ON THE CONTACT OZSV ATH-SZAB O INVARIANT
TOLGA ETGU AND BURAK OZBAGCI

ABSTRACT. Sarkar and Wang proved that the hat version of Heegaard Rtoaology
group of a closed orientedtmanifold is combinatorial starting from an arbitrary nidee-
gaard diagram and in fact every closed oriertedanifold admits such a Heegaard dia-
gram. Plamenevskaya showed that the contact &ks8zab invariant is combinatorial
once we are given an open book decomposition compatibleanithntact structure. The
idea is to combine the algorithm of Sarkar and Wang with tisemedescription of the con-
tact Ozswath-Szab invariant due to Honda, Kazez and MatHere we observe that the hat
version of the Heegaard Floer homology group and the coftastath-Szab invariant in
this group can be combinatorially calculated starting fraeontact surgery diagram. We
give detailed examples pointing out to some shortcuts irctimeputations.

0. INTRODUCTION

We know that every closed contagimanifold (Y, £) can be obtained by a contattl
surgery on a Legendrian link in the standard cont&t{([3]). It is often convenient to
describe(Y, €) by a surgery diagram on the plane, i.e., by the projection lofgendrian
link in the standard conta¢R?, ker(dz + xdy)) onto theyz-plane with at+1 surgery co-
efficient assigned to each component of the link. 4.edenote theSpin® structure induced
by £. In order to calculate the Heegaard Floer homology grﬁ\jb(—Y, s¢) and in par-
ticular to identify the contact Oz&th-Szab invariantc(¢) € ﬁl\f(—Y, s¢) we first find a
suitable open book decomposition compatible with¢) using the algorithm in [1] (see
also [8],[17],[14],[18],[6].[7],[2]) and then construet compatible Heegaard diagram for
—Y as in [9] which also includes a description of a certain cyd#scending te(¢) in
fIT?(—Y, s¢). Next we convert this Heegaard diagram into a nice Heegdagptain ([16])
applying some finger moves without affecting the homologgst({) — no handle slides
are necessary [15]. Finally we calculd@(—Y, s¢) ande(§) € }/ITT(—Y, s¢) by simply
counting certain squareignd bigons;i\n this nice Hegg\aagtzd’n. In fact this procedure
will allow us to calculated F(—Y') = HF(Y'), not justH F'(—Y, s¢).
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2 TOLGA ETGU AND BURAK OZBAGCI

We note that each step of the suggested combination of theeadgorithms can be
quite involved and one would like to reduce the calculat@mmuch as possible by making
certain choices. Here we demonstrate the significance aftaylar choice in simplifying
the calculations.

We assume that the reader is familiar with the basics of thegbigrd Floer theory (see
[12], [13]). We will work with Z, coefficients in our calculations throughout this paper.

1. THE CONTACT OZSVATH-SZABO INVARIANT IS COMBINATORIAL

Theorem 1. Let (Y, &) be a closed contact-manifold described by a contact surgery
diagram on the plane. We observe that thein® structures., Heegaard Floer homol-

ogy groupsHF(-Y, se) C HE(Y) and the contact Oz&th-Szab invariant c(¢) €
HF(-Y,s,) can be calculated combinatorially.

Proof. Let (Y, &) be a closed contagtmanifold described by a contact surgery diagram on
the plane, i.e., by the projection of a Legendrian link in stendard contact

(R3, ker(dz + xdy)) C (S%,&y)

onto theyz-plane with a+1 surgery coefficient assigned to each component of the link.
First we use the algorithm in [1] (see also [8],[17],[148]16],[7],[2]) to find an explicit
open book decomposition compatible witi, ¢). The idea in [1] is to embed the Legen-
drian surgery link into the pages of an open book decomjpwsiti S* compatible with its
standard contact structure and then perform the requineighctsurgeries to obtain an open
book decomposition OBof Y’ compatible with the resulting contact structgre

Next we briefly recall ([9]) how to get a Heegaard diagram-faf which also includes a
cycle that descends to the contact GatlvSzab invariantc(¢) starting from a given open
book decomposition OBof Y compatible withé. The open book decomposition @Ban
be described as follows: Lét denote the page and let: S — S denote the monodromy
of OB;. ThenY is homeomorphic t& x [0, 1]/ ~, where the equivalence relation is given
by

(p,1) ~ (h(p),0), pesS
(p,t) ~ (p,t"), pe€adS; t,t' €l0,1].

