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ABSTRACT. In this survey article we describe different ways of embedding fillings of con-
tact 3-manifolds into closed symplectic 4-manifolds.

0. INTRODUCTION

One of the most exciting advances regarding the topology of 3-manifolds in 2004 was the
solution of the “Property P” conjecture by Kronheimer and Mrowka [KrMr-04]. Namely,
they proved that no surgery on a knot inS3 can produce a counter-example to the Poincaré
conjecture. The last ingredient in their proof was suppliedby a recent theorem of Eliash-
berg [El-04]:Any weak filling of a contact 3-manifold can be embedded symplectically into
a closed symplectic 4-manifold. This particular way of embedding a weak filling into a
closed symplectic 4-manifold was also used by Ozsváth and Szab́o [OzSz-04] to show that
their (appropriately twisted) contact Heegaard Floer invariant of a fillable contact structure
does not vanish.

In order to prove his theorem Eliashberg attaches a symplectic 2-handle along the binding
of an open book compatible with the given weakly fillable contact structure such that the
other end of the cobordism given by this symplectic 2-handleattachment symplectically
fibres overS1. Then he fills in this symplectic fibration by a symplectic Lefschetz fibration
overD2 to obtain a symplectic embedding of a weak filling into a closed symplectic 4-
manifold. Note that the method of construction in [El-04] takes its roots from the one
considered in [AO-02].

Eliashberg’s theorem was obtained independently by Etnyre[Et-04] using different meth-
ods. The first step in Etnyre’s construction is to embed a weakfilling into a weak filling of
an integral homology sphere. Note that, from thesurgerypoint of view, this step also fairly
easily follows from Stipsicz’s results in [St-03]. Then onecan modify the symplectic form
near the boundary so that it becomes a strong filling (cf. [El-91], [OO-99]). This is just a
homological argument. Now the problem is reduced to finding an embedding of a strong
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filling. The strategy at this point is to find a concave filling to cap off the convex boundary
of this strong filling from the “other side”. One way of findingthis concave filling is to
further reduce the problem (cf. [EH-02]) to the existence ofa symplectic embedding of
a Stein filling into a closed symplectic 4-manifold, which was already provided by Lisca
and Matic [LM-97]. Alternatively, one can proceed with constructing an explicit concave
filling (cf. [Ga-02b]) obtained by a careful investigation of the monodromies of the open
books compatible with different types of symplectic and contact surgeries.

The purpose of this survey article is to describe and compareembeddings due to Eliashberg
and Etnyre and discuss some previous work on the subject. We note that there are now many
ways of embedding a weak filling symplectically into a closedsymplectic 4-manifold. In
Section 7 we construct an embedding which is obtained by combining the various ideas
developed in the article. We would like to point out that these embeddings are constructed
by making use of a recent theory developed by Giroux [Gi-02] which establishes a (one-
to-one) correspondence between open book decompositions of 3-manifolds and contact
structures.

We would also like to point out that in [Et-05] Etnyre gives quite a bit of details of the ar-
guments in [Et-04] including the necessary background. In addition, there is another recent
survey article by Geiges [Ge-05], where he emphasizes the role that contact geometry has
played in the proof of “Property P” for knots.

1. OPEN BOOK DECOMPOSITIONS AND CONTACT STRUCTURES

We will assume throughout this paper that a contact structure ξ = kerα is coorientable
(i.e., α is a global 1-form) and positive (i.e.,α ∧ dα > 0 ) unless otherwise stated. In
the following we describe the compatibility of an open book decomposition with a given
contact structure on a 3-manifold.

Suppose that for a linkL in a3-manifoldY the complementY \L fibers asπ : Y \L→ S1

such that the fibers are interiors of Seifert surfaces ofL. Then (L, π) is an open book
decomposition(or just anopen book) of Y . For eacht ∈ S1, the Seifert surfaceF = π−1(t)
is called apage, whileL thebindingof the open book. The monodromy of the fibrationπ
is called themonodromyof the open book decomposition.

Any locally trivial bundle with fiberF (a compact oriented surface) over an oriented circle
is canonically isomorphic to the fibration

I × F

(1, x) ∼
(
0, h(x)

) → I

∂I
≈ S1

for some orientation preserving self-diffeomorphismh of F . In fact,h is determined by the
fibration up to isotopy and conjugation by an orientation preserving self-diffeomorphism
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of F . The isotopy class represented byh is called the (topological) monodromy of the
fibration.

The mapping class groupΓF of F is defined as the quotient of the group of orientation
preserving self-diffeomorphisms ofF fixing ∂F pointwise modulo isotopies fixing∂F
pointwise. Given a compact oriented surfaceF with nonempty boundary andh ∈ ΓF , then
we can considerF (h) = I × F/(1, x) ∼

(
0, h(x)

)
which is called a mapping torus. Note

that sinceh is the identity on∂F , the boundary∂F (h) can be canonically identified withr
copies ofT 2 = S1×S1, where the firstS1 factor is identified withI/∂I and the second one
is identified with a component of∂F . HenceF (h) can be completed to a closed3-manifold
Y equipped with an open book decomposition by gluing inr copies ofD2 × S1 to F (h)
so that∂D2 is identified withS1 = I/∂I and theS1 factor inD2 × S1 is identified with
a boundary component of∂F . In conclusion, an elementh ∈ ΓF determines a3-manifold
together with an open book decomposition on it.

Theorem 1 (Alexander [Al-23]). Every closed and oriented 3-manifold admits an open
book decomposition.

The contact conditionα ∧ dα > 0 can be strengthened in the presence of an open book
decomposition onY by requiring thatα > 0 on the binding anddα > 0 on the pages.

Definition 2. An open book decomposition of a3-manifoldY and a contact structureξ
on Y are calledcompatibleif ξ can be represented by a contact formα such that the
binding is a transverse link,dα is a symplectic form on every page and the orientation of
the transverse binding induced byα agrees with the boundary orientation of the pages.

Theorem 3 (Giroux [Gi-02]). Every contact 3-manifold admits a compatible open book
(with a connected binding).

We refer the reader to [Et-05] and [OzSt-04] for more on the correspondence between open
books and contact structures.

2. LEFSCHETZ FIBRATIONS

Suppose thatX andΣ are given compact, oriented, connected 4- and 2-dimensional man-
ifolds. A smooth mapf : X → Σ is called aLefschetz fibrationif df is onto with finitely
many exceptions{p1, . . . , pk} = C ⊂ int X (called the set of critical points), the mapf is
a locally trivial surface bundle overΣ − f(C) and aroundpi ∈ C andqi = f(pi) ∈ f(C)
there are orientation preserving complex chartsUi andVi, respectively, on whichf is of
the formz2

1 + z2
2 .

Notice that the manifoldsX andΣ might have boundaries. If the typical fiberf−1(t) is a
closed surface thenf−1(∂Σ) = ∂X, but the definition also allowsf−1(t) to have boundary,
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in which casef−1(∂Σ) forms only part of∂X. We call the fibersf−1(qi) (qi ∈ f(C))
singular, while the other fibers are calledregular. Two Lefschetz fibrationsf : X → Σ
andf ′ : X ′ → Σ′ are calledequivalentif there are diffeomorphismsΦ: X → X ′ and
φ : Σ → Σ′ such thatf ′ ◦ Φ = φ ◦ f .

