EMBEDDING FILLINGS OF CONTACT 3-MANIFOLDS
BURAK OZBAGCI

ABSTRACT. In this survey article we describe different ways of emlieddillings of con-
tact 3-manifolds into closed symplectic 4-manifolds.

0. INTRODUCTION

One of the most exciting advances regarding the topologyroa8ifolds in 2004 was the
solution of the “Property P” conjecture by Kronheimer andolika [KrMr-04]. Namely,
they proved that no surgery on a knotS# can produce a counter-example to the Poiacar
conjecture. The last ingredient in their proof was suppbgd recent theorem of Eliash-
berg [EI-04]: Any weak filling of a contact 3-manifold can be embedded s\yatigédly into

a closed symplectic 4-manifoldrhis particular way of embedding a weak filling into a
closed symplectic 4-manifold was also used by @#is\and Szab [0zSz-04] to show that
their (appropriately twisted) contact Heegaard Floeriiiavd of a fillable contact structure
does not vanish.

In order to prove his theorem Eliashberg attaches a synipd¢tandle along the binding
of an open book compatible with the given weakly fillable @attstructure such that the
other end of the cobordism given by this symplectic 2-hamadiachment symplectically
fibres overS!. Then he fills in this symplectic fibration by a symplectic sefietz fibration
over D? to obtain a symplectic embedding of a weak filling into a ctbsgmplectic 4-
manifold. Note that the method of construction in [El-O4kda its roots from the one
considered in [AO-02].

Eliashberg’s theorem was obtained independently by Etistr@4] using different meth-
ods. The first step in Etnyre’s construction is to embed a vildladg into a weak filling of

an integral homology sphere. Note that, from siiegerypoint of view, this step also fairly
easily follows from Stipsicz’s results in [St-03]. Then arten modify the symplectic form
near the boundary so that it becomes a strong filling (cf.9BI-[O0-99]). This is just a
homological argument. Now the problem is reduced to findimgmbedding of a strong
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filling. The strategy at this point is to find a concave fillimgdap off the convex boundary
of this strong filling from the “other side”. One way of findirigis concave filling is to

further reduce the problem (cf. [EH-02]) to the existencadymplectic embedding of
a Stein filling into a closed symplectic 4-manifold, whichsaaready provided by Lisca
and Matic [LM-97]. Alternatively, one can proceed with ctmsting an explicit concave
filling (cf. [Ga-02b]) obtained by a careful investigatiohtbe monodromies of the open
books compatible with different types of symplectic andtachsurgeries.

The purpose of this survey article is to describe and comgrateeddings due to Eliashberg
and Etnyre and discuss some previous work on the subjectoWétrat there are now many
ways of embedding a weak filling symplectically into a closgdplectic 4-manifold. In
Section 7 we construct an embedding which is obtained by guntpthe various ideas
developed in the article. We would like to point out that thembeddings are constructed
by making use of a recent theory developed by Giroux [Gi-OBicl establishes a (one-
to-one) correspondence between open book decompositfaBsnanifolds and contact
structures.

We would also like to point out that in [Et-05] Etnyre givesitgua bit of details of the ar-
guments in [Et-04] including the necessary backgrounddtiteon, there is another recent
survey article by Geiges [Ge-05], where he emphasizes thdlrat contact geometry has
played in the proof of “Property P” for knots.

1. OPEN BOOK DECOMPOSITIONS AND CONTACT STRUCTURES

We will assume throughout this paper that a contact strague ker o is coorientable
(i.e., a is a global 1-form) and positive (i.eqq A da > 0 ) unless otherwise stated. In
the following we describe the compatibility of an open bo@camposition with a given
contact structure on a 3-manifold.

Suppose that for a link in a3-manifoldY the complement™\ L fibers asr: Y\ L — S!
such that the fibers are interiors of Seifert surfaced.ofThen (L, ) is anopen book
decompositiorfor just anopen bookof Y. For eacht € S, the Seifert surfacé = 7—1()
is called apage while L thebinding of the open book. The monodromy of the fibration

is called themonodromyof the open book decomposition.

Any locally trivial bundle with fiberF’ (a compact oriented surface) over an oriented circle
is canonically isomorphic to the fibration

I xF I

L

(1,z) ~ (0,h(z))  OI

for some orientation preserving self-diffeomorphismaf F'. In fact, . is determined by the
fibration up to isotopy and conjugation by an orientationspreing self-diffeomorphism

Nsl
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of F'. The isotopy class represented bys called the (topological) monodromy of the
fibration.

The mapping class group'» of F' is defined as the quotient of the group of orientation
preserving self-diffeomorphisms df fixing 0F pointwise modulo isotopies fixingF’
pointwise. Given a compact oriented surfdcgith nonempty boundary ande I', then
we can consideF'(h) = I x F/(1,z) ~ (0, h(z)) which is called a mapping torus. Note
that sinceh is the identity oo F', the boundary F'(h) can be canonically identified with
copies of7? = S x S*, where the first! factor is identified with/ /01 and the second one
is identified with a component &fF'. HenceF'(h) can be completed to a closgdnanifold

Y equipped with an open book decomposition by gluing itopies of D? x S* to F'(h)
so thatoD? is identified withS! = I/01 and theS! factor in D? x S! is identified with

a boundary component off'. In conclusion, an element € I'r determines &-manifold
together with an open book decomposition on it.

Theorem 1 (Alexander [Al-23]) Every closed and oriented 3-manifold admits an open
book decomposition.

The contact conditiom A doa > 0 can be strengthened in the presence of an open book
decomposition onY” by requiring thatx > 0 on the binding and« > 0 on the pages.

Definition 2. An open book decomposition of3amanifoldY and a contact structure

on Y are calledcompatibleif £ can be represented by a contact formsuch that the
binding is a transverse linkja is a symplectic form on every page and the orientation of
the transverse binding induced byagrees with the boundary orientation of the pages.

Theorem 3 (Giroux [Gi-02]). Every contact 3-manifold admits a compatible open book
(with a connected binding).

We refer the reader to [Et-05] and [OzSt-04] for more on threespondence between open
books and contact structures.

2. LEFSCHETZ FIBRATIONS

Suppose thak andX: are given compact, oriented, connected 4- and 2-dimensioaa-
ifolds. A smooth mapf: X — X is called aLefschetz fibrationf df is onto with finitely
many exceptiongp,,...,pr} = C C int X (called the set of critical points), the mgps
a locally trivial surface bundle ovet — f(C) and around; € C andg; = f(p;) € f(C)
there are orientation preserving complex chaftandV;, respectively, on whicly is of
the formz? + 22.

Notice that the manifold& andX might have boundaries. If the typical fibgr'(¢) is a
closed surface thefir! (9%) = 90X, but the definition also allowg~(¢) to have boundary,
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in which casef~1(9%) forms only part ofdX. We call the fibersf~'(¢;) (¢ € f(C))
singular, while the other fibers are calledgular. Two Lefschetz fibrationg: X — X
and f': X’ — Y’ are calledequivalentif there are diffeomorphism&: X — X’ and
¢: X — Y suchthatf o ® = ¢o f.