It is not too hard to see thaf = H, U H, is a Heegaard splitting df’, whereH; =
Sx[0,1/2]) ~andH, = S x [1/2,1]/ ~. Let S, andS; /; denoteS x {0} andS x {1/2}
in H,, respectively. A basis on a compact surfétwith boundary is just a collection of
properly embedded disjoint ardg, . .., a,} on .S such that when we cuf along these
arcs we get a single polygon. Now we choose a bésis. .., a,} on the pageS and
choose a point in the polygonal region mentioned above. Consider the clesefdce
¥ = 512U -5 and glue the are; on S/, with the arca; on -5, to obtain a closed curve
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a; on Y. Letb; be an arc which is isotopic t@; by a small isotopy so that the following
hold:

(1) The endpoints of; are isotoped alondsS, /., in the direction given by the orientation
of S1/9.

(2)/The arcsy; andb; intersect transversely in one pointin the interior ofS, /5.

(3) If we orienta;, andb; is given the induced orientation from the isotopy, then iga s
of the intersection of,; andb; atx; is +1.

Then consider the ark(b;) on —5, and glue the aré;, andh(b;) to get a closed curve
gionX. Ifweleta = {ag,...,a,} and g = {fy,..., 0.}, then(X,5,a,2) is a
Heegaard diagram forY, while (3, a, 3, 2) is a Heegaard diagram far. Moreover
X =A{x1,...,2,} € T,NTy C Sym™(X) is a cycle inE’]\?(E,ﬁ, «, z) which descends
to the contact Ozsath-Szab invariantc(§) € fITT(—Y), whereT, = a; X --- X o, and
Tg = (1 x --- x 3,. Furthermore there is a map from the set of generdlars) T

of 517(2, B, a, z) to the set ofSpin® structures ort’. It turns out ([13]) that the special
cycle X corresponds to th&pin® structures, induced by{. Thereforec(¢) belongs to
fITT(—Y, s¢) C ﬁj\?(—Y). We note that; (¢) = ¢i(s¢) € H*(Y;Z) can be calculated
([4]) combinatorially from a given contact surgery diagrant (see page 195 in [11]).

A connected component of the complementoénd S curves inX is called a region.
Now we use the algorithm of [16] to convert this Heegaard idiaginto a nice Heegaard
diagram, which we still denote b§:, 3, a, z), so that all the regions oR not including
the base point are bigons and squares. In general we would need to apply fimgess
and handle slides of the curves in the Heegaard diagram. Handle slides, fortunadely
not arise in our case [15] and a finger move corresponds taamé&rind of isotopy of the
[ curves.

Recall that a domain is a formal linear combination of theargionX. A domainD is
called an empty embedde@d:.-gon fromA to B, whereA, B € T, N Tg, if

(1) D has coefficients and1 everywhere,

(2) D is topologically an embedded disk ah with 2m vertices on its boundary,

(3) There is exactly one region with coefficienaround each vertex on tledD,

(4) D does not contain any points #hor B in its interior.

Once we have a nice Heegaard diagraing, «, z), by [16], it is combinatorial to calcu-
late the boundary map of the Heegaard Floer chain complexXu$venake a list of all the
generators and count all the empty embedded bigons and thiy embedded squares on
the Heegaard surface connecting these generators by émgﬂ’nla diagram. Finally by us-
ing simple linear algebra witf, coefficients we can computé F'(—Y"). Here we empha-
size that we can combinatorially dete/rrﬂine all the genesatdich are r/ngpped to the dis-
tinguishedSpin® structures,, calculated F'(—Y, s¢) and identifyc(§) € HF (=Y, s¢). O
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2. THE UNIQUE TIGHT CONTACT STRUCTURE ONS' x S?

Consider the contaci-manifold (Y, ) described by the surgery diagram depicted in
Figure 1. When we convert this diagram into a smooth diagrdmRigure 2) and blow
down the—1-curve, we immediately see that the underlyBigranifold Y is nothing but
S x S2. It is well-known that there exists a unique tight contaotictiure onS* x S? up
to isotopy [5].

Proposition 2. The contact structuré is the unique tight contact structure ¢t x S2.

Proof. Below we show that the contact O&l-Szab invariantc() is nontrivial. There-
fore by a fundamental result in [138]is tight. O

Remark 3. In particular, the unique tight contact structure ¢t x S? has nontrivial
contact Ozs&th-Szab invariant. This was first proved if10].

