 θ = 5000 θ = 10000 θ = 20000

Brightkite

h∗ = 3 0.027 0.029 0.032 0.022 0.015 0.015 0.012 0.012

h∗ = 4 0.100 0.099 0.103 0.084 0.036 0.036 0.035 0.039

h∗ = 5 0.278 0.229 0.195 0.182 0.078 0.072 0.085 0.082

Gowalla

h∗ = 3 0.025 0.025 0.026 0.030 0.012 0.013 0.014 0.013

h∗ = 4 0.097 0.106 0.100 0.108 0.034 0.028 0.036 0.041

h∗ = 5 0.257 0.221 0.214 0.175 0.084 0.067 0.076 0.085

Kaggle

h∗ = 3 0.046 0.030 0.023 0.024 0.031 0.024 0.021 0.020

h∗ = 4 0.170 0.085 0.073 0.075 0.089 0.065 0.073 0.062

h∗ = 5 0.396 0.268 0.150 0.161 0.173 0.156 0.177 0.160

Foursquare

h∗ = 3 0.035 0.035 0.035 0.028 0.016 0.018 0.018 0.017

h∗ = 4 0.134 0.130 0.134 0.098 0.046 0.044 0.042 0.043

h∗ = 5 0.318 0.294 0.210 0.135 0.096 0.095 0.083 0.088

Finally, in Table 2, we fix ε = 1 and vary the h∗ and θ parameters. For low h∗

such as h∗ = 3, different values of θ do not seem to cause substantial changes in AQE
on Brightkite, Gowalla and Foursquare datasets. However, for h∗ = 4 and h∗ = 5,
changes to θ yield higher differences in terms of AQE. Usually, θ = 5000 or 10000
seem to be the ideal choice when h∗ = 4 and h∗ = 5 for the proposed solution. In
contrast, higher θ such as 10000 or 20000 seem to be better for the baseline solution.
This is because increasing θ decreases the risk of creating erroneous nodes caused by
LDP noise. When θ is higher, it is less likely that LDP noise causes node densities to
erroneously increase to higher than θ and cause an erroneous split. Similarly, higher
θ implies shorter quadtrees for the baseline solution, which eliminates the creation of
deeper nodes that have higher risk of being dominated by LDP noise.

5 Related Work

LDP for spatial data. In recent years, LDP has emerged as an accepted privacy stan-
dard and it has also been successfully deployed in the industry [1, 7, 10, 13, 18, 37].
With the popularity of LDP, there is rising interest in applying LDP to spatial data,
considering the ubiquity of location-based services and sensitive nature of users’ lo-
cations. Wang et al. [30] developed L-SRR to privately collect users’ locations while
they remain useful for LBS applications such as traffic density estimation and k-nearest
neighbors. Hong et al. [20] proposed a perturbation mechanism designed to reduce the
error of each perturbed location under LDP. Yang et al. [36] studied the problem of col-
lecting individual trajectories under LDP. Cunningham et al. [9] proposed a technique
which utilizes hierarchical n-grams for real-world trajectory sharing with LDP. Kim et
al. [21] and Navidan et al. [25] applied LDP to indoor positioning data. Finally, Chen et
al. [5] proposed a variant of LDP, called personalized LDP, for spatial data aggregation.
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Spatial decompositions under DP. The above works apply LDP to spatial data, but
they do not have the goal of building spatial decompositions. Although spatial decom-
positions have not been studied under LDP, they have been studied under centralized
DP. Cormode et al. [8] proposed algorithms to build tree-based spatial decompositions
such as quadtrees and kd-trees under DP. Later, the PrivTree algorithm developed by
Zhang et al. [39] enabled constructing a DP spatial decomposition without requiring
a pre-defined recursion limit (height). A popular alternative to tree-based decomposi-
tions is grid-based decompositions such as uniform and adaptive grids, as introduced
by Qardaji et al. [27] and later used in other works [16, 17]. Hierarchical reference sys-
tems proposed by He et al. [19] employ hierarchically organized grids with different
granularities, ordered from coarse to fine-grained.

More recently, Niknami et al. [26] proposed personalized DP and personalized noise
addition for indexing geometric objects in spatial databases. Quadtrees and kd-trees are
used as spatial indices. In the work of Li et al. [23], a data-dependent adaptive den-
sity grid decomposition is used at the first layer, and then a quadtree decomposition
is adopted for further splitting. Yan et al. [34] proposed an unbalanced quadtree par-
titioning algorithm for improving query accuracy in publishing spatial data with DP.
Similarly, Liu et al. [24] also proposed a quadtree algorithm for improving query ac-
curacy under DP, by balancing noise error and uniformity error. A new decomposition
structure called Homogeneous Tree Framework (HTF) was proposed by Shaham et al.
[29], which shares similarities to kd-trees. All of these works operate under the assump-
tions of centralized DP rather than LDP, hence they are not comparable to our work.

6 Conclusion
In this paper we studied the problem of building quadtrees, a popular spatial decom-
position method, while each user’s location remains protected by LDP. We proposed
two solutions to this problem: a baseline solution which adapts an iterative strategy in-
spired from the centralized DP literature, and a newly proposed solution which relies
on a single LDP data collection step. We compared the baseline and proposed solutions
using three metrics (AQE, TED, NDD) and four real-world spatial datasets. Results
demonstrated the superiority of the proposed solution compared to the baseline solu-
tion across many settings and quadtree parameters. In future work, we plan to extend
our solutions to other tree-based spatial decomposition methods such as k-dimensional
trees and octrees.
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