Milnor fillable contact structures are universally tight
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We show that the canonical contact structure on the link obanal complex

singularity is universally tight. As a corollary we show theistence of closed,
oriented, atoroidal 3-manifolds with infinite fundamergedups which carry uni-
versally tight contact structures that are not deformatiohtaut (or Reebless)
foliations. This answers two questions of Etnyre1g]

1 Introduction

Let (X,x) be a normal complex surface singularity. Fix a local embegldf (X, X)

in (CN,0). Then a small spher&N-1 ¢ CN centered at the origin interseck
transversely, and the complex hyperplane distribugign on M = X N SN~! induced
by the complex structure oX is called thecanonicalcontact structure. For sufficiently
small radiuse, the contact manifold is independent ofand the embedding, up to
isomorphism. The 3-manifol is called the link of the singularity, and(, &can) is
called thecontact boundarpf (X, x).

A contact manifold Y, &) is said to beMilnor fillable if it is isomorphic to the contact
boundary M, ¢can) Of some isolated complex surface singulari¥, X). In addition,
we say that a closed and oriented 3-manifglds Milnor fillable if it carries a contact
structure¢ so that ¥, &) is Milnor fillable. It is known that a closed and oriented 3-
manifold is Milnor fillable if and only if it can be obtained pfumbing according to a
weighted graph with negative definite intersection matfx [23] and [L6]). Moreover
any 3-manifold has at most one Milnor fillable contact swwetup toisomorphism
(cf. [5]). Note that Milnor fillable contact structures are Steitafile (see 4]) and
hence tight 10]. Here we prove that every Milnor fillable contact structisen fact
universally tight, i.e., the pullback to the universal coietight. We would like to
point out that universal tightness of a contact structuretamplied by any other type
of fillability.


http://www.ams.org/mathscinet/search/mscdoc.html?code=\@secclass 
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In[12], Etnyre settled a question of Eliashberg and Thurstdhly proving that every
contact structure on a closed oriented 3-manifold is obthiny a deformation of a
foliation and raised two other related questions:

(Question 4 in12]) Is every universally tight contact structure on a clogcanifold
with infinite fundamental group the deformation of a Reebfeliation?

(Question 5 in12)) Is every universally tight contact structure on an atordidised
3-manifold with infinite fundamental group the deformatidradaut foliation?

In this note we answer both questions negatively as a coesegof our main result.
The assumption on the fundamental group is necessary sugyg ®liation on a
closed 3-manifold with finite fundamental group has a Reebgament (and hence is
not taut) by a theorem of Novikov. Moreover Ghiggit] gave examples of toroidal
3-manifolds which carry universally tight contact struetsithat are not weakly fillable
(and therefore can not be perturbations of taut foliationfgl]).

We contrast our result with the result of Honda, Kazez anddiat[19], where they
show that for a sutured manifold with annular sutures, thstemnce of a (universally)
tight contact structure is equivalent to the existence aléfoliation.

We assume that all the 3-manifolds are compact and orieatethe contact struc-
tures are co-oriented and positive and all the surface kries are isolated and
normal.

2 Milnor fillable implies universally tight

A graph manifolds a 3-manifoldM(I") obtained by plumbing circle bundles according
to a connected weighted plumbing graph More precisely, letAq, ..., A, denote
vertices of a connected grajph Each vertex is decorated with a paiy, ) of integral
weights, wherey; > 0. Here thath vertex represents an oriented circle bundle of Euler
numbereg over a closed Riemann surface of gemgys ThenM(I") is the 3-manifold
obtained by plumbing these circle bundles according t& horizontalopen book in
M(I") is an open book whose binding consists of some fibers in theedundles and
whose (open) pages are transverse to the fibers. We alsoadhai the orientation
induced on the binding by the pages coincides with the atemt of the fibers induced
by the fibration.



In this paper, we will consider horizontal open books on graganifolds coming from
isolated normal complex singularities. Given an analytiectionf: (X,x) — (C,0)
vanishing atx, with an isolated singularity at, the open book decompositiaB;
of the boundaryM of (X,x) with binding L = M N f~%(0) and projectionr =

|;—|: M\ L — S' c Cis called theMilnor open bookinduced byf .

Theorem 2.1 A Milnor fillable contact structure is universally tight.

