ON SECTIONS OF ELLIPTIC FIBRATIONS
MUSTAFA KORKMAZ AND BURAK OZBAGCI

ABSTRACT. We find a new relation among right-handed Dehn twists in thpping class
group of ak-holed torus fork < k < 9. This relation induces an elliptic Lefschetz fibration
on the complex elliptic surfac&(1) — S? with twelve singular fibers ané disjoint
sections. More importantly we can locate thesections in a Kirby diagram of the induced
elliptic Lefschetz fibration. The-th power of our relation gives an explicit description for
k disjoint sections of the induced elliptic Lefschetz fiboaton the complex elliptic surface
E(n) — S?forn > 2.

1. INTRODUCTION

It is well-known that two generic cubicB and( in CP? intersect each other in nine
pointszy, ..., zg. By constructing the correspondipgncil of curves

(sP+1Q|[s: 1] € CPY}

one can define amap : CP?—{z,...,z} — CP'. Blowing upCP? at{z,...,z}
one can extend to a Lefschetz fibrationr : E(1) = CP>#9CP?2 — CP' with
nine distinguished sections, whose generic fiber is antiellqurve. Our aim in this paper
is to describe an analogous construction in the smooth egtegdthough unfortunately
we do not know whether our construction arises fromasgebraic pencil of curves or
not. Nevertheless, many 4-manifold topologists were agriabout such a differential
topological construction. (For instance this was posedi@ty as a question in[4]).

Let T} , denote the mapping class group of a compact connected abiengenusy
surface WI'[hk‘ boundary components andmarked points, so that diffeomorphisms and
isotopies of the surface are assumed to fix the marked paidtdhe points on the boundary.
(We will drop & if the surface is closed and drapf there are no fixed points.) A product

I17, ¢; of right-handed Dehn twists ifi, provides a genug-Lefschetz fibration — D?
over the disk with closed fibers. f;”,t; = 1in Iy then the fibration closes up to a
fibration over the spherg?. A lift of the relation H;f; = 1to I} shows the existence
of k disjoint sections of the induced Lefschetz fibration. Thiéiseersection of thej-th
section is—n; if II72,¢; = t3' - -t3* in T, , for some positive integers;, . . ., n;, where
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2 MUSTAFA KORKMAZ AND BURAK OZBAGCI

ts,’s are right-handed Dehn twists along circles parallel solibundary components of the
surface at hand (cf._[3]).

On the other hand, an expressidft ;¢; = t5, - - - t5, in I'y; naturally describes a Lef-
schetz pencil: The relation determines a Lefschetz filbmatiioh £ disjoint sections, where
each section has self-intersectieft, and after blowing these sections down we get a Lef-
schetz pencil (cf.[[4]). Conversely, by blowing up the bas®uk of a Lefschetz pencil we
arrive to a Lefschetz fibration which can be captured (tograthth the exceptional divisors
of the blow-ups, which are all sections now) by a relationhef &above type.

In this paper we find relations of the forf2,¢;, = ts5, ---ts5, in Ty for 4 < k <9,
generalizing the well-known casés= 1,2, 3. A relation of this type naturally induces a
Lefschetz pencil and by blowing up we get an elliptic LefgeHération with £ disjoint
sections. Moreover by taking theth power of our relation (fon > 2) we get

(L2, 6)" = t5, - -ty €Tl

for 4 < k < 9. Once again this relation induces an elliptic Lefschetafibn £(n) — S?
with 12n singular fibers and disjoint sections, where the self-intersection of eachicec
is equal to—n.

The reader is advised to turn 1o [2],) [6] and [8] for backgrdumaterial on Lefschetz
fibrations and pencils. To simplify the notation in the rekth® paper we will denote a
right-handed Dehn twist along a curve alan@lso bya. A left-handed Dehn twist along
a will be denoted byv. We will multiply the Dehn twists from right to left, i.eGa means
that we first applyx theng.

Acknowledgement: The authors would like to thank John Etnyre, David Gay andrAs
Stipsicz for their interest in this work. This research wasried out while the second
author was visiting the School of Mathematics at the Gedrggaitute of Technology.

2. LANTERN RELATION FOR THE FOURHOLED SPHERE

FIGURE 1. Four-holed sphere with boundaf¥, 2, 93, 94 }.