By definition removing the singular fibers turns a Lefscheteatibn into a fiber bundle
with a connected base space. Consequently all but finitelyyrfibars of a Lefschetz
fibration are smooth, compact and oriented surfaces, alhaflwhave the same diffeomor-
phism type. We will assume that there is at most one criticaitpon each fiber and no
fiber contains an embedded 2-sphere of self-intersectionbeu—1. Each critical point
of a Lefschetz fibration corresponds to an embedded cirdledca vanishing cyclen a
nearby regular fiber, and the singular fiber is obtained bhapsing the vanishing cycle to
a point.

The boundary of a regular neighborhood of a singular fiberssréace bundle over cir-
cle. In fact, a singular fiber can be described by the monodgrofthis surface bundle
which turns out to be a right-handed Dehn twist along theesponding vanishing cycle.
Once we fix an identification of a regular fiber with a compachrected, oriented surface
F, the topology of the Lefschetz fibration is determined byntsnodromy representation
U: (X — {critical valueg) — T'r. In caseX = D? the monodromy alongD? = S! is
called thetotal monodromyof the fibration; according to the above said it is the proddict
right-handed Dehn twists corresponding to the singulargibe

A Lefschetz fibration oves? with closed fibers can be decomposed into two Lefschetz fi-
brations overD?, one of which is trivial. Hence a Lefschetz fibration o\%ris determined

by a relator in the mapping class group. Conversely, giverodymt of right-handed Dehn
twists in the mapping class group we can construct the quoreting Lefschetz fibration
over D?, and if the given product of right-handed Dehn twists isapat to identity (and

g > 2) then the fibration extends uniquely ov&t. The monodromy presentation also pro-
vides a handlebody decomposition of a Lefschetz fibraticer &7: we attach 2-handles
to I’ x D? along the vanishing cycles with framingl relative to the framing the circle in-
herits from the fiber. (For a more detailed introduction te tireory of Lefschetz fibrations
see [GS-99] and [OzSt-04].)

3. DIFFERENT TYPES OF FILLINGS OF CONTACB-MANIFOLDS

In this section we give definitions of different types of syagtic fillings of contact 3-
manifolds. A symplectic 4-manifol{lX, w) will be assumed to be oriented byA w.
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3.1. Weak filling. A contact3-manifold (Y, ¢) is said to beweakly fillableif there is a
compact symplectic 4-manifoldV, w) such thabW’ = Y as oriented manifolds ang|, >
0. In this case we say th&ll, w) is aweak fillingof (Y, ¢).

3.2. Strong filling. A contact3-manifold (Y, ¢) is said to bestrongly fillableif there is
a compact symplectic 4-manifoldV, w) such thatbW = Y as oriented manifolds, is
exact near the boundary and its primitivgi.e., al-form with da. = w) can be chosen in
such a way thaker(«/,,,) = &. In this case we say thalV, w) is astrong fillingof (Y, ).
Clearly a strong filling is a weak filling by definition.

Suppose thatlV, w) is a compact symplectic 4-manifold with nonempty bounday =

Y and there exists a Liouville vector field( i.e., £L,w = w) defined in a neighborhood of
and transverse to'. Thenv induces a contact structu¢e= ker « onY wherea = 1wy

is a contact 1-form. I points out ofi¥ alongY then we say thatiV, w) is aconvex filling
of (Y,¢), and(Y,¢) is said to be theonvex boundargf (IV,w). It is easy to see that the
notion of a convex filling is the same as the notion of a stroltigdi If v points intolV
alongY’, on the other hand, then we say thEf, w) is aconcave fillingof (Y, &) and(Y ¢)

is said to be theoncave boundargf (IW,w). Here notice that ity points out oflV then

¢ is a positive contact structure of, while if v points intolV then¢ is a positive contact
structure on-Y'.

If a compact symplectic 4-manifold” has multiple boundary components and’ifis a
boundary component dfi” which satisfies the definition of convexity (concavity, rgsp
above then we say thaf is a convex (concave, resp.) boundary componert/oflt is
quite possible that a symplectic 4-manifdidcan have a convex (concave, resp.) boundary
component” without W being a filling ofY’, since the other components Iéf may not

be convex (concave, resp.).

3.3. Stein filling. A compact 4-manifold?” with nonempty boundargl’ = Y is called

a Stein domainf there is a Stein surfac& with plurisubharmonic functiop: X —

[0, 00) such thatiV = x~1([0,]) for some regular value So a compact manifold with
boundary (and a complex structufeon its interior) is a Stein domain if it admits a proper
plurisubharmonic functiop which is constant on the boundary. Then the complex line
distribution induced by is a contact structureonY’. In this case we say that the contact
3-manifold (Y, &) is Stein fillableand (1, J) is a called &Stein fillingof (Y, ¢). Itis easy

to verify that a Stein filling is a strong filling. In fact,/J*(dy) induces a Khler structure
on (W, J). More generally, a cobordisi” (with boundary—Y; U Y3) is aStein cobordism

if W is a complex cobordism with a plurisubharmonic function’’. — R such that

o t;) =Y;, for some regular values < t,.
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We refer the reader to [Et-98] and [OzSt-04] for a furtheraded discussion of different
types of fillings of contact 3-manifolds.

4. EMBEDDING A STEIN FILLING

The first result in the literature about embedding a fillingaodontact 3-manifold into a
closed symplectic 4-manifold was obtained by Lisca and dAd®iecall that a Stein filling
(i.e., a Stein domain) admits adkler formd.J*(dy) which is an exact symplectic form,
wherey is the plurisubharmonic function defining the Stein filling.

Theorem 4(Lisca-Matic [LM-97]). A Stein filling admits a Bhler embedding into a (min-
imal) compact Khler surfaceX (of general type), such that the pull-back of thahker
form onX is the exact symplectic form on the Stein filling.

Apparently what motivated Lisca and Matic to construct sachembedding was their
search for a method to distinguish tight contact structukésing Seiberg-Witten theory
coupled with their embedding result, Lisca and Matic werke db show that for any
positive integem, there exists a homology 3-sphere with at leastomotopic but non-
isomorphic tight contact structures. Lisca and Matic usdydital tools in the construction
of their embedding and the starting point of their embed@rggven by a holomorphic em-
bedding of a Stein domain into an affine algebraic manifolihwivial normal bundle (cf.
[DLS-94]). Roughly speaking, the idea here is to approxinaataytical maps by algebraic
ones, namely by polynomials.

A very different approach to embed a Stein fillisgnoothlyinto a closed symplectic 4-
manifold was presented in [AO-02]. The construction in [A@}is topologically more
explicit than the method of Lisca and Matic although the keisuweaker since only the
smoothness of the embedding is clear from the presentation.

The simple construction in [AO-02] is based on a theorem ofdoal Piergallini ([LP-01],
cf. also [AO-01]) which says that every Stein domain admitseéschetz fibration over
D?, whose vanishing cycles are homologically non-trivial be tespective nearby regular
fibers. Notice that the fibers of such a Lefschetz fibratioh matessarily have non-empty
boundaries. Itis easy to see that the boundary a Lefschedtidib (whose fibers have non-
empty boundaries) admits a canonical open book decompositid we can assume that
the binding of this open book is connected. To embed a Stémgf{which has a Lefschetz
fibration structure) into a closed symplectic 4-manifold first attach a 2-handle to the
binding of the open book in the boundary of this Lefschetzafion overD? to get a
Lefschetz fibration oveP? with closed fibers. Then we extend this fibration to a Lefstchet
fibration overS2. The resulting 4-manifold is known to be symplectic by a lestiGompf
([GS-99]). This construction gives a smooth embedding otaanSfilling into a closed
symplectic 4-manifold.