—1

+1

FIGURE 1. A contact surgery diagram

(0-@-o

FIGURE 2. Underlying3-manifold isS* x S?

First we would like to understand the homotopy clasg abnsidered as an oriented
plane field and determine th&in® structures, induced bys. We calculate the first Chern
class oft as follows: LetK; and K, denote thet1 surgery curves in Figure 1, respectively.
Orient these Legendrian knots and jgtand ., denote the oriented meridians &f, and
K, respectively. Then by [4] we have

PD(c1(§)) = rot(Ky)|pu] + rot(Ky)[ue] = ] +2[u] = 0 € Hi(S" x 5%, Z)

whereP D denotes the Poincare dual and( K;) denotes the rotation number&f. More-
over sinceH; (S* x S?;Z) = Z has no2-torsion theSpin® structures; is determined by
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c1(€). In other wordss, is the uniqueSpin© structure onS*' x S? whose first Chern class
is trivial.

Our goal, however, is to calculaf/é-]\?(—Y, Se), ﬁ(—Y) and in particular the contact
Ozs\ath-Szab invariante(¢) € ]77?(—5/, s¢). By applying the techniques in [6] we can
find an open book decomposition @Bsee Figure 3) compatible witfr First we start
with the open book decomposition @Bnduced by the positive Hopf linkl in S2, whose
page is an annulus. Then we stabilize this open book decaongposnce and embed the +1
surgery curve onto a page. Next we stabilize one more timearmd the -1 surgery curve
onto a page. Applying the required surgeries we get theetksipen book decomposition.
Note that we get exactly the same open book considered byeRkarskaya in [15]. By
the lantern relation on the four punctured sphere we knowtlieamonodromy of OBis
a product of two right-handed Dehn twists and hefiie Stein fillable [8]. Therefore we
know that the contact Ozath-Szab invariant of¢ is nontrivial [13]. In the following we
will verify this fact by the algorithm described in [15], bute will choose three different
bases to illustrate that this choice is in fact crucial irca&dtions.

FIGURES. Left: Monodromy on a page of QBDehn twists about the solid
curves are right-handed, while the Dehn twist about theethshrve is left-
handed. Right: A basi$a, as, a3} on the pages, », the arcs{by, by, b3},
the intersection pointéz, x2, 23}, and the base point

2.1. Basis |. First we take the basifa,, a2, a3} on pageS which is shown on the right
in Figure 3. This is the basis that was used in [15]. We obstratthere are two “bad”
regions, one non-disk the other a hexagon. We divide eadtesétregions into two square
regions by a simple finger move ([15]) introducing a bigonhe process. The resulting
curves are depicted in Figure 5. After this modification &f Hieegaard diagram there are
nine regions which do not contain These regions are denoted By, . . ., Ry and labelled
by their indices in Figure 5.
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B2
Qa1
non-disk
. . 9
agp
hexagon

FIGURE 4. Bad regions are indicated on pagge

Now by examining the intersections afgﬂdﬂ curves onX we see that the gener-
ators of the Heegaard Floer chain comple¥' (X, 3, a, z) are X = (x1,29,23), A =
(.Tl, 21, 7)3), B = (.731, T2, Zg), Ck = (yk, T2, 22), Dij = (’UZ‘, wy, 23), Eij = (Uz'7 Wy, l’3), E =
(viy 21, 22), Gij = (y, w;,v3), wherel < i,7 < 2andl < k < 3. We calculated all the
boundary maps induced by the empty embedded bigons and emiydded squares:

0X =0

0A = BbyRs;+ R,

0B =0

801 == O

802 =X+ Cl by Ris+ R; + Rg anng

803 =B byR4 +R8

8D11 =B+ GH + Do by Ry, R5 andR6

0D12 = G12 by R;

0Dy = Dyy by Ry

0D =0

GEH =X+ Ep by Ry andRﬁ
8E12 = O

O0F9 = Ey by Ry

8E22 = O

8F1 = Fiy+ Cl by Rs andR3 + Ry + R5
8F2 = Fo + C3 + A by R, Rg anng
0G11 = Gha by Rg

