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ABSTRACT. Let W be a nonorientable 4-dimensional handlebody without 3- and
4-handles. We show that W admits a Lefschetz fibration over the 2-disk, whose
regular fiber is a nonorientable surface with nonempty boundary. This is an ana-
logue of a result of Harer obtained in the orientable case. As a corollary, we obtain a
4-dimensional proof of the fact that every nonorientable closed 3-manifold admits
an open book decomposition, which was first proved by Berstein and Edmonds
using branched coverings. Moreover, the monodromy of the open book we obtain
for a given 3-manifold belongs to the twist subgroup of the mapping class group
of the page. In particular, we construct an explicit minimal open book for the con-
nected sum of arbitrarily many copies of the product of the circle with the real
projective plane.

We also obtain a relative trisection diagram for W , based on the nonorientable
Lefschetz fibration we construct, similar to the orientable case first studied by Cas-
tro. As a corollary, we get trisection diagrams for some closed 4-manifolds, e.g. the
product of the 2-sphere with the real projective plane, by doublingW . Moreover, if
X is a closed nonorientable 4-manifold which admits a Lefschetz fibration over the
2-sphere, equipped with a section of square ±1, then we construct a trisection dia-
gram of X , which is determined by the vanishing cycles of the Lefschetz fibration.
Finally, we include some simple observations about low-genus Lefschetz fibrations
on closed nonorientable 4-manifolds.

1. INTRODUCTION

Since Lefschetz fibrations were put into the foreground at the turn of this cen-
tury by the seminal works of Donaldson and Gompf, various flavors (e.g. achi-
ral, broken, bordered, symplectic, holomorphic) of Lefschetz fibrations have been
fruitfully utilized in order to study some aspects of smooth orientable manifolds,
yielding especially interesting results in dimension 4.

In this paper, we initiate the study of Lefschetz fibrations on compact nonori-
entable 4-manifolds. We have opted to take the base of any of these fibrations as a
compact orientable 2-manifold so that a regular fiber is necessarily a nonorientable
surface. We say that a Lefschetz fibration is of genus g if the (nonorientable) fiber
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is of genus g as a surface. Here, the genus of a closed nonorientable surface is de-
fined to be the (positive) number of crosscaps attached to S2 to obtain the surface
at hand.

When the nonorientable 4-manifold at hand is closed, one can explore the inter-
action between the given Lefschetz fibration and the mapping class group of the
nonorientable regular fiber of the fibration. A notable distinction from the well-
studied orientable case is that Dehn twists generate the index two twist subgroup
of the mapping class group of a nonorientable surface [21].

On the other hand, a Lefschetz fibration over D2 on a compact nonorientable 4-
manifold with nonempty boundary naturally induces an open book on the bound-
ary 3-manifold, which is also nonorientable. For example, a genus one Lefschetz
fibration D2 × RP2 → D2 we construct in Example 2.4 led us to the discovery of a
genus one open book for S1×RP2. As a consequence, for each n ≥ 2, we construct
in Example 1.5 an explicit genus one open book for #nS

1 × RP2 by successively
performing Murasugi sums.

Our first result in this direction is the nonorientable analogue of a result proved
by Harer [17] for the orientable case.

Theorem 1.1. Let W be a nonorientable 4-dimensional handlebody without 3- and 4-
handles. Then W admits an explicit Lefschetz fibration over D2, whose regular fiber is a
nonorientable surface with nonempty boundary.

As an immediate corollary to Harer’s result, one obtains a proof of a classical the-
orem of Alexander [1] that says: Every orientable closed 3-manifold admits an open book
decomposition. In the same vein, we obtain Corollary 1.2, which was first proved by
Berstein and Edmonds [4, Theorem 9.8] using branched coverings, but we would
like to emphasize that the additional information about the monodromy, namely
that it can be expressed as a product of Dehn twists, does not follow from their
construction.

Corollary 1.2. Every nonorientable closed 3-manifold admits an open book decomposition,
whose monodromy can be expressed as a product of Dehn twists.

As a matter of fact, Ghanwat, Pandit and Selvakumar [13] recently showed that
every closed nonorientable 3-manifold admits a genus one open book (meaning
that its page is the real projective plane RP2 with holes), whose monodromy is a
product of Dehn twists. Moreover, they described an algorithm to compute the
monodromy of the open book they construct for a given 3-manifold. Their proce-
dure involves writing a 3-manifold as Dehn surgery on a link which is braided in
a specific way about the binding of a genus one open book for S2 ∼× S1.

In Example 1.4 below, we obtain an explicit genus one open book for S1 × RP2

based on our Theorem 1.1. Reading [13] literally, their procedure applied to S1 ×
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RP2 yields an open book with three binding components, but by starting with
the braid in Figure 2, we see that their procedure on braids yields the same open
book depicted in Figure 1, which is obtained via our Theorem 1.1. We should
also point out that Klassen [19] constructed an explicit genus two open book for
S1 × RP2 (described somewhat less explicitly in [4]), whose monodromy is the
Y -homeomorphism of Lickorish. The interested reader may consult [24] for fur-
ther details. Berstein and Edmonds [4] use this open book to construct an open
book for an arbitrary nonorientable closed 3-manifold M by writing M as an n-
fold branched cover over S1 × RP2 and lifting this open book to M . When n is
even, the resulting open book has monodromy that can be written as a product of
Dehn twists; when n is odd then not.

Remark 1.3. A simple closed curve γ in a nonorientable surface is called two-sided
if a regular neighborhood of γ is an annulus. A Dehn twist about γ is defined as
usual, but to be able to distinguish a right-handed twist from a left-handed twist,
one must also specify an orientation of a regular neighborhood of γ, for which
there is no canonical choice.

Example 1.4. There is a genus one open book for S1 × RP2 whose page is RP2

with two holes and whose monodromy is the product of Dehn twists about the
boundary parallel curves γ1 and γ2 depicted in Figure 1.

γ1

γ2

FIGURE 1. A page of an open book decomposition of S1 × RP2. The
monodromy is a product of Dehn twists about γ1 and γ2.