5. EMBEDDING A STRONG FILLING

In [EH-02], Etnyre and Honda proved that every contact 34ifo&hhas (infinitely many
distinct) concave fillings. Their proof was based on the etdbey result of Lisca and
Matic we discussed in the previous section. In [Ga-02b], Gayed the same existence
result (independent of the Lisca-Matic embedding) by présg a method to explicitly
construct, handle by handle, a concave filling of a givenacir#-manifold. A symplectic
embedding of a strong filling of a contact 3-manifold into aseld symplectic 4-manifold
trivially follows from Proposition 5.

Proposition 5 (Etnyre-Honda [EH-02], Gay [Ga-02b]JAny contact 3-manifold admits a
concave filling.

Proof. We will describe a proof (cf. [OzSt-04]) which is very similto the one given in
[EH-02]. The difference here is that we rather do not traestantact +1)-surgeries along
Legendrian knots into the monodromy language of open books.

Given an arbitrary contact 3-manifo(d, ). Let « be a contact 1-form fof. Consider a

compact piecélV =Y x I,w = d(e'«)) of the symplectization ofY’ £). Itis easy to see
thaty x {1} is a convex boundary component(®¥, w) while Y x {0} is a concave bound-
ary component. Our strategy here will be to cap off the corarek of (17, w) obtaining a

concave filling ofY =Y x {0}.

In [DG-04], Ding and Geiges proved that every (closed) canBamanifold(Y, £) can be
given by a contactt-1)-surgery on a Legendrian lirikin the standard contaéf. Here the
surgery coefficients are measured with respect to the coingaing. Letl.* C L denote
the set of the components of the lifikwith (£1)-surgery coefficients, respectively. LIt
denote the Legendrian link we get by considering Legendrigsih-offs of the components
of L.

Proposition 6 (Weinstein [We-91]) Let (IW,w) be a compact symplectic 4-manifold with
a convex boundary componédnt ¢). A 2-handle can be attached symplectically g, w)
along a Legendrian knat C (Y, ¢) in such a way that the symplectic structure extends to
the 2-handle and the new sympleetimanifold(W, w) has a convex boundary component
(Y, €), where(Y, €) is given by contact—1)-surgery (i.e., Legendrian surgery) alodgc

(Y, €).

Thus when we attach symplectic 2-handle§itg w) along the knots oK C Y =Y x {1}
we get a symplectic 4-manifol?”’, ') with a convex boundary componefit’, ') by
Proposition 6. We observe that the contact manifdld ¢’) can be given by a Legendrian
surgery alond.—, since a combination of a contagt1)-surgery on a Legendrian knot in
L* and a contact—1)-surgery on its push-off i cancels out (cf. [DG-04]). We note that
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the cancellation of these contagt1)-surgeries just corresponds to the cancellation of a
right-handed Dehn twist along a curve with a left-handedrb@hst along a curve parallel
to it in the monodromy of an open book in the proof of Etnyre &lwthda [EH-02].

Consequently(Y’, ¢’) is Stein fillable by a result of Eliashberg [EI-90] since itab-
tained from the standard conta€t via Legendrian surgeries only. Consider a Stein filling
(W".J) of (Y, &) and embed this filling into a closed symplectienanifold (7, w) us-
ing Theorem 4. Then since a Stein filling is a convex filling leinition, (7 \ int /") will

be a concave filling ofY”, ¢'). Hence we conclude that

W) | (Z\intW”, wy)
(Y.
is a concave filling of Y, &), which is illustrated in Figure 1. Here we use Lemma 11 to
glue these symplectic 4-manifolds symplectically.

Z,w,
Y, & Y, &
— Wo 0 N
W' Z - int W','wz

FIGURE 1. A concave filling of(Y, &)
0

Next we will discuss another proof of Theorem 5 given in [B{-@hich is not based on the
embedding of Lisca and Matic. This method of proof is essdigtdue to Gay ([Ga-02b])

except for a slight short-cut at the end. We first collect Wwetofew results that we will

need. We denote hy; a right-handed Dehn twist about a cury®n a surface:.
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Lemma 7 (Wajnryb [Wa-99]) The relationt. = (tq, 0 ts, © -+ 0 tg,,_, © ta,,)* " holds
in the mapping class groupy, wherea;'s are the curves on a genyssurfaceF’ with one
boundary component depicted in Figure 2 anid a curve parallel t@) F'.

FIGURE 2. Genugy surfaceF’ with boundary

Lemma 8. Any element of the mapping class group of a surfaéewith one boundary
component can be expressed¢as- ¢ o t;ll 0---0 t;nl for somem € Z and some non-
separating curves; C F, wherec is a curve parallel t@ F.

Proof. We can express,, as a product of non-separating left-handed Dehn twiststand
by Lemma 7. Therefore any non-separating right-handed D&lst — being conjugate
to t,, — is a product of non-separating left-handed Dehn twiststand@his finishes the
proof since it is well-known that the mapping class group stigace with one boundary
component is generated by non-separating Dehn twists.

O

Lemma 9 (Kanda [Ka-97]) A non-separating curve on a convex surface in a contact
3-manifold can be made Legendrian by isotoping the surfaaigh convex surfaces such
that the contact framing of agrees with its surface framing.

Lemma 10 (Gay [Ga-02b]) Given a Legendrian knat on a page of an open boak,

compatible with(Y, ¢). Leth € I'r denote the monodromy eb.. Then a contact—1)-

surgery onL induces a contact structur¢ compatible with the open boak, whose
monodromy is given by = hot, € I'p.

Lemma 11. If (Y, &) is a convex boundary component @f;, w; ) and is a concave bound-
ary component of W, w,) then we can glué¢iV, w;) and (IW,, ws) symplectically along
their common boundary componéii ¢).

The result above was first explicitly stated in [Et-98] aligb it was implicit in Eliashberg’s
work in [EI-96]. Note that after gluing one of the symplectarms needs to be scaled
appropriately.
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We are now ready to describe a second proof of Theorem 5. Gartsie compact piece
(W,w) of the symplectization ofY, {) as in the proof above. Letb, be an open book
decomposition of” with a connected binding which is compatible wigh Let ¢ be the
monodromy of this open book. Now use Lemma 8 to wiite= ¢ o t;ll o---0 t;nl. We
can assume that the curyg is a Legendrian curve which lies on a convex page Gf
by Lemma 9. Then conta¢t-1)-surgery alongy, yields a contact structure which has a
compatible open book whose monodromy is givenpbyt, =t o t;ll 0---0 t;nl_l by
Lemma 10.

We repeat this process for all the curves(for : = n — 1,---,1) to obtain a contact
3-manifold (Y”, ') whose compatible open bool,, has monodromy.*. Moreover we
can assume that is odd andn > 1, otherwise we can just perform some more contact
(—1)-surgeries along,’s (depicted in Figure 2), after making them Legendrian ctinct
convex pages using Lemma 9.