Proof Given a Milnor fillable contact 3-manifoldY( £). By definition (Y,&) is
isomorphic to the link M, £c4r) of some surface singularity. Hence it suffices to show
that M, &can) is universally tight. It is known thalMl is an irreducible graph manifold
M(T") whereT is a negative definite plumbing graptf. Moreover, such a manifold is
characterized by the property that there exists a uniquamalrset7 (possibly empty)
consisting of pairwise disjoinhcompressiblgori in M such that each component of
M — 7 is an orientable Seifert fibered manifold with an orientdidse P5]. In terms

of the plumbing descriptior? is a subset of the tori that are used to glue the circle
bundles in the definition oM(I"). The setZ is minimal if in plumbing of two circle
bundles the homotopy class of circle fiber in one boundanyst@ not identified with
the homotopy class of the fiber in the other boundary torus.

Recall that an arbitrary Milnor open boo®5 on M has the following essential
featuresp]: It is compatible with the canonical contact structyggg,, horizontal when
restricted to each Seifert fibered pieceNh— 7 which means that the Seifert fibres
intersect the pages of the open book transversely, and titéngi of the open book
consists of some number (which we can take to be non-zer@gollar fibres of the
Seifert fibration in each Seifert fibred piece.

In the rest of the proof, we will construct a universally tiglontact structure on M
which is compatible with the Milnor open boaR5. This implies that the canonical
contact structurécan, is isotopic tog by Giroux’s correspondence (since they are both
compatible withOB) and thus we conclude th&ta, on the singularity linkM is
universally tight.

Let V; denote a Seifert fibered 3-manifold with boundary, which memponent of
M—N(7), whereN(7") denotes aregular neighborhood®f Consider the 3-manifold
V! obtained by removing a regular neighborhood of the bindin@8 from V;. Note
that V/ is also a Seifert fibered manifold since the binding consistegular fibers of
the Seifert fibration orV;. Then the restriction of a page 615 to V/ is a connected
horizontal surface (see the proof of Propositiof # [5]) which we denote by . It
follows thatV/ is a surface bundle oves' whose fibers are precisely the restriction
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of the pages o) to V/, sinceX! does not separaté/. Note that>} is a branched
cover of the base of the Seifert fibration bt and the monodromy; of this surface
bundle is a periodic self-diffeomorphism &f of some ordem; (cf. Section 12 in

[17).

Now we construct, as in Section 2 id4], a contact structure/ on V/ which is
“compatible" with the surface fibration! — S'. Here compatibility means that the
Reeb vector field of the contact form is transverse to thedjldereping in mind that
a fiber of this fibration is cut out from a page of the open bGdR. Let 5 denote a
1-form on X such thatdg; is a volume form onx{ and 3|y, is a volume form on

0X!. Then the 1-form
1 ni—1

Bl=22 @B,
' k=0

which also satisfies the above conditions, i anvariant 1-form on>. Lett denote
the coordinate or§t. It follows that for every real number > 0, the kernel of the
1-form dt+ ¢4/ is a contact structure ow’ which is compatible with the fibers. Note
that the characteristic foliation on every torusdn! is linear with a slope arbitrarily
close to the slope of the foliation induced by the pages when0. Here we point out
that different choices of give isotopic contact structures, so that we denote thepsot
type of this contact structure b§f. Moreover the Reeb vector fielg is tangent to
the circle fibers in the Seifert fibration and hence trangvéwshe fibers of the surface
bundleV/ — S'.

Furthermore we observe thgt is transverse to the Seifert fibration &f and can

be extended over t&/; along the neighborhood of the binding so that it remains
transverse to the Seifert fibration. Consequently the tiegutontact structure; on

V; is universally tight by Corollary 2 in [20], and also by Proposition.4 in [22].
(Strictly speaking, the cited results prove universal ttigiss for transverse contact
structures on closed Seifert fibered 3-manifolds, but tleofsr especially the one
in [22], can easily be extended to cover the case of Seifert fibemaerdfolds with
boundary a disjoint union of tori.)