This follows immediately from the genus one Lefschetz fibrationD2×RP2 → D2

we construct in Example 2.4, since we have ∂(D2×RP2) = S1×RP2. Alternatively,
as we discuss with more details in Remark 2.5, one can directly check that the total
space of the abstract open book whose page is RP2 with two holes and whose mon-
odromy is the product of the two boundary Dehn twists (with arbitrary “handed-
ness” for a fixed choice of orientations of the annuli neighborhoods of γ1 and γ2,
see Figure 3) is diffeomorphic to S1 × RP2.
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1

−1

1

−1

FIGURE 2. The procedure of [13] to obtain a genus one open book
on S1 × RP2: On the left, we draw a Möbius band M representing
the page of an open book on S2 ∼× S1. We write S1 × RP2 as Dehn
surgery on a link (in this case a knot) braided about M as in [13]. We
blow up and isotope (second and third image) to make the surgery
link into a 0-framed vertical component and two ±1 unknotted com-
ponents parallel to the Möbius band. Finally on the right, we punc-
ture the Möbius band at the vertical component to obtain the page
of a genus one open book on S1 ∼× RP2. The monodromy consists of
Dehn twists about the two green curves (projections of the unknot-
ted surgery curves) with opposite handedness (due to the signs of the
two surgery curves being opposite.) Unlabeled arcs are all 0-framed.

γ2

γ1

FIGURE 3. The ”handedness” of each Dehn twist in the open book
decomposition of S1 × RP2 depicted in Figure 1 does not matter, i.e.
any choice gives an equivalent open book. Here we give a diffeo-
morphism of the page that fixes each of γ1 and γ2 setwise but is
orientation-reversing on γ1 and orientation-preserving on γ2. (The
diffeomorphism is a 180◦ rotation in the pictured ambient 3D space
as indicated by the arrows.) This gives an equivalence between two
open books with monodromy a Dehn twist on γ1 and γ2 with the
opposite choice of twist on γ1 and the same choice of twist on γ2.
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Example 1.5. Relying on the nonorientable version (cf. [24, Proposition 6.1]) of
Stallings’ Theorem [26] and performing a Murasugi sum of two copies of the genus
one open book for S1 × RP2 depicted in Figure 1, we get a genus one open book
for #2S

1 × RP2, whose page is RP2 with four holes and whose monodromy is the
product of Dehn twists (with arbitrary handedness) about the curves γ1, γ2, γ3 and
γ4 depicted in Figure 4.

Murasugi sum

 γ1

γ2

γ3

γ4

γ1

γ2

γ3

γ4

FIGURE 4. We construct a genus one open book for #2S
1 × RP2 via

Murasugi sum by identifying the colored rectangles as indicated on
the left. The monodromy of the resulting open book on the right is
given by a product of four Dehn twists: one each about the curves
γ1, γ2, γ3, γ4, respectively, in any order. Notice that the order of Dehn
twists about γ2 and γ4 does not matter since they commute with the
others, and the order of Dehn twists about γ1 and γ3 can be inter-
changed by an overall conjugation of the monodromy.

Similarly, for n ≥ 3, we may Murasugi sum n copies of the genus one open book
for S1×RP2 (iteratively plumbing n−1 copies to one base copy along the rectangles
indicated in Figure 5) to obtain a genus one open book for #nS

1×RP2 whose page
is RP2 with 2n holes. For any n ≥ 2, the genus one open book we construct for
#nS

1 × RP2 is in fact induced by a Lefschetz fibration \nD
2 × RP2 → D2, where \

denotes the boundary connected sum, which follows from a nonorientable version
of a result in [18].

Proposition 1.6 implies that the genus one open books we constructed in Exam-
ple 1.5 (and also Example 1.4) are all “minimal” in the sense that the page is of
genus one (minimum possible) and the number of binding components is minimal
for a genus one open book.

Proposition 1.6. For any n ≥ 1, a genus one open book for #nS
1 × RP2 must have at

least 2n binding components.
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R1
R2
R3

...

...

Rn−1

FIGURE 5. Murasugi summing n − 1 copies of the genus one open
book for S1 × RP2 (as in Figure 1) to the pictured copy along
rectangles R1, . . . , Rn−1 in order yields a genus one open book for
#nS

1 × RP2. (The plumbing rectangles on the unpictured copies are
as in Figure 4.) The resulting page is a Möbius band with 2n−1 holes.

As a byproduct of the construction in our proof of Theorem 1.1, we obtain the
following result, which might be of interest on its own.

Proposition 1.7. If L is a framed link in #pS
2 ∼×S1, for some nonnegative integer p, then

there is an explicit open book decomposition for #pS
2 ∼× S1 such that each component of L

is embedded in a distinct page with framing ±1 relative to the page framing.

Remark 1.8. Knot framings are slightly more subtle in nonorientable manifolds,
but there is no subtlety in relative framings. Let C be a simple closed curve in a
surface Σ that is a page of an open book in a 3-manifold M . In order to consider
framings of C, C must have trivial normal bundle, so we restrict to the case that
C has an annular neighborhood in Σ. Then a tangent and normal vector to Σ at C
induce a framing ξ of the normal bundle of C in M . We say that the framing η of C
differs from ξ by±1 if η can be isotoped to agree with ξ away from a small interval
in C, where they differ by a single twist of appropriate sign. If M is nonorientable,
then the sign does not matter: if we can isotope ξ to agree with η except for one
positive twist, then we can further isotope ξ to agree with η except for one negative
twist.

Next, we turn our attention to the interaction between Lefschetz fibrations and
trisections. In his PhD thesis [5], Castro constructed a relative trisection of any
compact orientable 4-manifold which admits an achiral Lefschetz fibration over
D2. Here we observe that his result extends to the nonorientable case to obtain
another corollary of Theorem 1.1.
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Corollary 1.9. Let W be a nonorientable 4-dimensional handlebody without 3- and 4-
handles. Then, based on any Lefschetz fibration W → D2, there is an explicit algorithm
to obtain a relative trisection diagram of W so that the open book on ∂W induced by the
Lefschetz fibration coincides with that induced by the trisection.

As an application, in Remark 3.3 below, we show that there exists a compact
nonorientable 4-manifold without 3- and 4-handles, which admits two distinct rel-
ative trisections that are not stably equivalent via relative trisection boundary sta-
bilizations as in [5].

Let X be a closed, nonorientable 4-manifold and let X(2) denote the union of the
0-, 1-, and 2-handles in a given handle decomposition of X . Then, as shown in the
recent work of the first author and Naylor [22, Corollary 3.13], X is determined
up to diffeomorphism by X(2), which follows from a nonorientable analogue of a
classical result of Laudenbach and Poénaru [20]. Therefore, the relative trisection
diagram of X(2) described in Corollary 1.9 determines the diffeomorphism type of
the closed 4-manifold X .

