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� Abstract
Computer-based imaging systems are becoming important tools for quantitative assess-
ment of peripheral blood and bone marrow samples to help experts diagnose blood dis-
orders such as acute leukemia. These systems generally initiate a segmentation stage
where white blood cells are separated from the background and other nonsalient objects.
As the success of such imaging systems mainly depends on the accuracy of this stage,
studies attach great importance for developing accurate segmentation algorithms.
Although previous studies give promising results for segmentation of sparsely distributed
normal white blood cells, only a few of them focus on segmenting touching and overlap-
ping cell clusters, which is usually the case when leukemic cells are present. In this article,
we present a new algorithm for segmentation of both normal and leukemic cells in
peripheral blood and bone marrow images. In this algorithm, we propose to model color
and shape characteristics of white blood cells by defining two transformations and intro-
duce an efficient use of these transformations in a marker-controlled watershed algo-
rithm. Particularly, these domain specific characteristics are used to identify markers and
define the marking function of the watershed algorithm as well as to eliminate false white
blood cells in a postprocessing step. Working on 650 white blood cells in peripheral
blood and bone marrow images, our experiments reveal that the proposed algorithm
improves the segmentation performance compared with its counterparts, leading to high
accuracies for both sparsely distributed normal white blood cells and dense leukemic cell
clusters. VC 2014 International Society for Advancement of Cytometry
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TRADITIONAL techniques for diagnosis of leukemia require a careful observation of

peripheral blood and bone marrow samples under a microscope, which relies on the

morphology of white blood cells. This process is time consuming and greatly

depends on the skills and experience of an expert. Although there exist more sophis-

ticated techniques (such as surface antigen analysis made by flow cytometry) that

produce more precise results (1,2), these techniques drastically increase the cost of

diagnosis and treatment monitoring. Computerized systems that provide an auto-

mated image-based framework (3,4) alleviate the effects of human factor, and thus,

have potential to increase the reproducibility and throughput of the assessments and

help the expert in decision-making. The first step of these systems is usually cell seg-

mentation, in which individual cells are separated from each other and the back-

ground. After this step, it is possible to extract properties from the segmented cells

and distinguish leukemic cells from normal ones based on their properties. There-

fore, it is crucial for the segmentation algorithm to accurately work on both normal

and leukemic cells for precise decision-making. The focus of this article is imple-

menting such a robust cell segmentation algorithm for peripheral blood and bone

marrow images.
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Like in many segmentation problems, a successful solution

of cell segmentation requires incorporating domain specific

characteristics of images into the segmentation algorithm.

Peripheral blood and bone marrow images of patients with

acute lymphoblastic leukemia usually consist of normal white

blood cells, blasts, red blood cells, platelets, and background

pixels. Figure 1 demonstrates two sample images containing dif-

ferent types of cells, each of which has its own characteristics.

Blue-like color of white blood cells usually makes them easy-to-

differentiate from red blood cells and the background. However,

red blood cells abutting these cells might produce some false

positives since their boundary regions may show similar colora-

tion (Fig. 1a). In this case, shape information is useful, since the

shapes of white blood cells are more regular and compact com-

pared with red blood cells, which look like thick-edged rings.

Moreover, normal white blood cells (Fig. 1a) are sparsely dis-

tributed across the background whereas leukemic cells (Fig. 1b)

tend to grow over each other forming cell clusters. The shape

information is also useful to decompose these leukemic cell

clusters into individual cells. The definition and use of different

transformations that represent color and shape information

constitute the main motivation of our proposed algorithm.

In the literature, there exist several algorithms for seg-

menting white blood cells in peripheral blood and bone mar-

row images. When white blood cells are sparsely distributed

over the background and do not have adjacent red blood cells,

straightforward methods such as thresholding (5–7), edge

detection (8–10), and region growing (11) are usually suffi-

cient for delineating cell boundaries. When red blood cells or

other noisy fragments are also found in the results, it is possi-

ble to refine these results by applying morphological opera-

tions (12–14) and/or evolving active contours on the

segmented cell boundaries (15–17). After eliminating such

fragments, one can also reconstruct the boundaries of white

blood cells by spiral interpolation or using color differences

between overlapping cells (18,19).

