
A

Privacy-Preserving Publishing of Hierarchical Data

ISMET OZALP, Sabanci University
MEHMET EMRE GURSOY, University of California Los Angeles
MEHMET ERCAN NERGIZ, Zirve University
YUCEL SAYGIN, Sabanci University

Many applications today rely on storage and management of semi-structured information, e.g., XML
databases and document-oriented databases. This data often has to be shared with untrusted third par-
ties, which makes individuals’ privacy a fundamental problem. In this paper, we propose anonymization
techniques for privacy-preserving publishing of hierarchical data. We show that the problem of anonymiz-
ing hierarchical data poses unique challenges that cannot be readily solved by existing mechanisms. We
extend two standards for privacy protection in tabular data (k-anonymity and `-diversity) and apply them
to hierarchical data. We present utility-aware algorithms that enforce these definitions of privacy using gen-
eralizations and suppressions of data values. To evaluate our algorithms and their heuristics, we experiment
on synthetic and real datasets obtained from two universities. Our experiments show that we significantly
outperform related methods that provide comparable privacy guarantees.

Categories and Subject Descriptors: H.2.7 [Database Administration]: Security, integrity, and protection;
K.4.1 [Public Policy Issues]: Privacy

General Terms: Security, Algorithms, Experimentation

Additional Key Words and Phrases: Data privacy, anonymity, data publishing, k-anonymity, hierarchical
data, complex data, XML.

ACM Reference Format:
Ismet Ozalp, Mehmet Emre Gursoy, Mehmet Ercan Nergiz, and Yucel Saygin, 2016. Privacy-preserving
publishing of hierarchical data. ACM V, N, Article A (January YYYY), 28 pages.
DOI:http://dx.doi.org/10.1145/2976738

1. INTRODUCTION
The ever-increasing ability to collect and store person-specific microdata has inevitably
raised concerns over individuals’ privacy. Data in today’s world often comes in various
complex structures and formats. In particular, hierarchical data has become ubiqui-
tous with the advent of document-oriented databases following the NoSQL trend (e.g.,
MongoDB) and the popularity of markup languages for richly structured documents
and objects (e.g., XML, JSON, YAML). Such data contains valuable information that
can be harvested through data mining techniques. However, proper de-identification
and anonymization is needed before data is published, i.e., shared with untrusted third
parties.

The least one can do to protect privacy is to delete explicitly identifying informa-
tion (e.g., SSN, name). However, it has been shown that this is ineffective: [Sweeney

Author’s addresses: I. Ozalp and Y. Saygin, Faculty of Engineering and Natural Sciences, Sabanci Univer-
sity; M. E. Gursoy, Department of Computer Science, University of California Los Angeles; M. E. Nergiz,
Computer Engineering Department, Zirve University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0000-0000/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/2976738

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 I. Ozalp et al.

2000] and [Sweeney 2002b] report that a set of quasi-identifier (QI) attributes (e.g.,
gender, zipcode, date of birth) can uniquely identify the majority of a population and
also lead to linkage attacks [Fung et al. 2010]. An adversary performs a linkage at-
tack by knowing one or more QI values of his victim, and trying to infer the victim’s
sensitive attribute (SA) (e.g., GPA, health condition) values.

Privacy in tabular data has been widely studied. A prominent method in data
anonymization is k-anonymity, which states that each record in a k-anonymous dataset
must be indistinguishable from k − 1 other records with respect to their QIs. Such QI-
wise equivalent groups are called equivalence classes (EC). k-anonymity is a promising
step towards privacy, but it is still susceptible to attacks [Machanavajjhala et al. 2007;
Truta and Vinay 2006]. The main concern regarding k-anonymity is that it does not
consider the distribution of sensitive attributes, e.g., all individuals in an EC may have
the same sensitive value. `-diversity [Machanavajjhala et al. 2007] was proposed to ad-
dress this problem, and requires that sensitive values in each EC are well-represented.
To achieve this, given an EC we limit an adversary’s probability of inferring a sensitive
value by 1/`.

Two popular ways of achieving k-anonymity and `-diversity are generalizations and
suppressions. Generalizations replace specific values by more general ones, e.g., course
ID “CS305” can be replaced by “CS 3rd year” or “CS3**”. Suppressions conceal infor-
mation by deleting it: Records that exist in the original data are completely removed
from the final output. Since we are working with records with complex structures,
we will not only use removal of entire records (i.e., full suppressions), but also par-
tial suppressions (i.e., pruning data records by removing vertices, edges and subtrees).
Data perturbation and the addition of counterfeits (i.e., fake information) is beyond the
scope of our anonymization strategy, since we would like the data publisher to remain
truthful (i.e., all data in the output must have originated from the input, and not be
randomly spawned by the anonymization algorithm).

We motivate privacy-related attacks on hierarchical data using the example in
Fig. 1. This record fits the hierarchical education schema given in Fig. 2. Student S,
born in 1993 and majoring in Computer Science, took two classes: CS201 and CS306.
For CS201, S submitted evaluations for two of his instructors. For CS306, S submitted
one evaluation and also reported that he bought the Intro to Databases book. We say
that all of this knowledge are QIs of S. Notice that we write QIs as labels of vertices.
Knowing some or all of these QIs, the goal of the adversary is to learn sensitive infor-
mation about S (e.g., GPA, letter grades S received from the two classes, his evaluation
scores etc.). Without anonymization this could be trivial: If there is only one Computer
Science student born in 1993 in the database, then the adversary immediately learns
the GPA of S (and consequently, every other sensitive value in S’s data record). Our
anonymization strategy is to create equivalence classes of size ≥ ` for an input param-
eter `, such that even though the adversary knows all of S’s QIs, he can only link S to
a group of ` records. Furthermore, using `-diversity, we ensure that sensitive values
for each vertex are well-represented, e.g., if ` = 3, an EC of size 3 that contains S will
have two more students that took CS201 and they all received different letter grades.
Therefore, the adversary (1) cannot distinguish S from the other two records, and (2)
cannot infer with probability > 1/` any particular sensitive value of S. In the upcom-
ing sections we show that it is not trivial to offer this privacy guarantee. In particular,
straightforward application of existing k-anonymity and `-diversity algorithms are not
sufficient.

Adversarial Model. We assume that adversaries have background information re-
garding their victims’ QI values. An adversary may know any combination of QI values
in the same or different vertices of his victims’ records. An adversary may also exploit

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Privacy-Preserving Publishing of Hierarchical Data A:3

Fig. 1: A student’s hierarchical data record.

structural/semantic links, e.g., S has taken 2 classes and bought exactly one book for
CS306. Our anonymization technique therefore ensures anonymity with respect to
records’ structure as well as QIs. Our approach also covers negative knowledge (e.g., S
did not take CS204) as well as positive knowledge (e.g., S took CS201). We assume that
adversaries have no knowledge (positive or negative) of individuals’ sensitive values.

Contributions. This paper makes the following contributions:

— We demonstrate the plausibility of privacy attacks on hierarchical data, e.g., XML.
We show how hierarchical data anonymization differs from other data models in the
literature.

— We formally define two notions of privacy, k-anonymity and `-diversity, for hierar-
chical data. We extend popular anonymization methods (generalizations and sup-
pressions) and utility metrics (e.g., Information Loss Metric LM) so that they can be
applied to hierarchical data.

— We devise an anonymization algorithm that, given a collection of hierarchical data
records, generates an `-diverse output. We experimentally validate the usefulness of
our algorithm and its heuristics.

Organization. The remainder of this paper is organized as follows: An overview of
related work is given in Section 2. In Section 3, we formally define our data model and
anonymization techniques, and state related assumptions. Section 4 motivates our ap-
proach by explaining why `-diversity is needed and why existing tabular `-diversity
methods are unable to ensure `-diversity in hierarchical data. Section 5 proposes a
novel anonymization algorithm based on clustering, with certain heuristics. We sum-
marize our experiments and discuss our results in Section 6. Finally, Section 7 re-
iterates the main points, briefly touches on future work and concludes the paper.

2. RELATED WORK
k-anonymity was proposed by Sweeney and Samarati and since then has become a
standard for privacy protection [Samarati and Sweeney 1998; Sweeney 2002b]. It has
been shown that optimal k-anonymity using generalizations and suppressions is NP-
hard [LeFevre et al. 2006; Meyerson and Williams 2004]. Yet, achieving practical and
efficient k-anonymity on tabular data has been an active area of research [Bayardo and
Agrawal 2005; Iyengar 2002; LeFevre et al. 2005; Nergiz et al. 2011; Sweeney 2002a].
The main concern regarding k-anonymity is that it does not consider the distribution
of sensitive values [Truta and Vinay 2006] and it is therefore susceptible to attribute
linkage attacks [Fung et al. 2010]. In this paper, we use `-diversity [Machanavajjhala
et al. 2007] that addresses this problem. In [Xiao et al. 2010], authors show that achiev-
ing optimal `-diversity through generalizations is NP-hard for ` ≥ 3. Among notable

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 I. Ozalp et al.

Fig. 2: Schema for education data.

`-diversity algorithms are those in [Liu and Wang 2010; Machanavajjhala et al. 2007]
and [Xiao et al. 2010].

Privacy notions such as k-anonymity and `-diversity were initially introduced for
tabular data, but they are being extended and applied to various types of complex
data. Here we describe the differences between our data model and those presented in
earlier works in complex data anonymization. In [Cheng et al. 2010], [Liu and Terzi
2008] and [Zheleva and Getoor 2008], authors study variations of k-anonymity (e.g., k-
isomorphism) to anonymize graph data. In graph data and social network anonymiza-
tion ([Zhou et al. 2008]) data often comes in the form of one large graph, and the goal
is to make each vertex isomorphic or indistinguishable from k − 1 other vertices. On
the other hand, our data model assumes one disjoint record per individual. Also, we
presume an explicit hierarchy between vertices, and do not allow cyclic graphs. In [Gh-
inita et al. 2011], [He and Naughton 2009], [Terrovitis et al. 2008] and [Terrovitis et al.
2011], authors investigate privacy-preserving publishing of transactional databases
and set-valued data. Elements in set-valued data do not contain an order or a hier-
archy, and all elements in a database originate from the same domain (e.g., market
purchases, search logs). Our work considers multiple QI and sensitive attributes that
each have a separate domain. Several studies (e.g., [Cicek et al. 2014], [Nergiz et al.
2008] and [Terrovitis and Mamoulis 2008]) use generalizations and suppressions for
privacy preservation in spatio-temporal and trajectory data publishing. A trajectory is
an ordered set of points where each point has one immediate neighbor (i.e, a � b � c).
Whereas in hierarchical data, each vertex has multiple children that are potentially
from different domains.