On the other hand, by Proposition 6, a confaet )-surgery along a Legendrian knbtin

a convex boundary component of a symplectic 4-manifold eanltained by a symplectic
2-handle attachment alonly Hence there exists a symplectic 4-manif¢ldl”’, ') with

a convex boundary componefit’, ¢’) which is obtained from{WW,w) by attaching sym-

plectic 2-handles along;’s in the convex end ofIV,w). Next we will prove that we can
actually assume that = 1.

We note that Proposition 6 is also true for attaching symechandles. Namely, one
can attach a symplectic 1-handle to a symplectic 4-mandtdg two points on the bind-
ing of a compatible open book decomposition of a convex bagndomponent in such
a way that the symplectic structure extends over the 1-keanti addition the induced
surgery on the convex boundary component corresponds itigtakconnected sum with
a copy of standard contaét' x S2. At the level of compatible open books, attaching a
(4-dimensional) symplectic 1-handle to a convex boundamngmonent along two points in
the binding of a compatible open book corresponds to attgcn(2-dimensional) 1-handle
to the page of that open book. Note that we extend the old monodby identity over the
new 1-handles.

Letg’ = mg+5(m—1). Now we attach symplectic 1-handles(ié”, ¢') so that the result-
ing compatible open book on the boundary has a pagef genusg’ with one boundary
component. Let’ be a curve parallel t6 /" as shown in Figure 3.

Then by Lemma 7 we have

tc’ - (tlll o) tag o---0t1 )49/4-2

O
a29/71 a2g’

= (tay Oty 0+ O lay, Otay,, O -0t mot2) € Ty,

©ta,,)
a2g+41 a2g/71 a29/
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FIGURE 3. Genug)’ surfaceF” with boundary

To simplify the notation we will denote the result of attaupisymplectic 1-handles to
(W', w') again agW’, ). Now attach more symplectic 2-handles(id”, w’) along the
Legendrian curvesy 1, asg2, - - - , azy SuUfficiently many times so that the resulting con-
vex boundary has a compatible open book with monodromyHere note that we are
inserting (rather than appending as in Lemma 10) some hightted Dehn twists, but nev-
ertheless Lemma 10 holds true in this case (cf. [Ga-02b])wWaetill denote the resulting
symplectic 4-manifold byV’ '), to simplify the notation.

Summarizing the above discussion, by attaching sympléetmd 2-handles tgV, w) we
end up with a symplectic 4-manifold?”’, ') with a convex boundary componeit’, ¢')
whose compatible open book,, has the following description: The pagé is a genus/
surface with one boundary component and the monodromy isgéesiight-handed Dehn
twist along a curve’ parallel tooF"’. Let F denote the surface obtained by capping off the
surfaceF” by gluing a 2-disk alon@ F".

Lemma 12. The 3-manifoldy” is a circle bundle over the surfadeé with Euler number
—1.

Proof. This is a well-known result; we repeat the proof describepAl@-02]. Recall the
relation

4g9'+2
(tzutag .. .t%g/) 9 =ty
in the mapping class grodp. It induces a relation

(tastay - ta, )9 2 = 1.

Agg

in the mapping class grodps. This later relation induces a Lefschetz fibratjpn X — 52
admitting a section of squarel. Consider a neighborhodd of a regular fiber union this
section. We observe th&l/ = —Y. This is because& \ int U is a Lefschetz fibration
(with bounded fibers) with monodromy

(ta1ota2o"'ot ot >4g/+2:tc"

(129/71 a2g’
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MoreoverU is obtained by plumbing #?2 x F (a regular neighborhood of the fiber) and
a disk bundle ovef? with Euler number-1 (a regular neighborhood of the section). In
Figure 4 we illustrated a handlebody diagram of the 4-méahita

0 —& N~ S o)

[ Y Y ~ )

OO & ? %}@

) ) oYy
N\ N\

FIGURE 4. Plumbing ab? x F and aD?-bundle overS? with Euler number-1

We can blow down the-1 sphere to get a disk bundle ovErwith Euler numbert1 (cf.
Figure 5). Blowing down a-1 sphere changes the 4-manifold but the boundary 3-manifold
remains the same (up to diffeomorphism). Note that the banaof a disk bundle oveF

with Euler number+1 is circle bundle ovel” with Euler number+1. Our claim follows

by reversing the orientations, since when we change thatatien of a circle bundle over

F with Euler numbert+1, we get a circle bundle over with Euler number-1.

+1__€-; @ ---------- @ =)

FIGURE 5. D2-bundle overF with Euler number-1

O

Now consider the disk bundI&/ over F with Euler numberl. Then)M admits a natural
symplectic structurey,, so that(M, w,,) has a concave boundafy’, ¢’) (cf. [McD-91]).
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Thus
W) | (M wu)
(Y.€")
is a concave filling of Y, £) by Lemma 11. This finishes the proof of Proposition 5.

Finally we would like to point out how Gay’s proof in [Ga-0208iffers from the proof in
[Et-05]. Consider the open boalk, which is compatible with(Y”, ¢’) as above. Then
Gay explains how to attach a symplectic 2-handle along théitg of ob. with framing
+1 relative to the page framing of the binding so that the resmltontact 3-manifold
(Y &") is also aconcaveboundary component of the symplectic cobordism given by the
2-handle attachment. Note that this operation has thetaffdarning a convex boundary
component of a symplectic 4-manifold to a concave boundaryponent. Denote the
resulting symplectic 4-manifold obtained by attaching $ymplectic 2-handle tdV”’, ')

by (W” w"). Moreover the monodromy of the open book compatible wWith, ¢”) is
given by the identity map. This implies thétY™”, ¢”) is contactomorphic to the standard
tight contactfk S x 52, £). Note that there is a standard convex fillifig S* x D3 w,;)

of (fk S x S? &,). Hence

W) ) (kS x D wy)
(th S1xS2.&q¢)

is a concave filling of Y, £) by Lemma 11.

Alternatively, a general method on how to find a natural opeokbon the boundary of
any plumbed 4-manifold is given in [Ga-03]. Moreover Gay laxps how to construct
a symplectic structure on a “positive” plumbing 4-manifelthose concave boundary is
compatible with this open book. In the situation above nogl is obtained by a positive

plumbing of aD? x F with a disk bundle oves? with Euler number-1.

Proposition 13 (Etnyre-Honda [EH-02], Gay [Ga-02b] Jf (IW,w) is a strong filling of
(Y, €) thenWW can be symplectically embedded into a closed symplégtianifold.

Proof. Suppose thatiV, w) is a strong filling of(Y, ). Consider a concave fillingh;, w;)
of (Y, &). Then we can glue (cf. Lemma 11) the symplectic manifoldisw) and(W;, w )
along their common boundaty’, £) to get a closed symplectic 4-manifold includifify, w)
as a symplectic subdomain.

O

6. EMBEDDING A WEAK FILLING

In this section we will give the most general embedding ttethalt will cover the cases in
Sections 4 and 5.
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Theorem 14(Eliashberg [EI-04], Etnyre [Et-04])If (W, w) is a weak filling of(Y, £) then
W can be symplectically embedded into a closed symplégtanifold.