Nevertheless, if desired, one can construct trisection diagrams for some closed
nonorientable 4-manifolds based on Corollary 1.9 as follows. Let X be the double
of W , i.e., X = W ∪∂ W . Then the identical relative trisection diagrams on the
two copies of W can be glued together to obtain a trisection diagram of the closed
nonorientable 4-manifold X . We illustrate this method in Example 3.2.

Moreover, if X is a closed, nonorientable, connected 4-manifold which admits
a Lefschetz fibration over S2 equipped with a section of square ±1, then we show
that X = W ∪∂ V , where both W and V admit Lefschetz fibrations over D2 so
that the induced open books coincide on their common boundary ∂W = ∂V . Us-
ing Corollary 1.9, we obtain relative trisection diagrams of W and V , respectively
and glue these diagrams to get a trisection diagram of X . We advice the reader to
turn to [6, 9] for a detailed discussion on gluing relative trisection diagrams in the
orientable case and to [22] in the nonorientable case. The discussion in this para-
graph is summarized as Theorem 1.10 below, which is a nonorientable analogue of
Theorem 3.7 in the article [9] of Castro and the second author.

Theorem 1.10. Suppose that X is a closed, nonorientable, connected 4-manifold which
admits a Lefschetz fibration over S2 equipped with a section of square±1. Then, an explicit
trisection ofX can be described by a corresponding trisection diagram, which is determined
by the vanishing cycles of the Lefschetz fibration.

Finally, we include a simple observation which is a nonorientable analogue of
the following fact (see e.g. [14, Proposition 8.1.7]): “A relatively minimal genus zero
Lefschetz fibration on a closed oriented 4-manifold over any closed oriented surface is an
S2-bundle.” (See Section 2, for the relevant definitions.)
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Proposition 1.11. If X → B is a relatively minimal genus one Lefschetz fibration on a
closed nonorientable 4-manifold X over a closed orientable surface B, then X is an RP2-
bundle over B.

In other words, there are no singular fibers in a relatively minimal genus one Lef-
schetz fibration X → B, where X is any closed nonorientable 4-manifold and B is
an arbitrary orientable surface. Note that there are two diffeomorphism classes of
nonorientable total spaces of RP2-bundles over an orientable surface B, classified
by the second Stiefel-Whitney class of the bundle.

On the other hand, in Section 4, for any g ≥ 2, we construct examples of rela-
tively minimal (nonorientable) genus g Lefschetz fibrations over B with arbitrary
number of singular fibers.

2. A NONORIENTABLE ANALOGUE OF HARER’S RESULT

The standard definition of a Lefschetz fibration on orientable 4-manifolds (cf.
[14, Section 8]) can be easily adapted to nonorientable 4-manifolds.

Definition 2.1. Let X be a compact, connected, nonorientable 4-manifold and let B
be a compact, connected, orientable 2-manifold. A Lefschetz fibration is a surjective
map π : X → B with finitely many critical points in the interior of X such that
around each critical point, π conforms to the model π(z1, z2) = z1z2 in local complex
coordinates.

The manifolds X and B in Definition 2.1 are allowed to have nonempty bound-
aries. In that case, if the regular fiber is a closed surface, then ∂X = π−1(∂B) and if
the regular fiber is a surface with nonempty boundary, then ∂X acquires a natural
open book whose page is the regular fiber.

A Lefschetz fibration is called relatively minimal if no fiber contains an excep-
tional sphere, i.e., a sphere with self-intersection ±1. Any Lefschetz fibration can
be blown down to obtain a relatively minimal one.

Remark 2.2. Since X is nonorientable, we can not impose the local complex coordi-
nates around a critical point to be compatible with the “orientation” of X . More-
over, a regular fiber F is a (necessarily) nonorientable surface such that ∂F 6= ∅ if
and only if ∂X 6= ∅. We may assume that each singular fiber contains only one
critical point, which can be achieved after a small perturbation of π.

In this section, we will be interested only in the case when B = D2. Suppose
that π : X → D2 is a Lefschetz fibration. It follows that each fiber of π is connected
(cf. [14, Proposition 8.1.9]). Let F denote a regular fiber of the Lefschetz fibration
π : X → D2. The topology ofX can be described as follows. Start with the trivial fi-
bration D2×F and attach 2-handles along two-sided simple closed curves—one for
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each critical point—embedded in distinct regular fibers along ∂(D2×F ). The fram-
ing of each 2-handle is given by±1 with respect to the surface framing. Notice that
one can not distinguish + or − because, although a regular neighborhood of the
attaching curve on F is orientable, there is no canonical orientation one can choose.
Similar to the orientable Lefschetz fibrations, the local monodromy around a criti-
cal value is a Dehn twist around ”the vanishing cycle” with the caveat that there is
no canonical choice of right-handed versus left-handed in the nonorientable case.
We are now ready to give a proof of Theorem 1.1, adapting the proof in Harer’s
Thesis [17] to the nonorientable case. See also [12].

Proof. of Theorem 1.1. Let W be a nonorientable 4-dimensional handlebody without
3- and 4-handles. ThenW may be obtained by attaching 2-handles toW(1)

∼= \pD
3 ∼×

S1 for some positive integer p. In other words, W consists of a single 0-handle, p
nonorientable 1-handles and some 2-handles. Notice that

W(1)
∼= \pD

3 ∼× S1 ∼= D2 × Σ,

where Σ is the nonorientable surface obtained by attaching p nonorientable 1-
handles to D2. We can think of D2 × Σ as the trivial Lefschetz fibration over D2.
More importantly, we can view Σ as a disk-with-twisted bands (see left of Figure
6) inside W(1) ⊂ W , which is a page of the trivial open book for #pS

2 ∼×S1 induced
by the trivial Lefschetz fibration W(1)

∼= D2 × Σ→ D2.
Next, we would like to embed each component of the link L ⊂ #pS

2 ∼× S1, con-
sisting of the attaching curves of the 2-handles, in a distinct page of this open book.
To this end, we take a generic projection of L onto Σ with only transverse double
points and then apply Harer’s trick as follows. Take the connected sum of Σ with a
torus at each double point of the projection as shown in Figure 6 (middle).

proj(L)

Σ Σ′ Σ′′· · · · · · · · ·

p

FIGURE 6. Compare to Figures 2 and 3 of [12]. Left: the link L pro-
jected onto Σ, as in Theorem 1.1. Middle: We perform Harer’s trick
at the double points of the projection of L. We indicate new vanish-
ing cycles in red (dashed). Right: We further stabilize Σ to change
the induced framing on L. Note that at each stabilization, we add a
whole twist to L on the stabilized surface.
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This modification corresponds to stabilizing the Lefschetz fibration (and thus the
open book on the boundary) twice, keeping the diffeomorphism type of W fixed.
Once all the double points of the projection of L is taken care of, we end up with
a (nontrivial) Lefschetz fibration W → D2 such that each component Li ⊂ L is
embedded in a distinct page Σ′ (obtained by stabilizing Σ by several times) of the
induced open book on ∂W .