Several studies investigate privacy in semi-structured and hierarchical data from
the point of view of access control. In particular, access control systems for XML doc-
uments have been designed and implemented for over a decade [Bertino et al. 2000;
Damiani et al. 2002; Fundulaki and Marx 2004]. However, these are orthogonal to our
approach: We assume that an adversary will have full knowledge over the database
once it is published. In contrast, access control methods stop unauthorized users (such
as adversaries) from gaining access to sensitive information in the data.

Most closely related to our work are [Gkountouna and Terrovitis 2015], [Landberg
et al. 2014], [Nergiz et al. 2009] and [Yang and Li 2004] that study privacy-preserving
publishing of hierarchical or tree-structured data. In [Yang and Li 2004], authors fo-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Privacy-Preserving Publishing of Hierarchical Data A:5

cus on cases where functional dependencies in XML data cause information leakage.
They formulate such dependencies as XML constraints. They propose an algorithm
that sanitizes XML documents according to these constraints so that the resulting
document no longer leaks information. Our adversarial model is broader: We study
adversaries that also have background knowledge regarding their victims. In [Land-
berg et al. 2014], authors introduce two anonymization schemes for XML data: an
extension of anatomy [Xiao and Tao 2006a] (another well-known privacy protection
method) and δ-dependency. However, these methods transform the schema of XML
documents by de-associating QIs and SAs. Also, they support generalizations of SAs,
which intuitively work against our goal of making records `-diverse. Simultaneous to
our study, [Gkountouna and Terrovitis 2015] proposed the k(m,n)-anonymity definition
for tree-structured data. In their work, attackers’ background knowledge is limited to
m vertex labels and n structural relations between vertices (i.e., ancestor/descendant
relationships). Also contrary to our approach, they support structural disassociations
which modify the original schema of records. In addition, they employ a global recod-
ing approach, i.e., if a value is generalized, then all its appearances in the database
must be replaced by the generalized value. This requirement can be too constraining
for high-dimensional and sparse data, and therefore our solution uses local recoding
that allows a value and its generalization to co-exist in the output. Furthermore, their
solution is exponential in m. In [Nergiz et al. 2009], authors extend k-anonymity to
anonymize multi-relational databases that have snowflake-shaped entity-relationship
diagrams. Their definitions are primarily concerned with k-anonymity, and although
they propose a method for `-diversity, (1) their solution k-anonymizes the database
first and then iteratively tries to find an output that is `-diverse, and (2) they do not
provide any experimental results. The effectiveness of their approach relies heavily on
the k-anonymized database, which is obtained without taking SAs into account. On
the other hand, our algorithm checks for `-diversity at each anonymization step.

3. PROBLEM FORMULATION
3.1. Data Model
In this section we formally state our assumptions regarding the structure of our data
and introduce our notation.

Definition 3.1. (Rooted tree) Let T be a graph with n vertices. We say that T is a
rooted tree if and only if:

(1) T is a directed acyclic graph with n− 1 edges.
(2) One vertex is singled out as the root vertex, and there is a single path from the

root vertex to every other vertex in T .
(3) Let children(v) = {c1, ..., cm} denote the children of vertex v, i.e., there exists an

edge v � ci if and only if ci ∈ children(v). Then, c1, .., cm are called siblings of one
another, and we assume no ordering among them.

We denote such trees by T (V,E) where V is the set of vertices and E is the set of edges
in the tree.

Definition 3.2. (Hierarchical data record) We say that a hierarchical data record
satisfies the following conditions:

(1) It follows a rooted tree structure.
(2) Each vertex v has two j-tuples (j ≥ 0) vQIt and vQI , where vQIt contains the names

of QI attributes and vQI contains the values of corresponding QIs.
(3) Each vertex v also has two m-tuples (0 ≤ m ≤ 1) vSAt and vSA, where vSAt contains

the name of SA and vSA contains the value of corresponding SA.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 I. Ozalp et al.

Fig. 3: Sample generalization hierarchy for course IDs.

(4) We assume (|vQI |+ |vSA|) ≥ 1 to eliminate empty vertices.

In our examples we adopt the following notation to represent hierarchical records:
We write QI values (vQI) as labels of tree vertices and associated SA values (vSA)
right next to the vertices (as contiguous information). For the root vertex in Fig. 1,
vQIt=(major program, year of birth), vSAt=(GPA), vQI=(Computer Science, 1993) and
vSA=(3.81). An edge between two vertices signals that information is semantically
linked, e.g., the evaluation score of 9/10 for Prof. Saygin in Fig. 1 was given by this
particular student and for the CS306 class. Such links can be established through pri-
mary and foreign keys in a multi-relational SQL database, or through hierarchical
object representations in XML or JSON. Conversion of any type of hierarchical data to
the structure defined above is trivial, given which attributes are quasi-identifiers and
which ones are sensitive.

We say that an individual’s record in the database conforms to the definition of a
hierarchical data record, and only one hierarchical record exists per individual. The
database is a collection F that contains n hierarchical records, denoted T1, ..., Tn.

Let vX [i] denote the i’th element in the r-tuple vX , where r = j or m. Let Ω(A) denote
the domain of attribute A. We assume, without loss of generality, that the domains of
different attributes are mutually exclusive: Ω(A) ∩ Ω(A

′
) = ∅ for A 6= A

′
. We also

require: ∀i ∈ {1, .., |vQI |}, vQI [i] ∈ Ω(vQIt[i]). Likewise, if the vertex contains a sensitive
attribute (i.e., |vSA| = 1), then vSA[1] ∈ Ω(vSAt[1]).

Definition 3.3. (Union-compatibility) Two vertices v and v
′

are union-compatible
if and only if vQIt = v

′

QIt and vSAt = v
′

SAt.

We use union-compatibility akin to database relations: Two database relations are
union-compatible if they share the same number of attributes and each attribute is
from the same domain. Similarly, in our case, two vertices are union-compatible if
they follow the same schema (i.e., same QIs and SAs).

3.2. Anonymization
Domain generalization hierarchies (DGH) are taxonomy trees that provide a hierar-
chical order and categorization of values. We assume that a DGH is either available
or easily inferable for each QI. Note that this assumption is widely adopted in the
anonymization literature [Fung et al. 2010; Nergiz et al. 2009]. Values observed in the
database appear as the leaves of DGHs. The root vertices of DGHs contain “*” to mean
“any value”, i.e., value completely hidden. A DGH is given for attribute course ID in
Fig. 3.

Definition 3.4. (Generalization function) For two data values x and x∗ from the
same QI attribute A, x∗ is a valid generalization of x, written x∗ ∈ φ(x), if and only if
x∗ appears as an ancestor of x in the DGH of A. We abuse notation and write φ−1

l (x∗)

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Privacy-Preserving Publishing of Hierarchical Data A:7

to indicate all possible leaves that can be generalized to value x∗ using valid general-
izations.

For example, for the QI course ID, CS3** ∈ φ(CS303) and CS ∈ φ(CS303), whereas
CS2** /∈ φ(CS303). Also, φ−1

l (CS3**) = {CS301, CS303, CS305}, and φ−1
l (CS305) =

{CS305}.

Definition 3.5. (Vertex generalization) We say that vertex v∗ is a valid general-
ization of v and write v∗ ∈ ∆(v), if:

(1) v and v∗ are union-compatible.
(2) vQI 6= v∗QI .
(3) ∀a∗ ∈ v∗QI , either a∗ ∈ vQI or there exists a ∈ vQI such that a∗ ∈ φ(a).
(4) vSA = v∗SA.

In words, a vertex is generalized when at least one of its QI values gets replaced by
a value that is more general according to the attribute’s DGH. A vertex generalization
leaves sensitive values intact.

In tabular data, suppression of a row refers to the removal of that row from the
published dataset (or equivalently, all values in that row are replaced by “*”). In our
setting, this translates to completely removing an individual’s hierarchical record. Al-
though this might be necessary and we support this operation, its effect is also drastic:
If the deleted record is large (i.e., contains a lot of vertices), then a lot of useful infor-
mation might be lost. We therefore introduce partial suppressions.

Definition 3.6. (Partial suppression) We say that a hierarchical data record T ∗ is
a partially suppressed version of T , if T ∗ is obtained from T by first removing exactly
one edge from T (call this e) and then deleting all vertices and edges that are no longer
accessible from the root of T (i.e., there is no longer a path from the root to them). We
write T ∗ = ϕe(T) to denote this operation.

Intuitively, a partial suppression is nothing but tree pruning. Such pruning can lead
to the deletion of a single vertex or a subtree containing multiple vertices and edges.
Note that the remainder of the data record is untouched, i.e., vertices that “survive”
the partial suppression operation incur no changes to their QIs or sensitive values.
Fig. 4 contains several examples: From Fig. 4a to Fig. 4b, the upper record loses the
vertex with TA5 under CS404. From Fig. 4a to Fig. 4c, the edge between the root and
CS404 is broken, which leads to the suppression of a larger subtree (i.e., children of
CS404 are also deleted). We explicitly replace suppressed vertices with dashed lines
and lost information (both vQI and vSA) with “*” for demonstration purposes. They are
otherwise not part of the output.

Definition 3.7. (`-diversity) Let X = {s1, s2, ..., sn} be a multiset of values from the
domain of a sensitive attribute A, i.e., si ∈ Ω(A). Let f(si) denote the frequency of
value si in X. Then, X is `-diverse if for all si, f(si) ≤ 1/`.