0G12 =0



FIGURE 5. Curves, intersections and regions after the finger moves

8G21 = Fy + G11 + GQQ by Ry + R7, Rg andRG

8G22 = Ey + Gia by Ris+ Ry andR9

8G31 = Do + Ggg by Ry andR6

0G'39 = Day by Ry

The generators split into two sets: In the first set we havegthreeratorsX, C, Cs,
E11, Eqo, Fy with the following boundary mapsdX = 0, 0C; = 0, 0Cy = X + (4,
0F1; = 0,0F; = X + E,, 0F; = E» + C;. Note that these generators all correspond
to the Spin® structures, because we know ([9]) that the cycle corresponds ta,, and
there are Whitney disks connectingandCs, Cy; andC4, C; andFy, Fy andE;,, E,5 and
FE11. Similarly, there exist Whitney disks connecting the oth@g&nerators. Let; be the
vector space ovéf, generated by, C1, Cs, Fyy, E19, F1 and leto; : Vi — V; denote the
linear map induced by the boundary maps. Then it is easy tthaeeanko, = 2 and dim
ker §; = 4. It follows thatH F/(—S* x S2, s¢) = Zy & Z, which is generated bjX] = ¢(¢)
and[Cy + Ey; + Fi]. Hence we conclude that¢) # 0.

Remark 4. In [15], Plamenevskaya argues that;;, = X + Ei3 (dX = ¢+ yin her
notation) is sufficient to show thak] # 0. But in fact one has to show that, is not
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a boundary. For a complete argument one has take into accinenboundary relations
8F1 =Fs+ Cl and@CQ =X+ Cl.

To see that the generators in the second set correspond fferewti Spin© structure
s # sg¢, consider the lood’ in the Heegaard surface obtained by concatenating the
following paths: part ofy; from z; to vy, part of 35 from v, to x4, part ofa, from z; to z4,
part of 35 from z; to x3, part ofas from x3 to z, and part of3; from z, to z;. According
to [12], the difference between tt#&in® structures which correspond 26 = (1, 22, x3)
andF, = (vq, 21, 22) is measured by the Poinédual ofp([T]) in H2(S! x 5% Z), where

H,(%;7Z)
< lau], [aa], [as], [B1], [Ba], [ 3]

is the quotient homomorphism. In Figure 6, the cuivis drawn on the Heegaard surface
Y. together withy;’s such thatv;]'s complete«;]’s to a basis for the first homology &f.

p: H1(E§Z) -

- Hi(S'x S*72)=Z

FIGURE 6. The curvd’ on the Heegaard surfage= S, , U —S,. Here we
depicty so thatS, /, is on top which carries the solid curves afiglis at the
bottom which carries the dashed curves.

Onone handl'] = [y1] + [12] + [13] € H1(X;Z), where each of these curves is oriented
“clockwise”. On the other hand, the kernel of the quotientrepphismp is generated by
(1] + [13]s [12] + [13] and[a,]'s (see Figure 7). Therefop[I']) is +1 € Z = H,(S' x
S2;7), in particular nonzero. This implies that the generatérand F;, of the Heegaard
Floer chain complex correspond to differefjtin® structures, i.es # s..

Let V5 be the vector space generated by the remaining generatbistadh : 1, — 5
denote the boundary map. One can calculate by simple lingabra that ranld, = 8
and dimker 9, = 8. Hence we conclude that the homology fd%, 9>) is trivial, i.e.,
JL/H\?(—S1 x S2 s) = 0. Since there are no other generators, the Heegaard Floaibgyn
groups in the othebpin® structures are automatically zero. Consequently we get

HF(—S"x §?) = HF(—S" x §% s¢) ® HF (=S x 8% 5) = Zy ® Zy,



FIGURE 7. Thea and  curves onX = S,/ U —S;, where we use the
convention in Figure 6.

which was indeed proved in [12].

2.2. Basis Il. In the following we choose a different basis on the pdgd OB, and repeat
the calculations above. The point is that with this new chatbasis we will have fewer
generators and fewer relations. We depicttrand3 curves on pagg, /, in Figure 8. Now
by examining the intersections afand curves on> we see that there are exactly eight
generators of the Heegaard Floer chain compléx:= (1, 22, 23), A = (we, y1,23), B =
(z1,92,23),C = (w1,21,43), D = (w2,y3,22), B = (w1, 72,22), F = (01,42, 2),G =
(w1, Y1, 21)-

FIGURES. Left: Monodromy on a page of QBDehn twists about the solid
curves are right-handed, while the Dehn twist about theethshrve is left-
handed. Right: A basiéa, as, a3} on the pages, », the arcs{by, by, bs},
the intersection pointéz, 2, 23}, and the base point
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FIGURE 9. Thea andf curves on page)