By definition removing the singular fibers turns a Lefschetz fibration into a fiber bundle
with a connected base space. Consequently all but finitely many fibers of a Lefschetz
fibration are smooth, compact and oriented surfaces, all of which have the same diffeomor-
phism type. We will assume that there is at most one critical point on each fiber and no
fiber contains an embedded 2-sphere of self-intersection number−1. Each critical point
of a Lefschetz fibration corresponds to an embedded circle called a vanishing cyclein a
nearby regular fiber, and the singular fiber is obtained by collapsing the vanishing cycle to
a point.

The boundary of a regular neighborhood of a singular fiber is asurface bundle over cir-
cle. In fact, a singular fiber can be described by the monodromy of this surface bundle
which turns out to be a right-handed Dehn twist along the corresponding vanishing cycle.
Once we fix an identification of a regular fiber with a compact, connected, oriented surface
F , the topology of the Lefschetz fibration is determined by itsmonodromy representation
Ψ: π1(Σ − {critical values}) → ΓF . In caseΣ = D2 the monodromy along∂D2 = S1 is
called thetotal monodromyof the fibration; according to the above said it is the productof
right-handed Dehn twists corresponding to the singular fibers.

A Lefschetz fibration overS2 with closed fibers can be decomposed into two Lefschetz fi-
brations overD2, one of which is trivial. Hence a Lefschetz fibration overS2 is determined
by a relator in the mapping class group. Conversely, given a product of right-handed Dehn
twists in the mapping class group we can construct the corresponding Lefschetz fibration
overD2, and if the given product of right-handed Dehn twists is isotopic to identity (and
g ≥ 2) then the fibration extends uniquely overS2. The monodromy presentation also pro-
vides a handlebody decomposition of a Lefschetz fibration overD2: we attach 2-handles
toF ×D2 along the vanishing cycles with framing−1 relative to the framing the circle in-
herits from the fiber. (For a more detailed introduction to the theory of Lefschetz fibrations
see [GS-99] and [OzSt-04].)

3. DIFFERENT TYPES OF FILLINGS OF CONTACT3-MANIFOLDS

In this section we give definitions of different types of symplectic fillings of contact 3-
manifolds. A symplectic 4-manifold(X,ω) will be assumed to be oriented byω ∧ ω.
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3.1. Weak filling. A contact3-manifold (Y, ξ) is said to beweakly fillableif there is a
compact symplectic 4-manifold(W,ω) such that∂W = Y as oriented manifolds andω|ξ >
0. In this case we say that(W,ω) is aweak fillingof (Y, ξ).

3.2. Strong filling. A contact3-manifold (Y, ξ) is said to bestrongly fillableif there is
a compact symplectic 4-manifold(W,ω) such that∂W = Y as oriented manifolds,ω is
exact near the boundary and its primitiveα (i.e., a1-form with dα = ω) can be chosen in
such a way thatker(α|∂W ) = ξ. In this case we say that(W,ω) is astrong fillingof (Y, ξ).
Clearly a strong filling is a weak filling by definition.

Suppose that(W,ω) is a compact symplectic 4-manifold with nonempty boundary∂W =
Y and there exists a Liouville vector fieldv ( i.e.,Lvω = ω) defined in a neighborhood of
and transverse toY . Thenv induces a contact structureξ = kerα onY whereα = ιvω|Y
is a contact 1-form. Ifv points out ofW alongY then we say that(W,ω) is aconvex filling
of (Y, ξ), and(Y, ξ) is said to be theconvex boundaryof (W,ω). It is easy to see that the
notion of a convex filling is the same as the notion of a strong filling. If v points intoW
alongY , on the other hand, then we say that(W,ω) is aconcave fillingof (Y, ξ) and(Y, ξ)
is said to be theconcave boundaryof (W,ω). Here notice that ifv points out ofW then
ξ is a positive contact structure onY , while if v points intoW thenξ is a positive contact
structure on−Y .

If a compact symplectic 4-manifoldW has multiple boundary components and ifY is a
boundary component ofW which satisfies the definition of convexity (concavity, resp.)
above then we say thatY is a convex (concave, resp.) boundary component ofW . It is
quite possible that a symplectic 4-manifoldW can have a convex (concave, resp.) boundary
componentY withoutW being a filling ofY , since the other components ofW may not
be convex (concave, resp.).

3.3. Stein filling. A compact 4-manifoldW with nonempty boundary∂W = Y is called
a Stein domainif there is a Stein surfaceX with plurisubharmonic functionϕ : X →
[0,∞) such thatW = ϕ−1

(
[0, t]

)
for some regular valuet. So a compact manifold with

boundary (and a complex structureJ on its interior) is a Stein domain if it admits a proper
plurisubharmonic functionϕ which is constant on the boundary. Then the complex line
distribution induced byJ is a contact structureξ onY . In this case we say that the contact
3-manifold (Y, ξ) is Stein fillableand(W,J) is a called aStein fillingof (Y, ξ). It is easy
to verify that a Stein filling is a strong filling. In fact,dJ∗(dϕ) induces a K̈ahler structure
on (W,J). More generally, a cobordismW (with boundary−Y1 ∪Y2) is aStein cobordism
if W is a complex cobordism with a plurisubharmonic functionϕ : W → R such that
ϕ−1(ti) = Yi, for some regular valuest1 < t2.
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We refer the reader to [Et-98] and [OzSt-04] for a further detailed discussion of different
types of fillings of contact 3-manifolds.

4. EMBEDDING A STEIN FILLING

The first result in the literature about embedding a filling ofa contact 3-manifold into a
closed symplectic 4-manifold was obtained by Lisca and Matic. Recall that a Stein filling
(i.e., a Stein domain) admits a Kähler formdJ∗(dϕ) which is an exact symplectic form,
whereϕ is the plurisubharmonic function defining the Stein filling.

Theorem 4(Lisca-Matic [LM-97]). A Stein filling admits a K̈ahler embedding into a (min-
imal) compact K̈ahler surfaceX (of general type), such that the pull-back of the Kähler
form onX is the exact symplectic form on the Stein filling.

Apparently what motivated Lisca and Matic to construct suchan embedding was their
search for a method to distinguish tight contact structures. Using Seiberg-Witten theory
coupled with their embedding result, Lisca and Matic were able to show that for any
positive integern, there exists a homology 3-sphere with at leastn homotopic but non-
isomorphic tight contact structures. Lisca and Matic use analytical tools in the construction
of their embedding and the starting point of their embeddingis given by a holomorphic em-
bedding of a Stein domain into an affine algebraic manifold with trivial normal bundle (cf.
[DLS-94]). Roughly speaking, the idea here is to approximateanalytical maps by algebraic
ones, namely by polynomials.

