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Object-Oriented Segmentation of Cell Nuclei in

Fluorescence Microscopy Images

Can Fahrettin Koyuncu,1 Rengul Cetin-Atalay,2 Cigdem Gunduz-Demir1,3*

� Abstract
Cell nucleus segmentation remains an open and challenging problem especially to seg-
ment nuclei in cell clumps. Splitting a cell clump would be straightforward if the gradi-
ents of boundary pixels in-between the nuclei were always higher than the others.
However, imperfections may exist: inhomogeneities of pixel intensities in a nucleus
may cause to define spurious boundaries whereas insufficient pixel intensity differences
at the border of overlapping nuclei may cause to miss some true boundary pixels. In
contrast, these imperfections are typically observed at the pixel-level, causing local
changes in pixel values without changing the semantics on a large scale. In response to
these issues, this article introduces a new nucleus segmentation method that relies on
using gradient information not at the pixel level but at the object level. To this end, it
proposes to decompose an image into smaller homogeneous subregions, define edge-
objects at four different orientations to encode the gradient information at the object
level, and devise a merging algorithm, in which the edge-objects vote for subregion
pairs along their orientations and the pairs are iteratively merged if they get sufficient
votes from multiple orientations. Our experiments on fluorescence microscopy images
reveal that this high-level representation and the design of a merging algorithm using
edge-objects (gradients at the object level) improve the segmentation results. © 2018

International Society for Advancement of Cytometry

� Key terms
object-based representation; fluorescence microscopy imaging; nucleus segmentation;
nucleus detection

FLUORESCENCE microscopy imaging is an important tool for in vitro cellular

experiments. However, when it is done manually, analyzing fluorescent images in a

series of such experiments requires a considerable amount of time and these analyses

are prone to observer variability. To facilitate rapid analyses with better reproducibil-

ity, it is crucial to implement automated systems, for which cell nucleus segmenta-

tion is typically the first and one of the most important steps.

Cell nucleus segmentation in fluorescence microscopy images typically starts

with differentiating nuclear pixels from background to obtain a binary mask. For

that, it is usually adequate to apply simpler techniques (such as thresholding (1) and

clustering (2)) on pixel intensities, since there is a huge intensity difference between

foreground and background pixels in fluorescent images. Afterward, segmentation

continues with identifying cell nuclei on the binary mask. This is quite straightfor-

ward when nuclei appear isolated in an image; each connected component on the

binary mask corresponds to a nucleus. In contrast, it becomes challenging to seg-

ment nuclei in cell clumps, in which the nuclei appear touching or overlapping in

the image. In this case, a connected component should be split into multiple nuclei.

Shape-based methods split one component into multiple nuclei using the fact

that a typical nucleus is nearly circular. For that, a large group of them identify

markers, each of which will correspond to a nucleus center, by finding regional min-

ima on the inverse distance transform of the binary mask (3,4) or applying
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morphological operations (e.g., erosion) on this mask (5).

They then grow the identified markers to delineate nucleus

boundaries. Another group employs concavity detection algo-

rithms to find concave points on the mask and split the nuclei

from these points (6,7). It has also been proposed to split the

mask by identifying circular shapes by the Hough transform

(8) and ellipse fitting techniques (9). The shape-based

methods usually yield promising results when the degree of

overlapping is relatively low so that there is no so much devi-

ation in nucleus appearance from its assumed circular shape.

Additionally, when the overlapping degree impedes finding a

sufficient amount of background pixels adjacent to the

boundary of a nucleus, the distance transform may give mis-

leading results and concavity detection may not work.

Gradient-based methods identify individual nuclei in a

cluster relying on the fact that nucleus contours have high

contrast differences. The voting-based techniques define ker-

nels to obtain the gradient information and get image pixels

voted along the directions specified by these kernels. They

then identify regions with larger votes as nucleus centers

(10–12). It is also possible to use pixel gradients to detect the

markers of a marker-controlled watershed algorithm (13) and

grow the markers identified on the distance transforms

(14–16). Level set algorithms commonly employ the pixel gra-

dients to refine the nucleus boundaries found by the shape-

based methods. These algorithms define their energy func-

tions on the gradients and converge the final boundaries by

minimizing these energy functions (17,18). However, the use

of the gradient information may not always be adequate to

correctly split the overlapping nuclei due to the following

imperfections in pixel values. First, pixel intensities may be

inhomogeneous in a nucleus. This may cause to define spuri-

ous edges inside the nucleus, which results in over-segmenta-

tion. Second, pixel intensity differences may not be sufficient

at the boundary of two overlapping nuclei. This may create a

problem of not being able to define an edge in-between these

nuclei, which leads to under-segmentation.

In order to response these issues, this article introduces a

new cell nucleus segmentation method that relies on using gra-

dient information not at the pixel level but at the object level.