Consider the four-holed sphere depicted in Figure 1. Theretts the relation
(5152(53(54 =Yoo«

in I'g 4 which was discovered by Dehni [1]. It was rediscovered by dohri7] and named
as the lantern relation. We will freely use this relation my aubsurface (of another sur-
face) which is homeomorphic to a sphere with four holes. Taréiqular depiction of the
lantern relation on the four-holed sphere in Figure 1 willdo@venient in the subsequent
discussions. The lantern relation is classically proverc@yparing the actions of both
sides on a suitable system of curves whose complement is.a dis

3. RELATIONS ON TORUS WITH HOLES

In this section we will generalize the well known one-holedus relation to a relation
on thek-holed torus for2 < £ < 9. We will give all the details in each case since the
relation for(k + 1)-holes is derived by using the relation fetholes forl < & < 8. The
relations in the casés = 2, 3 are also known, but we compute them anyway for the sake
of completeness and to show our method.

We note that if two circles are disjoint, then the correspegdehn twists commute.
Also, if two circlesa and § intersect transversely at one point, then the correspgndin
Dehn twists satisfy the braid relationpa = Gag.

3.1. One-holed torus. If o and are two circles on a torus with one boundarywhich
intersect each other transversely at one point, then teeheirelation

(a5)6 = 01.

We call it the one-holed torus relation. It turns out thas tt@lation was known to Dehnl[1]
in a slightly different form. The one-holed torus relatigust like the lantern relation,
is proven by comparing the actions of both sides on a suitsygéem of curves whose
complement is a disc.

3.2. Two-holed torus. Consider the two-holed torus depicted in Figure 2. By théeian
relation, we have

0[3(51(52 = 710107
One-holed torus relation is
"= (0425)6-
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Note thatUl = Bazazalﬁalazazﬁ. Then we have

010 = QMoo
= @ 0B fasfasfasfasf)(Bastacn fa o) ay
= Qp MapapfazagBagfasfasa fayazazfay
= PasazfazazfarBaiasasfay
= Bagazfazasa Basasfay
Bagfasfasay BasasBay
= afagayfasa; fazasfay
= mayfasa fazasB(arasf)
= fasfBaiBazasf(arasf3)
= 0425042041ﬁ0410420425(0410425)
= mBarayfBas(aasf)(aiasf)
= 0425&15@25(0410425)2
= 012041ﬁ(041a2ﬁ)(0410425)2
= (uaaf)h.

FIGURE 2. Two-holed torus with boundary;, d- }.

3.3. Three-holed torus. Consider the three-holed torus depicted in Figure 3. By the
lantern relation,

30010203 = V202062

and by the two-holed torus relation,

6172 = (qazB)*.



Note thatO'Q = Balagazﬁagagalﬁ. Then
010203 = Q3 0301720209
= a; az(agogfarasfarasforasf)(Boantsasfasasas B)os
= Poiazfaiasfasfasagar Boy
= fajazfaiagasfasa;Pas.

Using the appropriate braid and commutation relations @sla in the derivation of the
two-holed torus relation) it follows that

(51(5253 = (OélCKQCtgﬁ)g.

This relation was called the star relationlin [5].

FIGURE 3. Three-holed torus with boundafy;, d-, d5}.

3.4. Four-holed torus. The lantern relation for the sphere with boundény, s, d3, 64}
in Figurel4 is
Q420304 = V303013

The relation on the three-holed torus with boundgry, 0, v3} given in Section 313 is

810273 = (ara0uf3)°.
Here we identify the curve@y;, as, az) in Figurel3 with the curvegyy, as, ay) in Figure 4.
Combining we get
01020304 = 0109 0lp Oly7y3030r3
= T 040102730303
= yay(aionasf)’osay
= a1ﬁ(0410420é45)203043

(CY1€%20445)203@30415~
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Remark. Although we will not need it in the rest of the paper, by pluggin

03 = fayanasBazasays,

it is easy to see that this relation may also be written in aasgmmetric form as
01020304 = (04104350420645)2-

FIGURE 4. Four-holed torus with boundafy, ds, d3, 44}

3.5. Five-holed torus. The lantern relation for the sphere with boundéy, s, d4, 65 }
in FigureB is

Q5030405 = Y404004.