Let Vy,...,V, denote the Seifert fibered manifolds in the decompositiod efN(7).
Our goalistoglue togethet’s on Vs to get a universally tight contact structuf@n M
which iscompatiblewith OB . We should point out that if one ignores the compatibility
with OB, then;’s can be glued along the incompressible pre-LagrangiannayV;’s

to yield a universally tight contact structure dh, by Colin’s gluing theoremd]. This
was already described in Theoremd In [7], although the contact structures on Seifert
fibered pieces were obtained by perturbing Gabai's tauatiolis [L3].



By constructiong on V; is compatible with the restriction a®5 to Vi. We first
modify & near each component 0%; to put it in a certain standard form. To this end,
let N(Tj;) denote the normal neighborhood of a toffiysc 7" along which plumbing is
performed betweel; andV;. By picking a sectiors of eachV; we can identify the
boundary ofN(Tj) in V; with T2 so that the basigi(s) is sent to the standard basis
{0x, 0y} of T2, wherer; denotes a fiber of the Seifert fibration &. Then we can
identify N(Tj;) = T2 x [&, bi] Up —T?x [, o] where pj : T2x {b} — —-T?x {bj}

is the gluing map sendingi(s) — (s, rj).

Let 7 denote the foliation by circles with a certain rational dop,/m on T2 x {g}
induced by the pages @@B. We extend the pages inff? x [a;, b] as F x [a,b].
Similarly, 7 denote the foliation by circles given by the intersectiorthef pages of
OB with T2 x {a} which necessarily has rational slopg/m so that the gluing map
pij glues the pages in each piece together to fGHs.

For convenience, we will choos® so that— cota; = m;/(my — ) is the slope of the
characteristic foliation of the contact structufeand b so that— coth; = my/m is
the slope of the pages @P3. Note thatb; € [a;, & + 72) and by choosing: small
enough, we can arrandg to be as close te; as we want.

We now need to glue together the contact forms that we caristiwnV; by extending
them toN(Tj;). For our purposes, we need to pay special attention to ctiiniijia
with OB on N(Tj).

Consider the contact form; = costdx + sintdy on T2 x [a, bj]. By [8] Lemma 91
we can isotop€; on V; relative to the boundary so that it is defined by a contact form
that glue toa;. Moreover, after this isotopy the Reeb vector field{pstill remains
transverse to the pages 615 on V;. Furthermore, the Reeb vector field of is
perpendicular to the slope cota; at T? x {a&} which we know to be arbitrarily close
the slope of the foliatior’F; x {a} induced by the page aPB. Since the slope of
the Reeb vector field changes by strictly less thai2 as we go fromg; to by, the
Reeb vector field still remains transverse&p x [&, bj]. Therefore, the formy; is
compatible withOB in T? x [a;, by]. Finally, to finish the construction of the contact
structure$ on M, we observe that the gluing mag sendsy; to o, since we arranged
that the slope ofy; and the slope of the characteristic foliation induced bypidige are
the same al? x {b;}.

We constructed a contact structufewhich is compatible with a Milnor open book
(hence is isomorphic tdcan) such thaté is isotopic to& on Vi, a universally tight
contact structure, furthermore for each incompressillestd € 7', the characteristic
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foliation of £ is a linear foliation (with slopen; /ny). Therefore, we are in a position to
apply the gluing result of Colirg] which states that universally tight contact structures
can be glued along pre-Lagrangian tori to a universallytt@intact structure. This
shows thatan is a universally tight contact structure. O

Remark 2.2 The above construction shows that when the fibres of eactrSiifered
piece is not contractible, thefaan is hypertight that is, it can be defined by a contact
form whose associated Reeb vector field has no contractiblesoThus, for example
when7 # (), £can is hypertight. Note that hypertight contact structurestigytet [18]
and any finite cover of a hypertight contact manifold is hyigét [14]. These results
together with the fact that graph manifolds have residuatige fundamental groups
give another proof of universally tightness (avoiding @wsligluing result). Since
M is irreducible, its universal cover is diffeomorphic toheit S or R3 depending
on whetherr(M) is finite or infinite. The universal cover can I8 only if M is
atoroidal, thenM is either a small Seifert fibered space or a lens space anel ltlags
no hypertight contact structures. Therefoké,is hypertight if and only ifr1(M) is
infinite (or equivalently its universal cover B).