To this end, it proposes to decompose an image into smaller

homogeneous subregions, define edge-objects at four different

orientations to encode the gradient information at the object

level and devise an effective algorithm that segments nuclei by

merging the smaller subregions using the edge-objects. In this

merging algorithm, the edge-objects vote for subregion pairs

along the direction specified by their edge types and the subre-

gion pairs are iteratively merged provided that they get suffi-

cient votes from multiple directions. The main contributions

of this object-oriented method are the introduction of repre-

senting a fluorescence microscopy image in terms of subre-

gions and edge-objects of different types and the

implementation of a new merging algorithm that effectively

uses this high-level representation to segment nuclei. As it

works on a high-level representation and employs object-level

gradients, the proposed segmentation method is expected to

be less vulnerable to the aforementioned pixel-level

imperfections compared to the existing studies that directly

work on the pixel intensities/gradients. Note that our previous

study also uses the edge-objects for nucleus segmentation (19).

However, this use is completely different than the one pro-

posed in this current study. Our previous study constructs a

graph on the edge-objects and achieves segmentation by

searching predefined patterns on the constructed graph. It

does not define any subregions, and thus, obviously, it does

not use them in any merging algorithm in conjunction with

the edge-objects.

In the literature, there exist studies that also partition an

image into subregions and then form nuclei by merging them.

All these studies extract features from the subregions and

select the subregions to be merged by solving an optimization

problem on the extracted features (20–24). Different from our

proposed method, these previous studies do not define any

kind of high-level objects encoding the gradient information

and they do not employ such high-level objects to merge their

subregions. Working on 2661 nuclei, our experiments show

that this high-level object-based representation together with

the proposed merging algorithm yield better results compared

to its pixel-based counterparts.

METHODOLOGY

The proposed object-oriented method relies on first

dividing an image into over-segmented subregions and then

merging them with the help of the edge-objects to segment

nuclei. The motivation behind this first-divide-then-merge

approach is as follows: in principle, one can locate a single

subregion for every nucleus. However, due to nonideal condi-

tions in real life, this may not actually happen for many

images and the located subregions are commonly over- or

under-segmented. Inhomogeneities inside a nucleus may

cause to define multiple over-segmented subregions corre-

sponding to this nucleus, whereas insufficient contrast differ-

ences at the boundary of two overlapping nuclei may result in

representing the two nuclei with the same under-segmented

subregion. Hence, we propose to divide the image into homo-

geneous subregions that are usually smaller than the average

nucleus and merge them afterward.

The merging process employs the edge-objects of four

different types that are defined at four different orientations.

These edge-objects correspond to the left, right, top, and bot-

tom nucleus boundaries according to the orientation they are

defined. In the ideal case, for each nucleus, one can define

exactly one left edge-object for its left boundary, one right

edge-object for its right boundary, one top edge-object for its

top boundary, and one bottom edge-object for its bottom

boundary and these edge-objects form a closed curve (this

hypothetical case is illustrated in Fig. 1a). In this case, the

merging process would be quite simple; one could easily form

a nucleus by merging the subregions surrounded by the edge-

objects of this nucleus. In contrast, there may exist the follow-

ing deviations from this ideal case: (i) the edge-objects

belonging to the same nucleus may not cover all of its bound-

aries, and thus, they may not form a closed curve, (ii) more
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than one nucleus may share the same edge-object of the same

type, (iii) multiple edge-objects of the same type may corre-

spond to a single nucleus, (iv) the edge-object of at least one

type may be missing, and (v) there may exist spurious edge-

objects inside a nucleus. We draw illustrations for each of

these deviations in Figure 1b–f. To address these nonideal

conditions, the proposed method devises an iterative merging

algorithm, in which two subregions are merged provided that

they share an edge-object for a sufficient number of the edge

types. The pseudo-code of the proposed object-oriented algo-

rithm is given in Algorithm 1, and its details are explained in

the following subsections. The source codes of its implemen-

tation are available at http://www.cs.bilkent.edu.tr/~gunduz/

downloads/ObjectOrientedCellSegm/.

Algorithm: NUCLEUS SEGMENTATION Overall framework of

the proposed object-oriented algorithm.

Input: image I, superpixel image P, object size threshold

tsize, maximum distance dmax, voting threshold tvote, area

threshold tarea
Output: segmented nuclei S

1: B OTSUGLOBALTHRESHOLDING (I)

/* B: binary mask obtained by global thresholding */

2: for perc 2 {0.5, 1.0, 1.5, 2.0} do

/* perc: multiplier of the threshold obtained by the Otsu’s

method for edge-object definition */

3: Operc EDGEOBJECTDEFINITION (I, B, tsize, perc)

/* Operc: four sets of the edge-objects obtained for the perc

multiplier */

4: end for.