FIGURE 5. Five-holed torus with bounda#y, ds, d3, d4, d5 } .

The relation on the four-holed torus with boundddy, ds, 3, 74} given in Sectiofn 314 is

51525374 = (0[30450425)20'30410[35.

Here we identify the curve8y, as, as, ay) in Figurel4 with the curveéas, as, aq, as) in
Figure®. Combining we get



0102030405 = Q3 Q5010203740400
— 2
= 03 045(0430450425) o3a1033040
= agfazasafosaasfosoy

= aoasfosagasBosacsf.

3.6. Six-holed torus. The lantern relation for the sphere with boundény, oy, 5, d6 } In
Figurel6 is

Q040506 = V50505.

The relation for the five-holed torus with bounddwy, d, 3, 44, 75} given in Section 315
is

51525354’75 = a0 BosasogBoson oy f.

We identify the curvesay, as, as, ay, as) in Figure[B with the curvesas, ay, ag, ag, as)
in Figure[6. Combining we get

010203040506 = 0y 001020304750505

0y Olgg 00 B0 30300 304001 a BOs 05
o fosazog ooy Bosas
BacvaozasagBosoasBosos

= apa306040004305053203,

Wheregg = Oézﬁag.

FIGURE 6. Six-holed torus with bounda#fy,, d, . .., d¢}-
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3.7. Seven-holed torus. The lantern relation for the sphere with boundéay, o, dg, 67}
in FigurelT is
Q750607 = Y60606-

The relation on the six-holed torus with bounddéy, 4., d3, d4, 05, 76} givenin Section 316
IS

5152535455’76 = asoras oo Bosas B350,

where we use the identificatiofav,, aw, o, g, as, ag) — (g, as, a7, a, s, az) 10 go
from Figure[6 to Figur€]l7. Combining we get

01020304050607 = 5 Q7010203040560 60k6
= Q5 Qra50070330 4004001 30502 350306 0t
= afosas01B0502085030606
= [zazo40401 3050285030606
= (304030401 3050235030606
= a3 fos500B5030606(3304,

Whereﬁg = 0[3553 andﬁ5 = O[5ﬁa5.

FIGURE 7. Seven-holed torus with boundafyi, o, . . ., 7 }.

3.8. Eight-holed torus. The lantern relation for the sphere with boundéany, ag, d7, s}
in Figure[8 is

ag0s070g = V70707,
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The relation on the seven-holed torus with bound@aky -, ds, d4, d5, 96, 77} given in Sec-
tion[3.7 is

01020304050677 = Qg4 S050053103060:2 3604,
where we use the identificatidn, as, as, oy, as, ag, ar) — (au, as, ag, as, ag, ag, ag) tO
go from Figuré¥ to Figurel8. Combining we get

0102030405060708 = Qg (0102030405067 Y707007
= Qg g0y 3050531030600 360407007
= ufosas 31030602 06040707
= [40405051030602 06040707
= Buosauas 1030600 35040707
= uas1030600 3504070073403,

wheres; = oy fan, Bi = aufay andfs = agSas.

FIGURE 8. Eight-holed torus with boundafy, ds, ..., ds}.

3.9. Nine-holed torus. The lantern relation for the sphere with boundény, a7, ds, do }
in Figure[9 is

Qgr70809 = Yg08Ag.
The relation on the eight-holed torus with bounddty, d, d3, 44, J5, Jg, 0778} given in
Sectiorf3.B is

51625364555657'78 = Q709 4030605310407002 370,
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where we identify(ay, ag, as, ay, as, ag, ar, ag) With (ay, as, ag, a7, ag, aq, s, as) 10 go
from Figure[8 to Figurel9. Combining we get

010203040506070809 = Q7 0gd1020304050607Y080ts
= Q7 Qg0 (g B40306005 310407002 370508008
= [40306053104070003705050s,

wheres, = o, fay, B = auffay and B, = azBay.

FIGURE 9. Nine-holed torus with bounda#y, ds, . . ., do }.

Remark. The curious reader might wonder why we stopped at 9. First of all our
process will not allow us to go any further because we will mte the cancelling right-
handed Dehn twists to kill off the left-handed Dehn twistdakhappear in the appropriate
lantern relations. In fact, there is a good reason for that:efiptic fibration £(1) — 52
admits at most nine disjoint sections (all with negativé-sgkrsections). So we conclude
that there is no such relation férholed torus witht > 10.