Color-based segmentation is another widely used method

for segmenting white blood cells. Unsupervised clustering

algorithms (20–22) and supervised classification models (23–

26) have been used for this purpose. These methods usually

work on the RGB color space; however, there also exist some

studies that work on other color spaces [such as the HSV

(21,27) and La*b* (28) color spaces] for better quantifying

visual differences between different image components. Addi-

tionally, it is possible to preprocess images with different tech-

niques including filtering (29,30), histogram equalization

(31), and contrast enhancement (32) for noise elimination.

These previous methods implemented their algorithms

mainly focusing on segmentation of isolated white blood cells,

which are typically normal. However, leukemic cells tend to

grow in over layers forming cell clusters. These clusters should

be decomposed into single cells for accurate segmentation.

Marker-controlled watershed algorithm is a powerful image

processing technique that is widely used to separate clumped

cells in dense cellular images (33–35). Some variations of these

algorithms are also adapted to solve the white blood cell seg-

mentation problem. These methods usually employ distance

transformations (36,37) for marker detection and use gra-

dients/intensities for marking function definition (38). How-

ever, they usually yield oversegmented cells and/or irregular

cell boundaries, which are refined afterwards (37,39). These

methods address the problem of segmenting leukemic cells to

an extent (36–38), but there still remain challenges to over-

come when predefined markers do not represent cells accu-

rately. For white blood cell segmentation, this problem arises

when an image contains highly over-layered leukemic cells

with fuzzy boundaries and aggravates if the image also con-

tains confluent red blood cells adjacent to white blood ones.

In this article, we devise and implement a new algorithm

for segmenting white blood cells in peripheral blood and bone

marrow images. In this algorithm, we propose to model color

and shape characteristics of white blood cells through trans-

formations and use these transformations in a marker-

controlled watershed algorithm for segmentation. The main

contribution of this article is the definition of these transfor-

mations and their efficient use in a segmentation algorithm.

Particularly, we define a simple but an efficient color transfor-

mation to better reveal chromatic characteristics of white

blood cells. This transformation successfully suppresses back-

ground pixels while preserving cell pixel intensities. We then

define a two-stage procedure on this new color space for cal-

culating a distance transformation, which represents shape

characteristics of white blood cells. We finally use these two

transformations to define markers and a marking function of

the watershed algorithm. Working on images that contain

both isolated normal white blood cells and clustered leukemic

cells, our experiments reveal that the proposed transforma-

tions and their use in a watershed algorithm yield more pre-

cise segmentation results compared to previous algorithms.

The remainder of this article is organized as follows. In

Section “Methodology,” we explain our methodology giving

details of the segmentation stages. In Section “Experiments,”

we describe the experimental setup and evaluation algorithms

for performance assessments, and concisely explain the meth-

ods we use in our comparisons. In Section “Results,” we

Figure 1. Example peripheral blood and bone marrow images

containing (a) a normal white blood cell and (b) leukemic cells

(both are indicated with red). Red blood cells also exist in both (a)

and (b), some of which are indicated with green. These images

were taken using a 1003 objective lens and cropped from the

original images. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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present visual and quantitative results of our proposed algo-

rithm as well as those of the comparison methods. Finally, in

Section “Conclusions,” we conclude the article and discuss its

future work.

METHODOLOGY

Our algorithm relies on combining shape and color

information in a marker-controlled watershed algorithm for

segmenting white blood cells. To this end, it defines two trans-

formations based on the shape and color characteristics of the

white blood cells and uses these two transformations to define

markers and the marking function of the watershed algorithm.

The flowchart of our segmentation algorithm is given in

Figure 2; the details of its steps are explained in the following

subsections.