There are five regions which do not contain These are denoted by, ..., k5 and
labelled by their indices in Figure 9. Note that all of theiogg are already squares. So we
do not need to apply any finger moves. Below we list the bounaeapys induced by these

squares:
0X =0
0B =0

0D = A+beR3+R4 andR4+R5

OF =X+ X=0byR,andR; + Rs + R4 + Rs

8F:B+D+G+B:D+GbyR1,RQ,R4andR2+R3—I—R4—I—R5

0G = A+beR2 + Rj andR2+R5

The chain complex naturally splits with respect to #)gn° structures. The generators
X and E correspond to th&pin® structures, which is uniquely determined by (s¢) =
c1(§) = 0. The other generators correspond to a differgmin® structures # s¢. To see
this consider the loop in the Heegaard surfaceobtained by concatenating the following
paths: part otv; from z; to wq, part of 55 from w; to ys, part of as from ys3 to x,, part
of 35 from x5 to z;, part ofas from z; to z, and part of3; from z, to z;. According to
[12], the difference between tht&in® structures which correspond €= (1, ys3, z1) and
E = (wy, x9, 2) is measured by the Poinéadual ofp([T']) in H?(S! x 5% Z), where

< lau], [aa], [az], [B1], [Ba], [Bs] >

is the quotient homomorphism. In Figure 10, the curvie drawn on the Heegaard surface
Y. together withy;’s such thatv;]'s complete«;]’s to a basis for the first homology &f.

p: H(X,Z) — ~ H(S'"x S*%7) 27
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FIGURE 10. The curvd’ on the Heegaard surfa¢é= S,,, U —S, where
we use the convention in Figure 6.

FIGURE 11. Thea andj curves onX = S;,, U —S,; where we use the
convention in Figure 6.

Onone handl'] = [y1] + [12] + [13] € H1(X;Z), where each of these curves is oriented
“clockwise”. On the other hand, the kernel of the quotientrepphismp is generated by
(1] + [v3], [11] — [12] @ande;]'s (see Figure 11). Therefoyd[']) is +1 € Z = H(S! x
S%,7Z), in particular nonzero. This implies that the generatdrand E of the Heegaard
Floer chain complex correspond to differefitin® structures, i.e.s # s.. Moreover
one can see that the homology induced by the generdtdr®, C, D, F, G} is trivial.
Therefore we conclude thai.iﬁ?(—s1 x S?) = f/ll\f(—Sl X 8% s¢) = Zy ® Z wWhich is
generated byX| and[£]. This confirms again that the contact cla&3 = (&) # 0.

2.3. Basis lll. Interestingly there is yet another basis which simplifies ¢alculations
dramatically. The basis given in Figure 12 produces onlygewnerators{ = (x1, 22, x3),

andA = (y1,x2,y3). Other than the one which contains the base pairhere are four
regionsRk,..., R, indicated in Figure 13 by their indices and these regionsafirady
squares. MoreovetA = X + X = 0by R, + Ry andR3 + R4, andoX = 0, confirming
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HF(—S' x $?) = HF(—S" x S?% s¢) = Zy @ Zs, the nontriviality of the contact class
[X] = ¢(§) and consequently the tightnesscof

FIGURE 12. Left: Monodromy on a page of QB Dehn twists about
the solid curves are right-handed, while the Dehn twist alto& dashed
curve is left-handed. Right: A bas{si, a2, a3} on the pages, ,, the arcs
{b1, b2, b3}, the intersection point&r, x4, 23}, and the base point

FIGURE 13. Curves, intersections and regions on pége

3. AN OVERTWISTED CONTACT STRUCTURE ON5®

Consider the contaci-manifold (Y, ¢) described by the surgery diagram depicted in
Figure 14. When we convert this diagram into a smooth diagss®a Figure 15) and blow
down the—1-curve, we immediately see that the underlyBgranifold Y is homeomor-
phic to S3. Note that there is a uniqu&pin® structure onS3. From the contact surgery
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diagram we obtain an open book decompositions ©B S* compatible with¢ shown on
the left of Figure 16.

—1

+1

FIGURE 14. A contact surgery diagram

FIGURE 15. Underlying3-manifold isS?