A very different approach to embed a Stein fillingsmoothlyinto a closed symplectic 4-
manifold was presented in [AO-02]. The construction in [AO-02] is topologically more
explicit than the method of Lisca and Matic although the result is weaker since only the
smoothness of the embedding is clear from the presentation.

The simple construction in [AO-02] is based on a theorem of Loi and Piergallini ([LP-01],
cf. also [AO-01]) which says that every Stein domain admits aLefschetz fibration over
D2, whose vanishing cycles are homologically non-trivial on the respective nearby regular
fibers. Notice that the fibers of such a Lefschetz fibration will necessarily have non-empty
boundaries. It is easy to see that the boundary a Lefschetz fibration (whose fibers have non-
empty boundaries) admits a canonical open book decomposition and we can assume that
the binding of this open book is connected. To embed a Stein filling (which has a Lefschetz
fibration structure) into a closed symplectic 4-manifold, we first attach a 2-handle to the
binding of the open book in the boundary of this Lefschetz fibration overD2 to get a
Lefschetz fibration overD2 with closed fibers. Then we extend this fibration to a Lefschetz
fibration overS2. The resulting 4-manifold is known to be symplectic by a result of Gompf
([GS-99]). This construction gives a smooth embedding of a Stein filling into a closed
symplectic 4-manifold.
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5. EMBEDDING A STRONG FILLING

In [EH-02], Etnyre and Honda proved that every contact 3-manifold has (infinitely many
distinct) concave fillings. Their proof was based on the embedding result of Lisca and
Matic we discussed in the previous section. In [Ga-02b], Gayproved the same existence
result (independent of the Lisca-Matic embedding) by presenting a method to explicitly
construct, handle by handle, a concave filling of a given contact 3-manifold. A symplectic
embedding of a strong filling of a contact 3-manifold into a closed symplectic 4-manifold
trivially follows from Proposition 5.

Proposition 5 (Etnyre-Honda [EH-02], Gay [Ga-02b]). Any contact 3-manifold admits a
concave filling.

Proof. We will describe a proof (cf. [OzSt-04]) which is very similar to the one given in
[EH-02]. The difference here is that we rather do not translate contact(±1)-surgeries along
Legendrian knots into the monodromy language of open books.

Given an arbitrary contact 3-manifold(Y, ξ). Let α be a contact 1-form forξ. Consider a
compact piece(W = Y × I, ω = d(etα)) of the symplectization of(Y, ξ). It is easy to see
thatY ×{1} is a convex boundary component of(W,ω) whileY ×{0} is a concave bound-
ary component. Our strategy here will be to cap off the convexend of(W,ω) obtaining a
concave filling ofY = Y × {0}.

In [DG-04], Ding and Geiges proved that every (closed) contact 3-manifold(Y, ξ) can be
given by a contact(±1)-surgery on a Legendrian linkL in the standard contactS3. Here the
surgery coefficients are measured with respect to the contact framing. LetL± ⊂ L denote
the set of the components of the linkL with (±1)-surgery coefficients, respectively. LetK

denote the Legendrian link we get by considering Legendrianpush-offs of the components
of L

+.

Proposition 6 (Weinstein [We-91]). Let (W,ω) be a compact symplectic 4-manifold with
a convex boundary component(Y, ξ). A 2-handle can be attached symplectically to(W,ω)
along a Legendrian knotL ⊂ (Y, ξ) in such a way that the symplectic structure extends to
the 2-handle and the new symplectic4-manifold(W̃ , ω̃) has a convex boundary component
(Ỹ , ξ̃), where(Ỹ , ξ̃) is given by contact(−1)-surgery (i.e., Legendrian surgery) alongL ⊂
(Y, ξ).

Thus when we attach symplectic 2-handles to(W,ω) along the knots ofK ⊂ Y = Y ×{1}
we get a symplectic 4-manifold(W ′, ω′) with a convex boundary component(Y ′, ξ′) by
Proposition 6. We observe that the contact manifold(Y ′, ξ′) can be given by a Legendrian
surgery alongL−, since a combination of a contact(+1)-surgery on a Legendrian knot in
L

+ and a contact(−1)-surgery on its push-off inK cancels out (cf. [DG-04]). We note that
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the cancellation of these contact(±1)-surgeries just corresponds to the cancellation of a
right-handed Dehn twist along a curve with a left-handed Dehn twist along a curve parallel
to it in the monodromy of an open book in the proof of Etnyre andHonda [EH-02].

Consequently(Y ′, ξ′) is Stein fillable by a result of Eliashberg [El-90] since it isob-
tained from the standard contactS3 via Legendrian surgeries only. Consider a Stein filling
(W ′′, J) of (Y ′, ξ′) and embed this filling into a closed symplectic4-manifold(Z, ωZ) us-
ing Theorem 4. Then since a Stein filling is a convex filling by definition,(Z \ int W ′′) will
be a concave filling of(Y ′, ξ′). Hence we conclude that

(W ′, ω′)
⋃

(Y ′,ξ′)

(Z \ int W ′′, ωZ)

is a concave filling of(Y, ξ), which is illustrated in Figure 1. Here we use Lemma 11 to
glue these symplectic 4-manifolds symplectically.

W, ω

W, ω

ω, zZ  

W , J Y, ξ

Y, ξY, ξ Y, ξ

Z − int W ω, z

FIGURE 1. A concave filling of(Y, ξ)

�

Next we will discuss another proof of Theorem 5 given in [Et-05] which is not based on the
embedding of Lisca and Matic. This method of proof is essentially due to Gay ([Ga-02b])
except for a slight short-cut at the end. We first collect below a few results that we will
need. We denote bytβ a right-handed Dehn twist about a curveβ on a surfaceF .
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Lemma 7 (Wajnryb [Wa-99]). The relationtc = (ta1
◦ ta2

◦ · · · ◦ ta2g−1
◦ ta2g

)4g+2 holds
in the mapping class groupΓF , whereai’s are the curves on a genusg surfaceF with one
boundary component depicted in Figure 2 andc is a curve parallel to∂F .

a1
a g2

c
a a

a2
3 5

a4 a6

FIGURE 2. Genusg surfaceF with boundary

Lemma 8. Any elementφ of the mapping class group of a surfaceF with one boundary
component can be expressed asφ = tmc ◦ t−1

γ1
◦ · · · ◦ t−1

γn
for somem ∈ Z and some non-

separating curvesγi ⊂ F , wherec is a curve parallel to∂F .

Proof. We can expressta1
as a product of non-separating left-handed Dehn twists andtc

by Lemma 7. Therefore any non-separating right-handed Dehntwist — being conjugate
to ta1

— is a product of non-separating left-handed Dehn twists andtc. This finishes the
proof since it is well-known that the mapping class group of asurface with one boundary
component is generated by non-separating Dehn twists.

�

Lemma 9 (Kanda [Ka-97]). A non-separating curveγ on a convex surface in a contact
3-manifold can be made Legendrian by isotoping the surface through convex surfaces such
that the contact framing ofγ agrees with its surface framing.