5: S SUBREGIONPARTIONING (P, O0.5, B)

6: for perc 2 {0.5, 1.0, 1.5, 2.0} do

7: S SUBREGIONMERGING (S, Operc, dmax, tvote)

8: end for

9: S SMALLNUCLEUSELIMINATION (S, tarea)

Edge-object Definition

The proposed algorithm defines the following four differ-

ent types of the edge-objects: left, right, top, and bottom. It

derives the edge-objects of each type using a gradient map and

a binary mask, both of which are obtained on the L channel1 of

an image. For each type, the gradient map is obtained by con-

volving the L channel with one of the following Sobel operators.

Sleft¼

−1 0 1

−2 0 2

−1 0 1

2

6

4

3

7

5
,Sright¼

1 0 −1

2 0 −2

1 0 −1

2

6

4

3

7

5
,

Stop¼

−1 −2 −1

0 0 0

1 2 1

2

6

4

3

7

5
,Sbottom¼

1 2 1

0 0 0

−1 −2 −1

2

6

4

3

7

5

The same binary mask B is used for all of the edge types

and it is obtained by thresholding the L channel with the

value automatically calculated by the Otsu’s method.2

The edge-object definition step defines the left edge-objects

as follows. Let Gleft be the gradient map obtained by convolving

the L channel with the Sobel operator Sleft. First, Gleft is com-

pared against a threshold tleft and pixels with high enough gra-

dients are identified. These identified pixels are masked with the

binary mask B and spurious edges on the image background are

eliminated. Then, a binary edge map is defined on the remain-

ing pixels. Finally, the m-leftmost pixels of the binary edge map

are taken and the connected components of these m-leftmost

pixels are considered as the left edge-objects provided that their

heights are larger than the size threshold tsize. Here, we take the

m-leftmost pixels instead of just taking the leftmost pixels since

discontinuities may exist in boundaries due to the pixel-based

representation of a digital image. In this work, we select m = 3

considering the pixel resolution of the images that are used in

our experiments. The steps of the left edge-object definition are

illustrated in Figure 2.

(a) (b) (c) (d) (e) (f)

Figure 1. Illustrations of (a) the hypothetical case and (b–f) the nonideal conditions for the edge-object definition. (b) The edge-objects do

not form a closed curve. (c) The same left edge-object is partially shared by two nuclei. (d) Two different left edge-objects are defined for

the same nucleus. (e) There is no right and no bottom edge-object defined. (f) Spurious top and bottom edge-objects are defined. Here

left, right, top, and bottom edge-objects are shown with green, cyan, red, and yellow, respectively. [Color figure can be viewed at

wileyonlinelibrary.com]

1 In this work, we prefer using the La*b* color space for both edge-object definition and subregion partitioning since it was designed to be perceptu-

ally uniform with respect to human color vision. Thus, as the first step, an RGB image is converted to its equivalent in the La*b* color space and the

remaining steps use this converted image.
2 It is usually sufficient for our method to use a rough binary mask as long as this mask does not miss too many true nucleus pixels. The postproces-

sing step will correct false pixels up to a certain degree; it will eliminate small regions of false nucleus pixels by small area elimination and fill gaps

on false background pixels by majority filtering. Thus, the proposed method uses a quite simple thresholding technique for binarization. However, one

may consider to obtain such a mask by employing more advanced methods such as supervised techniques. The investigation of using such tech-

niques could be considered as a future work.
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Here, it is critical to determine a threshold value tleft
that can identify edge-objects correctly. However, this is not

always straightforward and a single threshold may not

always work over an entire image especially when the image

exhibits variance on the gradient distribution in its different

parts. Threshold values smaller than necessary may lead to

defining spurious edges whereas too large values may cause

to miss some nucleus boundaries. Thus, we propose to use a

set of multiple threshold values, for which the subregion

merging step is consecutively called one after another (lines

6–7 of Algorithm 1). In particular, a threshold τ is automati-

cally calculated on the gradient map Gleft by the Otsu’s

method and then the values starting from the half of this

threshold to its double are used. In this work, four sets of

the left-edge objects Oleft are defined using tleft 2 {0.5τ, 1.0τ,

1.5τ, 2.0τ}3.

This step defines the objects of the other edge types simi-

larly with the difference that edge-objects shorter than tsize
are eliminated for the left and right types, whereas those nar-

rower than tsize are eliminated for the top and bottom types.

At the end of this step, we obtain four sets of the edge-objects

Operc = {Oleft, Oright, Otop, Obottom}, each of which is calculated

using a different threshold percentage constant perc 2 {0.5,

1.0, 1.5, 2.0} (lines 2–4 of Algorithm 1).

Subregion Partitioning

The proposed algorithm first partitions an image into

homogeneous subregions, which are usually smaller than a

typical nucleus, and then merges them with the help of the

edge-objects. The first step of this partitioning runs the Sim-

ple Linear Iterative Clustering (SLIC) superpixel algo-

rithm (25) on the image. The SLIC algorithm clusters image

pixels according to their L, a, and b values in the La*b* color

space together with their x and y coordinates and defines a

superpixel for each of these clusters. After obtaining superpix-

els by the SLIC algorithm, the second step of this subregion

partitioning takes one of the following three actions for each

superpixel p.