Since L consists of the attaching circles of the 2-handles, each component of L
has trivial normal bundle in W . Since Σ′ is the page of an open book, the normal
bundle of Σ′ in W is also trivial. Therefore, each component of L has an annu-
lar neighborhood in Σ′. We adjust the framings of the components of L so that
the framing of each component Li ⊂ L is ±1 with respect to the page framing
(see Remark 1.8). This is easily accomplished by stabilizing the page Σ′ further as
shown in the right of Figure 6 to obtain Σ′′ which carries additional vanishing cy-
cles corresponding to each stabilization. To summarize, we have now a Lefschetz
fibration W → D2 so that each Li ⊂ L is embedded in a distinct fiber in the bound-
ary, with framing ±1 with respect to the fiber framing. Once the 2-handles are
attached along the link L, we get the desired Lefschetz fibration on W , whose fiber
is Σ′′ and each Li being a vanishing cycle in addition to the cycles inserted for each
stabilization in the construction.

The “handedness” of the vanishing cycle corresponding to Li is determined by
the framing of Li: if we arrange the normal bundle of Li to have 2-handle framing
agreeing with that induced by Σ′′ except for one extra positive twist (with respect
to some local orientation of Σ′′) of the 2-handle attachment in a small arc, then near
that same arc the corresponding Dehn twist in the monodromy induced on Σ′′ is
right-handed (with respect to the same local orientation of Σ′′). �

Example 2.3. A handlebody diagram ofD2 ∼×RP2, which consists of a single nonori-
entable 1-handle and a single 2-handle is depicted in Figure 7(A). We apply the
method discussed above to see that D2 ∼× RP2 admits a genus one Lefschetz fi-
bration over D2 with fiber the Möbius band and a single vanishing cycle γ as
shown in Figure 7(B). Since the mapping class group of the Möbius band is triv-
ial (cf. [11]), the Dehn twist about γ is isotopic to the identity and thus we see
that the open book on the boundary ∂(D2 ∼×RP2) is trivial, which also implies that
∂(D2 ∼× RP2) ∼= S2 ∼× S1.

Example 2.4. A handlebody diagram ofD2×RP2, which consists of a single nonori-
entable 1-handle and a single 2-handle is depicted in Figure 8(A). To construct a
Lefschetz fibration on D2 × RP2, we need to fix the framing of the 2-handle by a
stabilization. As a result, the fiber will be once stabilized Möbius band and we
will have two vanishing cycle γ1 and γ2 as shown in Figure 8(C). We conclude that
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1

(A) A handlebody dia-
gram of D2 ∼× RP2.

γ

(B) D2 ∼× RP2 admits a
genus one Lefschetz fi-
bration over D2 with a
single vanishing cycle
γ.

A A

(C) A relative trisection
diagram for D2 ∼× RP2.

FIGURE 7. From a handle diagram ofD2 ∼×RP2, we obtain a Lefschetz
fibration and then a relative trisection diagram.

D2 × RP2 admits a genus one Lefschetz fibration over D2, whose fiber is RP2 with
two holes (i.e., a Möbius band with one hole) with two vanishing cycles, both of
which are boundary parallel.

(A) A handlebody
diagram of D2 ×
RP2.

(B) We isotope L
into a page, but
the framing agrees
with the page
framing.

γ1

γ2

(C) D2 × RP2 ad-
mits a genus one
Lefschetz fibration
over D2 with two
vanishing cycles γ1
and γ2.

A
A

B B

(D) A relative
trisection diagram
for D2 × RP2.

FIGURE 8. From a handle diagram ofD2×RP2, we obtain a Lefschetz
fibration and then a relative trisection diagram.

Remark 2.5. Since ∂(D2×RP2) = S1×RP2, as a corollary to Example 2.4, we obtain
the genus one open book for S1×RP2 whose page is RP2 with two holes and whose
monodromy is the product of Dehn twists about the boundary parallel curves γ1
and γ2 depicted in Figure 1, by our construction. With a natural (but not canonical)
choice of local orientations, the Dehn twists will have opposite handedness. Al-
ternatively, we may consider the abstract open book whose page is RP2 with two
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holes and whose monodromy is the product of two boundary Dehn twists, where
we just fix an arbitrary orientation of some annuli neighborhoods of the curves
γ1 and γ2, to specify the handedness of these Dehn twists. As shown in Figure
3, we obtain the same total space regardless of the choice of each handedness. In
addition, we can check this fact algebraically: using the method described in [24,
Section 5], we verify that the fundamental group of the total space of this open
book is isomorphic to Z ⊕ Z/2Z regardless of the possible choices of handedness
for the Dehn twists at hand, as follows:

Choose a basepoint in the boundary of the page P = RP2 \ (t2D2). Let a be
a based curve about the generator of π1(RP2) and let c1, c2 be based curves about
the two boundary components (corresponding to γ1, γ2, respectively), so π1(P ) =
〈a, c1, c2 | a2 = c1c2〉. See Figure 9.

c1 c2

a φ∗a

σ

φ∗σ

“same” handedness “opposite” handedness

φ∗σ

(A) (B)

(C) (D)

FIGURE 9. (A) The page P of an open book with monodromy φ is a
copy of RP2 with two disks removed. The map φ consists of a Dehn
twist about each of the green boundary-parallel circles. The twist
about the left curve γ1 is right-handed with respect to the orientation
induced by the ambient page of the figure. (B) We have φ∗a = c1ac

−1
1 .

(C) If the twist about the right curve γ2 is also right-handed, then
(φ∗σ)σ−1 = c1c

−1
2 . (D) If the twist about γ2 is left-handed, then

(φ∗σ)σ−1 = c1c2.