Lemma 10 (Gay [Ga-02b]). Given a Legendrian knotL on a page of an open bookobξ

compatible with(Y, ξ). Leth ∈ ΓF denote the monodromy ofobξ. Then a contact(−1)-
surgery onL induces a contact structureξ′ compatible with the open bookobξ′ whose
monodromy is given byh′ = h ◦ tL ∈ ΓF .

Lemma 11. If (Y, ξ) is a convex boundary component of(W1, ω1) and is a concave bound-
ary component of(W2, ω2) then we can glue(W1, ω1) and (W2, ω2) symplectically along
their common boundary component(Y, ξ).

The result above was first explicitly stated in [Et-98] although it was implicit in Eliashberg’s
work in [El-96]. Note that after gluing one of the symplecticforms needs to be scaled
appropriately.
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We are now ready to describe a second proof of Theorem 5. Consider the compact piece
(W,ω) of the symplectization of(Y, ξ) as in the proof above. Letobξ be an open book
decomposition ofY with a connected binding which is compatible withξ . Let φ be the
monodromy of this open book. Now use Lemma 8 to writeφ = tmc ◦ t−1

γ1
◦ · · · ◦ t−1

γn
. We

can assume that the curveγn is a Legendrian curve which lies on a convex page ofobξ

by Lemma 9. Then contact(−1)-surgery alongγn yields a contact structure which has a
compatible open book whose monodromy is given byφ ◦ tγn

= tmc ◦ t−1
γ1

◦ · · · ◦ t−1
γn−1

by
Lemma 10.

We repeat this process for all the curvesγi (for i = n − 1, · · · , 1) to obtain a contact
3-manifold(Y ′, ξ′) whose compatible open bookobξ′ has monodromytmc . Moreover we
can assume thatm is odd andm ≥ 1, otherwise we can just perform some more contact
(−1)-surgeries alongai’s (depicted in Figure 2), after making them Legendrian on distinct
convex pages using Lemma 9.

On the other hand, by Proposition 6, a contact(−1)-surgery along a Legendrian knotL in
a convex boundary component of a symplectic 4-manifold can be obtained by a symplectic
2-handle attachment alongL. Hence there exists a symplectic 4-manifold(W ′, ξ′) with
a convex boundary component(Y ′, ξ′) which is obtained from(W,ω) by attaching sym-
plectic 2-handles alongγi’s in the convex end of(W,ω). Next we will prove that we can
actually assume thatm = 1.

We note that Proposition 6 is also true for attaching symplectic 1-handles. Namely, one
can attach a symplectic 1-handle to a symplectic 4-manifoldalong two points on the bind-
ing of a compatible open book decomposition of a convex boundary component in such
a way that the symplectic structure extends over the 1-handle. In addition the induced
surgery on the convex boundary component corresponds to taking a connected sum with
a copy of standard contactS1 × S2. At the level of compatible open books, attaching a
(4-dimensional) symplectic 1-handle to a convex boundary component along two points in
the binding of a compatible open book corresponds to attaching a (2-dimensional) 1-handle
to the page of that open book. Note that we extend the old monodromy by identity over the
new 1-handles.

Let g′ = mg+ 1
2
(m−1). Now we attach symplectic 1-handles to(W ′, ξ′) so that the result-

ing compatible open book on the boundary has a pageF ′ of genusg′ with one boundary
component. Letc′ be a curve parallel to∂F ′ as shown in Figure 3.

Then by Lemma 7 we have

tc′ = (ta1
◦ ta2

◦ · · · ◦ ta2g′−1
◦ ta2g′

)4g′+2

= (ta1
◦ ta2

◦ · · · ◦ ta2g
◦ ta2g+1

◦ · · · ◦ ta2g′−1
◦ ta2g′

)m(4g+2) ∈ ΓF ′ .
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a1
a g2 a g2

c c
a a

a2
3 5

a4 a6

FIGURE 3. Genusg′ surfaceF ′ with boundary

To simplify the notation we will denote the result of attaching symplectic 1-handles to
(W ′, ω′) again as(W ′, ω′). Now attach more symplectic 2-handles to(W ′, ω′) along the
Legendrian curvesa2g+1, a2g+2, · · · , a2g′ sufficiently many times so that the resulting con-
vex boundary has a compatible open book with monodromytc′. Here note that we are
inserting (rather than appending as in Lemma 10) some right-handed Dehn twists, but nev-
ertheless Lemma 10 holds true in this case (cf. [Ga-02b]). Wewill still denote the resulting
symplectic 4-manifold by(W ′, ω′), to simplify the notation.

Summarizing the above discussion, by attaching symplectic1- and 2-handles to(W,ω) we
end up with a symplectic 4-manifold(W ′, ω′) with a convex boundary component(Y ′, ξ′)
whose compatible open bookobξ′ has the following description: The pageF ′ is a genusg′

surface with one boundary component and the monodromy is a single right-handed Dehn
twist along a curvec′ parallel to∂F ′. Let F̂ denote the surface obtained by capping off the
surfaceF ′ by gluing a 2-disk along∂F ′.

Lemma 12. The 3-manifoldY ′ is a circle bundle over the surfacêF with Euler number
−1.

Proof. This is a well-known result; we repeat the proof described in[AO-02]. Recall the
relation

(ta1
ta2

· · · ta2g′
)4g′+2 = tc′

in the mapping class groupΓF ′. It induces a relation

(ta1
ta2

· · · ta2g′
)4g′+2 = 1.

in the mapping class groupΓ bF . This later relation induces a Lefschetz fibrationf : X → S2

admitting a section of square−1. Consider a neighborhoodU of a regular fiber union this
section. We observe that∂U = −Y . This is becauseX \ int U is a Lefschetz fibration
(with bounded fibers) with monodromy

(ta1
◦ ta2

◦ · · · ◦ ta2g′−1
◦ ta2g′

)4g′+2 = tc′ .
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MoreoverU is obtained by plumbing aD2 × F̂ (a regular neighborhood of the fiber) and
a disk bundle overS2 with Euler number−1 (a regular neighborhood of the section). In
Figure 4 we illustrated a handlebody diagram of the 4-manifold U .

−1
0

FIGURE 4. Plumbing aD2 × F̂ and aD2-bundle overS2 with Euler number−1

We can blow down the−1 sphere to get a disk bundle overF̂ with Euler number+1 (cf.
Figure 5). Blowing down a−1 sphere changes the 4-manifold but the boundary 3-manifold
remains the same (up to diffeomorphism). Note that the boundary of a disk bundle over̂F
with Euler number+1 is circle bundle over̂F with Euler number+1. Our claim follows
by reversing the orientations, since when we change the orientation of a circle bundle over
F̂ with Euler number+1, we get a circle bundle over̂F with Euler number−1.

+1

FIGURE 5. D2-bundle overF̂ with Euler number+1

�

Now consider the disk bundleM over F̂ with Euler number1. ThenM admits a natural
symplectic structureωM so that(M,ωM) has a concave boundary(Y ′, ξ′) (cf. [McD-91]).
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Thus
(W ′, ω′)

⋃

(Y ′,ξ′)

(M,ωM)

is a concave filling of(Y, ξ) by Lemma 11. This finishes the proof of Proposition 5.