1. If p is entirely outside the binary mask B, which is also

used in the edge-object definition step, it discards this

superpixel.

2. Otherwise, if p entirely or partially overlaps with the mask,

the overlapping part of p is taken. Then, if any edge-object

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Left edge-object definition on an example subimage: (a) original subimage obtained from the HepG2 liver cancer cell line, (b) its

L channel, (c) gradient map Gleft obtained by convolution, (d) binary mask B, (e) binary edge map obtained after thresholding Gleft and

masking the result with B, (f) leftmost pixels of the binary edge map, (g) m-leftmost pixels of the same binary edge map, (h) remaining

connected components after eliminating the shorter ones, and (i) left edge-objects defined for the subimage (each edge-object is shown

with a different color). [Color figure can be viewed at wileyonlinelibrary.com]

3We decide to use the threshold percentage perc constants of 0.5, 1.0, 1.5, and 2.0 because of the following reasons: Small values for the minimum

perc cause to define too much spurious edge-objects. On the other hand, large values for the maximum perc result in defining almost no useful

edge-objects. The use of small intervals in between the consecutive perc values increases the computation time without adding too much extra

information. Thus, considering all these issues, we select perc 2 {0.5, 1.0, 1.5, 2.0}.
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cuts this overlapping part into multiple components, the

second step further splits p using this edge-object and

defines multiple subregions corresponding to the super-

pixel, as illustrated in Figure 3. It repeats this split opera-

tion for all such edge-objects. Note that this second step

considers the edge-objects in the set of O0.5, which is

defined using the lowest Otsu threshold, for further parti-

tioning of the superpixels (line 5 of Algorithm 1).

3. Otherwise, it considers p as one subregion.

At the end of this step, an image is represented with the

subregions and the edge-objects of four different types. The

next step will merge the subregions using the edge-objects to

form nuclei, and the last step will postprocess these nuclei to

obtain the final segmentation (Fig. 4).

Subregion Merging

The merging algorithm involves an iterative procedure,

each of whose iterations starts with assigning the present sub-

regions to the edge-objects within a distance d. Afterward,

based on these assignments, pairs of the adjacent subregions

that share a sufficient number of the edge-objects are deter-

mined and their merging scores are calculated. Starting from

the best one, such pairs are merged with respect to their

scores and the pairs are updated also considering the newly

emerged subregions. Each iteration continues until there

remains no subregion pair to be merged. The next iteration

increments the value of d by one and repeats the same steps.

This procedure continues its iterations from d = 1 to dmax.

The pseudo-code of this procedure is given in Algorithm 2;

the details of its steps are explained below.

In the first step of each iteration, the subregions are

assigned to the edge-objects (lines 2–7 of Algorithm 2). For a

subregion, this assignment is done separately for each edge

type. To assign a subregion si to a left edge-object, the vote v

(si,oj) that this subregion takes from each left edge-object oj is

calculated and the one with the maximum vote is selected. If

v(si,oj) = 0 for all oj, there is no left edge-object assignment

for the subregion si. To calculate v(si,oj), for each row of oj,

the image is scanned towards right starting from the leftmost

pixel of oj in this row and this vote is incremented by one if

the scan meets a pixel of si along this row. The scan continues

until it hits another object or reaches the distance d. This vot-

ing is illustrated in Figure 5. For the other edge types, the

(a) (b) (c) (d)

Figure 3. Illustration of splitting a superpixel into multiple

subregions: (a) a superpixel before splitting, (b) a left edge-object

that will split the superpixel, (c) the left-object superimposed on

the superpixel, and (d) three subregions obtained after splitting.

[Color figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4. Illustration of the edge-objects and the subregions before and after merging: (a) original subimage obtained from the HepG2

liver cancer cell line, (b) left edge-objects, (c) right edge-objects, (d) top edge-objects, (e) bottom edge-objects, (f) subregions at the end of

the subregion partitioning step, (g) nuclei obtained by merging the subregions, and (h) final segmentation after postprocessing. [Color

figure can be viewed at wileyonlinelibrary.com]
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assignment is done in a similar way with the following differ-

ences. The image is scanned row wise for the left and right

types and column wise for the top and bottom types. Addi-

tionally, the image is scanned toward the opposite direction

of the specified edge type.

Algorithm: SUBREGION MERGING Procedure that iteratively

merges subregion pairs using the edge-obejcts.