Now if φ is the monodromy of an open book with page P and total space M , we
have

π1(M) = 〈a, c1, c2|a2 = c1c2, φ∗a = a, (φ∗σ)σ−1 = 1〉,
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where σ is an arc connecting the two boundary components of P .
Say that φ consists of a right-handed (with respect to the local orientation in-

duced by ambient page of Figure 9) Dehn twist about γ1 followed by a Dehn twist
about γ2. Then φ∗a = c1ac

−1
1 .

If the Dehn twist about γ2 is also right-handed, then (φ∗σ)σ−1 = c1c
−1
2 . If the

Dehn twist about γ2 is left-handed, then (φ∗σ)σ−1 = c1c2. In the first case, we
obtain

π1(M) = 〈a, c1, c2|a2 = c1c2, [a, c1] = 1, c1 = c2〉
= 〈a, c1|a2 = c21, [a, c1] = 1〉
∼= Z⊕ Z/2Z.

In the second case, we obtain

π1(M) = 〈a, c1, c2|a2 = c1c2, [a, c1] = 1, c1 = c−12 〉
∼= Z⊕ Z/2Z.

It follows that for any choice of the “handedness” of a twist about each of γ1 and
γ2, the total space of the resulting open book is S1 × RP2.

We finish this section with proofs of Corollary 1.2 and Proposition 1.6.

Proof. of Corollary 1.2. Let M a closed, connected, nonorientable 3-manifold. By a
theorem of Lickorish [21], M is obtained from S2 ∼× S1 by performing an integral
surgery along a link L. It follows that M is the boundary of the 4-manifold W
which is obtained by attaching 2-handles to D3 ∼× S1 along L ⊂ S2 ∼× S1. Since
W admits a Lefschetz fibration over D2, by Theorem 1.1 the 3-manifold ∂W = M
acquires an induced open book decomposition, whose monodromy is the product
of Dehn twists along the vanishing cycles of the Lefschetz fibration. �

Proof. of Proposition 1.6. Notice that given an open book of a 3-manifold M with
page P , one can obtain a Heegaard splitting of M with Heegaard surface equal to
the double of P . Therefore, if #nS

1 × RP2 admits a genus one open book with k
binding components, then #nS

1×RP2 admits a Heegaard splitting with Heegaard
surface Σ the nonorientable surface of genus 2k.

We make the following observation about Heegaard splittings of nonorientable
3-manifolds: if a Heegaard surface of a nonorientable 3-manifoldN is a Klein bottle
K, then since K admits only one nonseparating 2-sided curve (up to isotopy), we
must have N ∼= S2 ∼× S1. In particular, every Heegaard surface of S1 × RP2 has
negative (even) Euler characteristic.

Now we again consider our Heegaard surface Σ for #nS
1 × RP2. By Haken’s

lemma (see [22] for some slight discussion about literature in the nonorientable
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setting), there exist disjoint two-sided curves C1, . . . , Cn−1 embedded in Σ so that
Σ\ν(C1∪· · ·∪Cn−1) has n components, each of which closes to a Heegaard surface
for a copy of S1 × RP2. Then

2− 2k = χ(Σ)

≤ −2n− 2(n− 1)

= 2− 4n,

so we conclude that k ≥ 2n. �

3. TRISECTIONS OF NONORIENTABLE LEFSCHETZ FIBRATIONS

In this section, we prove Corollary 1.9 and draw a trisection diagram for S2 ×
RP2 by doubling a relative trisection diagram of D2 × RP2 based on a genus one
Lefschetz fibration D2 × RP2 → D2 obtained by applying Theorem 1.1.

Proof. of Corollary 1.9. The construction is essentially the same as in [9]. Consider
a Lefschetz fibration over D2 with ordered vanishing cycles γ1, . . . , γn in a nonori-
entable surface Σ, with total space X . Since each γi has an annular neighborhood
in Σ, we can perform the wrinkling move on each γi as usual. That is, first we
replace an annular neighborhood of γ1 with a genus one surface as in Figure 10(B),
decorated with one red curve α1, one blue curve β1, and one green curve which we
also call γ1 as an abuse of notation.

A
A A A

A A

B B

A A

B B

A A

B B
C

C

γ1

γ2

γ3

(A) (B) (C)

(D) (E) (F)

FIGURE 10. In (A), we draw three vanishing cycles γ1, γ2, γ3 on a
nonorientable surface that together describe a Lefschetz fibration on
a nonorientable 4-manifold X . The progression from (A) to (F) il-
lustrates the procedure of Corollary 1.9. In (F), we obtain a relative
trisection diagram of X .
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Note that in Figure 10(B), γ1 appears to twist positively about the tube labels
“A” with respect to a local orientation induced by the page. This sign depends
on the “sign” of the corresponding vanishing cycle: with respect to the same local
orientation, it is right-handed near the “A” tube. If the vanishing cycle were left-
handed with respect to this local orientation, then the twist of γ1 about “A” would
appear negative.

We then isotope γ2 to avoid α1 and β1 and to intersect γ1 transversely. Now we
slide γ2 over β1 as necessary until γ2 is disjoint from γ1 (see Figure 10(C)) but now
intersects α1. Then we replace an annular neighborhood of γ2 with a genus one
surface, again decorated with one red curve α2, a blue curve β2, and a green curve
γ2 (with signs of twisting determined as for γ1). Now isotope γ3 to avoid the red
and blue curves and intersect green curves transversely (as in Figure 10(D)), and
apply the same procedure to γ3 as to γ2. It is now clear how to iterate this procedure
for the rest of the vanishing cycles.