6.1. Eliashberg’s construction: We first briefly outline Eliashberg’s construction: Let
(W, w) be a weak filling of a contact 3-manifold’, ¢) and letob, be an open book decom-
position ofY” (with a connected binding) compatible with the contact structufeAttach

a symplectic 2-handle along C Y =Y x {1} to an appropriate symplectic collar x

to obtain a cobordism with boundaryy” U Y’ such thaty” fibers overS* with symplec-
tic fibers. Then fill inY” — S by a symplectic Lefschetz fibration ovér’ to complete
W U H into a closed symplectic 4-manifold.

Eliashberg’s idea above is to reduce the question of embhgddiveak filling to a question
of embedding a symplectic surface fibration over the cirbletice that the binding3 of
ob, is transverse tg, so the crucial point of Eliashberg’s construction is the/wzat he
attaches a symplectic 2-handle along the transverse lgrglinVe would like to mention
here that in [Ga-02a], Gay gives a general constructiontathing symplectic 2-handles
along transverse knots.

Eliashberg’s construction is “topologically” equivalentthe construction that was given
in [AO-02] to embed a Stein fillingmoothlyinto a closed symplectic 4-manifold.

Now we proceed with the details of Eliashberg’s construrctidVe start with describing
the symplectic 2-handlé/ to be attached along the transverse bindihg We identify
C?(z1, 20) With R (21, 91, 22, y2) @s usualiz; = z; + iy; andzy = @y + iyo. Let (14, ;)
denote the polar coordinates in theplane fori = 1,2. Then the standard symplectic
2-formw, onR* is given by

Wy = dIl /\dyl +d3§'2 /\dyg = Tld’/’l /\dg01 +7’2d7‘2 /\ng2

Let a be a positive real number and [Bt= {r; < a,7, < 1} C C? be a polydisc. Now
we define a domaif® = {r1 < g(re) : 7 € ]0,1]} C P for some non-increasing smooth
functiong(t) : [0, 1] — [0, a] as shown in Figure 6, whegg[0,0.5]) = a andg’(t) < 0 for

t € (0.5,1). We will determine the real numberand the particular form of the function
g(t) neart = 1 later in the proof. Here we can viel® as obtained from the polydid3 by
smoothing its corners as shown in Figure 7.

We definel’ = {r; = g(rs) : ro € [0.5,1]} as part o) P. (There is a typo here in [EI-04],
ry € [0.5,1] notr;.) We observe that is diffeomorphic toS* x D?: As ry increases
from 0.5 to 1 in the z,-plane (with polar coordinate8-, ¢,)) the boundary of the disks
{r1 < g(r2)} in the z;-plane will shrink smoothly to a point according to the fuontg
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0 0.5 1 ¢t

FIGURE 6. The graph of the smooth functign

FIGURE 7. Smoothing the corners of the polydics

sweeping out a disk for each fixed. Here note that the core circle bfis parametrized
by s € [0, 2] for r, = 1 (cf. Figure 8).

FIGURES. I' ~ S! x D?
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Then we observe that= $(ridy, + r3dyps) is a primitive ofw, onRR* and that

1 r2 g*(r
Y = 5(92(7“2)01901 + r3dps) = 32( ﬁf)dsol + ds)
2

is a contact 1-form ofr. This can be verified by a direct calculation whegelp; A dry A
dps is avolume form o". Also observe that the core circlelois transverse to the contact
structureker(y|,) sincey(52;)|{r,=1y = 0.5.

Moreover(I', v|.) is a convex boundary component((fl‘, wp) but we would like to convert
it to a concave component. So we apply the following trick. &fgoedP into a symplectic
S? x D? by a symplectomorphism and take the complement of the imagé i D?. Let
(52,01) be a symplectic sphere with are@a and (D?, 0,) be symplectic disk with area
ma’. Denote byS? the upper and lower hemispheres of areaespectively. Thea; @ o,
induces a symplectic form off? x D?. Let

¢:P=D*xD*— 53 x D*C $*x D?

be a symplectomorphism. From now on we will identify the syeopc form onP induced
from wy, onR* with the symplectic formr; & 0, on S% x D? by the above symplectomor-
phism¢. Define the 2-handlé/ (see Figure 9) as

H=52x D?— ¢(P).
Now consider the bounda§H of the 2-handled. We will denote(I") also byI" to

simplify the notation. Let
A=0H\T.

—~

Observe that\ is fibered by discd, = 5% x {z} for z € 9D? where we haves? C
$2 c S2. This is illustrated in Figure 9: Imagine the complementy6f) in 52 x D2
restricted ta)D?. Notice here thaf? is symplectic (with respect to,) with fixed area%’r

(not %’T as mistakenly typed in [EI-04]) for eache dD?. This is precisely because of our
identification ofw, with oy @ o5.

Next we would like to find an appropriate way to attach thisa?wtle H to Y x I by
identifying I" with a neighborhood’ of the bindingB of the compatible open boak, in
Y x {1} C Y x I. By Giroux [Gi-02], we can find coordinatés, ©, u) near the binding
B of ob, such that

U 20, R] x (R?/277Z) x (R*/2nZ)
satisfying the following conditions:

(1) oy = h(r)(du + r*dy) for some positive functiork defined on[0, R] such that
h(r) — h(0) = —r? nearr = 0, and?h/(r) < 0 for all r > 0,



17

FIGURE 9. The 2-handld?

(2) da is symplectic on the pages ob, and
(3) pages obb, in U are given byp=constant.

Now we fix R and set: (in the definition of the function) equal to%. Consider the follow-
ing mapF : I' — U (cf. Figure 10) given by the following identifications of aonates:

_glre) _
r=-—" =1, U= ps.
)
Notice that under this map the core circle Iofparametrized byp, is mapped onto the
binding B parametrized by. It is clear thatF' is a diffeomorphism but we would liké' to
be a contactomorphism which takes the contact strugtufe |-) onto the contact structure
&|lu. Well, we will simply choose our functiop (depicted in Figure 6) accordingly near
t = 1 so thatF’ becomes a contactomorphism. The function
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FIGURE 10. The diffeomorphisnt” : I' — U

is a decreasing function frof0.5, 1] to [0, 2a] = [0, R]. Lett : [0, R] — [0.5, 1] be the
inverse of this function. Recall that

ry 9*(ra)
52( 2 dpy + dgoz).
Hence by the change of coordinates which describes theoditfephismF we get

(F6le) = 22 (2 + du)

which is a 1-form defined ofy. Then we havé:(r) = 1¢*(r) whereh(r) — h(0) = —r?
nearr = 0 so that;(¢*(r) — ¢*(0)) = —r? and thus)(r) = V1 — 2r2. Recall thatr, =
Y (r) andr = 220 under the diffeomorphisni’. Considering that) : [0, k] — [0.5,1] is

the inverse of the functioh— # we finally obtain

g (7"2))1/2

2

7’2:(1—2 7“2

which implies that
g(t) = %t\/l — t2

neart = 1. Notice thatg(¢) has a vertical tangent at= 1. This calculation determines
the particular form of the function(¢) neart = 1. (Our calculation of the functiop is
slightly different from the one given in [EI-04].)