Transformations

Color transformation. Our observations on peripheral

blood and bone marrow images show that simply reducing an

RGB image into grayscale yields poor segmentation results

since the contrast between foreground and background pixels

in the grayscale is typically not sufficient to classify the pixels

precisely. However, each color band of an RGB image com-

prises great amount of information about their specific char-

acteristics. In a typical peripheral blood and bone marrow

image, there exists high amount of contrast between fore-

ground and background pixels of the blue band, which facili-

tates finding a good threshold level for separating these pixels.

More importantly, white blood cells in the green band have

darker intensities compared with the other cellular objects. To

incorporate these image characteristics into our segmentation

algorithm, we propose to transform an RGB image into a new

intensity map based on its green and blue bands.

Let IB and IG be the blue band and green band of the

RGB image, respectively, defined in the 2D domain X ! Z2,

where (x, y)� X represents the x and y coordinates of a pixel.

The intensity map IM is defined on X as follows:

gðx; yÞ5IBðx; yÞ2IGðx; yÞ

IM ðx; yÞ5
ngðx; yÞ; gðx; yÞ > 0

0; otherwise:

(1)

For an example subimage, Figure 3 demonstrates the

blue band IB, the green band IG, and the intensity map IM

obtained via the transformation. As shown in this figure, the

transformation in Eq. (1) makes the pixels of white blood cells

more distinguishable than those of the other objects and the

background. Note that this transformation also makes the

pixel values of the other objects and the background close to

each other, which facilitates to differentiate white blood cell

pixels. We will use the intensity map obtained by this

Figure 2. Flowchart of the proposed segmentation algorithm. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 3. For an example subimage, (a) the blue band IB, (b) the green band IG, and (c) the intensity map IM obtained via our color transfor-

mation.
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transformation to define the distance transformation as well

as the marking function of the watershed algorithm.

Distance transformation. We calculate the distance trans-

formation on a binary mask that is obtained processing the

intensity map IM. To obtain this binary mask, we implement a

two-stage segmentation algorithm. In the first stage, we

threshold the intensity map by the Otsu’s method (40). This

stage provides us with a coarse mask where cellular regions

and the background are clearly separated from each other.

Nevertheless, the cellular regions may contain both white

blood cells and other false positives. Therefore, we run a sec-

ond stage to refine the boundaries of the cellular regions. In

this second stage, we refine the boundaries by applying active

contours without edges (41), in which we evolve an active

contour by minimizing an energy function on the intensity

map IM. To find a threshold level for the initial spline of the

active contour, we make use of the coarse mask. Here we

obtain the initial spline by again applying the Otsu’s method

on the intensity map, but this time by considering only the

pixels delimited by the coarse mask. We also evolve the active

contour only within the boundaries of the coarse mask since

the previous stage successfully separates the pixels of cellular

regions and the background.

After obtaining the binary mask, we transform it into a

distance map by inner distance transformation, which com-

putes the minimum Euclidean distance from every foreground

(cellular region) pixel to a background pixel. Formally, let F

and B be two closed sets of foreground and background pixels

in the mask and p 5 (xp,yp) and q 5 (xq,yq) be arbitrary

points selected on F and B, respectively. The inner distance

transformation D(p,F) is defined as

Dðp;FÞ5 min
q2B
fdðp; qÞ; p 2 Fg (2)

where d(p,q) is the Euclidean distance between p and q. Note

that we will use the distance map in defining both markers

and the marking function of the watershed algorithm.

Cell Segmentation

The proposed cell segmentation method delineates

cell boundaries by using a priori color and shape infor-

mation obtained from the intensity and distance maps

and combining them in a marker-controlled watershed

algorithm. To this end, it first defines a set of markers on

the distance map, where each marker corresponds to an

estimated location of a single cell and then grows these

markers using the marking function, which is defined as a

combination of the intensity and distance maps, in the

flooding process of the watershed. At the end, it postpro-

cesses the grown markers to eliminate false positive cells

and smooth the segmented cell boundaries. The details

are explained in the following subsections.