Input: subregions S, edge-objects O, maximum distance

dmax, voting threshold tvote
Output: merged subregions S

1: for d = 1! dmax do

/* d: distance within which a subregion is assigned to the

edge-objects */

2: for all subregions si of S do

3: left(si) LEFTASSIGNMENT (O, si, d)

4: right(si) RIGHTASSIGNMENT (O, si, d)

5: top(si) TOPASSIGNMENT (O, si, d)

6: bottom(si) BOTTOMASSIGNMENT (O, si, d)

/* left(si), right(si), top(si), and bottom(si): left, right, top,

and bottom edge-objects */

/* assigned to the subregion si */

7: end for

8: Φ = ;
/* Φ: candidate set of subregion pairs for merging */

9: for all adjacent subregions si and sk of S do

10: if [left(si) = left(sk) and σleft(sik) ≥ tvote or right

(si) = right(sk) and σright(sik) ≥ tvote] and [top(si) = top(sk)

and σtop(sik) ≥ tvote or bottom(si) = bottom(sk) and

σbottom(sik) ≥ tvote] then

/* σleft(sik), σright(sik), σtop(sik), and σbottom(sik): score of

merging the subregion pair si and sk */

/* obtained for the left, right, top, and bottom direc-

tions */

11: σ(sik) σleft(sik) + σright(sik) + σtop(sik) + σbottom(sik)

/* σ(sik): total score of merging the subregion pair si and

sk */

12: Φ = Φ [ {<sik, σ(sik)>}

13: end if

14: end for

15: for all subregion pairs of Φ do

16: sik select the pair with the highest σ(sik)

/* sik: subregion pair with the highest total merging

score */

17: merge the subregions si and sk18: update the set Φ

19: end for

20: end for

The next step determines the subregion pairs to be

merged (lines 8–14 of Algorithm 2). For each edge type, every

pair of adjacent subregions that share an edge-object is identi-

fied and a score that quantifies the degree of this sharing is

calculated. If they do not share an edge-object, this score is set

to 0. The subregions si and sk are said to share an edge-object

if they are assigned to the same object oj. In this case, the

object oj will vote for the boundary between the subregions si
and sk. This vote calculation is very similar to the aforemen-

tioned one, except that each row/column of the object will

increment the vote by one if the corresponding scan meets a

boundary pixel (instead of a pixel of a subregion) and the scan

stops only if it hits another object (instead of also reaching the

distance d). After calculating the votes (e.g., the vote vleft(sik)

that the shared left edge-object gives to the merge of the sub-

regions si and sk), the merging scores are defined as

σleft sikð Þ¼mean
vleft sikð Þ

height sið Þ
,
vleft sikð Þ

height skð Þ

� �

σright sikð Þ¼mean
vright sikð Þ

height sið Þ
,
vright sikð Þ

height skð Þ

� �

σtop sikð Þ¼mean
vtop sikð Þ

width sið Þ
,
vtop sikð Þ

width skð Þ

� �

σbottom sikð Þ¼mean
vbottom sikð Þ

width sið Þ
,
vbottom sikð Þ

width skð Þ

� �

where each vote is normalized with the size of the subregions.

Here, we use normalization not to create any bias towards

merging larger subregions, for which the number of boundary

pixels is expected to be higher. If the pair of si and sk gets suffi-

cient vote from at least one vertical edge type (left or right) and

at least one horizontal edge type (top or bottom), the total

merging score σ(sik) is calculated as the sum of all of its scores

and the pair is added to the merge set Φ. In other words, if

σleft(sik) ≥ tvote or σright(sik) ≥ tvote and σtop(sik) ≥ tvote or

σbottom(sik) ≥ tvote, the merging score σ(sik) = σleft(sik) +

σright(sik) + σtop(sik) + σbottom(sik). Otherwise, this pair will not

be qualified for merging.

As the last step, all pairs in Φ are iteratively merged with

respect to their total merging scores (lines 15–19 of Algo-

rithm 2). After merging a pair of the subregions si and sk, the

newly emerged subregion sik is reassigned to the edge-objects,

the merging scores between this new subregion and its neigh-

bors are recalculated, and the merge set Φ is updated accord-

ingly. Each iteration continues until there is no subregion

pair left for merging.

(a) (b) (c)

Figure 5. Illustration of calculating the vote v(si,oj) that the left

edge-object oj gives the subregion si. (a) The subregion si and the

two edge-objects oj and om are shown in maroon, green, and

blue, respectively. (b) The area scanned for the rows of oj, which

is shown with light green color. For the upper rows of oj, the scan

continues until it reaches the distance d. For its lower rows, the

scan stops earlier since it hits the blue object om. (c) The part of

the subregion si that overlaps the scanning area, which is shown

with light maroon color. The vote v(si,oj) is incremented by one

for each row of this overlapping part. [Color figure can be viewed

at wileyonlinelibrary.com]
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As explained in the “Edge Object Definition” section, the

SUBREGIONMERGING procedure is called for different sets of the

edge-objects Operc, each of which is calculated using a differ-

ent Otsu threshold percentage constant perc 2 {0.5, 1.0, 1.5,

2.0} (see lines 6–8 of Algorithm 1). As a final step, subregions

smaller than an area threshold tarea will be eliminated to

obtain the final segmented nuclei. Here, the majority filter is

applied afterward to obtain smoother boundaries. Note that

this majority filter only slightly affects the segmentation per-

formance, but it yields smoother boundaries. In this work, we

select the radius of this filter as 3 considering the pixel resolu-

tion of the images used in our experiments.