Remark 2.3 Since any Milnor fillable contact 3-manifoldy (&) is Stein fillable
(see #]) , it follows from Theorem 1.5 in 26] that the contact invariant(¢) <
Iﬂ:(—Y)/(il) is non-trivial. Therefore, byl[], the Giroux torsion ofY is zero. In
particular, the incompressible tori i have zero torsion. This was predicted 4]
and was raised as a question there.

3 Universally tight but no taut

A rational homology sphere is called dnspace if rkl:IT:(Y) = |Hi(Y;Z)|. Lens
spaces are basic exampled.espaces which explains the name. A characterization of
L-spaces among Seifert fibered 3-manifolds is given by

Theorem 3.1 [21] A rational homology sphere which is Seifert fibered o@ris an
L -space if and only if it does not carry a taut foliation.

A huge class of examples afspaces come from complex surface singularities. Recall
that an isolated normal surface singulari®¢, X) is rational if the geometric genus
Pg = dimcHY(X, Ox) is equal to zero, wher¥ — X is a resolution of the singular
point x € X. This definition does not depend on the resolution.



Theorem 3.2 [24] The link of a rational surface singularity is anspace.

Corollary 3.3 If Y is the link of a rational surface singularity which is Setfebered
overS’, thenY carries a universally tight contact structure that can eastxained by
a deformation of a taut foliation.

Proof The link of a rational surface singularity is dnspace by Theorer.2 and
hence it does not carry any taut foliations by Theot&th Moreover, Theoren2.1
implies that the canonical contact structure on this linkriszersally tight. O

Remark 3.4 Note that Seifert fibered 3-manifolds as above carry trasgveontact
structures (by Theorem.3 in [20]) and such contact structures are known to be
universally tight (cf. Corollary 2 in [20] and also Proposition.4 in [22)]).

Corollary 3.5 There exist infinitely many atoroid&-manifolds with infinite funda-
mental groups which carry universally tight contact stuoes that are not deformations
of taut (or Reebless) foliations.

Proof It is known (cf. [B]) that the link of a complex surface singularity has finite
fundamental group if and only if it is a quotient singularifyhus the link of a rational
but not quotient surface singularity has an infinite fundatalegroup. Note that the
links of a quotient surface singularities (all small SdifBbered 3-manifolds) are
explicitly listed in [2] via their dual resolution graphs. It is easy to see thatettaee
many infinite families of small Seifert fibered 3-manifold&ieh are links of rational
but not quotient surface singularities. This finishes theopusing Corollary3.3
since all small Seifert fibered 3-manifolds are known to leeadlal. Note that on an
atoroidal 3-manifold, a Reebless foliation is taut. D

Consequently, Corollarg.5answers Questions 4 and 5 of Etnyi@][negatively. For
the sake of completeness we give an explicit example. Censite small Seifert

fibered 3-manifold
12 p

) éa éa m)
for p > 1, which is depicted in Figurg. Note thatY}, is the link of a complex surface
singularity whose dual resolution graph is given in Figare

Yp = Y(-2

A surface singularity can be identified as rational (defingd\lin in [1]) by its dual
resolution graph as follows. LeX(x) be a germ of a complex surface singularity.
Fix a resolutions: X — X and denote the irreducible components of the exceptional
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-2 =2 -2 -2 -2 =2
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-3

Figure 2: Dual resolution graph

divisor E = 771(x) by [J_; Ei. Thefundamental cyclef E is by definition the
componentwise smallest nonzero effective divigoe > zE; satisfyingZ - E; < 0
forall i.

Definition 3.6 The singularity X, X) is calledrational if each irreducible component
E; of the exceptional divisoE is isomorphic toCP* and

n
Z-Z+Y #(-Ef-2)=-2
i=1

whereZ = ) zE; is the fundamental cycle d&.

Enumerate the vertices of the plumbing graph¥gfrom left to right along the top row
with the bottom vertex coming last. Itis then easy to che€k3]) that the coefficients
of the fundamental cycle corresponding to the dual resmugraph ofY, is given
by (1,2,3,3,...,3,3,2,1,1), which implies thaty,, is the link of a rational surface
singularity by Definiton3.6. On the other handy), is not a quotient singularity for
p > 2 (cf. [2]). Thus the canonical contact structugn on Yy is universally tight but
it can not be obtained by perturbing a taut foliation. We widike to point out thatyy
is the link of a quotient singularity (seé]).
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