Informally, this probabilistic `-diversity definition states that the frequency of all
sensitive values must be bounded by 1/`.

Sensitive attributes can be categorical (e.g., letter grade) or continuous (e.g., GPA).
The domain of categorical SAs consists of discrete values (e.g., letter grades from A to
F), and it is straightforward to evaluate `-diversity on a set of discrete values as above.
However, continuous SAs require an intermediate discretization step. The domain of
a continuous SA is divided into non-overlapping buckets, and X then contains the
buckets data values fall into. (E.g., GPA domain [0.0−4.0] can be divided into 8 buckets
of size 0.5. A GPA value 3.26 can then translate to the bucket [3.0 − 3.50).) We do not

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 I. Ozalp et al.

enforce a specific discretization, instead our algorithms can work with an arbitrary
discretization that meets the demands and preferences of the data publisher. We also
allow discretizations to contain buckets with different sizes.

Definition 3.8. (Diversity of vertices) Let V = {v1, ..., vn} be a set of vertices from
hierarchical data records. We study two cases:

— For vj ∈ V , |vjSA| = 0. Then, V is `-diverse if all vertices in V are pairwise union-
compatible.

— For vj ∈ V , |vjSA| = 1. Let X be defined as X = {v1
SA[1], v2

SA[1], ..., vnSA[1]}. Then, V is
`-diverse if all vertices in V are pairwise union-compatible and X is `-diverse.

Various metrics were proposed and used in relevant literature to calculate costs of
anonymization [Bayardo and Agrawal 2005; Bertino et al. 2008; Iyengar 2002; Xiao
and Tao 2006b]. In this paper, we will use an extension of the general loss metric
(LM) [Nergiz et al. 2011]. Similar extensions were previously applied in a number of
settings, including medical health records [Tamersoy et al. 2012] and multi-relational
databases [Nergiz et al. 2009].

Definition 3.9. (Individual LM cost) Given a DGH for attribute A and a value
x ∈ Ω(A) (i.e., x exists in A’s DGH), the individual LM cost of value x is:

LM ′(x) =
|φ−1

l (x)| − 1

|φ−1
l (r)| − 1

where r denotes the root of A’s DGH.

Definition 3.10. (LM cost of a collection of hierarchical records) Let F and F ∗
be collections of hierarchical data records, where F ∗ is obtained via anonymizing F .
Let Ψ denote the set of all vertices that exist in F but do not exist in F ∗ due to partial
or full suppressions of records. Then, the LM cost of F ∗ is:

LM(F ∗) =

(
∑

T∗i ∈F∗

∑
v∗∈T∗i

∑
q∗∈v∗QI

LM ′(q∗)) + (
∑
p∈Ψ

|pQI |)∑
Ti∈F

∑
v∈Ti

|vQI |

For example, according to Fig. 3, LM ′(CS) = 4/6 and LM ′(CS2**) = 1/6. We use
LM ′, defined on a single QI value, to build a metric suitable to our setting. In this new
definition, the sum is broken down into two factors: The first factor calculates the cost
incurred by generalizations of vertices that appear in the published data. The second
factor adds the cost of suppressions. The total cost is calculated on the order of labels
rather than vertices or trees, to better focus on each individual piece of data lost during
anonymization.

One can verify that the LM ′ cost of a label is within the range [0, 1], where the root of
a DGH receives the highest penalty (1) and leaves receive no penalty (0). Consequently,
we ensure that LM(F ∗) is also normalized to a value within [0, 1].

We compute the LM cost of anonymizing the two records in Fig. 4c to provide an
example for LM(F ∗). Assume that F consists of only the two records in Fig. 4a, and
F ∗ is the records in Fig. 4c. Further assume the LM costs of generalizing years of
birth 1994 and 1995 to 199* is 1/10, course IDs CS306 and CS305 to CS3** is 1/3,
instructors Prof. Saygin and Prof. Nergiz to DB Prof. is 2/7, and TA1 and TA2 to TA is
1/2. Then,

LM(F ∗) =
(1

10 + 1
3 + 2

7 + 1
2) · 2 + 7

19
= 0.497

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Privacy-Preserving Publishing of Hierarchical Data A:9

Fig. 4: (a) Hierarchical data records for two sample students. (b) A 2-anonymous ver-
sion of these records. (c) A 2-diverse version of these records.

3.3. Problem Definition
Having established the preliminaries, in this section we formally define and state the
problem. We start with an auxiliary definition regarding QI-isomorphism.

Definition 3.11. (QI-isomorphism) Let T1(V1, E1) denote a hierarchical data
record with a set of vertices V1 and edges E1. A data record T2(V2, E2) is QI-isomorphic
to T1 if and only if there exists a bijection f : V1 → V2 such that:

(1) There exists an edge ei ∈ E2 from f(x) to f(y) if and only if there exists an edge
ej ∈ E1 from x to y.

(2) The root vertex is conserved; i.e., denoting the root of the first tree as r1 ∈ V1 and
the root of the second tree as r2 ∈ V2, f(r1) = r2.

(3) For all pairs (x, x′), where x ∈ V1 and x′ = f(x), x and x′ are union-compatible and
xQI = x′QI .

Definition 3.12. (Equivalence class of hierarchical records) We say that
records D = {T1, .., Tk} are k-anonymous and form an equivalence class, if all possi-
ble pairs (Ti, Tj), where Ti ∈ D and Tj ∈ D, are QI-isomorphic.

Two records are QI-isomorphic if they appear to be completely same when all sensi-
tive values are deleted from both. In other words, they are indistinguishable in terms
of labels and structure. There is a clear analogy between the traditional definition of
equivalence classes in tabular k-anonymity and our definition for hierarchical records:
Both state that an equivalence class is a set of records that are indistinguishable with
respect to their QIs.

Definition 3.13. (`-diverse equivalence class) We say that records {T1, .., Tk} form
an `-diverse equivalence class, if and only if:

(1) {T1, .., Tk} constitute an equivalence class.
(2) For 1 ≤ i ≤ k− 1, let fi be a bijection that maps T1’s vertices to Ti+1’s vertices, as in

QI-isomorphism. Let T1 have n vertices, labeled arbitrarily as v1
1 , v

1
2 , v

1
3 , .., v

1
n. Then,

there should exist a set of bijections {f1, f2, .., fk−1} such that ∀x ∈ {1, 2, .., n}, the
set of vertices V = {v1

x, f1(v1
x), f2(v1

x), .., fk−1(v1
x)} is `-diverse.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 I. Ozalp et al.

Fig. 5: A class representative.

Fig. 4 contains two records together with their 2-anonymous and 2-diverse versions.
This is just one way of anonymizing these records, there are also other correct (i.e.,
fitting the definition of anonymity and diversity) anonymizations. The quality of these
anonymizations, however, depend on how much information is lost (according to an
appropriate cost metric). An anonymization that satisfies k-anonymity or `-diversity
and yields the lowest information loss is most desirable.

We should point out that multiple bijections between two records’ vertices are pos-
sible if they contain multiple union-compatible sibling vertices with identical QIs. In
such cases, it is too restrictive to require that all possible bijections satisfy `-diversity,
therefore our definition states that it would suffice to have one bijection that does.

An alternative representation of an equivalence class which we use in later sections
is the class representative for a given equivalence class. A class representative T̂ is es-
sentially a hierarchical data record with one extension: If a vertex contains a sensitive
attribute, its value is not a single element, but rather a list of elements. (∀v ∈ T̂ , vSA

returns a set rather than a single sensitive value.) We formally define class represen-
tative as follows:

Definition 3.14. (Class representative) Given an equivalence classD = {T1, .., Tk}
with the corresponding set of bijections {f1, f2, .., fk−1}, we say T̂ is the class repre-
sentative for D if T̂ is QI-isomorphic to T1 with a bijection function f and ∀v ∈ T̂ ,
vSA = {f(v)SA, f1(f(v))SA, . . . , fk−1(f(v))SA}.

Fig. 5 shows a representative for the equivalence class given in Fig. 4c. It is easy
to show that a given equivalence class is `-diverse if and only if the corresponding
representative is `-diverse, that is ∀v ∈ T̂ , the set vSA satisfies `-diversity.

Definition 3.15. (`-diversity of a database) A collection of records F ∗(T ∗1 , ..., T ∗n)
is `-diverse if all records T ∗i ∈ F ∗ belong to exactly one `j-diverse equivalence class,
and for all `j , `j ≥ ` holds.

Definition 3.16. (Anonymization of a database) Given a collection of hierarchi-
cal data records F (T1, T2, ..., Tn), an anonymized output F ∗ is generated via the follow-
ing principle: For each record Ti ∈ F , either Ti is fully suppressed and does not appear
in F ∗, or Ti is transformed into T ∗i ∈ F ∗ by performing a set of generalizations {∆} and
partial suppressions {ϕe(Ti)}.

With these definitions in mind, the problem we study in this paper can be stated as
follows: Given a set of hierarchical records F , we would like to compute an `-diverse
output F ∗ with minimal information loss, using the anonymization principle above.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Privacy-Preserving Publishing of Hierarchical Data A:11

Fig. 6: Students S1 and S2 and their classes as two tables linked using studentIDs
(primary key in Table 1, foreign key in Table 2).

Fig. 7: Potential result if the two tables in Fig. 6 are anonymized independently.

4. MOTIVATION
Given our definitions of privacy, two natural questions to ask are “why `-diversity” and
“why does one need new algorithms to enforce `-diversity on hierarchical data”. In this
section we aim to provide answers to these two questions.

4.1. `-diversity vs k-anonymity in hierarchical data
Prior approaches in hierarchical (and tree-structured) data anonymization against
linkage attacks can be divided into two camps: providing privacy by disassociating QIs
and SAs [Landberg et al. 2014] and extensions of k-anonymity (e.g., multi-relational
k-anonymity [Nergiz et al. 2009] and k(m,n)-anonymity [Gkountouna and Terrovitis
2015]). The former publishes QI values and SA values separately, hence an adversary
cannot determine the sensitive value of a particular vertex (e.g., the letter grade S re-
ceived from class CS201). In the latter, records are anonymized in terms of structure
and labels (QIs in our case), but sensitive values are left unattended. (In particular,
[Gkountouna and Terrovitis 2015] has no distinction between QI and SA.) Both may
result in equivalence classes that leak sensitive values with significant probabilities.