The end result is a surface Σ̂ obtained from Σ by attaching n tubes, and curves
α = {α1, . . . , αn}, β = {β1, . . . , βn}, γ = {γ1, . . . , γn} on Σ̂. Then D := (Σ̂;α, β, γ)
is a relative trisection diagram: note that (α, β) and (β, γ) are standard pairs, and
since each γi intersects αi geometrically once, (α, γ) are slide-equivalent to a stan-
dard pair. Moreover, D depicts a 4-manifold Y obtained from Σ×D2 by attaching
±1-framed 2-handles along each vanishing cycle in order (see [22]), so Y ∼= X .
Moreover, via the monodromy algorithm of [7] (see [22] about nonorientability),
we see immediately that the open book on ∂X induced by D has page Σ with
monodromy a Dehn twist on each γi in order, as desired. �

Example 3.1. Using the genus one Lefschetz fibration D2 ∼× RP2 → D2 in Exam-
ple 2.3, we get a relative trisection diagram for D2 ∼× RP2, by Corollary 1.9, as in
Figure 7(C) which coincides with the one depicted in [22, Figure 12]. Notice that
the open book induced on ∂(D2 ∼× RP2) = S2 ∼× S1 by this relative trisection dia-
gram is trivial, i.e., its page is the Möbius band and its monodromy is necessarily
isotopic to the identity since the mapping class group of the Möbius band is triv-
ial. Therefore, we can glue this relative trisection diagram for D2 ∼× RP2 with the
trivial diagram for D3 ∼× S1, to obtain a trisection diagram of RP4, as depicted in
[22, Figure 16].

Example 3.2. Using the genus one Lefschetz fibration D2 × RP2 → D2 in Exam-
ple 2.4, we get a relative trisection for D2×RP2, by Corollary 1.9, as in Figure 8(D).
By doubling this relative trisection diagram for D2 × RP2, we get a trisection dia-
gram of S2 × RP2 as in Figure 11.
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A
A

B B

B

B A

A
C

CD

D

C

C

DD

FIGURE 11. We double a relative trisection diagram of D2 × RP2 to
obtain a trisection diagram of S2 × RP2. Top: two copies of the rela-
tive trisection ofD2×RP2 from Figure 8(D). We add extra arcs cutting
the α, β, γ pages into disks in order to perform the gluing operation
(see [5]). Bottom: gluing the two relative trisection diagrams yields a
trisection diagram of S2×RP2. Each α, β, γ arc is doubled to become
a new α, β, or γ curve.

This example illustrates that these trisections for closed manifolds are gener-
ally far from minimal-genus, due in part to the fact that relative trisections have
a restrictive boundary condition that often forces high genus. In Figure 12, we
show a smaller-genus trisection of S2 × RP2 obtained by applying the procedure
of Williams [27] for products of surfaces. (Although Williams only considered ori-
entable surfaces, there is no problem applying her algorithm.)
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FIGURE 12. A trisection of S2 × RP2 obtained by following the al-
gorithm of [27], which produces a trisection surface built by thrice-
puncturing two RP2’s and gluing the boundaries together.

Remark 3.3. If X is a nonorientable 4-manifold not including 3- or 4-handles with
a prescribed open book on its boundary ∂X , whose monodromy cannot be factor-
ized into Dehn twists, then Corollary 1.9 cannot be applied to find a relative trisec-
tion of X inducing the given open book. Consider, for example, the 4-manifold X
illustrated in Figure 13(C). It is clear thatX admits a Lefschetz fibration overD2 by
Theorem 1.1. On the other hand, ∂X ∼= S1 × RP2 admits an open book with page
a Klein bottle with one hole and monodromy the Y-homeomorphism of Lickorish
[21].

We constructed the handle diagram for X by finding a surgery diagram for the
total space of this open book as usual and then replacing all surgery curves with
2-handle attaching circles. This open book extends to a relative trisection T of X
as illustrated in Figure 13(E) (see [5] for existence, [6] for an algorithm, and [22]
about nonorientability). As observed by the second author [24], the open book
induced by T on ∂X is not stably equivalent to an open book whose monodromy is
a product of Dehn twists. We conclude that T is not stably equivalent (via interior
and relative trisection boundary stabilization as in [5]) to any relative trisection of
X arising from the construction of Corollary 1.9.

Remark 3.4. Relative trisections of a 4-manifold X are stably equivalent exactly
when the open books they induce on ∂X are related by Hopf plumbing [5]. When
∂X is orientable, then any two relative trisections are related by interior/boundary
stabilizations if the open books they induce on ∂X have homologous plane fields
[15] and otherwise by stabilization and one additional move ∂U [8], relying on
Harer’s construction [16] relating any two open books for an orientable 3-manifold
by explicit moves. Just like boundary stabilization, the ∂U move has the property
that if a relative trisection induces an open book whose monodromy can be written
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A A B B A A B B

A

A

B
B

C C

D
D

a1 a2

(A)

Y (a1) Y (a2)

(B)

(C) (D)

(E)

FIGURE 13. In (A), we show a Klein bottle
◦
K with one hole and two

arcs a1, a2 whose complement in
◦
K is a disk. In (B), we show the

image of a1, a2 under the Y -homeomorphism; this determines the Y -

homeomorphism on
◦
K up to isotopy. In (C), we give a Kirby diagram

of a 4-manifold X whose boundary admits an open book O with

page
◦
K and monodromy the Y -homeomorphism. Both 1-handles are

nonorientable and every 2-handle arc is 0-framed. In (D), we simplify
the diagram slightly and draw a page of the open book. In (E), we
obtain a relative trisection of X inducing O on ∂X .
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as a product of Dehn twists, then after applying ∂U the new monodromy can still
be written as a product of Dehn twists. This means that T from Remark 3.3 cannot
be related to any relative trisection of X arising from the construction of Corollary
1.9 by interior/boundary stabilization and ∂U moves, so the classification of rela-
tive trisections of a 4-manifold [8] does not hold in the nonorientable setting. To
classify relative trisections of nonorientable 4-manifolds, it would be necessary to
understand relationships between open books on nonorientable 3-manifolds. That
is, it would be useful to obtain a move on open books that can transform an open
book with monodromy a product of Dehn twists into one whose monodromy can-
not be written as a product of Dehn twists, while preserving the total space of the
open book.

A natural question arises as a result of the discussion in Remark 3.3.

Question 3.5. Does there exist a singular fibration X → D2 (e.g. a Lefschetz fibration
with “multiple fibers”, a broken Lefschetz fibration or a generic map) whose regular fiber
is the Klein bottle with one hole and whose monodromy is the Y -homeomorphism of Licko-
rish?

4. LEFSCHETZ FIBRATIONS ON CLOSED NONORIENTABLE 4-MANIFOLDS

Suppose that π : X → S2 is a Lefschetz fibration on a closed nonorientable 4-
manifold X . The topology of X can be described as follows. First of all, as we
pointed out in Remark 2.2, a regular fiber F is a closed nonorientable surface. We
may also assume that each singular fiber contains only one critical point, which
can be achieved after a small perturbation of π. Notice that, by the removal of a
neighborhood νF of a regular fiber F , the Lefschetz fibration π : X → S2 canoni-
cally determines a Lefschetz fibration X \ νF → D2, whose topology is described
in Section 2.