EXPERIMENTS

Dataset

We test our object-oriented algorithm on 2,661 cell

nuclei of 37 fluorescence microscopy images. The cells were

taken from the Huh7 and HepG2 liver cancer cell lines and

stained with nuclear Hoechst 33258. The images were taken

under a Zeiss Axioscope fluorescent microscope with a Carl

Zeiss AxioCam MRm monochrome camera with a 20× Carl

Zeiss objective lens. For Hoechst 33258 florescent dye, a bis-

benzimide DNA intercalator can be observed in the blue

region upon UV region excitation. Hoechst 33258 dye was

excited with 365 nm, the emitted blue light (420 nm) was

acquired, and the beam splitter was 395 nm. During the

image acquisition, binning was set to 1 × 1, the gain and the

offset were set to default 0, and the integration time was

10–40 ms. The images were saved in the jpg image format,

and their pixel resolution was set to 768 × 1,024.

We use 785 nuclei of 10 randomly selected images (five

Huh7 and five HepG2 cell line images) in the training set, on

which the model parameters are estimated. The nuclei in the

remaining 27 images are used for testing. HepG2 cells tend to

grow in more overlayers than Huh7 cells. This leads to more

overlapping nuclei in the images of the HepG2 cell line. Thus,

we separately test our algorithm for these cell lines. The

Huh7 cell line test set includes 891 nuclei of 11 images and

the HepG2 cell line test set includes 985 nuclei of 16 images.

The nuclei in these images were manually annotated by our

biologist collaborator. The image sets and their annotations

are publicly available at http://www.cs.bilkent.edu.tr/~gunduz/

downloads/NucleusSegData/.

Evaluation

Each algorithm is quantitatively evaluated by calculating

the precision, recall, and F-score metrics at both the nucleus

and pixel levels. The nucleus-level calculation finds true posi-

tive nuclei as follows: it matches a nucleus N segmented by

the algorithm with an annotated nucleus A if at least half of

the N’s pixels overlap with those of A. Similarly, it matches

each annotated nucleus with a segmented one. It then con-

siders a segmented nucleus as true positive if there exists one-

to-one match between this segmented nucleus and an anno-

tated one. Afterward, considering the correctly identified

pixels of only the true positive nuclei as true positive pixels,

the pixel-level precision, recall, and F-score metrics are calcu-

lated. Note that in this work, we used the same nucleus- and

pixel-level quantitative evaluation with our previous studies

(13,19), the results of which will be provided for comparison.

Parameter Selection

Table 1 lists the external parameters of the proposed

method. We select the values of these parameters on the train-

ing set; in this selection, we do not use the test sets at all. For

that, we consider a set of values for each parameter (which are

also given in Table 1), take the results for all possible combina-

tions of different parameters, and select the combination that

yields the highest F-score for the training nuclei. The selected

values are tsize = 5, dmax = 20, tvote = 0.1, and tarea = 400.

RESULTS AND DISCUSSION

Quantitative segmentation results of the proposed

object-oriented method and its computational times are given

in Table 2, separately for the Huh7 and HepG2 cell line test

sets. This table shows that the object-oriented algorithm

improves segmentation results at both the nucleus and pixel

levels. This improvement is higher for the HepG2 cell line test

set, which includes more overlapping nuclei. When the results

are visually examined, it is observed that the proposed

method is able to determine nucleus locations with high suc-

cess for both less and more overlapping nuclei (some exam-

ples are given in Fig. 6). This is consistent with the nucleus-

level evaluation results.

In order to understand its effectiveness, we compare our

object-oriented method with two of our previous methods

(13,19) and the other three proposed by other research groups

(3,10,11). The quantitative and visual results of these compar-

ison methods are also provided in Table 2 and Figure 6.

These methods could be grouped into three. The first group

includes the adaptive h-minima (3) and iterative h-minima

(13) methods, which are marker-controlled watersheds. Both

of these methods apply h-minima transform to a distance/

gradient map to suppress its noise and then identify the

regional minima on the noise-suppressed map as their

markers. The former one determines and uses a single h value

to identify its markers and adaptively changes it to refine the

shapes of the identified markers (3). In contrast, the latter

method iteratively identifies its markers using a set of multi-

ple h values (13). Nucleus-level evaluation given in Table 2

shows that using a single h value (3) is less efficient to cor-

rectly identify many markers, each of which corresponds to a

nucleus in the result. When multiple h values are used, more

correct markers are found, and as a result, the latter compari-

son method (13) yields nucleus-level evaluation comparable

with our method (it gives 89.29 and 83.22% F-scores for the

Huh7 and HepG2 cell line test sets, respectively, whereas our

method gives just 90.75 and 84.21%). In contrast, pixel-level

evaluation reveals that the proposed object-oriented method

gives much more successful results than both of these com-

parison methods to delineate the nucleus’ boundaries, as also

observed in the visual results. For pixel-level evaluation, the

Cytometry Part A � 93A: 1019–1028, 2018 1025

ORIGINAL ARTICLE

http://www.cs.bilkent.edu.tr/~gunduz/downloads/NucleusSegData/
http://www.cs.bilkent.edu.tr/~gunduz/downloads/NucleusSegData/