Marker identification. Identifying markers constitutes the

core step in a marker-controlled watershed algorithm since

these markers correspond to cell locations, from which

flooding starts. Defining markers more than actual cells

Figure 4. Marker identification step: (a) original subimage, (b) intensity map after color transformation, (c) coarse mask obtained by

thresholding, (d) refined mask obtained after active contours, (e) inverse of the inner distance transform map after minima suppression,

and (f) identified markers, each of which represents a single cell’s location. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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leads to oversegmentation whereas defining a single marker

for a cell clump yields undersegmentation. In our algorithm,

we first apply h-minima transform on the inverse of the

inner distance map to suppress undesired minima and

reduce the likelihood of identifying false markers. The trans-

form eliminates all minima whose depth is smaller or equal

to the threshold h. Here, h is a model parameter and should

be selected based on the cell characteristics. After applying

h-minima transform, we identify the remaining regional

minima as the cell markers. It is worth to noting that in

our algorithm, we use h-minima transform beforehand

instead of directly finding the regional minima, since other-

wise would result in oversegmentation due to high amount

of spurious minima. For an example subimage, Figure 4

demonstrates marker identification. Note that this figure

shows only the markers defined for a single connected com-

ponent of the binary mask since the others are not seen in

their entirety in this cropped subimage.

Marking function. The marking function in a watershed

algorithm represents the topographic surface where the water

rises and determines the watershed lines at the locations where

two floods meet. These watershed lines will correspond to cell

boundaries; therefore, the marking function should reflect the

image characteristics for an accurate segmentation. With this

motivation, we define a new marking function that combines

the color and shape characteristics of white blood cells

through two transformations we defined. Let R be the regional

minima in the inverse of the distance map D and IM be the

intensity map, both defined in the 2D domain X! R2, where

(x,y)� X. First, for every pixel, we define our marking func-

tion U(x,y) by multiplying their values in R and IM, as also

given below.

Uðx; yÞ5 Rðx; yÞ � IM ðx; yÞ (3)

Then considering the markers as the starting points, we

use this marking function in the flooding process of the water-

shed and obtain the watershed lines. Finally, we obtain the

segmented cells by superimposing the binary mask onto these

watershed lines. This process is illustrated in Figure 5.

Note that it is common to define marking functions on

only the binary mask and its distance transform. In that case,

floods always meet at the equidistant points from the markers

due to the distance transform definition. This however might

lead to inaccurate (and typically jagged) boundaries between

two adjacent cells especially when their sizes and shapes are

different. Moreover, watershed lines (and thus cell bounda-

ries) are highly dependent on the positions and shapes of the

markers. This causes problems when the markers are not pre-

cisely located, which is indeed mostly the case. However, we

also incorporate the intensity map into our marking function

definition. This makes the marking function less dependent

on the markers’ shape and positions as well as the assumption

of having cells of the same size and shape. For an example

subimage, Figure 6 compares cell boundaries obtained when

only a distance map is used and when a combination of dis-

tance and intensity maps is used. This figure shows that com-

bining these two maps yield more natural boundaries. Here

note that this use improves segmentation for the boundary

pixels. Since the number of these pixels is much lower com-

pared to that of all cell pixels, it only slightly changes the

quantitative error rates that we use in our experiments.

However, finding more natural boundaries might be impor-

tant especially in some applications (e.g., when morphological

features are defined on the boundaries to quantify the seg-

mented cells).