Finally we would like to point out how Gay’s proof in [Ga-02b]differs from the proof in
[Et-05]. Consider the open bookobξ′ which is compatible with(Y ′, ξ′) as above. Then
Gay explains how to attach a symplectic 2-handle along the binding ofobξ′ with framing
+1 relative to the page framing of the binding so that the resulting contact 3-manifold
(Y ′′, ξ′′) is also aconcaveboundary component of the symplectic cobordism given by the
2-handle attachment. Note that this operation has the affect of turning a convex boundary
component of a symplectic 4-manifold to a concave boundary component. Denote the
resulting symplectic 4-manifold obtained by attaching this symplectic 2-handle to(W ′, ω′)
by (W ′′, ω′′). Moreover the monodromy of the open book compatible with(Y ′′, ξ′′) is
given by the identity map. This implies that(Y ′′, ξ′′) is contactomorphic to the standard
tight contact(♯k S1×S2, ξst). Note that there is a standard convex filling(♯k S1×D3, ωst)
of (♯k S1 × S2, ξst). Hence

(W ′′, ω′′)
⋃

(♯k S1×S2,ξst)

(♯k S1 ×D3, ωst)

is a concave filling of(Y, ξ) by Lemma 11.

Alternatively, a general method on how to find a natural open book on the boundary of
any plumbed 4-manifold is given in [Ga-03]. Moreover Gay explains how to construct
a symplectic structure on a “positive” plumbing 4-manifoldwhose concave boundary is
compatible with this open book. In the situation above note thatU is obtained by a positive
plumbing of aD2 × F̂ with a disk bundle overS2 with Euler number−1.

Proposition 13 (Etnyre-Honda [EH-02], Gay [Ga-02b] ). If (W,ω) is a strong filling of
(Y, ξ) thenW can be symplectically embedded into a closed symplectic4-manifold.

Proof. Suppose that(W,ω) is a strong filling of(Y, ξ). Consider a concave filling(W1, ω1)
of (Y, ξ). Then we can glue (cf. Lemma 11) the symplectic manifolds(W,ω) and(W1, ω1)
along their common boundary(Y, ξ) to get a closed symplectic 4-manifold including(W,ω)
as a symplectic subdomain.

�

6. EMBEDDING A WEAK FILLING

In this section we will give the most general embedding result that will cover the cases in
Sections 4 and 5.
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Theorem 14(Eliashberg [El-04], Etnyre [Et-04]). If (W,ω) is a weak filling of(Y, ξ) then
W can be symplectically embedded into a closed symplectic4-manifold.

6.1. Eliashberg’s construction: We first briefly outline Eliashberg’s construction: Let
(W,ω) be a weak filling of a contact 3-manifold(Y, ξ) and letobξ be an open book decom-
position ofY (with a connected bindingB) compatible with the contact structureξ. Attach
a symplectic 2-handle alongB ⊂ Y = Y × {1} to an appropriate symplectic collarY × I
to obtain a cobordism with boundary−Y ∪ Y ′ such thatY ′ fibers overS1 with symplec-
tic fibers. Then fill inY ′ → S1 by a symplectic Lefschetz fibration overD2 to complete
W ∪H into a closed symplectic 4-manifold.

Eliashberg’s idea above is to reduce the question of embedding a weak filling to a question
of embedding a symplectic surface fibration over the circle.Notice that the bindingB of
obξ is transverse toξ, so the crucial point of Eliashberg’s construction is the way that he
attaches a symplectic 2-handle along the transverse bindingB. We would like to mention
here that in [Ga-02a], Gay gives a general construction of attaching symplectic 2-handles
along transverse knots.

Eliashberg’s construction is “topologically” equivalentto the construction that was given
in [AO-02] to embed a Stein fillingsmoothlyinto a closed symplectic 4-manifold.

Now we proceed with the details of Eliashberg’s construction. We start with describing
the symplectic 2-handleH to be attached along the transverse bindingB. We identify
C

2(z1, z2) with R
4(x1, y1, x2, y2) as usual:z1 = x1 + iy1 andz2 = x2 + iy2. Let (ri, ϕi)

denote the polar coordinates in thezi-plane fori = 1, 2. Then the standard symplectic
2-formω0 onR

4 is given by

ω0 = dx1 ∧ dy1 + dx2 ∧ dy2 = r1dr1 ∧ dϕ1 + r2dr2 ∧ dϕ2.

Let a be a positive real number and letP = {r1 ≤ a, r2 ≤ 1} ⊂ C
2 be a polydisc. Now

we define a domaiñP = {r1 ≤ g(r2) : r2 ∈ [0, 1]} ⊂ P for some non-increasing smooth
functiong(t) : [0, 1] → [0, a] as shown in Figure 6, whereg([0, 0.5]) = a andg′(t) < 0 for
t ∈ (0.5, 1). We will determine the real numbera and the particular form of the function
g(t) neart = 1 later in the proof. Here we can view̃P as obtained from the polydicsP by
smoothing its corners as shown in Figure 7.

We defineΓ = {r1 = g(r2) : r2 ∈ [0.5, 1]} as part of∂P̃ . (There is a typo here in [El-04],
r2 ∈ [0.5, 1] not r1.) We observe thatΓ is diffeomorphic toS1 × D2: As r2 increases
from 0.5 to 1 in the z2-plane (with polar coordinates(r2, ϕ2)) the boundary of the disks
{r1 ≤ g(r2)} in the z1-plane will shrink smoothly to a point according to the function g
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g(t) 

t

a

0 0.5 1

FIGURE 6. The graph of the smooth functiong

P

r
2 1

r
1

a

P

FIGURE 7. Smoothing the corners of the polydics

sweeping out a disk for each fixedϕ2. Here note that the core circle ofΓ is parametrized
by ϕ2 ∈ [0, 2π] for r2 = 1 (cf. Figure 8).

2

0.5 10

S

r

ϕ
2

2

1

D

FIGURE 8. Γ ≃ S1 ×D2
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Then we observe thatγ = 1
2
(r2

1dϕ1 + r2
2dϕ2) is a primitive ofω0 onR

4 and that

γ|Γ =
1

2
(g2(r2)dϕ1 + r2

2dϕ2) =
r2
2

2
(
g2(r2)

r2
2

dϕ1 + dϕ2)

is a contact 1-form onΓ. This can be verified by a direct calculation wherer2 dϕ1 ∧ dr2 ∧
dϕ2 is a volume form onΓ. Also observe that the core circle ofΓ is transverse to the contact
structureker(γ|Γ) sinceγ( ∂

∂ϕ2
)|{r2=1} = 0.5.

Moreover(Γ, γ|Γ) is a convex boundary component of(P̃ , ω0) but we would like to convert
it to a concave component. So we apply the following trick. WeembedP̃ into a symplectic
S2 ×D2 by a symplectomorphism and take the complement of the image in S2 ×D2. Let
(S2, σ1) be a symplectic sphere with area2π and (D2, σ2) be symplectic disk with area
πa2. Denote byS2

± the upper and lower hemispheres of areaπ, respectively. Thenσ1 ⊕ σ2

induces a symplectic form onS2
+ ×D2. Let

φ : P ∼= D2 ×D2 → S2
+ ×D2 ⊂ S2 ×D2

be a symplectomorphism. From now on we will identify the symplectic form onP induced
from ω0 onR

4 with the symplectic formσ1 ⊕ σ2 onS2
+ ×D2 by the above symplectomor-

phismφ. Define the 2-handleH (see Figure 9) as

H = S2 ×D2 − φ(P̃ ).