While preparing our 2-handle for gluing we also have to eghgdobordismy” x I by
an appropriate symplectic form. Lét > 0 be an arbitrary constant. It is easy to see (cf.
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[EI-04]) that there is a symplectic fordonY x I (see Figure 11) which “extends’and
agrees withv + Cd(ta) for t € [e, 1].

Q
Y, ¢
W, w W w+Cd(ta)
0 & o 1

FIGURE 11. ExtendingotoQ € H*(Y x I)

Now observe that” x {1} C Y x I is convex with respect td(t«). Recall that(H, wy)

is a concave filling of ", v|rr). Thus by Lemma 11, we can gl{é/, w,) to (Y x I, d(t))
identifyingI" andU by the contactomorphisth which extends to a symplectomorphism in
some neighborhoods of C H andU C Y x I. Consequently we havE*(d(ta)) = wy.
Notice thatF*w is exact in a regular neighborhoedI') of I' in H because the second
cohomology group of(T') = I x S! x D?is trivial. Since[™*w is exact, there is a 1-form
6 on v(I') such thati™*w = df. Take a smooth cut-off functiom on H which vanishes
outside ofv(I"). Thend(c0) defines an extensian of F*w from v(I") to H.

Finally we are ready to define a symplectic form Bnthat will allow us to make this 2-
handle attachment in the symplectic category. Let= w + Cwy on H for some constant
C. ltis not hard to see th&?, will be symplectic for sufficiently large values 6f since
C%wy Awy > 0 will dominate the other terms 0, A€, on a compact manifold. Here notice
that we have a well-defined symplectic form@n x I) Uy—pry H sinceQ) = w + Cd(ta)
on (Y x I) is identified with(), on H in the gluing region. This is becauses an extension
of F*w andF*(Cd(ta)) = Cwy S0 thatF*) = (.

On the other hand, by attaching the 2-hanéleve perform a Dehn surgery on the 3-
manifoldY” to yield a 3-manifoldy” which fibers over the circle. This should be clear since

we take out a neighborhodd from Y and glue iné*vE x dD? to cap off each pagg of ob;

by adiskD, = S? x{z}. Let 7 denote the closed surface obtained by capping off a page
by gluing a 2-diskD, along its boundary. Consider the 2-foftfy = Q|y .1} = w+Cdo.
We know thatla is symplectic on every pageé of ob.. Thusw + C'da will be a symplectic
form on F for sufficiently large values aof’.
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Recall that we identified the symplectic forfisand(2, when we attached the symplectic
2-handleH. Also note thatD,, is symplectic with respect to,. Consequently since every
pageF of ob, is symplectic (with respect t3) and the diskD, is symplectic as well (with
respect ta2) we get a fibration oves! for which w’ = Qq|y- restricts to a symplectic

form on each fibeF’ for sufficiently large values af’. We will call such a surface fibration
over S asymplectidibration overS*. Note that we have the freedom to chodGsas large
as we wish. Also note that in order to prove that we have a syatiplfibration overs*
after surgery we had to use the compatibilitytaindob,.

Denote by(WW’, ') the resulting symplectic 4-manifold obtained by attactimgsymplec-
tic 2-handleH to the given weak fillind W, w) of (Y, &). To finish Eliashberg’s construction
we need to cap off the symplectic fibratiohl’” = Y’ — S! by a symplectic 4-manifold.
Let ¢ be the topological monodromy of this surface fibration. Thencansmoothlyfill in
—Y’ (see [AO-02]) by a symplectic Lefschetz fibration ovet with regular fiberF since
the monodromyy—! of —IW’ can be written as a product dfjht-handedDehn twists by
Lemma 15.

Lemma 15. Any element in Ma(rﬁ) can be expressed as a product of non-separating
right-handed Dehn twists.

Proof. We repeat the proof described in [AO-02] for this elementasult. Recall that the
relation (cf. Lemma 7)

(talta2 o .t(l2g)4g+2 =t
in 'z induces a relation

(tartas + tay,) 972 =1

in I';. We conclude that,' is a product of non-separating right-handed Dehn twists.
Therefore any left-handed non-separating Dehn twist —demjugate tat,! — is a
product of non-separating right-handed Dehn twists. Thisliies the proof of the lemma
combined with the fact thdt is generated by (right and left-handed) non-separatingiDeh
twists. O

In fact, Eliashberg proves a “symplectic” version of Lemntaid [EI-04] so that we can
actually fillin —oW’ = —Y’ symplecticallyby a symplectic 4-manifold. The point here is
that when we measure the topological monodromy of a synipléibtationY’ — S we

do not take into account the symplectic structure on the.fBetto fill in such a symplectic
fibrationsymplecticallywe need to measure the holonomy (i.e., “symplectic” monagno

of this fibration, which we describe below. Suppose that ymepdectic fibrationy” — S*

is normalized so thaf; w' = 1. Since the 2-form’ is positive on the fibers its kernkdr o’

is a 1-dimensional line field ol transverse to the fibers. The flow generated by a vector
field which directs this line field determines a holonomy awephism Holw'): F, —
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of a fixed fiberF,. This is an area and orientation preserving diffeomorpHisen a sym-
plectomorphism) which defingd”’,w’) uniquely up to fiber preserving diffeomorphism
fixed onFy.

Now let (V,n) denote the symplectic Lefschetz fibration ovet mentioned above with

o~

regular fiberF which will be used to fill in the symplectic fibrationY’ — S!. Since
(V,n) — D? is a symplectic Lefschetz fibration, the symplectic 2-fogmestricts to a
symplectic form on each regular fiber and moreover we cannasshatn|s, integrates
to 1 on the fibers of the symplectic fibratiahl” — S'. If we can choos€V,n) such
that Holw'|y+)~! = Hol(n|s) then we are done since we can gli&’, ') to (V,n)
symplectically. Eliashberg constructs such a symplecétsthetz fibration oveP? in
[EI-04]. In fact it is shown in [KrMr-04] that it suffices to pve Lemma 16 below. (See
also Section 7 for another argument for the sufficiency of ireni6.)

Lemma 16(Kronheimer-Mrowka [KrMr-04]) LetY be a closed symplectic surface of area
1 and genug > 1. Let¢ : X — X be an area preserving diffeomorphism that is smoothly
isotopic to the identity. Then there is a symplectic Lefszfierationp : (V, 1) — D? such
thatp='(1) = X and Hol(n|sv) = ¢.

As itis pointed out in [EI-04], we could alternatively userhma 17 to cap off a symplectic
fibration overS* by a symplectic surface bundle over a surface with boundegall that

a groupG is said to be perfect if it is equal to its commutator subgr@spG]. In other
words, GG is perfect if and only if every element iy can be expressed as a product of
commutators. Yet another way of characterizing the pané=ss of a group is given by the
triviality of its first homology groupH, (G) = G/|G, G].

It is well-known that the mapping class group of a surfaceasfugs greater than two is per-
fect. This is a consequence of the lantern relation (cf.79)-in the mapping class groups
which essentially says “three equals four”. The fact tha can smoothly fill in a smooth
surface bundle ove$'! by a smooth surface (of genus 2) bundle over a surface with
boundary easily follows from the perfectness of the comasgg mapping class group (of
genus> 2). Here we need a symplectic version of this fact which is fpes by Kotschick
and Morita [KoMo0-05]. LetSymp,> denote the group of all symplectomorphisms of the
closed symplectic surfad&:, o) with respect to a prescribed symplectic forrmon X which

is normalized such thaf, o = 1.