Postprocessing. Peripheral blood and bone marrow images

do not only comprise white blood cells; they also contain red

blood cells, segmentation of which is beyond the scope of this

article. Since their outer regions show similar color character-

istics with white blood cells, the watershed segmentation may

partially find red blood cells (mostly the outer regions of these

cells). Thus, the shape characteristics of the segmented white

and red blood cells are different from each other. In our algo-

rithm, we make use of this difference to eliminate the falsely

segmented red blood cells. To this end, we identify narrow

components and eliminate them from the results. For

Figure 5. Marking function definition and watershed segmentation steps: (a) topographic surface used as the marking function, (b) water-

shed lines, (c) segmented cells after superimposing the binary mask on the watershed lines (cells found on other connected components

are not shown here as they are not seen in their entirety), and (d) segmented cell boundaries superimposed on the original subimage.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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identification, we employ the circle-fit algorithm (42), in

which circles are iteratively located provided that their radii

are greater than a circle threshold rthr. We then keep the seg-

mented cells on which the circle-fit algorithm can locate at

least one circle; we eliminate the rest from the results. After

this elimination, we apply majority filtering on the remaining

cells to smooth their boundaries. Here, we use a circle-shaped

kernel with a radius of W. For an example subimage, Figure 7

shows the results obtained by the steps of postprocessing.

EXPERIMENTS

Dataset

The samples were obtained from bone marrow and

peripheral blood smears of four children. Two of them were

diagnosed as acute lymphoblastic leukemia and the other two

had iron deficiency anemia. After smearing peripheral blood

and bone marrows on lamella, the slides were dyed by

Wright’s stain with standard methods. The data were collected

under the full consent of the patients’ legal guardians. This

consent explicitly includes the use of the samples for scientific

study. To properly handle the data, the identifiers of the

patients were completely removed and slides were numerically

recoded corresponding to their diagnoses by the hematologist,

prior to obtaining their digital images. Thus, two nonmedical

investigators in this work had access to images, without

retraceable personal identifiers. The images of these slides

were taken under a Nikon 50i microscope with a digital cam-

era using a 1003 objective lens.

We conduct our experiments on a total of 650 cells in 31

peripheral and bone marrow images. The first set comprises

15 peripheral normal blood images containing 26 normal

white blood cells. The second set comprises the remaining 16

images containing 624 leukemic cells. Images in the first set

contain only a few white blood cells since normal ones are

very sparsely distributed. However, images in the second set

contain dense leukemic cell clusters due to the fact that leuke-

mic cells tend to reproduce rapidly growing over each other.

This dense and confluent structure of leukemic cells increases

the difficulty of segmentation in the second set. Moreover,

both sets also include red blood cells surrounding the white

ones. This adjacency between red and white blood cells is

another factor that increases the segmentation difficulty. Note

that to evaluate the robustness of our proposed algorithm, we

test it on the images containing both normal and leukemic

cells with the same parameter configuration and observe the

segmentation performance.

Evaluation

We evaluate the performance of our proposed algorithm

both visually and quantitatively. For quantitative evaluation,

we use two assessments: cell-based and boundary-based. The

cell-based assessment evaluates the performance in terms of

the number of correctly identified cells. To this end, we first

find the correct segmentations, which correspond to one-to-

one matches between segmented and annotated cells. For that,

we first match a segmented cell with an annotated one if at

least half of its pixels overlap with those of the annotated cell,

and vice versa. Then, we consider an annotated cell A being

correctly identified, if there is exactly one segmented cell C

matching with A and if A also matches with this cell C. Using

the number of one-to-one matches, we compute cell-based

precision, recall, and F-score measures. To analyze the results

better, we also calculate and report the number of overseg-

mentations, undersegmentations, false positives, and false

negatives. An annotated cell is considered as oversegmented if

it matches with more than one segmented cell. On the

contrary, a segmented cell is considered as undersegmented if

it matches with more than one annotated cell. A segmented

cell is considered as a false positive if it does not match with

any annotated cells and an annotated cell is considered as a

false negative if it does not match with any segmented cells.