Now consider the boundary∂H of the 2-handleH. We will denoteφ(Γ) also byΓ to
simplify the notation. Let

∆ = ∂H \ Γ.

Observe that∆ is fibered by discsDx = S̃2
− × {x} for x ∈ ∂D2, where we haveS2

− ⊂
S̃2
− ⊂ S2. This is illustrated in Figure 9: Imagine the complement ofφ(P̃ ) in S2 × D2

restricted to∂D2. Notice here that̃S2
− is symplectic (with respect toω0) with fixed area7π

4

(not 9π
4

as mistakenly typed in [El-04]) for eachx ∈ ∂D2. This is precisely because of our
identification ofω0 with σ1 ⊕ σ2.

Next we would like to find an appropriate way to attach this 2-handleH to Y × I by
identifyingΓ with a neighborhoodU of the bindingB of the compatible open bookobξ in
Y × {1} ⊂ Y × I. By Giroux [Gi-02], we can find coordinates(r, ϕ, u) near the binding
B of obξ such that

U ∼= [0, R] × (R2/2πZ) × (R2/2πZ)

satisfying the following conditions:

(1) α|U = h(r)(du + r2dϕ) for some positive functionh defined on[0, R] such that
h(r) − h(0) = −r2 nearr = 0, andh′(r) < 0 for all r > 0,
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2S

2D

φ (P)
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∆

Γ

H

∆
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Γ
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FIGURE 9. The 2-handleH

(2) dα is symplectic on the pages ofobξ and

(3) pages ofobξ in U are given byϕ=constant.

Now we fixR and seta (in the definition of the functiong) equal toR
2
. Consider the follow-

ing mapF : Γ → U (cf. Figure 10) given by the following identifications of coordinates:

r =
g(r2)

r2
, ϕ = ϕ1, u = ϕ2.

Notice that under this map the core circle ofΓ parametrized byϕ2 is mapped onto the
bindingB parametrized byu. It is clear thatF is a diffeomorphism but we would likeF to
be a contactomorphism which takes the contact structureker(γ|Γ) onto the contact structure
ξ|U . Well, we will simply choose our functiong (depicted in Figure 6) accordingly near
t = 1 so thatF becomes a contactomorphism. The function

t→ g(t)

t
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2
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2

1

ϕ

S
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r

ϕ

FIGURE 10. The diffeomorphismF : Γ → U

is a decreasing function from[0.5, 1] to [0, 2a] = [0, R]. Let ψ : [0, R] → [0.5, 1] be the
inverse of this function. Recall that

γ|Γ =
r2
2

2

(g2(r2)

r2
2

dϕ1 + dϕ2

)
.

Hence by the change of coordinates which describes the diffeomorphismF we get

(F−1)∗(γ|Γ) =
ψ2(r)

2
(r2dϕ+ du)

which is a 1-form defined onU . Then we haveh(r) = 1
2
ψ2(r) whereh(r) − h(0) = −r2

nearr = 0 so that1
2
(ψ2(r) − ψ2(0)) = −r2 and thusψ(r) =

√
1 − 2r2. Recall thatr2 =

ψ(r) andr = g(r2)
r2

under the diffeomorphismF . Considering thatψ : [0, R] → [0.5, 1] is

the inverse of the functiont→ g(t)
t

we finally obtain

r2 =
(
1 − 2

g2(r2)

r2
2

)1/2

which implies that

g(t) =
1

2
t
√

1 − t2

neart = 1. Notice thatg(t) has a vertical tangent att = 1. This calculation determines
the particular form of the functiong(t) neart = 1. (Our calculation of the functiong is
slightly different from the one given in [El-04].)

While preparing our 2-handle for gluing we also have to equip the cobordismY × I by
an appropriate symplectic form. LetC > 0 be an arbitrary constant. It is easy to see (cf.
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[El-04]) that there is a symplectic formΩ onY × I (see Figure 11) which “extends”ω and
agrees withω + Cd(tα) for t ∈ [ε, 1].

W, ω

Ω

ω

Y I

+ C d (t   )α
Y, ξ

ω

10 ε

FIGURE 11. Extendingω to Ω ∈ H2(Y × I)

Now observe thatY × {1} ⊂ Y × I is convex with respect tod(tα). Recall that(H,ω0)
is a concave filling of(Γ, γ|Γ). Thus by Lemma 11, we can glue(H,ω0) to (Y × I, d(tα))
identifyingΓ andU by the contactomorphismF which extends to a symplectomorphism in
some neighborhoods ofΓ ⊂ H andU ⊂ Y × I. Consequently we haveF ∗(d(tα)) = ω0.
Notice thatF ∗ω is exact in a regular neighborhoodν(Γ) of Γ in H because the second
cohomology group ofν(Γ) ∼= I × S1 ×D2 is trivial. SinceF ∗ω is exact, there is a 1-form
θ on ν(Γ) such thatF ∗ω = dθ. Take a smooth cut-off functionσ onH which vanishes
outside ofν(Γ). Thend(σθ) defines an extensioñω of F ∗ω from ν(Γ) toH.

Finally we are ready to define a symplectic form onH that will allow us to make this 2-
handle attachment in the symplectic category. LetΩ0 = ω̃ + Cω0 onH for some constant
C. It is not hard to see thatΩ0 will be symplectic for sufficiently large values ofC since
C2ω0∧ω0 > 0 will dominate the other terms inΩ0∧Ω0 on a compact manifold. Here notice
that we have a well-defined symplectic form on(Y × I)∪U=F (Γ)H sinceΩ = ω+Cd(tα)
on(Y ×I) is identified withΩ0 onH in the gluing region. This is becauseω̃ is an extension
of F ∗ω andF ∗(Cd(tα)) = Cω0 so thatF ∗Ω = Ω0.

On the other hand, by attaching the 2-handleH we perform a Dehn surgery on the 3-
manifoldY to yield a 3-manifoldY ′ which fibers over the circle. This should be clear since
we take out a neighborhoodU from Y and glue inS̃2

− × ∂D2 to cap off each pageF of obξ

by a diskDx = S̃2
−×{x}. Let F̂ denote the closed surface obtained by capping off a pageF

by gluing a 2-diskDx along its boundary. Consider the 2-formΩ|Y = Ω|Y ×{1} = ω+Cdα.
We know thatdα is symplectic on every pageF of obξ. Thusω+Cdα will be a symplectic
form onF for sufficiently large values ofC.
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Recall that we identified the symplectic formsΩ andΩ0 when we attached the symplectic
2-handleH. Also note thatDx is symplectic with respect toω0. Consequently since every
pageF of obξ is symplectic (with respect toΩ) and the diskDx is symplectic as well (with
respect toΩ0) we get a fibration overS1 for which ω′ = Ω0|Y ′ restricts to a symplectic
form on each fiber̂F for sufficiently large values ofC. We will call such a surface fibration
overS1 asymplecticfibration overS1. Note that we have the freedom to chooseC as large
as we wish. Also note that in order to prove that we have a symplectic fibration overS1

after surgery we had to use the compatibility ofξ andobξ.