4., SECTIONS OF THE ELLIPTIC FIBRATIONS

First we consider the cage= 4. The relation
01020304 = (a1a2a45)203a3a15

in T'; 4 we derived in Section 3.4 induces the wdref3)® = 1 in T'; which gives us an
elliptic Lefschetz fibration on the elliptic surfade(1) = CP?#9 CP2. To draw a Kirby
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diagram (cf. [6]) of this elliptic fibration we start with alfandle, attach two 1-handles (see
Figure[10) and attach a 2-handle which yielofsx 7. A torus fiber of the trivial fibration
D? x T? — D? can be viewed in Figurfle 10 as follows: Take the obvious distherpage,
attach two 2-dimensional 1-handles (going through tworeatisional 1-handles) and cap
off by a 2-dimensional disk. Then we draw the curves whicheappn the monodromy
of the elliptic fibration on parallel copies of this fiber. N that these curves are the
attaching curves of some 2-handles. Once we attach all éaafithese 2-handles with
framing one less than the page framing we get an ellipticdtedtz fibration oveD? with
twelve singular fibers, which then can be closed off to ap#tliLefschetz fibration over
S2. We depicted the four disjoint sections s,, s3, s, of the induced fibration in FiguteL0.
(Imagine replacing;’s in Figure[10 by holes where they intersect the page and étttize
curves in Figuré 4 into distinct fibers.) For each= 1,2, 3,4, the curves; bounds two
disks—one in the neighborhood of a regular fiber, one outsidinat neighborhood—
which in turn gives a section of the elliptic Lefschetz filbmatwhen we glue these two
disks along their common boundaty

FIGURE 10. An elliptic Lefschetz fibratiodz(1) — S? with four disjoint sections.

Similarly we can draw the Kirby diagrams corresponding ®rilations we derived for
k=5,6,...,9,and explicitly indicate the locations of thedisjoint sections of? (1) — 52
in these diagrams. We skip the cages 5, ..., 8 and jump to the case= 9. The relation

010203040506070809 = 04070337050308 3403060531

on the nine-holed torus induces the wéed 3, ) = 1 in the mapping class group which
gives us an elliptic Lefschetz fibration on the elliptic swd £(1) = CP?#9 CP?, where
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ba = afa (which is indeed a right-handed Dehn twist). Note that wdickcpermuted
the curves in the equation we derived in Secfion 3.9 to obkemelation above.

FIGURE 11. An elliptic Lefschetz fibratio?(1) — S? with nine disjoint
sections. Note that we just indicated the intersectiongsahsections with
the regular fiber by the encircled numbers correspondingpeécobundary
componentss, .. ., dy of the nine-holed torus.

Finally, for4 < k£ < 9, by taking then-th power of our relation for thé-holed torus
we can findk disjoint sections of the corresponding elliptic fibratiantbe elliptic surface
E(n) foranyn > 1.

5. HNAL COMMENTS

Suppose that the produtt), . . . d,, where); denotes a right-handed Dehn twist along a
curve parallel to theth boundary component of a surface witboundary components, can
be expressed as a product of right-handed Dehn twists afdgagar (i.e., non-boundary
parallel) curves on the surface. We will call such a relatiothe corresponding mapping
class group aslaoundary-interior relation The technique we applied to derive a boundary-
interior relation inI'y 5, (for 2 < k£ < 9) can be easily generalized to derive a boundary-
interior relation inl'y , for g > 2: As we elaborated in this paper, one can start with a
certain boundary-interior relation ifi,; and derive a boundary-interior relation if -
and then a boundary-interior relationliij ; and so on and so forth. In fact, applying our
trick, it might be possible to derive a boundary-interidat®n inT', ;. if we are given
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a boundary-interior relation ifi, ,. Consequently our method can be applied to construct
additional sections of a given Lefschetz fibration in certatuations.

It is intriguing to note that once we fix a boundary-interietation inI', ; for some
g > 2 then there is a maximum “k” (for simple homological reasdias)which we get a
boundary-interior relation ifv, ;, applying our method. It appears that this number depends
not only ong but also on the initial boundary-interior relationliy ; .
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