proposed method increases the F-score of iterative h-minima

from 78.46 to 83.98% for the Huh7 cell line test set and from

71.77 to 76.45% for the HepG2 cell line test set. This may be

attributed to the following reason. After identifying its

markers, a marker-controlled watershed algorithm grows

these markers pixel-by-pixel usually with respect to pixel gra-

dients and/or distance transforms. This pixel-by-pixel grow-

ing is, however, more susceptible to pixel-level noise and

imperfections. In contrast, the proposed object-oriented

method relies on subregion-level merging with the help of the

edge-objects, which are defined to encode gradients at the

object level. This object-level processing results in delineating

the nucleus’ boundaries more successfully.

The second group of comparison algorithms relies on

using pixel-level gradients (10,11). The iterative voting

method defines a series of oriented kernels to obtain the

gradient information and determines nucleus centers by get-

ting image pixels iteratively voted along the directions speci-

fied by these kernels (10). The single-pass voting method

improves the nucleus seed detection algorithm by defining a

voting area on the eroded binary mask of an image. This

method considers only the boundary regions of this binary

mask instead of traversing the entire image (11). Table 2

shows that our proposed method leads to higher F-scores

compared to these two voting-based methods. This indicates

the effectiveness of using the gradient information at the

object-level instead of using pixel-level gradients. This table

also shows that both of these comparison methods yield lower

nucleus-level precision and recall values. These lower values

indicate the detection of less true positives (correctly located

nuclei), but also lower precisions are the indicators of more

false positives (incorrectly located nuclei) and lower recalls

Table 1. A list of the external model parameters together with their values considered in parameter selection

PARAMETER EXPLANATION VALUES CONSIDERED

tsize Minimum height/width for a component to be an edge object {5, 10, 15}

dmax Maximum distance within which an edge-object can vote for a subregion {15, 20, 25}

tvote Minimum score that a subregion pair should take from at least

one vertical (left or right) and at least one horizontal (top or bottom)

edge type to be qualified for merging

{0.1, 0.2, 0.3}

tarea Minimum area for a subregion to be a nucleus {200, 300, 400, 500}

The selected values are indicated by bold fonts.

(a) (b) (c) (d) (e) (f) (g)

Figure 6. Visual results obtained by the algorithms for various subimages: (a) annotated nuclei in the gold standard, (b) results by the

proposed object-oriented method, (c) results by the iterative voting method (10), (d) results by the single-pass voting method (11), (e)

results by the adaptive h-minima method (3), (f) results by the ARGraphs method (19), and (g) results by the iterative h-minima method

(13). The subimage sizes have been scaled for better visualization. [Color figure can be viewed at wileyonlinelibrary.com]

1026 Object-oriented cell segmentation

ORIGINAL ARTICLE

http://wileyonlinelibrary.com


are those of more false negatives (missing nuclei). The

increase in the number of false positives and false negatives

might be the result of noise and imperfections in pixel values,

which will directly affect the computation of the gradients at

the pixel-level. Intensity inhomogeneities in a nucleus may

lead to defining spurious edges, which increase the number of

false positives, whereas insufficient pixel intensity differences

at the nucleus’ boundaries may cause not to identify existing

nuclei, which increases the number of false negatives. The use

of the gradient at the object-level alleviates the negative effects

of these imperfections, which might be the reason of obtain-

ing higher nucleus-level precision and recall values.

The last comparison group includes the ARGraphs

method (19), which we implemented in our previous work.

This method constructs an attributional relational graph on

the edge-objects and identifies nucleus centers by searching

predefined patterns on this graph. This previous method also

uses the edge-objects, but this use is completely different than

the one proposed in this current work. ARGraphs does not

define any subregions, and thus, obviously, it does not use

these sub-regions in conjunction with the edge-objects. More-

over, it does not make use of any first-divide-then-merge

approach to form nuclei from the subregions and the edge-

objects. We use this comparison method to understand the

effects of developing such kind of approach in segmenting the

nuclei. Table 2 demonstrates that this newly proposed

approach improves the F-scores both at the nucleus and pixel

levels. This improvement is higher for the HepG2 cell line test

set, in which cells tend to grow in overlayers. This reveals the

effectiveness of our first-divide-then-merge approach, which

first divides an image into subregions and then merges them

by the edge-objects, to more correctly identify overlapping

nuclei in more overlayered cell clumps. This is also consistent

with the visual results given in Figure 6.