Denote by(W ′, ω′) the resulting symplectic 4-manifold obtained by attachingthe symplec-
tic 2-handleH to the given weak filling(W,ω) of (Y, ξ). To finish Eliashberg’s construction
we need to cap off the symplectic fibration∂W ′ = Y ′ → S1 by a symplectic 4-manifold.
Let φ be the topological monodromy of this surface fibration. Thenwe cansmoothlyfill in
−Y ′ (see [AO-02]) by a symplectic Lefschetz fibration overD2 with regular fiberF̂ since
the monodromyφ−1 of −W ′ can be written as a product ofright-handedDehn twists by
Lemma 15.

Lemma 15. Any element in Map(F̂ ) can be expressed as a product of non-separating
right-handed Dehn twists.

Proof. We repeat the proof described in [AO-02] for this elementaryresult. Recall that the
relation (cf. Lemma 7)

(ta1
ta2

· · · ta2g
)4g+2 = tc

in ΓF induces a relation
(ta1

ta2
· · · ta2g

)4g+2 = 1

in Γ bF . We conclude thatt−1
a1

is a product of non-separating right-handed Dehn twists.
Therefore any left-handed non-separating Dehn twist — being conjugate tot−1

a1
— is a

product of non-separating right-handed Dehn twists. This finishes the proof of the lemma
combined with the fact thatΓ bF is generated by (right and left-handed) non-separating Dehn
twists. �

In fact, Eliashberg proves a “symplectic” version of Lemma 15 in [El-04] so that we can
actually fill in −∂W ′ = −Y ′ symplecticallyby a symplectic 4-manifold. The point here is
that when we measure the topological monodromy of a symplectic fibrationY ′ → S1 we
do not take into account the symplectic structure on the fiber. But to fill in such a symplectic
fibrationsymplecticallywe need to measure the holonomy (i.e., “symplectic” monodromy)
of this fibration, which we describe below. Suppose that the symplectic fibrationY ′ → S1

is normalized so that
∫ bF ω′ = 1. Since the 2-formω′ is positive on the fibers its kernelkerω′

is a 1-dimensional line field onY ′ transverse to the fibers. The flow generated by a vector
field which directs this line field determines a holonomy automorphism Hol(ω′) : F̂0 → F̂0
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of a fixed fiberF̂0. This is an area and orientation preserving diffeomorphism(i.e., a sym-
plectomorphism) which defines(Y ′, ω′) uniquely up to fiber preserving diffeomorphism
fixed onF̂0.

Now let (V, η) denote the symplectic Lefschetz fibration overD2 mentioned above with
regular fiberF̂ which will be used to fill in the symplectic fibration−Y ′ → S1. Since
(V, η) → D2 is a symplectic Lefschetz fibration, the symplectic 2-formη restricts to a
symplectic form on each regular fiber and moreover we can assume thatη|∂V integrates
to 1 on the fibers of the symplectic fibration∂V → S1. If we can choose(V, η) such
that Hol(ω′|Y ′)−1 = Hol(η|∂V ) then we are done since we can glue(W ′, ω′) to (V, η)
symplectically. Eliashberg constructs such a symplectic Lefschetz fibration overD2 in
[El-04]. In fact it is shown in [KrMr-04] that it suffices to prove Lemma 16 below. (See
also Section 7 for another argument for the sufficiency of Lemma 16.)

Lemma 16(Kronheimer-Mrowka [KrMr-04]). LetΣ be a closed symplectic surface of area
1 and genusg > 1. Letφ : Σ → Σ be an area preserving diffeomorphism that is smoothly
isotopic to the identity. Then there is a symplectic Lefschetz fibrationp : (V, η) → D2 such
thatp−1(1) = Σ andHol(η|∂V ) = φ.

As it is pointed out in [El-04], we could alternatively use Lemma 17 to cap off a symplectic
fibration overS1 by a symplectic surface bundle over a surface with boundary.Recall that
a groupG is said to be perfect if it is equal to its commutator subgroup[G,G]. In other
words,G is perfect if and only if every element inG can be expressed as a product of
commutators. Yet another way of characterizing the perfectness of a group is given by the
triviality of its first homology groupH1(G) = G/[G,G].

It is well-known that the mapping class group of a surface of genus greater than two is per-
fect. This is a consequence of the lantern relation (cf. [Jo-79]) in the mapping class groups
which essentially says “three equals four”. The fact that one can smoothly fill in a smooth
surface bundle overS1 by a smooth surface (of genus> 2) bundle over a surface with
boundary easily follows from the perfectness of the corresponding mapping class group (of
genus> 2). Here we need a symplectic version of this fact which is provided by Kotschick
and Morita [KoMo-05]. LetSympσΣ denote the group of all symplectomorphisms of the
closed symplectic surface(Σ, σ) with respect to a prescribed symplectic formσ onΣ which
is normalized such that

∫
Σ
σ = 1.

Lemma 17 (Kotschick-Morita [KoMo-05]). If the genus ofΣ is greater than two then
SympσΣ is perfect.

The restriction in Lemma 17 on the genus of the fiber is not a serious one since in the
construction above one can arbitrarily increase the genus of the page ofobξ (which is
compatible with(Y, ξ)) by positively stabilizingobξ (cf. [Gi-02]) to begin with.
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6.2. Etnyre’s construction: We first briefly outline Etnyre’s construction: In Section 5
we showed that to find an embedding of a strong filling one can use an embedding of a
Stein filling. Etnyre’s idea in [Et-04] was to find an embedding of a weak filling using
an embedding of a strong filling. Suppose that(W,ω) is a weak filling of a contact 3-
manifold(Y, ξ). Etnyre showed that(W,ω) can be embedded into a symplectic 4-manifold
(W ′, ω′) which weakly fills its boundary(∂W ′ = Y ′, ξ′), whereY ′ happens to be a integral
homology sphere. Now by a homological argument the symplectic structureω′ can be
perturbed near the boundary so that(W ′, ω′) strongly fills(Y ′, ξ′). Therefore(W ′, ω′) can
be embedded into a closed symplectic 4-manifold(X,ωX) by Proposition 13 and hence
(W,ω) ⊂ (W ′, ω′) can be embedded symplectically into(X,ωX). Below we proceed with
the details.

Let (W,ω) be a weak filling of(Y, ξ) and letobξ be an open book compatible with(Y, ξ).
We can assume that the bindingB of obξ is connected. Letφ be the monodromy of this
open book and use Lemma 8 to expressφ as

φ = tmc ◦ t−1
γ1

◦ · · · ◦ t−1
γn
.