Conversely, a Lefschetz fibration (with closed nonorientable fibers) over a disk
can be extended to one over a sphere if and only if the monodromy around the
disk is trivial. If the genus of the fiber is at least three, this extension is unique by
a theorem of Earle and Eells [10], which says that the group of diffeomorphisms
of any closed nonorientable surface of genus at least three which are homotopic to
the identity is contractible.

Remark 4.1. The items listed in [25, Section 15.2]), each of which is a translation
between different types of relations in the mapping class groups of orientable sur-
faces and various versions of orientable Lefschetz fibrations, hold true verbatim if
orientable is replaced with nonorientable. We include two of those items here that
will be used below. Let Σg,k denote the nonorientable surface of genus g ≥ 1 with
k ≥ 0 boundary components. A factorization of the identity into a product of
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Dehn twists along two-sided curves on the closed surface Σg describes a genus g
Lefschetz fibration over S2. Similarly, if k > 0, a factorization of t∂1 . . . t∂k (where ∂i
is parallel to the ith boundary component) into a product of interior Dehn twists
along two-sided curves on Σg,k provides a genus g Lefschetz pencil, which can be
turned into a genus g Lefschetz fibration over S2 equipped with k disjoint sections,
each of square ±1, by blowing up the base locus.

Notice that when studying Dehn twist factorizations in the mapping class group
of a nonorientable surface, one can discard any Dehn twist along a curve that
bounds a Möbius band, since this mapping class is trivial [11]. This is obviously
similar to the case of a Dehn twist along a nullhomotopic curve, which is also triv-
ial, whether the surface is orientable or not. When a factorization contains a Dehn
twist along a nullhomotopic curve, this yields a non-relatively minimal Lefschetz
fibration, where removing the corresponding singularity—which has no effect on
the rest of the fibration—amounts to a surgery that is equivalent to blowing-down
a CP1 (possibly with the wrong orientation). If a factorization contains a Dehn
twist along a curve that bounds a Möbius band, one can remove the correspond-
ing singularity in a Lefschetz fibration, which again does not affect the rest of the
fibration. This operation amounts to removing a copy of D2 ∼× RP2 from the 4-
manifold and gluing in D3 ∼× S1. This follows from the fact that the total space
of the Lefschetz fibration over D2, whose fiber is the Möbius band and which has
only one boundary-parallel vanishing cycle is diffeomorphic toD2 ∼×RP2, as we ob-
served in Example 2.3, while the trivial (Lefschetz) fibration over D2 whose fiber
is the Möbius band, namely the product of the Möbius band with D2, is indeed
diffeomorphic to D3 ∼× S1.

Our next observation is stated as Proposition 1.11 in the Introduction.

Proposition 1.11. If X → B is a relatively minimal genus one Lefschetz fibration on a
closed nonorientable 4-manifold X over a closed orientable surface B, then X is an RP2-
bundle over B.

Proof. In a relatively minimal Lefschetz fibration, any vanishing cycle must be ho-
motopically nontrivial in the fiber. But the only homotopically nontrivial simple
closed curve in RP2 is one-sided and therefore it can not be a vanishing cycle. We
conclude that there are no vanishing cycles in a relatively minimal genus one Lef-
schetz fibration over S2, which proves the desired result. �

Now we consider relatively minimal genus two Lefschetz fibrations over S2.

Example 4.2. Lickorish [21] showed that the mapping class group Map(K) of the
Klein bottle K is isomorphic to Z2 × Z2, where one copy of Z2 is generated by
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the Dehn twist along the only two-sided generic (meaning that it does not bound
an embedded disk or a Möbius band) curve α ⊂ K, while the other is generated
by the Y -homeomorphism. If tα denotes the Dehn twist about α, then t2α is iso-
topic to the identity, which in turn implies that there exists a genus two Lefschetz
fibration X(1) → S2 with only two singular fibers, where X(1) is a closed nonori-
entable 4-manifold. Notice that the extension from a genus two Lefschetz fibration
over D2 with monodromy t2α, to one over S2 is not unique (see Remark 4.4) but
that is irrelevant for our discussion here. Since there are two singular fibers of
X(1) → S2, it follows that e(X(1)) = e(K)e(S2) + 2 = 2, where e denotes the Eu-
ler characteristic. Moreover the integral homology H1(X(1);Z) is the quotient of
H1(K;Z) = 〈α, β | 2α = 0〉 by the homology class of α, and hence it is isomorphic to
Z. Next, we define X(n) inductively as the fiber sum X(n− 1)#fX(1), inducing a
corresponding genus two Lefschetz fibrationX(n)→ S2 with monodromy is t2nα . It
is easy to see that for each positive integer n, the 4-manifold X(n) is nonorientable,
H1(X(n);Z) = Z, and e(X(n)) = 2n. Moreover, we can obtain genus two Lefschetz
fibrations over an arbitrary closed orientable surface B, by forming the fiber sum
of X(n) with any Klein bottle bundle over B.

Example 4.3. There exists a relatively minimal (nonorientable) genus two Lef-
schetz fibration over D2, with a unique singular fiber whose vanishing cycle is
the two-sided essential curve γ that bounds a Möbius band in K. This Lefschetz
fibration can be extended to one over any closed orientable surfaceB, since a Dehn
twist about γ is isotopic to the identity [11].

Remark 4.4. The extension from a (nonorientable) genus two Lefschetz fibration
over D2 whose monodromy is isotopic to the identity, to one over S2 is not unique
and any two such extensions differ by an element of π1(Diff0(K)), which is known
to be isomorphic to Z by [10]. Taking this into account, all relatively minimal genus
two Lefschetz fibrations over S2 are covered in Examples 4.2 and 4.3.

Recall that a logarithmic transformation consists of removing a neighborhood
of a torus T 2 embedded with trivial normal bundle in an oriented 4-manifold and
gluing back in T 2×D2 by some diffeomorphism of the boundary. The logarithmic
transformation has been an essential tool in the classification of minimal elliptic
surfaces (see, for instance, [14, Chapter 8].)