Table 2 also provides the average computational time to

segment nuclei in a given image and its standard deviation.

These computational times are obtained on a computer with a

2.9 GHz Intel Core i5 processor and 16 GB of RAM. We

implement our object-oriented method mostly in Matlab but

when faster computations are needed, we write the code in C+

+ and compile it by the MEX compiler of Matlab. Its average

computational time is approximately 15s, which is higher than

those of the other comparison methods. The most expensive

part of our method is the iterative subregion merging proce-

dure (lines 15–19 of Algorithm 2). At each iteration, this pro-

cedure selects one subregion pair from the candidate set,

merges them, and updates the assignments and the voting

scores of the remaining candidates. This part takes longer time

especially when the number of subregions is high. Although it

is implemented in C++, it is still possible to make this part fas-

ter by more effectively coding it. It is also possible to obtain

further speedups by implementing the entire algorithm in C++.

This is considered as a future work of this implementation.

CONCLUSION

This article presents a new object-oriented method for

segmenting cell nuclei in fluorescence microscopy images. This

method relies on the use of gradient information at the object-

level, instead of directly using pixel-level gradients. To this end,

it proposes to partition an image into smaller subregions,

define edge-objects at four different orientations for encoding

Table 2. Comparison of the algorithms in terms of accuracy measures and computational times on the (a) Huh7 and (b) HepG2 cell line

test sets

(a)

NUCLEUS LEVEL PIXEL LEVEL

COMPUTATIONAL TIME (S)PRECISION RECALL F-SCORE PRECISION RECALL F-SCORE

Object oriented 92.33 89.23 90.75 80.25 88.08 83.98 14.82 � 10.38

Iterative voting (10) 81.28 80.92 81.10 81.26 68.48 74.33 10.03 � 7.96

Single-pass voting (11) 87.82 85.75 86.77 83.61 71.03 76.81 6.52 � 5.85

Adaptive h-minima (3) 88.27 83.61 85.87 82.57 79.47 80.99 1.81 � 1.29

ARGraphs (19) 88.14 88.44 88.29 78.28 85.51 81.74 5.86 � 2.08

Iterative h-minima (13) 89.24 89.34 89.29 83.58 73.93 78.46 2.02 � 1.44

(b)

NUCLEUS LEVEL PIXEL LEVEL

COMPUTATIONAL TIME (S)PRECISION RECALL F-SCORE PRECISION RECALL F-SCORE

Object-oriented 87.00 81.00 84.21 71.96 81.53 76.45 14.11 � 11.84

Iterative voting (10) 75.89 73.19 74.52 70.67 61.12 65.55 9.42 � 6.11

Single-pass voting (11) 77.04 72.89 74.91 71.70 59.12 64.80 4.85 � 4.47

Adaptive h-minima (3) 80.37 69.44 74.50 67.16 66.33 66.74 1.75 � 1.36

ARGraphs (19) 81.41 79.19 80.28 65.75 75.37 70.24 5.84 � 2.69

Iterative h-minima (13) 86.35 80.30 83.22 80.09 65.02 71.77 1.38 � 1.99
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the gradient information at the object-level, and devise an

effective merging algorithm that forms nuclei from the subre-

gions with the help of the edge-objects. In this subregion-level

merging, the edge-objects vote for subregion pairs along the

direction specified by their edge types and the subregion pairs

are iteratively merged provided that they get sufficient votes

from multiple directions. This high-level representation

together with this high-level merging is expected to be less sus-

ceptible to pixel-level noise and imperfections compared to the

methods that directly work on pixel values. Our experiments

on fluorescence microscopy images are consistent with this

expectation. They demonstrate that the proposed object-

oriented method leads to better segmentation results compared

to pixel-level cell nucleus segmentation algorithms.

The proposed method defines four different types for the

edge-objects but does not define any type for the subregions.

It is also possible to assign types to subregions, based on their

characteristics, and incorporate them into the merging algo-

rithm. This could be considered as a future work of this study.

In this work, we focus on the fluorescence microscopy images.

As another future work, one may consider to extend this

object-oriented method to other types of microscopy images.

For instance, it can be extended to 3D nucleus segmentation

by defining 3D edge-objects and 3D subregions. For that, the

third axis (depth) can be employed to identify the edge-objects

of six different types (left, right, top, bottom, front, and back

object types) and supervoxels can be used to define the subre-

gions instead of superpixels. For obtaining the supervoxels,

one can use the option provided by the SLIC algorithm (25).

After defining them, the merging step can be modified to con-

sider object assignments for the new types and to use the votes

of the edge-objects from six directions. This may be consid-

ered as another future work of the proposed study.
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