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NONCOMPLEX SMOOTH 4-MANIFOLDS WITH GENUS-2 LEFSCHETZ

FIBRATIONS

BURAK OZBAGCI AND ANDRÁS I. STIPSICZ

Abstract. We construct noncomplex smooth 4-manifolds which admit genus-2 Lefschetz fibra-

tions over S2. The fibrations are necessarily hyperelliptic, and the resulting 4-manifolds are not

even homotopy equivalent to complex surfaces. Furthermore, these examples show that fiber sums

of holomorphic Lefschetz fibrations do not necessarily admit complex structures.

In the following we will prove the following theorem.

Theorem 1. There are infinitely many (pairwise nonhomeomorphic) 4-manifolds which admit genus-

2 Lefschetz fibrations but do not carry complex structure with either orientation.

Matsumoto [M] showed that S2 × T 2#4CP 2 admits a genus-2 Lefschetz fibration over S2 with

global monodromy (β1, ..., β4)
2, where β1, ..., β4 are the curves indicated by Figure 1. (For definitions

and details regarding Lefschetz fibrations see [M], [GS].)
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Figure 1.

Let Bn denote the smooth 4-manifold which admits a genus-2 Lefschetz fibration over S2 with

global monodromy

((β1, ..., β4)
2, (hn(β1), ..., h

n(β4))
2)

where h = D(a2) is a positive Dehn twist about the curve a2 indicated in Figure 2.
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Theorem 2. For the 4-manifold Bn given above we have π1(Bn) = Z⊕ Zn.

Proof. Standard theory of Lefschetz fibrations gives that

π1(Bn) = π1(Σ2)/ < β1, ..., β4, h
n(β1), ..., h

n(β4) > .

Let {a1, b1, a2, b2} be the standard generators for π1(Σ2) (Figure 2).

b1b 2

2a1a

Figure 2.

Then we observe that

β1 = b1b2,

β2 = a1b1a
−1
1 b−1

1 = a2b2a
−1
2 b−1

2 ,

β3 = b2a2b
−1
2 a1,

β4 = b2a2a1b1,

hn(β1) = b1b2a
n
2 ,

hn(β2) = β2,

hn(β3) = β3,

hn(β4) = b2a
n+1
2 a1b1.

Hence

π1(Bn) =< a1, b1, a2, b2 | b1b2, [a1, b1], [a2, b2], b2a2b
−1
2 a1, b2a2a1b1, b1b2a

n
2 , b2a

n+1
2 a1b1 >

=< a2, b2 | [a2, b2], an2 >= Z⊕ Zn, and this concludes the proof.

Theorem 3. Bn does not admit a complex structure.

Proof. Assume that Bn admits a complex structure. Let Mn denote its n-fold cover for which

π1(Mn) ∼= Z and M ′

n the minimal model of Mn. By the theorem of Gompf [GS] Bn admits a

symplectic structure, hence so does Mn and (by combining results of Taubes and Gompf [T], [G2])

M ′

n. Consequently, if Bn is a complex surface, then we have a symplectic, minimal complex surface

M ′

n with π1(M
′

n)
∼= Z. In the following we will show that this leads to a contradiction.
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By the Enriques-Kodaira classification of complex surfaces [BPV], (since b1(M
′

n) = 1) M ′

n is

either a surface of class V II (in which case b+2 (M
′

n) = 0), a secondary Kodaira surface (in which

case b2(M
′

n) = 0) or a (minimal) properly elliptic surface.

SinceM ′

n is a symplectic 4-manifold, b+2 (M
′

n) (and so b2(M
′

n)) is positive; this observation excludes

the first two possibilities.

Suppose now that M ′

n admits an elliptic fibration over a Riemann surface. If the Euler character-

istic of M ′

n is 0, then (following form the fact that b1(M
′

n) = b3(M
′

n) = 1) we get that b2(M
′

n) = 0,

which leads to the above contradiction. Suppose finally that M ′

n is a minimal elliptic surface with

positive Euler characteristic. Since b1(M
′

n) = 1, it can only be fibered over S2 (see for example

[FM]). In that case (according to [G1], for example) its fundamental group is

π1(M
′

n) =< x1, . . . xk | xpi

i = 1, i = 1, . . . , k; x1 · · · xk = 1 > .

This cannot be isomorphic to Z, since if π1(Mn) ∼= Z =< a >, then x1 = am1 for some m1 ∈ Z, so

a has finite order, which is a contradiction. Consequently the assumption that Bn is complex leads

us to a contradiction, hence the theorem is proved.

Remark . The above proof, in fact, shows that Bn is not even homotopy equivalent to a complex

surface — our arguments used only homotopic invariants (the fundamental group, b2 and b+2 ) of the

4-manifold Bn. Note that basically the same idea shows that Bn (the manifold Bn with the opposite

oreintation) carries no complex structure: The arguments involving the fundamental group, b2 and

the Euler characteristic only, apply without change. Since the fiber of the Lefschetz fibration on Bn

is homotopically essential and provides a class with square 0, the intersection form of Bn and so of

Mn are not definite — consequently these manifolds cannot be homotopy equivalent (with either

orientation) to the blow-up of a surface of Class V II.

Proof of Theorem 1. By the definition of the 4-manifolds Bn we get infinitely many manifolds

admitting genus-2 (consequenlty hyperelliptic) Lefschetz fibrations which are (by Theorem 2.) non-

homeomorphic. As Theorem 3. and the above remark show, the manifolds Bn do not carry complex

structures with either orientation, hence the proof of the Theorem 1. is complete.

Remark . We would like to point out that similar examples have been found by Fintushel and Stern

[FS] — they used Seiberg-Witten theory to prove that their (simply connected) genus-2 Lefschetz

fibrations are noncomplex.



4 BURAK OZBAGCI AND ANDRÁS I. STIPSICZ

Note that Bn is given as the fiber sum of two copies of S2×T 2#4CP 2, hence provides an example

of the phenomenon that the fiber sum of holomorphic Lefschetz fibrations is not necessarily complex.

Acknowledgement. Examples of genus-2 Lefschetz fibrations with π1 = Z ⊕ Zn were also con-

structed (as fiber sums) independently by Ivan Smith [S].
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