Let us demonstrate the plausibility of homogeneity and background knowledge at-
tacks on hierarchical data, where data is k-anonymized according to [Nergiz et al.
2009] or [Gkountouna and Terrovitis 2015]. Say that a 2-anonymous dataset has been
published, such as the one in Fig. 4b. Let the adversary know beforehand that there
will be at most two students that majored in Computer Science and were born in the
1990s. His victim, S is among these two students. The adversary links S to the records
in Fig. 4b. At this point, the published dataset leaks the following pieces of informa-
tion: (1) S received an A- from CS404. (2) S submitted an evaluation score of 8 for
Prof. Levi in CS201. The peculiarity of this example comes from the fact that the ad-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 I. Ozalp et al.

Fig. 8: Universal relation constructed by joining the Enrollment and Courses relations
with students S3, S4 and S5 using studentIDs.

versary had no knowledge of QI values for the vertices that leaked these information
(e.g., the adversary did not know that S evaluated Prof. Levi). Both of these privacy
leaks could have been avoided if the published data was 2-diverse as in Fig. 4c.

4.2. `-diversity in tabular vs hierarchical data
As reported earlier, several algorithms that apply `-diversity to tabular data have been
implemented. In applicable situations, one way of processing hierarchical data is to re-
duce it to tabular data and then run tabular algorithms on it. There are also arguments
that say in most scenarios, converting hierarchical data to a single giant relation and
then using single-table algorithms is undesirable because of potential loss of informa-
tion and semantic links between data records [Han et al. 2011]. We now demonstrate
that such conversions and reductions are not sufficient also for privacy protection.

4.2.1. Anonymizing relations separately. A hierarchical schema (e.g., Fig. 2) can be repre-
sented using multiple database relations that are linked via primary and foreign keys
(i.e., join keys). Then, a straightforward approach would be to consider each relation
independently and run tabular `-diversity algorithms on them.

Consider the two tables in Fig. 6, where studentIDs are added and used as join
keys. When these two tables are treated independently, a resulting anonymization
could be the one in Fig. 7. It can easily be verified that both tables are 2-diverse by
themselves. Converting the result into our hierarchical representation, though, we see
that students S1 and S2 are neither 2-anonymous nor 2-diverse. An adversary that
knows S1 took CS201 learns the GPA of S1, since S2 has not taken any CS200-series
classes.

The main problem of this independent anonymization approach is that anonymiza-
tions are not guaranteed to be consistent between multiple tables. In the first table, S1
and S2’s tuples are anonymized with respect to each other, but a tabular anonymiza-
tion algorithm does not acknowledge this when anonymizing the second table. Hence,
S1’s tuples may be bundled together and S2’s tuples may be bundled together while
creating a 2-diverse version of the second table.

4.2.2. Constructing and anonymizing a universal relation. Another approach is to flatten hi-
erarchical data into one big relation called the universal relation, i.e., the univer-
sal relation is obtained by joining all relations in a hierarchical schema using join
keys. Fig. 8 provides a sample universal relation. Notice that this creates a significant
amount of redundancy and undesirable dependencies. Information in deeper vertices
of the records have to be rewritten for each descendant connected to that vertex (e.g.,
QIs major and year of birth are repeated for each class taken). A second problem is that
leaf vertices in a data record may be at different depths, which will force work-arounds
such as having null values in the universal relation. Here we show the ineffectiveness
of the universal relation approach even ignoring the problems discussed up to this
point.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Privacy-Preserving Publishing of Hierarchical Data A:13

Fig. 9: 2-diverse version of the universal relation in Fig. 8.

The table in Fig. 9 is 2-diverse in terms of the two sensitive attributes, GPA and
grade. However, the hierarchical records of S3, S4 and S5 are not anonymous: S3 and
S5 are shown having taken one CS3** class each, but S4 has taken two. An adversary
that knows S4 is the only student who has enrolled in more than one CS3** class can
learn the grades S4 received from these classes, together with S4’s GPA. The problem
this time arises from the fact that each individual may have an unknown number of
entries in the universal relation.

5. ANONYMIZATION ALGORITHM
We designed and implemented a solution to the anonymization problem stated at the
end of Section 3. Before moving forward, we would like to underline two important
characteristics of our anonymization scheme. First, our approach ensures that the data
publisher remains truthful. The output does not contain any information that did not
exist originally in the input, i.e., we do not consider adding new vertices, changing
QIs of vertices (other than generalizing them), or adding new QIs or SAs to existing
vertices. Second, vertices that appear in the output have the same depth, adjacency
and parent as they did in the input. That is, the structure of records in the output
are consistent with the input. This schema preservation enables easier data mining
without any ambiguity.

We present our algorithm in two steps: (1) Given two records, we focus on how to
anonymize them with respect to each other so that they become 2-diverse with low
information loss. (2) We build a clustering algorithm that employs the previous step
and class representatives to anonymize an arbitrary number of records.

5.1. Pairwise Anonymization
Converting two records to a 2-diverse pair is pivotal not only because we use it as a
building block in our clustering algorithm, but also we employ it as a similarity metric
(i.e., to calculate distance between two hierarchical data records). In addition, given a
fixed pair of records as inputs, the anonymization function should be able to produce
a 2-diverse output with as little information loss as possible. Therefore, it relies on
finding vertices and subtrees that are similar in both records.

We define the following notation: Let root(T) denote the root vertex of the hierarchi-
cal data record T , and subtrees(v) denote the subtrees rooted at the children of v (i.e.,
for each child ci of v, the hierarchical data record rooted at ci is included in subtrees(v)).
Given two QI values X and Y both from the same QI domain, and Z that is the DGH
of the QI, we say that function mrca(X,Y, Z) returns the lowest (i.e., most recent) com-
mon ancestor of X and Y according to Z. Assume that the function cost(T) returns

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 I. Ozalp et al.

the cost of anonymization of T , given a pre-defined cost metric CM . An applicable cost
metric is LM, and in that case, cost of a record T is:

cost(T) = (
∑
v∈V

∑
q∈vQI

LM ′(q)) + (
∑
w∈Ψ

|wQI |)

where V denotes the vertices in T that are not suppressed and Ψ denotes the vertices
that were in T but are now suppressed. Let clone(T) return a copy of T . Furthermore,
given two vertices a and b, let u-comp(a, b) test the union-compatibility of a and b, and
diverse(a, b) have the following behavior:

diverse(a, b) =

{
true if u-comp(a,b) and aSA ∩ bSA = ∅
false otherwise

Algorithm 1 Top-down anonymization of hierarchical records
Input: Two hierarchical data records (or class representatives) T1 and T2,

anonymization cost metric for cost calculation,
DGHs of QI attributes for finding mrca

Require: |children(root(T1))| ≤ |children(root(T2))|, otherwise swap T1 and T2

1: procedure DIVERSIFY
2: a←root(T1)
3: b←root(T2)
4: if ¬diverse(a,b) then
5: suppress T1 and T2

6: return cost(T1) + cost(T2)
7: for i = 1 to |aQI | do
8: g← mrca(aQI [i], bQI [i], DGH of aQIt[i])
9: replace aQI [i] with g

10: replace bQI [i] with g
11: if subtrees(a) = ∅ and subtrees(b) = ∅ then
12: return cost(T1) + cost(T2)
13: else if subtrees(a) = ∅ and subtrees(b) 6= ∅ then
14: let E be the set of outgoing edges from b
15: for e ∈ E do
16: T2 ← ϕe(T2)

17: return cost(T1) + cost(T2)
18: P ← FindMapping(subtrees(a), subtrees(b))
19: for each pair (ai, bj) ∈ P do
20: diversify(ai, bj)
21: for v ∈ subtrees(b) and 6 ∃(x, v) ∈ P for some x do
22: Let e be the edge from b to v
23: T2 ← ϕe(T2)

24: return cost(T1) + cost(T2)

A function that anonymizes hierarchical records in top-down manner is presented
in Algorithm 1. We refer to this function as diversify. Without loss of generality, we
assume that for the two input hierarchical records T1 and T2 (rooted at a and b, respec-
tively), |children(a)| ≤ |children(b)|. (Otherwise T1 and T2 can be interchanged as the

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Privacy-Preserving Publishing of Hierarchical Data A:15

first step.) The algorithm can be studied in several steps. First step checks the union
compatibility and diversity of root vertices a and b. If a and b cannot be anonymized,
then their trees are suppressed. In the second step (lines 7-10), we generalize the
QIs of a and b according to their DGHs. Resulting a and b will be indistinguishable
in terms of QIs. In step 3 (lines 11-17), the algorithm checks if further calculation is
needed: If a and b both have children, then we need to find a low-cost anonymization
of their subtrees. If one does not have any children, then we can safely suppress the
children and subtrees of the other. (Otherwise it would be impossible to achieve QI-
isomorphism due to structural difference.) When the algorithm reaches line 18, it has
dealt with the current level (i.e., checked if root vertices are diverse, anonymized them
and ensured that both have children). A low cost pairing (i.e., mapping) between the
subtrees rooted at a’s children and the subtrees rooted at b’s children is returned by
the function FindMapping. (We will give a detailed explanation of how the mapping is
computed in the next section.) Pairs returned by the function are suitable candidates
to be anonymized with one another. Hence, diversify is run recursively on each pair
(lines 19-20). Since we assumed |children(a)| ≤ |children(b)|, all subtrees rooted at a’s
children will be paired, but some subtrees rooted at b’s children might be left-overs
(i.e., they remain unpaired). Unpaired subtrees are suppressed (lines 21-23) to achieve
QI-isomorphism of T1 and T2. Finally, a successful execution of diversify always returns
the cost of anonymizing its inputs (see the return statements throughout).