Lemma 17 (Kotschick-Morita [KoMo0-05]) If the genus of is greater than two then
Symp, 3. is perfect.

The restriction in Lemma 17 on the genus of the fiber is not @ggrone since in the
construction above one can arbitrarily increase the gefuBeopage ofob, (which is
compatible with(Y, £)) by positively stabilizingb, (cf. [Gi-02]) to begin with.
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6.2. Etnyre’s construction: We first briefly outline Etnyre’s construction: In Section 5
we showed that to find an embedding of a strong filling one canamsembedding of a
Stein filling. Etnyre’s idea in [Et-04] was to find an embedygliof a weak filling using
an embedding of a strong filling. Suppose thHEf w) is a weak filling of a contact 3-
manifold (Y, ¢). Etnyre showed thdil, w) can be embedded into a symplectic 4-manifold
(W', w") which weakly fills its boundaryoW’ = Y, £'), whereY’ happens to be a integral
homology sphere. Now by a homological argument the symiplsttucturew’ can be
perturbed near the boundary so thidt’, ') strongly fills (Y, ¢’). Thereforeg(W’, ') can
be embedded into a closed symplectic 4-manifo¥d wx ) by Proposition 13 and hence
(W,w) C (W' ') can be embedded symplectically int§, wx). Below we proceed with
the details.

Let (W, w) be a weak filling of(Y, £) and letob, be an open book compatible with’, £).
We can assume that the bindifyof ob, is connected. Lep be the monodromy of this
open book and use Lemma 8 to expresss

¢:t£"ot;llo...ot;nl.
Now Legendrian Realizg, (cf. Lemma 9) on a convex page of; and perform contact
(—1)-surgery ony,. The new open book will have monodromy

QSOt,\/":tZLOt;llO"'Ot_li .

Repeat this for all the curves (fori =n —1,--- , 1) to get down ta* as in the proof of
Proposition 5. Denote b{y”, ¢') the contact 3-manifold obtained as a result of the contact
(—1)-surgeries above. Theg”, ¢’) is compatible with the open book whose monodromy
is given byt™, by Lemma 10.

Recall that by Theorem 6 we can attach a symplectic 2-handiestoong filling along a
Legendrian knot in its convex boundary in such a way that yingpdectic structure extends
to the 2-handle and the new symplectimanifold strongly fills its boundary. In this gluing
process, however, the Liouville (i.e., symplecticallyadithg) vector field is used only in a
neighborhood of the attaching circle. It turns out thaLifC (Y,¢) is Legendrian and
(W,w) is a weak filling of(Y, &) then there is always a symplectically dilating vector field
nearL, implying

Proposition 18. Suppose thatY”, ¢’) is given by contact—1)-surgery alongL C (Y, ¢).
If (Y, ¢) is weakly fillable then so igY”, ¢’).

The result above was first explicitly stated in [EH-02] aligb it was probably known to
the experts, and certainly to Eliashberg.

Hence there exists a weak fillingl’, ') of (Y’,¢’) obtained by attaching symplectic 2-
handles taI¥,w). The page of the compatible open bagk is a genusg; surface with
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one boundary component. Consider the cumedepicted in Figure 2. Legendrian realize
a;'s and perform contadt—1)-surgery on each; to get(Y"”, ¢”) compatible with the open
bookob,» whose monodromy is given by

m -1 -1
te oty 00ty .

It is not hard to see that” is an integral homology sphere. Moreover, by Proposition 18
there exists a weak fillingh’”, w") of (Y”,¢”). Then we use Proposition 19 to modify the
symplectic formw” near the boundary so that it is a strong filling(af”, ¢”). Note that
(Y” &£") has a concave filling by Proposition 5. Thus we cap(Bff’, w") by this concave
filling using Lemma 11 to get a closed symplectic 4-manifold wy ) in which (W, w) sits

as a symplectic subdomain.

Proposition 19 (Eliashberg [EI-91], [EI-04]; Ohta-Ono [OO-99]Any weak filling of a
rational homology sphere can be deformed into a strong dlbg modifying the symplectic
form near the boundary.

The main step in Etnyre’s construction is embedding a webkdibf an arbitrary contact
3-manifold into a weak filling of an integral homology sphevée would like to point out
here that this follows also from a result that was obtaine&tiysicz in [St-03]. Namely,
Stipsicz showed the existence of a Stein cobordism from lartrary contact 3-manifold
to an integral homology sphere. Stipsicz’s constructiohi¢v we describe below) can be
slightly modified to imply the main step above.

Let (W, w) be a weak filling of(Y, ¢). Consider the right-handed Legendrian trefoil knot
K as depicted in Figure 12 in the standard contgthavingtb(K) = 1. To construct
such a cobordism start with a contact surgery diagtaofi (Y, £) and for every knof; in

L add a copyK; of K into the diagram linking_; once, not linking the other knots in.
Adding symplectic 2-handles along; we get(W’,w’) and the resulting 3-manifold”’ is

an integral homology sphere. To see this just convert théacosurgery diagram into a
smooth handlebody diagram and calculate the first homologgerve that the topological
framing of K is 0. Denote byu; a small circle meridional td<; and y; a small circle
meridional toL; fori = 1,--- ,n. Recall thatH,(Y’,Z) is generated byu;] and|x;] and
the relations argu;| = 0 and|u,]+ >, lk(Li, L;)[1;] = 0. It follows that/, (Y, Z) = 0.

Although it was not considered in [St-03], Stipsicz’s constion immediately implies the
main step above because one can add a symplectic 2-handigzaleegendrian knot in the
boundary of a weak filling to extend it to another weak fillingProposition 18.
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/\/

FIGURE 12. Aright-handed Legendrian trefoil knét

7. AHYBRID SOLUTION

In this section we suggest another symplectic embeddingvedak filling into a closed
symplectic 4-manifold which is obtained by a mixture of tHeas we discussed so far. First
we note that it is possible to attach symplectic 1-handlsesv@l as symplectic 2-handles)
to a weak filling to extend it to another weak filling. SuppdsattiV,w) is a weak filling

of a contact 3-manifoldY’, ). Now we proceed as in the second proof of Proposition 5 to
embed W, w) into a weak filling(W’, w’) by attaching symplectic 1- and 2-handles so that
the resulting contact structure on the boundarly/’ has a compatible open book whose
page has only one boundary component and whose monodromstisrje right-handed
boundary-parallel Dehn twist. Then we attach a symplectia2dle to(1¥’, ') along the
binding of this open book and we get a symplectic fibratiorr avercle with topologically
trivial monodromy on the other end of the cobordism given liig 2-handle attachment.
Finally we cap off this surface bundle by a symplectic Le&tzHibration overD? using
Lemma 16.