The boundary-based assessment evaluates the perform-

ance in terms of the precision of delineating the cell bounda-

ries. It is important to note that it only evaluates this for the

correctly identified cells, which correspond to one-to-one

matches between annotated and segmented cells. For that, we

compute the number of overlapping pixels of these

annotated-segmented pairs, which correspond to true posi-

tives, and then calculate the boundary-based precision, recall,

and F-score measures.

Parameter Selection

The proposed algorithm has three external model param-

eters: (1) the depth threshold h, which is used in h-minima

transform to suppress spurious minima in marker identifica-

tion step of the cell segmentation, (2) the circle radius thresh-

old rthr, which determines the radius of the smallest circle

located on the segmented components in the postprocessing

step, and (3) the radius W, which is the kernel size used by

majority filtering in the postprocessing step. In our experi-

ments, we selected them as h 5 2, rthr 5 20, and W 5 4. Note

that we discuss the effects of the selection of these parameters

to the segmentation performance in the following section.

Additionally, we have an internal parameter a to deter-

mine the smoothness of the active contour for obtaining a

binary mask. Within a range of 0 to 1, its higher values yield

Figure 6. Cell boundaries obtained (a) when only a distance map

is used and (b) when a combination of distance and intensity

maps is used. Here, white lines correspond to the watershed

ridge and colored lines indicate the segmented cells’ boundaries.

Note that the maps shown in these images are negated for better

visualization. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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smoother boundaries, causing some cellular regions to be

excluded from the binary mask. However, its smaller values

lead to more precise boundaries, resulting in a more accurate

binary mask. In our experiments, we internally set the value

of this parameter to 0.1; its smaller values do not improve the

boundary quality further, but elevate the running time of the

algorithm.

Comparisons

We compare our algorithm with two methods: color-based

clustering [28] and conditional erosion [33]. Color-based clus-

tering [28] is specifically implemented for cell segmentation in

microscopic blood images. This method first enhances an RGB

image with median filtering and unsharp masking, for remov-

ing noise and sharpening image details, respectively. Transform-

ing the image into La*b* color space, it then clusters image

pixels by running k-means on their a* and b* channels and

identify those belonging to the clustering vector with the mini-

mum b* value as white blood cell pixels. At the end, it fills the

holes in the identified pixels and considers each connected

component on these pixels as a white blood cell.

The conditional erosion method [33] is originally pre-

sented as a shape-based marker-controlled watershed algorithm

for cell nucleus segmentation in fluorescence microscopy

images. We adapt this method to our domain by providing it

with the binary mask produced by our algorithm so that it is

not negatively biased with the differences of fluorescence and

peripheral blood images with respect to color and texture. This

is a two-stage method to extract the markers of a watershed

algorithm. In its first stage, it iteratively erodes each connected

component of the mask with two coarse structuring elements

until the size of each component drops under a predefined

threshold. In its second stage, it repeats the same process but

this time uses two finer structuring elements and a second

threshold. Taking the eroded components obtained at the end

of this second stage as the markers and using the distance trans-

form of the binary mask as the marking function, it delineates

cell boundaries by a marker-controlled watershed algorithm.

In our experiments, we use these two comparison meth-

ods to understand the importance of combining the color and

shape information instead of using them alone. Note that the

first comparison method makes use of only the color informa-

tion without considering the shape information. The second

one employs only the shape information without combining

this information with color values. However, our proposed

method combines the color and shape information for white

blood cell segmentation.

RESULTS

We present visual results obtained by our proposed algo-

rithm as well as the comparison methods in Figure 8. Note

that although the results are obtained on the original images,

this figure shows the results on subimages cropped from some

of these original images and rescaled for better visualization.

This figure shows that our proposed algorithm identifies both

normal and leukemic cells more accurately compared to the

other methods.