5.2. Finding a Good Mapping
Recall that FindMapping is called using two lists of hierarchical data records S and U
(where |S| ≤ |U |), and the goal is to produce a set of pairs {(s, u) | s ∈ S, u ∈ U} that
are similar. We measure similarity as the cost of anonymization. Finding an optimal
solution to this problem requires finding all mappings between all elements in S and U ,
and picking the mapping that yields the lowest cost. However, this is infeasible: Let S
have n elements and U havem elements, wherem ≥ n. The number of possible pairings
between S and U is

(
m
n

)
· n!, which implies exponential complexity. This becomes a

significant problem when the branching factor of input data records is large. (Even for
toy datasets with average branching factors of 6-7, optimal search took several hours.)
We therefore need heuristic strategies for FindMapping. Based on this observation,
we now describe two different solutions to the problem: one that employs a greedy
algorithm, and another that models the problem as an optimization problem using
linear programming.

The greedy algorithm. This heuristic traverses S by picking one element at a time,
and finds the most suitable candidate in U to pair the element with. A more formal
description is given in Algorithm 2. The greedy solution has no guarantees of finding a
global optimum, but instead settles for a local optimum in each iteration (i.e., for each
element in S).

The procedure in Algorithm 2 works as follows: We pick one record at a time from
the first set S and call this record f (line 3). Then, we consider each unpaired element
v in the second set U and compute the information loss of anonymizing f with v (lines
6-10). This is done by first making copies of f and v (to make explicit that we do not
modify the original records) and then running diversify on them. The record that yields
the lowest cost wins and gets to pair up with f (lines 10-14). We repeat this procedure
until S is exhausted.

Reduction to an assignment problem. We propose a second strategy for FindMap-
ping: We model the problem in hand as a linear sum assignment problem (LSAP).
LSAP is a famous linear programming and optimization problem [Munkres 1957],
where one has n agents that need to be assigned to n tasks. Assigning an agent to

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 I. Ozalp et al.

Algorithm 2 Finding a low-cost mapping greedily
Input: Two lists of hierarchical data records S and U , where |S| ≤ |U |

1: procedure FINDMAPPING-GRD
2: R← ∅
3: for each f ∈ S do
4: minCost← +∞
5: match← ∅
6: for each v ∈ U do
7: f∗ ← clone(f)
8: v∗ ← clone(v)
9: c← diversify(f∗, v∗)

10: if c < minCost then
11: minCost← c
12: match← v
13: R← R ∪ (f ,match)
14: U ← U− match
15: return R

a task has a certain cost that depends on the task and the agent performing it. The
goal is to find an assignment such that all tasks are performed by assigning one agent
to each task, one task to each agent and the total cost of the assignment (i.e., linear
sum of task-agent pairs selected) is minimized.

More formally, given an n × n cost matrix C = (cij) and a binary variable xij repre-
senting the assignment of agent i to task j, a LSAP can be modeled as:

Minimize
n∑

i=1

n∑
j=1

cij · xij

Subject to:
n∑

i=1

xij = 1 for j = 1, 2, .., n

n∑
j=1

xij = 1 for i = 1, 2, .., n

xij ∈ {0, 1} for i, j = 1, 2, .., n

cij ≥ 0 for i, j = 1, 2, .., n

We use the Hungarian algorithm [Kuhn 1955] to solve a LSAP, which finds an op-
timal (i.e., lowest-cost) solution to the problem above in O(n3) time. The solution is a
collection of xijs that tell which agent is assigned to which task.

We now explain how we use LSAPs in FindMapping. The process is shown in Algo-
rithm 3. Given two lists of records S and U , we treat the records in S as agents, and the
records in U as tasks in a LSAP. We calculate the cost of an agent-task pair by running
diversify on them, which computes the information loss incurred for anonymizing that
pair (lines 3-7). This fills the uppermost |S| rows of the cost matrix with non-negative
numbers. In many cases we have |S| < |U | (i.e., number of agents and tasks differ) and
hence the LSAP is unbalanced [Pentico 2007]. In these cases we add dummy suppres-
sion agents to the cost matrix (lowermost |U | − |S| rows) to mark unmatched elements
in |U | which will eventually be suppressed by diversify. We capture the costs of sup-
pressing elements in U on lines 8-10. The cost method in Section 5.1 can be used for
this, and in that case, the cost of suppressing a subtree is equal to the total number

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Privacy-Preserving Publishing of Hierarchical Data A:17

Algorithm 3 Finding a low-cost mapping using a LSAP
Input: Two lists of hierarchical data records S and U , where |S| ≤ |U |

1: procedure FINDMAPPING-LSAP
2: Initialize |U | × |U | cost matrix C
3: for i = 1 to |S| do
4: for j = 1 to |U | do
5: f∗ ← clone(S[i])
6: v∗ ← clone(U [j])
7: cij ← diversify(f∗, v∗)
8: for i = |S|+ 1 to |U | do
9: for j = 1 to |U | do

10: cij ← cost of suppressing U [j]

11: X ← solve the LSAP with cost matrix C
12: R← ∅
13: for each xij ∈ X do
14: if xij = 1 and i ≤ |S| then
15: R← R ∪ (S[i], U [j])

16: return R

of data values (i.e., QIs) that are deleted from that subtree. On line 11 we solve the
LSAP using the Hungarian algorithm, and consequently use this solution to compute
the matching pairs of records in S and U that should be returned by FindMapping,
while removing all dummy assignments (lines 13-15).

5.3. Clustering
Let c denote a cluster. Each cluster contains:

— A class representative, denoted crep. This is a summary data structure that depicts
the current state of the cluster. A formal definition of class representatives was given
in Definition 3.14.

— A set of data records, denoted cinit, that are the original (i.e., unmodified) versions
of the records in the cluster.

We first explain how we initialize and build one cluster. The procedure for this is
given in Algorithm 4. Essentially, we treat a cluster as an equivalence class, and use
a clustering algorithm to build `-diverse equivalence classes. A cluster is initialized
using one record (line 3). At that point, the cluster is a 1-diverse equivalence class.
In order to satisfy `-diversity, this cluster needs to recruit ` − 1 other records. This is
achieved by finding the record Tb in F that is closest to c, i.e., we need to find Tb such
that diversify(Tb, crep) would return the lowest cost (line 5). Once this record is found, it
is removed from F and added to the cluster (lines 6-7). Then, crep is updated on line 8:
Generalizations and suppressions are performed, and sensitive values in Tb’s vertices
are added to matching vertices in crep. In short, the main loop (lines 4-8) iteratively
adds new records to a cluster one by one, and each record joining a t-diverse cluster
makes it (t+ 1)-diverse. The process is terminated when the cluster becomes `-diverse.

Based on this, we present our full clustering procedure in Algorithm 5 and refer
to it as ClusTree. It receives a database of hierarchical data records F , a privacy
parameter ` and two clustering parameters m and s that are both positive floating
numbers. We pick a Ta from the input F (line 5) and use it to create a new cluster using
CreateCluster (line 9). Once a cluster is formed, we calculate its total anonymization

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 I. Ozalp et al.

Algorithm 4 Create `-diverse cluster
Input: A collection of n data records F (T1, ..., Tn),

parameter ` for `-diversity,
data record Ta ∈ F

1: procedure CREATECLUSTER
2: F ← F − Ta
3: Initialize c, where crep = Ta and cinit = {Ta}
4: for i = 2 to ` do
5: Find Tb ∈ F s.t. argminTb

(diversify(crep, Tb))
6: F ← F − Tb
7: cinit ← cinit ∪ Tb
8: Update crep by diversify(clone(Tb), crep) and copying sensitive values of

matching vertices
9: return c

Algorithm 5 Clustering algorithm
Input: A collection of n data records F (T1, ..., Tn),

parameter ` for `-diversity,
maximum standard deviation multiplier parameter m,
step size parameter s

1: procedure CLUSTREE
2: R← ∅
3: χ← 0
4: while true do
5: for each Ta ∈ F do
6: if |F | < ` then
7: suppress all Ti ∈ F
8: return R
9: c← CreateCluster(F , `, Ta)

10: clcost← 0
11: for each Tj ∈ c do
12: clcost← clcost + cost(Tj)
13: if |R| > 1 then
14: Let µ be the mean of costs of clusters in R
15: Let σ be the standard deviation of costs of clusters in R
16: if clcost > (µ+ σ ∗ χ) then
17: Add all Ti ∈ cinit back to F
18: Discard cluster c
19: else
20: R← R ∪ c
21: else
22: R← R ∪ c
23: if |F | = 0 then
24: return R
25: χ← χ+ s
26: if χ ≥ m then
27: χ← +∞

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Privacy-Preserving Publishing of Hierarchical Data A:19

cost (lines 10-12), where the total cost is the sum of individual anonymization costs of
all records within that cluster.

At this point, we introduce our clustering heuristic. We suggest that the quality of a
cluster (implied by its cost) depends significantly on the choice of initial record Ta. If
Ta happens to be an outlier (e.g., has far less or higher number of vertices than every
other record in F , or its QIs are very rare) then even the best Tbs joining Ta’s cluster will
incur high costs of anonymization. Therefore on lines 13-22 of ClusTree, we perform the
following check: We compute the mean and standard deviation of previously formed
clusters (lines 14-15). If the cost of the newly formed cluster c is significantly higher
than the mean, it is discarded and all records in c are inserted back to the input F .
Otherwise, c can be added to the output R. We use χ to limit the discrepancy between
the cost of c and the mean cost of clusters in R (line 16). χ is initialized to 0 (line 3) and
incremented by the step size parameter s (line 25) at each iteration. We run iterations
of the clustering procedure until χ goes above m (line 26), and afterwards we run one
final pass with χ = +∞ (line 27) to allow clusters with any cost. The output of the
clustering algorithm is a set of `-diverse clusters. Records in F that are not placed in
any cluster in R are fully suppressed (lines 6-8). ClusTree terminates when less than `
records remain in the input F (lines 6-8 and 23-24).