FIGURE 16. Left: Monodromy on a page of QB Dehn twists about the
solid curves are right-handed, while the Dehn twist aboetdhshed curve
is left-handed. Right: A basi$ai, as, as,as} on the pageS, ., the arcs
{b1, ba, b3, by}, the intersection point§e,, xo, x3, 24}, and the base point

Choosing a basis indicated on the right in Figure 16 gives thegidard diagram whose
« and§ curves are shown in Figure 17. It is possible to convert treedgdard diagram
into one without any bad region (except for the region ingigdthe base point), by
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a1

(Al

hexagom

FIGURE 17. The bad region is indicated on pagge

a simple finger move. The curves of this new Heegaard diagr@ndepicted in Fig-
ure 18. There are 13 regions which do not contain These regions are denoted by
Ri, ..., Ri3 and labelled by their indices in Figure 18. Examining thesisgctions of
« and( curves on the Heegaard surfacene can confirm that the Heegaard Floer chain
complex@@,ﬁ,a,z) have 29 generators in totak’ = (.ZUhfL’Q,l’g) A = (1,7, 23,1),
Bij = (Ui,tj,l'g,$4),cij = (UZ', Zj,U,ZE4),DZ‘j = (U“T‘ (% w]) E = (UZ‘,T, Jfg,p), Fk =
(Y, T2, u, x4), Gp = (yg,ryu,n), H; = (¢, t;, x3,n), I; = (q,xQ,u w;), J = (q, xse,z3,p),
K; = (q,z,u,n), wherel < 4,7, < 2andl < k < 3. One can also calculate all the
boundary maps:

0X =0

0A = X by Ry + Ry + Rio

0B11 = By by Ry

0B19 = X + By by R, + Ry andRy

@ng =0

0C11 = Bia + Cy + Fy by Rs, Ry and R,

0C1g = Byy + Oy by Ry + Rz and Ry

0C9 = By + I by Rs ande + Rj

0C9 = By by Riy + Ry3

0D11 = Dy by Ry

8D12 = 012 + Doy + E4 by Rg, Ry andR13

0Dy =0

8D22 =Cy + FEy by Ry andR13

O, = By, + E>; by Ry + Ry and Ry



FIGURE 18. Curves, intersections and regions afer the finger move

8E2 = By by Rg + Rq1

0F, = X + F, byR2 + R3 andR, + Rs

0F, =0

OFy = X by Rig + Ry + Ri3

0G1 = A+ Dy + F1 + Gy by Ry + Rs, Rs + Rg, Ry + Ri1 + R, andR, + Rs
0Gy = Doy + Fy by Rg andRy + Ri1 + Ri2

0Gs = A+ Fy by Rig+ Riy1 + Ris anng + Ri1 + Ry
OH, = A+ By +J by Rs + Ry9, Rg + R7 andR12
8H2 = By by Rﬁ + R7

8]1 = F5 by Ry

ol, = F5+J by Rgs + Ry andR13

0J = X by Ry + Ry + Ryo + R11

15
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8[(1 = 021 + H2 + [1 by RG + R7, Rg ande + R5 + RG

0Ky = Cop + Gz + Hy + I, by R + Ry, Rg, Riy + Ris and]jg + Rio

From9dA = X one immediately sees the) = [X] = 0 € HF(—5?, s¢) even withZ
coefficients. By an important result in [13],is not Stein fillable. In fact, since the unique
tight contact structure o8°® is Stein fillable by [5],¢ is overtwisted. On the other hand,
it is seen that the image of the boundary map is 14 dimensginee it is generated by
{X, Bo1, Bag, Doy, 5, A+ F5, A+ J, B11 + Ca2, Bi1 + Eo, Bis + Coy + F1, A+ D1y +
Fy + Go,Cig + Doy + Ey,Co + Hy + I, Coe + G + Hy + I, }. Therefore the kernel is
29 — 14 = 15 dimensional. Hence we verified thBtE(— 53, s¢) = HF(—5%) = Z.

Remark 5. Note that this contact structure has an open book decompaosithich differs
from the one in the previous section by an additional purectand a right-handed Dehn
twist around that puncture. It is interesting that these rfiodtions, even though the Dehn
twist is right-handed, convert a Stein fillable contact stune to an overtwisted one.

Remark 6. An alternative way to see the overtwistedness of the contaciste £ given
by the contact surgery diagram in Figure 14 is to use dhénvariant of as a plane field
and compare it with that of the unique tight contact structareS®. The former isl /2

whereas the latter is-1/2.
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