These visual results are also consistent with the quanti-

tative ones that we report in Tables 1 and 2. These tables

Figure 7. Postprocessing step: (a) original subimage, (b) binary mask, (c) result of the watershed algorithm (each component correspond-

ing to a single segmented cell is shown with a different color), (d) circles located on the segmented components (indicated by red), (e)

remaining cell after eliminating components on which no circles are located, and (f) smoothed cell boundary after majority filtering. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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reveal that the proposed algorithm identifies cells more cor-

rectly, producing more one-to-one matches and less overseg-

mentations, undersegmentations, false positives, and false

negatives. As a result, it yields relatively high cell-based preci-

sion, recall, and F-score measures. This indicates the effec-

tiveness of using color and shape characteristics in the

Figure 8. For example subimages, gold standards (first column) as well as the visual results obtained by our proposed algorithm (second col-

umn), the color clustering method (third column), and the conditional erosion method (fourth column). These images were taken using a 1003

objective lens and cropped from the original images. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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marker identification and postprocessing steps. Besides, the

boundary-based assessment results given in Table 2 shows

that the proposed algorithm locates boundaries better for the

correctly identified cells. This, however, shows the benefit of

combining color and shape characteristics in defining the

marking function.

Both the visual and quantitative comparisons indicate

the usefulness of employing both color and shape characteris-

tics of the cells in a segmentation algorithm. First, peripheral

blood and bone marrow images contain both white and red

blood cells and it is of great importance to differentiate these

two types of cells for accurate segmentation. However, the use

of only the color information for this differentiation usually

leads to incorrect segmentations. For example, in the first two

rows of Figure 8, the conditional erosion method falsely iden-

tifies lots of red blood cell pixels as belonging to white blood

cells because it uses a binary mask obtained using only the

color information. (Here it is worth to noting that this is the

binary mask that is produced by our algorithm. However, the

use of this binary mask yields much more accurate results

compared to using the mask produced by the original condi-

tional erosion method. When its original mask is used, false

detections double its current value in the quantitative results.)

On the contrary, when the algorithm is designed to eliminate

such false positives using only the color information, this may

also eliminate some true positives, as shown in the results of

the color clustering method. As opposed to these methods,

our proposed algorithm makes use of the color information in

defining its binary mask and the shape information in post-

processing to eliminate the false positives. This leads to more

accurate results.

Second, especially leukemic cell images contain touching

and confluent cells (last four rows of Fig. 8) and they should

be decomposed into individual cells. When we compare the

results of our proposed algorithm and the conditional erosion

method with those of the color clustering method, we observe

that the use of shape information is very effective in this

decomposition. However, when only the shape information is

used, the boundaries between adjacent cells could be incor-

rectly located. This can be observed in the comparison of the

results of our algorithm, which uses both the color and shape

information in defining its marking function, and the condi-

tional erosion method, which uses just the shape information

in the form of a distance transform for the same purpose. As

results indicate, our algorithm gives more natural boundaries

between the adjacent cells.

In our method, we use a simple color transformation

g(x,y), in which we subtract the green channel of a pixel from

its blue channel. This color transformation indeed corre-

sponds to defining a linear combination of the pixel’s red,

blue, and green channels, where the coefficient vector in this

linear combination is V 5 [0 21 1]t. In our experiments, we

also investigate the consistency of this use with the image

data. For that, we use manual segmentations to select white

blood cell and background pixels in the images and apply the

Fisher’s discriminant analysis on the RGB values of these pix-

els. This analysis gives a vector W 5 [0.1 21 0.6]t, which best

separates the white blood cell and background pixels (note

that we normalize the magnitudes of this vector such that its

second entry becomes 21). Although the vectors W and V are

not exactly equal to each other, they are still consistent in

terms of their magnitudes. The further investigation of this

analysis can be considered as a future work.

One limitation of our algorithm is its limited capability

to eliminate some false positives. Although it gives promising

results to eliminate most of the red blood cells or dead cell

fragments in segmentation, it may fail for eliminating frag-

ments that show similar coloration and shape with leukemic

cells. In the third row of Figure 8, one example of such frag-

ments is shown with a red cross on the gold standard image.