A lower value of χ sets a stricter upper bound on the costs of accepted clusters. The
rate at which χ increases is determined by the input clustering parameter s. s should
be small enough that expensive clusters are rejected in the first few iterations, but also
large enough that clusters which were rejected in the previous iteration have a chance
of being accepted in the next iteration. Also, smaller s implies larger number of passes
over the input database F (although F is consumed in each iteration) and would hence
be more time-consuming. The upper limit parameter m can be determined by experi-
ment. However, if one assumes that clusters’ costs will approximately follow a uniform
distribution, the probability of a value falling outside µ+3∗σ is significantly small (e.g.,
99.7% of the samples in a normal distribution lie within 3 standard deviations of the
mean). So, even in cases where costs are skewed or randomly distributed, a maximum
upper limit of m = 3 or m = 4 should be reasonable.

5.4. Complexity Analysis
In this section we analyze the time complexity of our solution. We start with pairwise
anonymization using diversify and FindMapping. Let our hierarchical data records
have branching factor b ≥ 2 and height h. For the sake of simplicity, we’ll assume
that all mrca operations, vertex generalizations and partial and full suppressions are
performed in total time t per diversify call.

The greedy version of FindMapping requires b·(b+1)
2 calls to diversify when called

with two sets of subtrees. To anonymize all pairs of matched subtrees, diversify makes
b recursive calls (lines 19-20 of Algorithm 1). Hence we obtain the following recurrence
relation: T (h) = b2+b

2 · T (h − 1) + b · T (h − 1) + t where T (0) = t. Solving this relation,
we find that diversify with FindMapping-GRD is O(t · b

2h

2h).
The LSAP version of FindMapping requires b2 diversify calls to fill its cost ma-

trix with agent-task costs (lines 3-7 in Algorithm 3), when called with two sets of
subtrees. Then, finding an optimal solution to the LSAP using the Hungarian algo-
rithm is O(b3). Similar to above, diversify still makes b recursive calls to anonymize
all pairs of matched subtrees. In this case we obtain the following recurrence relation:
T (h) = b2 · T (h − 1) + t +O(b3) + b · T (h − 1) where T (0) = t. Solving this relation, we
find that diversify with FindMapping-LSAP is O(b2h+1 + t · b2h).

These results are significant in several ways. First, pairwise anonymization is ex-
ponential in h. Practical databases in real world, however, often have small h, e.g.,

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 I. Ozalp et al.

h = 3, 4. Therefore this is not a pressing concern. Second, finding an optimal solution
to a LSAP comes at the price of introducing an additionalO(b2h+1) factor in asymptotic
complexity. Third, there is the cost of performing generalizations and suppressions,
which we denote by t. The efficiency of these operations is dependent on their imple-
mentation. Some operations can be implemented in constant time (e.g., checking if two
vertices are 2-diverse, suppressing a given subtree). In our experiments we saw that
the factor t has significant impact on execution time, hence efficient implementation
of generalizations and suppressions is key to scalability.

The complexity analysis of our clustering algorithm ClusTree is as follows: Let n be
the number of hierarchical data records in the database, ` be the `-diversity parameter,
and m and s be the clustering parameters in ClusTree. The complexity of pairwise
anonymization depends on whether GRD or LSAP mapping is used, as shown above.
We denote it here by O(diversify). We provide a worst-case analysis. The worst case
occurs when the first cluster created is the least costly cluster possible, and therefore
no cluster is accepted afterwards until the final iteration.

After initializing a cluster with a record, ClusTree (Algorithm 5) tries finding ` − 1
other records to join that cluster (Algorithm 4). This requires going over the remain-
ing records in the database ` − 1 times and calling diversify. Hence CreateCluster is
O(n · `· diversify). Calculating a cluster’s cost (lines 10-12) can be done cumulatively
within CreateCluster while the cluster is being formed, and there are online algorithms
to compute mean and variance [Welford 1962] so that computing and updating them
when a new cluster is formed can be a constant time operation (lines 13-22). We there-
fore find that a single pass of ClusTree over its input database is O(n2 · `· diversify). A
quick calculation shows that ClusTree performs

⌊
m
s

⌋
+2 passes over the data, resulting

in a time complexity of O((
⌊
m
s

⌋
+ 2) · n2 · `· diversify).

5.5. Proofs of Correctness
We now prove the correctness of the algorithm ClusTree (given in Algorithm 5), that
is, we prove that the output of the algorithm is an `-diverse anonymization of F . To
do this, we first prove the correctness of the algorithm diversify (given in Algorithm 1)
which acts as a building block in ClusTree.

Definition 5.1. We say a class representative T is `-*diverse if each vertex in T
contains exactly ` sensitive values.

COROLLARY 5.2. If a class representative T is `-*diverse then T is also `-diverse.

THEOREM 5.3. Let T1 and T2 be `1 and `2-*diverse class representatives of equiv-
alence classes D1 and D2 respectively. Then diversify on T1 and T2 creates a (`1 + `2)-
*diverse representative for the anonymization of T1 and T2.

PROOF. By induction:
Base Case: If the height of T1 is 0, that is, T1 is ∅, T2 is suppressed. Since we will not
have any vertex in T ∗, T ∗ is a valid anonymization of both T1 and T2 and satisfies
(`1 + `2)-*diversity.
Inductive Step: Let us denote a data record with height k as Th=k. By inductive hy-
pothesis, we assume diversify runs correctly for records with height at most k−1. That
is, diversify on `1-*diverse Th=i

1 and `2-*diverse Th=j
2 creates an (`1 + `2)-*diverse rep-

resentative for i, j ∈ [0, k − 1]. We now prove the theorem for Th=i
1 and Th=j

2 where
i, j ≤ k.

We proceed with the proof as follows. We first show that the roots are properly diver-
sified, that is, generalized to a (`1 + `2)-*diverse representative vertex (or suppressed

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Privacy-Preserving Publishing of Hierarchical Data A:21

if diversification is not possible). We then show that the children of both trees are
properly mapped, paired and diversified.

Diversification of the Root: Let a, b, and t be the roots of Th=i
1 , Th=j

2 , and T ∗ re-
spectively. Due to the anonymization process enforced by diversify, if t 6= ∅, we have
tSA = aSA ∪ bSA. If aSA ∩ bSA 6= ∅, then tSA does not satisfy (`1 + `2)-*diversity. In
such a case, diversify, at lines 4-6, suppresses Th=i

1 and Th=j
2 and subsequently T ∗ = ∅.

Suppressed T ∗ is an (`1 + `2)-*diverse anonymization. If aSA ∩ bSA = ∅, at lines 7-10,
QI values in both roots are generalized into the nearest common parent, thus QI-
isomorphism of T ∗ is ensured at root level. Since tSA = aSA ∪ bSA, |aSA| = `1, and
|bSA| = `2 then tSA will contain `1+`2 sensitive values, thus satisfies (`1+`2)-*diversity.

Diversification of the Children: Let CA = {A1, . . . , Am}, CB = {B1, . . . , Bn}, CT =
{T1, . . . , Tm} are the subtrees attached to a, b, and t respectively and m ≤ n. If CA

is empty, diversify, at lines 11-17, suppresses all trees in CB , consequently CT = ∅.
In such a case, T ∗ will be composed of a single already-diversified root, thus satisfies
(`1 + `2)-*diversity. If CA is not ∅, either of the FindMapping functions are called. Both
algorithms guarantee that every Ai ∈ CA is paired with some unique Bj ∈ CB . di-
versify, at lines 19-20, calls itself recursively on the paired subtrees. Note that due to
omission of the root, all subtrees in CA and CB have heights less than k. By the induc-
tive hypothesis, for every pair (Ai, Bj) matched, diversify correctly returns (`1 + `2)-
*diverse anonymization Ti of Ai and Bj . If there exists any unpaired subtree, diversify,
in lines 21-23, suppresses it. Since the root is already-diversified, all vertices in T ∗ sat-
isfies (`1 + `2)-*diversity.

THEOREM 5.4. Algorithm CreateCluster, when given records F = {T1, . . . , Tn}, ` ≤
n, Ta ∈ F returns a cluster c where crep is `-*diverse and Ta ∈ cinit.

PROOF. At start, representative crep is initialized to Ta satisfying 1-diversity. At
iteration i of the for loop, (i − 1)-*diverse crep is diversified with a 1-diverse record
and by Theorem 5.3, the resulting representative which is assigned to crep satisfies
i-diversity. At the end of the loop, crep satisfies `-*diversity (thus, `-diversity) and cinit
contains the associated equivalence class.

THEOREM 5.5. ClusTree, when called on records F = {T1, . . . , Tn}, returns an `-
diverse anonymization of F .

PROOF. The ClusTree algorithm is basically a loop where at each iteration the fol-
lowing is performed:

— At lines 5-22, ClusTree scans all records currently in F once and for each record,
the function CreateCluster creates a single `-diverse cluster. Between lines 16-28,
if the quality of the previously-formed cluster is far away from normal parameters,
the cluster is discarded. Otherwise, it is moved from F to the result list. Distance
threshold on the quality is controlled by the parameter χ.

— χ is incremented, and after reaching m it is set as∞.

The algorithm halts only when there are less than ` records not clustered, in which
case these records are suppressed. Due to correctness of CreateCluster, if the algorithm
terminates, every record in F (except the few suppressed ones) belongs to exactly one
cluster (equivalence class). Thus, by Definition 3.15, the returned clusters and the cor-
responding equivalence classes give an `-diverse anonymization of the original records.

We conclude by stating that the algorithm always halts, that is, we will eventually
have |F | < `. Note that the distance threshold χ that decides whether to discard a
previously-formed cluster is monotonically increasing with each iteration of the while
loop. After reaching m, χ is set to∞. When this happens, no cluster will be discarded,

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 I. Ozalp et al.

thus every cluster formed by CreateCluster function is removed from F . Since Cre-
ateCluster is called on every record in Ta, we will eventually be left with few enough
records in F and the algorithm returns.

6. EXPERIMENTAL EVALUATION
We implemented our algorithms in Java (v1.8.0) and used MongoDB (v2.4.7) to store
our datasets. Experiments were conducted on a commodity machine with Intel i7 2.40
GHz CPU and 16 GB RAM.