8. FINAL COMMENTS

The presentation in this article may suggest that Eliagi¥erethod is unnecessarily long
but he constructs from scratch a symplectic 2-handle to taelsd to the binding of a
compatible open book—which is crucial. Note that a consimncof attaching symplectic
2-handles along transverse knots was also given in [Ga-ORajould be very interest-
ing to interpret this symplectic surgery in terms of contsutgery. Unfortunately, there
does not seem to exist a natural contact structure on thelsytigpfibration overS! ob-
tained by this surgery. This is exactly the point where Hlimsg’s method differs from the
method of Etnyre. In Etnyre’s construction one always malsesof the contact structures
on the boundaries of symplectic 4-manifolds to glue thempguatically. In fact, based
on Giroux’s correspondence, Etnyre mostly deals with opmvkd compatible with these
contact structures rather than the contact structurestiyirdn Eliashberg’s construction,
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however, at one point or another we have to glue a symplectits¢hetz) fibration to a
symplectic 4-manifold whose boundary symplectically fébbeverS!. This is achieved by
matching up the holonomy diffeomorphisms on the boundamescontact structures are
not visible in this picture. It might be worth pointing outtithe proof of the non-triviality
of the contact Heegaard Floer invariant of a fillable consaietcture follows from Eliash-
berg’s embedding but it is not clear whether or not it folldwsn Etnyre’s construction.

Also it is intriguing to note that most of the constructionghis article rely on the relation
t. = (tal Otgy O+ 0tg, ;O tazg)4g+2 el'p
given in Lemma 7 which implies

1:(talota20"'ot ota29)4g+2€1“ﬁ,

a2g—1

where F' denotes the closed surface obtained by capping off thecsuffaby gluing a
2-disk alongoF'. This latter relation says that identity can be expressea @®duct of
right-handed Dehn twists in the mapping class group of aedasirface. It is not possible,
however, to express the identity as a product of right-hdrigehn twists in the mapping
class group of a surface with non-empty boundary (cf. [(¥8)-

Acknowledgement We would like to thank Selman Akbulut for encouragementgdo
Etgu for helpful conversations, Ands Stipsicz and especially the referee for reading a
preliminary version, correcting a few mistakes and sugggstumerous improvements.
The author was partially supported by the Turkish Academ$aénces.

REFERENCES

[AO-01] S. Akbulut and B. Ozbagclkefschetz fibrations on compact Stein surfaGeom. Topol5 (2001),
319-334.

[AO-02] S. Akbulut and B. OzbagciOn the topology of compact Stein surfackd, Math. Res. Not15
(2002), 769-782.

[AlI-23] J. AlexanderA lemma on systems of knotted cunk®c. Nat. Acad. Sci. USA (1923), 93-95.

[DG-01] F. Ding and H. Geigessymplectic fillability of tight contact structures on torbgndles,Algebr.
Geom. Topoll (2001), 153-172.

[DG-04] F.Ding and H. Geige#\ Legendrian surgery presentation of contact 3-manifdRtsc. Cambridge.
Philos. Soc136(2004), 583-598.

[DLS-94] J.P. Demailly, L. Lempert, B. ShiffmaAlgebraic approximations of holomorphic maps from Stein
domains to projective manifoldBuke Math. J76 (1994), no. 2, 333-363.

[EI-90] Y. Eliashberg;Topological characterization of Stein manifolds of dimens> 2, International J. of
Math. 1 (1990), 29-46.

[EI-91] Y. Eliashberg,On symplectic manifolds with some contact propertigsDifferential Geom.33
(1991), 233-238.

[EI-96] Y. EliashbergUnique holomorphically fillable contact structure on th¢orus, Int. Math. Res. Not.
21996, 77-82.

[EI-04] Y. Eliashbergfew remarks about symplectic fillinGeom. Topol8 (2004), 277-293.



26 BURAK OZBAGCI

[Et-98] J. Etnyre,Symplectic convexity in low-dimensional topologgpology and its Appl88 (1998),
3-25.

[Et-04] J. EtnyreOn symplectic fillingsAlgebr. Geom. Topol4 (2004), 73-80.

[Et-05] J. Etnyre,Lectures on open book decompositions and contact strigtueeture notes from the
Clay Mathematics Institute summer school “Floer Homoldgguge Theory, and Low Dimensional
Topology” Alfred Renyi Institute; arXiv:math.SG/0409402

[EH-02] J. Etnyre and K. Hond&@n symplectic cobordismbath. Ann.323(2002), 31-39.

[Ga-02a] D. GaySymplectic 2-handles and transverse linkeans. Amer. Math. So354 (2002), no. 3,

1027-1047.

[Ga-02b] D. GayExplicit concave fillings 08-manifolds,Math. Proc. Cambridge Philos. Sdi33(2002),
431-441.

[Ga-03] D. Gay,Open books and configurations of symplectic surfagégebr. Geom. Topol3 (2003),
569-586.

[Ge-05] E. Geiges,Contact Dehn surgery, symplectic fillings, and Property P kmots, preprint,
arXiv:math.SG/0506472.

[Gi-02] E. Giroux,Contact geometry: from dimension three to higher dimerssiBroceedings of the Inter-
national Congress of Mathematicians (Beijing 2002), 4034

[Go-98] R. GompfHandlebody construction of Stein surfacAgn. of Math.148(1998), 619-693.

[GS-99] R. Gompfand A. Stipsicz-manifolds and Kirby calculusGraduate Studies in Mathematics, vol.
20, American Math. Society, Providence 1999.

[Jo-79] D. Johnsoriilomeomorphisms of a surface which act trivially on homal&ggc. Amer. Math. Soc.
75(1979), 119-125.

[Ka-97] Y. Kanda,The classification of tight contact structures on arus,Comm. Anal. Geomb (1997),
413-438.

[KoMo-05] D. Kotschick and S. MoritaSignatures of foliated bundles and the symplectomorphisupg
of surfacesTopology44 (2005), no. 1, 131-149.

[KrMr-04] P. Kronheimer and T. MrowkaWitten’s conjecture and Propertl?, Geom. Topol.8 (2004),
295-310.

[LM-97] P. Lisca and G. Mati, Tight contact structures and Seiberg—Witten invariaittsent. Math.129
(1997), 509-525.

[LP-01] A. Loi and R. PiergalliniCompact Stein surfaces with boundary as branched cove$ givent.
Math. 143(2001), 325-348.

[McD-91] D. McDuff, Symplectic manifolds with contact type boundarlesent. Math.103 (1991), 651—
671.

[O0-99] H. Ohta and K. Ondsimple singularities and topology of symplectically fdli+manifolds,Com-
ment. Math. Helv74(1999), 575-590.

[OzSt-04] B. Ozbagci and A. Stipsic3urgery on contact 3-manifolds and Stein surfa&gsinger, 2004.

[0zSz-04] P. Ozsath and Z. Szaty Holomorphic disks and genus boun@som. Topol8 (2004), 311-334.

[St-03] A. StipsiczOn the geography of Stein fillings of cert@immanifolds ,Michigan Math. J51 (2003),
327-337.

[Wa-99] B. Wajnryb,An elementary approach to the mapping class group of a serf@eom. Topol.3
(1999), 405-466.

[We-91] A. WeinsteinContact surgery and symplectic handlebodiéskkaido Math. J20(1991), 241-51.

DEPARTMENT OFMATHEMATICS, KOC UNIVERSITY, ISTANBUL, TURKEY
E-mail addressbozbagci @u. edu. tr