Remark 4.5. Similar to generalized log transforms along a torus with trivial normal
bundle, it is possible to perform surgeries along a Klein bottle with trivial Euler
number. In favorable circumstances, such a surgery along the fiber of a nonori-
entable genus two Lefschetz fibration will preserve the fibration structure. We
advise the reader to turn to [3] for a discussion of how this surgery is related to the
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twisted round 5-handle attachments and to [23] for its relation to Luttinger surgery
on Lagrangian Klein bottles.

Remark 4.6. For any g ≥ 2, there exists a relatively minimal (nonorientable) genus
g Lefschetz fibration over any closed orientable surface B, with arbitrary number
of singular fibers. These can be constructed as in Example 4.3.

Next, we turn our attention to finding trisection diagrams of closed nonori-
entable 4-manifolds using Lefschetz fibrations.

Lemma 4.7. Let V denote the 4-manifold with boundary which is given by a plumbing of
the disk bundle over S2 with Euler number ±1 with the trivial disk bundle over any closed
nonorientable surface F . Then V admits a Lefschetz fibration over D2 whose regular fiber
◦
F is obtained by removing a disk from F , which has only one singular fiber carrying two
disjoint vanishing cycles: a homotopically trivial curve and a boundary parallel curve.

The statement in Lemma 4.7 is a very specific case of [7, Lemma 21], where the
authors deal with only the plumbings of orientable disk bundles, but the proof
goes through verbatim for the plumbings of nonorientable disk bundles. Our final
result is the following nonorientable analogue of [9, Theorem 3.7], which we stated
as Theorem 1.10 in the introduction.

Theorem 1.10. Suppose that X is a closed, nonorientable, connected 4-manifold which
admits a Lefschetz fibration over S2 equipped with a section of square±1. Then, an explicit
trisection ofX can be described by a corresponding trisection diagram, which is determined
by the vanishing cycles of the Lefschetz fibration.

Proof. Suppose that X is a closed, nonorientable, connected 4-manifold and let π :
X → S2 be a Lefschetz fibration, equipped with a sphere section of square ±1. Let
V denote a regular neighborhood of this section union a nonsingular fiber F of π.
Then the 4-manifold W obtained by removing the interior of V from X admits a
Lefschetz fibration πW : W → D2 with fiber

◦
F , which has the same set of ordered

vanishing cycles as π. Note that the total monodromy of the open book (with page
◦
F ) on ∂W is isotopic to the boundary Dehn twist t∂ . Applying Corollary 1.9, we
get a relative trisection on W realizing this open book on ∂W .

On the other hand, there is a Lefschetz fibration πV : V → D2 with fiber
◦
F ,

as described in Lemma 4.7. It follows, by Corollary 1.9, that V admits a relative
trisection realizing the open book (with page

◦
F ) on ∂V whose monodromy is given

by t∂ . Since ∂W = ∂V by construction, and the open books on ∂W and ∂V coincide,
we can glue the relative trisection on W with the relative trisection on V , to get a
trisection of X . In addition, the corresponding relative trisection diagrams can be
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glued together diagrammatically to obtain a trisection diagram ofX . It is clear that
the final trisection diagram of X will only depend on the vanishing cycles of the
initial Lefschetz fibration π : X → S2. �

Example 4.8. For any g > 2, the boundary Dehn twist t∂ can be expressed as a
product of interior Dehn twists along two-sided curves on the surface Σg,1. To
see this, consider for example the two-holed torus relation (tatbtc)

4 = tdte, and
cap-off the boundary component corresponding to e with a nonorientable genus
g − 2 surface with one boundary component. In the resulting nonorientable genus
g > 2 surface with one boundary component, we obtain td = (tatbtc)

4t−1e . Thus, by
Remark 4.1, for any g > 2, there exist a nonorientable genus g Lefschetz fibration
over S2 which admits a section of square±1. In Figures 14, 15, and 16 we illustrate
the process of obtaining an explicit trisection diagram for the total space of such a
Lefschetz fibration for g = 3, as prescribed by Theorem 1.10.

A A

-1

1
B B

CC

A A

B B

CC

A A

FIGURE 14. Left: the vanishing cycles on the fiber of the Lefschetz
fibration πV : V → D2 as in Theorem 1.10. The manifold V is a
neighborhood of of a square one section of X → S2 along with a
regular genus 3 fiber. There are two vanishing cycles, with signs as
indicated. Middle: we obtain a genus 7, 1-boundary relative trisec-
tion diagram for V . Right: cut arcs for the relative trisection diagram.
The red and blue arcs are parallel; the green arcs are obtained from
these by slides over blue closed curves.

In contrast, (nonorientable) genus two Lefschetz fibrations over S2 (for example,
X(n) → S2 in Example 4.2) do not admit any sections. This is because there is a
unique two-sided generic curve α on Σ2,1 (the Klein bottle with one hole) and for
any m ∈ Z we have t∂ 6= tmα .

Remark 4.9. The methods developed in this paper fall short in obtaining an alter-
nate proof, using Lefschetz fibrations, of the fact that every closed nonorientable
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FIGURE 15. Top left: the vanishing cycles on the fiber of the Lef-
schetz fibration πW : W → D2 as in Theorem 1.10, where X is de-
scribed in Example 4.8 with genus 3 fiber. The vanishing cycles are
ordered γ1, γ2, . . . , γ13. The vanishing cycle γ1 has positive sign while
the others have negative sign. Top right: we obtain a genus 29, 1-
boundary relative trisection diagram for W . Bottom: cut arcs for the
relative trisection diagram that agree with those in the relative trisec-
tion diagram for V from Figure 14 after identifying the induced open
books on ∂W and −∂V . The red and blue arcs are parallel; the green
arcs are obtained from these by slides over blue closed curves.

4-manifold admits a trisection analogous to the proof given in [9, Section 5] for
the orientable case, where contact geometry played an indispensable role. The
obstacle in the nonorientable setting is the nonexistence of an analogue of the
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Giroux-Goodman stable equivalence theorem [15, Theorem 1]. Nevertheless, it
was pointed out to us by the referee that the existence of trisections on nonori-
entable closed 4-manifolds can be proven via “broken” Lefschetz fibrations in-
stead, using the techniques in [2].
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FIGURE 16. We obtain a genus 36 trisection diagram for X described
in Example 4.8 (with genus 3 fiber) by gluing the relative trisection
diagrams for V and W , depicted in Figures 14 and 15, respectively.
The systems of cut arcs glue together to form closed curves in the
closed trisection diagram of X .

Acknowledgement: B.O. would like to thank Mustafa Korkmaz for a useful email
correspondence.
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