Evaluation metrics. We use two means of evaluation: LM cost and average query
accuracy. LM outputs a numerical value between 0 and 1 that conveys the average cost
of generalizations and suppressions over the whole database. Lower LM cost implies
higher data utility and therefore preferable anonymization.

For measuring query accuracy, we randomly generate several aggregate count
queries (e.g., “How many students took CS301?” or “How many CS classes were taken
in total?”). We issue these queries on the original dataset (Xi denotes the result of
the ith query) and the anonymized dataset (Yi denotes the result of the ith query).
Then, average query accuracy is computed as follows (where N is the total number of
queries):

N∑
i=1

(1− (
|Yi −Xi|

Xi
∗ 100%))

N

Datasets. We report results on three datasets (two synthetic and one real) obtained
from two different universities in Turkey. Both datasets share a similar schema to
that in Fig. 2.

For the synthetic datasets, we obtained data regarding students from Sabanci Uni-
versity’s Computer Science (CS) program. The data contained the GPA and (partial)
course grades of 30 students from this year’s graduating class. To test with a meaning-
ful number of data records, we simulated several students based on this sample, with
the guidelines explained in the next paragraph.

We assumed that approximately the same number of students graduate every year,
and set their current age according to their year of graduation. We simulated GPA
values using a normal distribution, where the mean and the standard deviation were
determined by the GPA scores of our sample. According to Sabanci University’s CS pro-
gram requirements, we ensured that all students took the obligatory classes. To each
student, we randomly assigned a fixed number of classes from the pool of core classes,
and a varying number of technical area electives. Students’ grades were determined by
their GPA and the type of class (e.g., we observed that most students perform better in
obligatory classes). We assumed that a student would buy 0 to 2 books for each class.

We created two synthetic datasets, syntheticT and syntheticS, both containing 1000
students with approximately 20 classes per student. syntheticS uses the schema in
Fig. 2, i.e., (major,YoB)→ classes→ books. In order to test with an increased height, in
syntheticT we added an intermediate level between the root and the classes, that de-
picts the year in which classes were taken, i.e., freshman, sophomore, junior or senior.
Therefore the schema in syntheticT is: (major,YoB)→ college years→ classes→ books.
The division of classes into college years was probabilistic based on whether the class
is a pre-requisite for any of the other classes the student took, and the usual timeframe
in which the class is actually taken at Sabanci University.

The real dataset contains 3162 students together with their years of birth, their
GPA, the classes they took and the grades they received. So, records in this dataset

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Privacy-Preserving Publishing of Hierarchical Data A:23

LM cost Query accuracy

Fig. 10: Results on the syntheticS dataset for ` = 2, 3, 4, 5

LM cost Query accuracy

Fig. 11: Results on the syntheticT dataset for ` = 2, 3, 4, 5

have only the first two levels shown in Fig. 2. Furthermore, instead of the QI attribute
age, we used year of birth. We set DGHs of courses according to their IDs.

Algorithms. We evaluate five approaches, four of which are presented in this paper.
For these, we used the LM metric as the anonymization cost metric in Algorithm 1.
We tested ClusTree with the greedy and LSAP-based implementations of FindMap-
ping. We call the resulting methods ClusTree-GRD and ClusTree-LSAP, respectively.
Regarding the parameters of ClusTree, we set s = 0.5 since we saw that values below
0.5 did not make an observable difference, and we obtained the best results withm = 4.

To demonstrate the effectiveness of our clustering heuristic, we implemented a sec-
ond procedure that does not contain any checks regarding the costs of clusters, i.e.,
we initialize χ = +∞ on line 3 of Algorithm 5. We refer to this implementation as
CToff. There are also two versions of CToff : CToff-GRD and CToff-LSAP, depending
on whether FindMapping is greedy or LSAP-based.

In addition, we implemented the multi-relational k-anonymity algorithm together
with its `-diversity extension (dMiRaCle) proposed in [Nergiz et al. 2009]. To the best
of our knowledge, this is the only algorithm that can provide similar privacy guar-
antees to ours (i.e., `-diversity) in hierarchical data. We converted our datasets into
multi-relational databases and ran dMiRaCle on them. There are two parameters in
dMiRaCle: climit and th. In our tests, we exactly mimicked the parameters suggested
by the authors: We set climit to be 150 and tested with th ∈ [0, 1] with increments of
0.1, and picked the best-performing result to report in this paper.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 I. Ozalp et al.

LM cost Query accuracy

Fig. 12: Results on the real dataset for ` = 2, 3, 4

Results and Discussion. We graph our results for varying values of ` in Fig. 10,
Fig. 11 and Fig. 12 on the synthetic datasets and the real dataset, respectively. In all
experiments, we observe that the anonymization costs increase and query accuracy
decreases as privacy requirements get stricter, i.e., ` is increased from 2 to 5. Two fac-
tors contribute to the loss of data utility when ` is increased: (1) The anonymization
algorithm needs to find ` records for each cluster, i.e., higher ` requires more records
per cluster. Each record that joins a cluster causes generalizations and/or suppres-
sions. These anonymization operations are never reverted at a later point (e.g., when
a new record joins a cluster), therefore the cost of a cluster always accumulates. (2)
For large values of `, it is harder to find ` different sensitive values per vertex. Con-
sider a case where the instructor of CS306 decided to grade very generously and all
students received either A or A- from this class. When ` = 3, CS306 courses may never
be matched with each other simply because there are only 2 different grades observed
in the database. Hence, either all occurrences of CS306 have to be suppressed, or they
will be generalized with other classes (e.g., CS3** classes would be the best candidates)
so that they become 3-diverse in the output.

We also observe that our algorithm outperforms dMiRaCle by a great margin in ev-
ery experiment. As explained in Section 2, [Nergiz et al. 2009]’s dMiRaCle is primarily
concerned with k-anonymity, and its `-diversity extension depends on k-anonymizing
an input dataset first and then finding an `-diverse output. This can be a reasonable
strategy when ` is small (e.g., ` = 2), since a 2-anonymous equivalence class can, by
coincidence, happen to be 2-diverse (or, making it 2-diverse might require very few op-
erations). However, when ` = 3 or 4, if the initial equivalence class is not built with
`-diversity in mind, later operations to make it `-diverse will be very costly. Our exper-
iments demonstrate this: There is a sharp increase in LM cost and a sharp decrease in
query accuracy (in all three datasets) when ` is increased from 2 to 3.

We obtained better results on the synthetic datasets compared to the real dataset.
We believe that this is caused by the fact that the real dataset is more sparse (e.g.,
there are 5000 unique classes, some of which are taken by very few students) and has
more variance (e.g., some students took only 1-2 classes, whereas others took 60-70).
In contrast, the synthetic datasets are more evenly distributed, e.g., all students are
CS majors that take around the same number of classes, most of which are classes in
Computer Science or related areas. Also, we obtain roughly 10-15% better results on
syntheticS compared to syntheticT. The probable cause for this is the division of classes
into college years in syntheticT. For example, consider two students S1 and S2 that
take the elective class EL101, but S1 takes EL101 in her freshman year whereas S2

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Privacy-Preserving Publishing of Hierarchical Data A:25

Fig. 13: Execution time on the syntheticS dataset

takes EL101 in her senior year. Unless diversify decides to match S1’s freshman year
with S2’s senior year (which is a small probability, assuming S1’s freshman classes
are more similar to S2’s freshman classes rather than her senior classes) the EL101
vertices will not be matched with each other. Instead, they will be matched with other
classes or suppressed, due to the top-down nature of diversify. The syntheticS dataset
does not suffer from this problem, since classes are directly children of the root vertices,
and are not divided into college years.

We also would like to study the effects of our heuristics, by comparing (1) ClusTree
versus CToff to validate that our clustering heuristic is useful, and (2) LSAP versus
GRD to validate the effect of using an optimal solution against a greedy solution. In
most experiments, we see that ClusTree outperforms CToff and LSAP outperforms
GRD, as expected. The difference between LSAP and GRD is usually more evident
when ` is large, apart from the ` = 4 case on the real dataset, since most of the data
in this experiment is destroyed no matter which algorithm is used. Also, although
our LSAP approach provides an optimal solution to the subtree matching problem,
neither ClusTree nor CToff guarantee optimality in the clustering phase - as in any
clustering algorithm. Therefore we cannot claim that ClusTree-LSAP or CToff-LSAP
are optimal or they should outperform their greedy counterparts in all experiments. In
most experiments they do, which is intuitive, but there are also cases where the GRD
approach performs almost as good as or somewhat better than LSAP (this happens
often when ` is small).

With regard to efficiency, we obtained the execution times in Fig. 13 on syntheticS.
This dataset contains 1000 hierarchical data records (with height = 3) and a total of
approximately 42000 vertices. CToff is significantly faster than ClusTree, since it per-
forms a single pass over the data. For all ` values, it took 2-3 minutes to run CToff-GRD
and 3-4 minutes to run CToff-LSAP. Since ClusTree performs multiple passes over the
data (with increasing χ), it turns out to be roughly 10-15 times slower than CToff. The
differences between execution times become more significant as ` is increased. All of
these results are in line with our complexity analyses.

Finally, we would like to emphasize the trade-offs between data utility and efficiency.
The choice of using ClusTree over CToff and LSAP over GRD both increase data utility,
but come at the cost of increased execution time. On average, the best-performing algo-
rithm (in terms of query accuracy and LM cost) is ClusTree-LSAP, which also happens
to be the slowest.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 I. Ozalp et al.

7. CONCLUSION
In this paper we investigated the problem of privacy in hierarchical data publishing.
We discussed how popular privacy notions such as k-anonymity and `-diversity can
be applied to hierarchical data. We designed an algorithm that produces `-diverse
anonymizations of collections of hierarchical data. Our algorithm is independent of
the domains and generalization hierarchies of attributes, and the anonymization cost
metric used. Even though we use the LM metric in this paper, our approach is suitable
for other monotonic cost metrics. For example, one can use a metric that penalizes cer-
tain levels in the hierarchical schema more than others (e.g., to apply more emphasis
on courses than evaluations). Other domain-specific heuristics can also be employed.
To fight sparsity of high-dimensional data and provide flexibility, our solution uses lo-
cal recoding. We also address negative knowledge as well as positive knowledge: For
every piece of information an adversary has (e.g., student has taken class X and/or
has not taken class Y), there are at least ` records in the anonymized output that fit
this description. Therefore, the adversary’s confidence regarding a particular sensitive
value of his victim is always bounded by 1/`.