As shown in the results, all of the algorithms incorrectly locate

this fragment as a white blood cell. Such fragments might be

eliminated by analyzing their textures; this could be consid-

ered as another future work of the proposed algorithm.

Parameter Analysis

We analyze the effects of the model parameters on the

segmentation performance. For this purpose, for each param-

eter, we run our algorithm with its different values while fix-

ing the values of the remaining ones and observe the changes

Table 1. Quantitative comparison of the algorithms in terms of the types of the annotated and segmented cells.

ONE-TO-ONE OVERSEGM. UNDERSEGM. FALSE POS. FALSE NEG.

Proposed algorithm 637 6 3 31 3

Color clustering 352 6 58 231 147

Conditional erosion 610 32 9 2,638 6

Table 2. Quantitative comparison of the algorithms in terms of the cell-based and boundary-based precision, recall, and F-score

measures.

CELL-BASED BOUNDARY-BASED

PRECISION RECALL F-SCORE PRECISION RECALL F-SCORE

Proposed algorithm 94.09 98.00 96.01 88.76 95.78 92.14

Color clustering 54.40 54.15 54.27 55.82 40.26 46.78

Conditional erosion 18.54 93.84 30.97 59.54 90.02 71.67
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in cell-based and boundary-based F-score measures. We pres-

ent the results obtained for each parameter in Figure 9.

The first parameter is the depth threshold h, which is

used by h-minima transform for suppressing undesired spuri-

ous minima in the marker identification step. Increasing the

value of this parameter eliminates more minima than desired.

This typically leads to undersegmentation, which decreases

the F-score measures (Fig. 9a). On the other hand, using too

small values may cause oversegmentations, which slightly

decreases the F-scores in our experiments.

The second parameter is the circle radius threshold rthr,

which determines the size of the smallest circle located on the

segmented components in the postprocessing step. This is the

most important parameter that dramatically changes the seg-

mentation performance. Since this parameter is directly

related with white blood cells’ size, it should be set according

to the average size of these cells. Selecting too small values

cannot successfully eliminate noisy components such as red

blood cell fragments and thrombocytes (platelets), whose seg-

mentation is out of the scope of this work. This increases the

number of false positives and oversegmentations. However,

selecting values larger than the size of a typical white blood

cell results in also eliminating most of the white blood cells;

this increases the number of false negatives. Both of these

cases decrease the number of one-to-one matches, leading

lower F-score measures as observed in Figure 9b.

The last parameter is the radius W, which determines the

size of the kernel used by majority filtering to smooth the

boundaries in the postprocessing step. As observed in Figure

9c, this parameter only slightly affects the segmentation

performance.

CONCLUSIONS

In this article, we present a new algorithm for segmenting

white blood cells in peripheral blood and bone marrow images.

In our algorithm, we model color and shape characteristics of

these cells by defining two transformations and efficiently

employ these transformations in a marker-controlled watershed.

The experiments show that this algorithm more accurately

locates white blood cells and better delineates their boundaries

compared to its counterparts. This improvement is attributed

to the fact that the proposed algorithm makes use of the

domain specific color and shape information in its four core

steps: First, it identifies white blood cell regions using an inten-

sity map obtained by color transformation defined on the two

bands of an image. Second, it locates initial cell locations using

the shape information quantified in the form of distance trans-

formation. Third, it delineates the cell boundaries combining

the color and shape information in a marking function. Last, it

uses the shape information imposed by the circle-fit algorithm

in its postprocessing mechanism. The experiments show that

these uses of color and shape information in its different steps

make the algorithm more robust to segmenting both isolated

normal white blood cells and confluent leukemic cell clusters.

As previously mentioned, one future work is to enhance

the postprocessing step by also using texture information to

eliminate false positive cells. For that, one could consider

extracting texture features from the segmented cells and carry-

ing out elimination based on these texture features. As

another future work, one might consider classifying white

blood cells into further subgroups based on the features

extracted from the segmented cells.
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