There are also certain limitations of our approach. For example, if all records in an
equivalence class contain the letter grade A for different classes, an adversary may
learn with probability > 1/` that his victim has received an A from some class, even
though he cannot be certain which class it was. In certain cases such disclosures might
be unacceptable, e.g., adversary learns that his victim has AIDS from an anonymized
medical dataset. To aid this problem, one can easily extend our algorithm to prohibit
certain sensitive values from appearing multiple times in a class representative.

There exist several directions for future work. First, our anonymization strategy
does not allow adding noise to the output. One could try to see whether data util-
ity can be improved by adding noise and counterfeits. Second, different definitions of
privacy (e.g., differential privacy [Dwork 2008], that relies on noise addition) can be
applied to hierarchical data. Third, there are numerous tools and engines that process
hierarchical data. In particular, XML streams and query engines are widely used in
today’s world. An interesting area of research is how our definitions of privacy can be
applied in these contexts (e.g., XML data streams) [Zhou et al. 2009].

REFERENCES
Roberto J Bayardo and Rakesh Agrawal. 2005. Data privacy through optimal k-anonymization. In Proceed-

ings of the 21st International Conference on Data Engineering (ICDE 2005). IEEE, 217–228.
Elisa Bertino, Silvana Castano, Elena Ferrari, and Marco Mesiti. 2000. Specifying and enforcing access

control policies for XML document sources. World Wide Web 3, 3 (2000), 139–151.
Elisa Bertino, Dan Lin, and Wei Jiang. 2008. A survey of quantification of privacy preserving data mining

algorithms. In Privacy-preserving data mining. Springer, 183–205.
James Cheng, Ada Wai-Chee Fu, and Jia Liu. 2010. K-isomorphism: privacy preserving network publication

against structural attacks. In Proceedings of the 29th ACM International Conference on Management of
Data (SIGMOD 2010). ACM, 459–470.

A Ercument Cicek, Mehmet Ercan Nergiz, and Yucel Saygin. 2014. Ensuring location diversity in privacy-
preserving spatio-temporal data publishing. The VLDB Journal 23, 4 (2014), 609–625.

Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi, and Pierangela Samarati. 2002. A
fine-grained access control system for XML documents. ACM Transactions on Information and System
Security (TISSEC) 5, 2 (2002), 169–202.

Cynthia Dwork. 2008. Differential privacy: A survey of results. In Theory and applications of models of
computation. Springer, 1–19.

Irini Fundulaki and Maarten Marx. 2004. Specifying access control policies for XML documents with XPath.
In Proceedings of the 9th ACM Symposium on Access Control Models and Technologies. ACM, 61–69.

Benjamin Fung, Ke Wang, Rui Chen, and Philip S Yu. 2010. Privacy-preserving data publishing: A survey
of recent developments. ACM Computing Surveys (CSUR) 42, 4 (2010), 14.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Privacy-Preserving Publishing of Hierarchical Data A:27

Gabriel Ghinita, Panos Kalnis, and Yufei Tao. 2011. Anonymous publication of sensitive transactional data.
IEEE Transactions on Knowledge and Data Engineering 23, 2 (2011), 161–174.

Olga Gkountouna and Manolis Terrovitis. 2015. Anonymizing Collections of Tree-Structured Data. (2015).
Jiawei Han, Micheline Kamber, and Jian Pei. 2011. Data mining: concepts and techniques. Elsevier.
Yeye He and Jeffrey F Naughton. 2009. Anonymization of set-valued data via top-down, local generalization.

Proceedings of the VLDB Endowment 2, 1 (2009), 934–945.
Vijay S Iyengar. 2002. Transforming data to satisfy privacy constraints. In Proceedings of the 8th ACM

International Conference on Knowledge Discovery and Data Mining (SIGKDD 2002). ACM, 279–288.
Harold W Kuhn. 1955. The Hungarian method for the assignment problem. Naval Research Logistics Quar-

terly 2, 1-2 (1955), 83–97.
Anders H Landberg, Kinh Nguyen, Eric Pardede, and J Wenny Rahayu. 2014. δ-Dependency for privacy-

preserving XML data publishing. Journal of Biomedical Informatics 50 (2014), 77–94.
Kristen LeFevre, David J DeWitt, and Raghu Ramakrishnan. 2005. Incognito: Efficient full-domain k-

anonymity. In Proceedings of the 24th ACM International Conference on Management of Data (SIGMOD
2005). ACM, 49–60.

Kristen LeFevre, David J DeWitt, and Raghu Ramakrishnan. 2006. Mondrian multidimensional k-
anonymity. In Proceedings of the 22nd International Conference on Data Engineering (ICDE 2006).
IEEE, 25–25.

Junqiang Liu and Ke Wang. 2010. On optimal anonymization for l+-diversity. In Proceedings of the 26th
International Conference on Data Engineering (ICDE 2010). IEEE, 213–224.

Kun Liu and Evimaria Terzi. 2008. Towards identity anonymization on graphs. In Proceedings of the 27th
ACM International Conference on Management of Data (SIGMOD 2008). ACM, 93–106.

Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan Venkitasubramaniam.
2007. l-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data
(TKDD) 1, 1 (2007), 3.

Adam Meyerson and Ryan Williams. 2004. On the complexity of optimal k-anonymity. In Proceedings of the
23rd ACM Symposium on Principles of Database Systems (PODS 2004). ACM, 223–228.

James Munkres. 1957. Algorithms for the assignment and transportation problems. J. Soc. Indust. Appl.
Math. 5, 1 (1957), 32–38.

Mehmet Ercan Nergiz, Maurizio Atzori, and Yucel Saygin. 2008. Towards trajectory anonymization: a
generalization-based approach. In Proceedings of the 2008 ACM SIGSPATIAL International Workshop
on Security and Privacy in GIS and LBS. ACM, 52–61.

Mehmet Ercan Nergiz, Christopher Clifton, and Ahmet Erhan Nergiz. 2009. Multirelational k-anonymity.
IEEE Transactions on Knowledge and Data Engineering 21, 8 (2009), 1104–1117.

Mehmet Ercan Nergiz, Acar Tamersoy, and Yucel Saygin. 2011. Instant anonymization. ACM Transactions
on Database Systems 36, 1 (2011), 2.

David W Pentico. 2007. Assignment problems: A golden anniversary survey. European Journal of Opera-
tional Research 176, 2 (2007), 774–793.

Pierangela Samarati and Latanya Sweeney. 1998. Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. Technical Report. SRI Inter-
national.

Latanya Sweeney. 2000. Uniqueness of simple demographics in the US population. Technical Report.
Carnegie Mellon University.

Latanya Sweeney. 2002a. Achieving k-anonymity privacy protection using generalization and suppression.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 05 (2002), 571–588.

Latanya Sweeney. 2002b. k-anonymity: A model for protecting privacy. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 10, 05 (2002), 557–570.

Acar Tamersoy, Grigorios Loukides, Mehmet Ercan Nergiz, Yucel Saygin, and Bradley Malin. 2012.
Anonymization of longitudinal electronic medical records. IEEE Transactions on Information Technol-
ogy in Biomedicine 16, 3 (2012), 413–423.

Manolis Terrovitis and Nikos Mamoulis. 2008. Privacy preservation in the publication of trajectories. In
Proceedings of the 9th International Conference on Mobile Data Management (MDM 2008). IEEE, 65–
72.

Manolis Terrovitis, Nikos Mamoulis, and Panos Kalnis. 2008. Privacy-preserving anonymization of set-
valued data. Proceedings of the VLDB Endowment 1, 1 (2008), 115–125.

Manolis Terrovitis, Nikos Mamoulis, and Panos Kalnis. 2011. Local and global recoding methods for
anonymizing set-valued data. The VLDB Journal 20, 1 (2011), 83–106.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 I. Ozalp et al.

Traian Marius Truta and Bindu Vinay. 2006. Privacy protection: p-sensitive k-anonymity property. In Pro-
ceedings of the 22nd International Conference on Data Engineering (ICDE 2006) Workshops. IEEE, 94.

BP Welford. 1962. Note on a method for calculating corrected sums of squares and products. Technometrics
4, 3 (1962), 419–420.

Xiaokui Xiao and Yufei Tao. 2006a. Anatomy: Simple and effective privacy preservation. In Proceedings of
the 32nd International Conference on Very Large Data Bases (VLDB 2006). VLDB Endowment, 139–150.

Xiaokui Xiao and Yufei Tao. 2006b. Personalized privacy preservation. In Proceedings of the 25th ACM
International Conference on Management of Data (SIGMOD 2006). ACM, 229–240.

Xiaokui Xiao, Ke Yi, and Yufei Tao. 2010. The hardness and approximation algorithms for l-diversity. In
Proceedings of the 13th International Conference on Extending Database Technology (EDBT 2010). ACM,
135–146.

Xiaochun Yang and Chen Li. 2004. Secure XML publishing without information leakage in the presence of
data inference. In Proceedings of the 30th International Conference on Very Large Data Bases (VLDB
2004). VLDB Endowment, 96–107.

Elena Zheleva and Lise Getoor. 2008. Preserving the privacy of sensitive relationships in graph data. In
Proceedings of the 2nd International Workshop on Privacy, Security and Trust in KDD (PinKDD 2008).
Springer, 153–171.

Bin Zhou, Yi Han, Jian Pei, Bin Jiang, Yufei Tao, and Yan Jia. 2009. Continuous privacy preserving pub-
lishing of data streams. In Proceedings of the 12th International Conference on Extending Database
Technology (EDBT 2009). ACM, 648–659.

Bin Zhou, Jian Pei, and WoShun Luk. 2008. A brief survey on anonymization techniques for privacy pre-
serving publishing of social network data. ACM SIGKDD Explorations Newsletter 10, 2 (2008), 12–22.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