Now Legendrian Realizeγn (cf. Lemma 9) on a convex page ofobξ and perform contact
(−1)-surgery onγn. The new open book will have monodromy

φ ◦ tγn
= tmc ◦ t−1

γ1
◦ · · · ◦ t−1

γn−1
.

Repeat this for all the curvesγi (for i = n− 1, · · · , 1) to get down totmc as in the proof of
Proposition 5. Denote by(Y ′, ξ′) the contact 3-manifold obtained as a result of the contact
(−1)-surgeries above. Then(Y ′, ξ′) is compatible with the open book whose monodromy
is given bytmc , by Lemma 10.

Recall that by Theorem 6 we can attach a symplectic 2-handle toa strong filling along a
Legendrian knot in its convex boundary in such a way that the symplectic structure extends
to the 2-handle and the new symplectic4-manifold strongly fills its boundary. In this gluing
process, however, the Liouville (i.e., symplectically dilating) vector field is used only in a
neighborhood of the attaching circle. It turns out that ifL ⊂ (Y, ξ) is Legendrian and
(W,ω) is a weak filling of(Y, ξ) then there is always a symplectically dilating vector field
nearL, implying

Proposition 18. Suppose that(Y ′, ξ′) is given by contact(−1)-surgery alongL ⊂ (Y, ξ).
If (Y, ξ) is weakly fillable then so is(Y ′, ξ′).

The result above was first explicitly stated in [EH-02] although it was probably known to
the experts, and certainly to Eliashberg.

Hence there exists a weak filling(W ′, ω′) of (Y ′, ξ′) obtained by attaching symplectic 2-
handles to(W,ω). The page of the compatible open bookobξ′ is a genusg surface with
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one boundary component. Consider the curvesai depicted in Figure 2. Legendrian realize
ai’s and perform contact(−1)-surgery on eachai to get(Y ′′, ξ′′) compatible with the open
bookobξ′′ whose monodromy is given by

tmc ◦ t−1
a1

◦ · · · ◦ t−1
a2g
.

It is not hard to see thatY ′′ is an integral homology sphere. Moreover, by Proposition 18,
there exists a weak filling(W ′′, ω′′) of (Y ′′, ξ′′). Then we use Proposition 19 to modify the
symplectic formω′′ near the boundary so that it is a strong filling of(Y ′′, ξ′′). Note that
(Y ′′, ξ′′) has a concave filling by Proposition 5. Thus we cap off(W ′′, ω′′) by this concave
filling using Lemma 11 to get a closed symplectic 4-manifold(X,ωX) in which(W,ω) sits
as a symplectic subdomain.

Proposition 19 (Eliashberg [El-91], [El-04]; Ohta-Ono [OO-99]). Any weak filling of a
rational homology sphere can be deformed into a strong filling by modifying the symplectic
form near the boundary.

The main step in Etnyre’s construction is embedding a weak filling of an arbitrary contact
3-manifold into a weak filling of an integral homology sphere. We would like to point out
here that this follows also from a result that was obtained byStipsicz in [St-03]. Namely,
Stipsicz showed the existence of a Stein cobordism from an arbitrary contact 3-manifold
to an integral homology sphere. Stipsicz’s construction (which we describe below) can be
slightly modified to imply the main step above.

Let (W,ω) be a weak filling of(Y, ξ). Consider the right-handed Legendrian trefoil knot
K as depicted in Figure 12 in the standard contactS3, havingtb(K) = 1. To construct
such a cobordism start with a contact surgery diagramL of (Y, ξ) and for every knotLi in
L add a copyKi of K into the diagram linkingLi once, not linking the other knots inL.
Adding symplectic 2-handles alongKi we get(W ′, ω′) and the resulting 3-manifoldY ′ is
an integral homology sphere. To see this just convert the contact surgery diagram into a
smooth handlebody diagram and calculate the first homology.Observe that the topological
framing ofK is 0. Denote byµi a small circle meridional toKi andµ′

i a small circle
meridional toLi for i = 1, · · · , n. Recall thatH1(Y

′,Z) is generated by[µi] and[µ′
i] and

the relations are[µ′
i] = 0 and[µi]+

∑
j 6=i lk(Li, Lj)[µ

′
j] = 0. It follows thatH1(Y

′,Z) = 0.

Although it was not considered in [St-03], Stipsicz’s construction immediately implies the
main step above because one can add a symplectic 2-handle along a Legendrian knot in the
boundary of a weak filling to extend it to another weak filling by Proposition 18.
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FIGURE 12. A right-handed Legendrian trefoil knotK

7. A HYBRID SOLUTION

In this section we suggest another symplectic embedding of aweak filling into a closed
symplectic 4-manifold which is obtained by a mixture of the ideas we discussed so far. First
we note that it is possible to attach symplectic 1-handles (as well as symplectic 2-handles)
to a weak filling to extend it to another weak filling. Suppose that(W,ω) is a weak filling
of a contact 3-manifold(Y, ξ). Now we proceed as in the second proof of Proposition 5 to
embed(W,ω) into a weak filling(W ′, ω′) by attaching symplectic 1- and 2-handles so that
the resulting contact structure on the boundary∂W ′ has a compatible open book whose
page has only one boundary component and whose monodromy is just one right-handed
boundary-parallel Dehn twist. Then we attach a symplectic 2-handle to(W ′, ω′) along the
binding of this open book and we get a symplectic fibration over a circle with topologically
trivial monodromy on the other end of the cobordism given by this 2-handle attachment.
Finally we cap off this surface bundle by a symplectic Lefschetz fibration overD2 using
Lemma 16.

8. FINAL COMMENTS

The presentation in this article may suggest that Eliashberg’s method is unnecessarily long
but he constructs from scratch a symplectic 2-handle to be attached to the binding of a
compatible open book—which is crucial. Note that a construction of attaching symplectic
2-handles along transverse knots was also given in [Ga-02a]. It would be very interest-
ing to interpret this symplectic surgery in terms of contactsurgery. Unfortunately, there
does not seem to exist a natural contact structure on the symplectic fibration overS1 ob-
tained by this surgery. This is exactly the point where Eliashberg’s method differs from the
method of Etnyre. In Etnyre’s construction one always makesuse of the contact structures
on the boundaries of symplectic 4-manifolds to glue them symplectically. In fact, based
on Giroux’s correspondence, Etnyre mostly deals with open books compatible with these
contact structures rather than the contact structures directly. In Eliashberg’s construction,
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however, at one point or another we have to glue a symplectic (Lefschetz) fibration to a
symplectic 4-manifold whose boundary symplectically fibers overS1. This is achieved by
matching up the holonomy diffeomorphisms on the boundariesand contact structures are
not visible in this picture. It might be worth pointing out that the proof of the non-triviality
of the contact Heegaard Floer invariant of a fillable contactstructure follows from Eliash-
berg’s embedding but it is not clear whether or not it followsfrom Etnyre’s construction.

Also it is intriguing to note that most of the constructions in this article rely on the relation

tc = (ta1
◦ ta2

◦ · · · ◦ ta2g−1
◦ ta2g

)4g+2 ∈ ΓF

given in Lemma 7 which implies

1 = (ta1
◦ ta2

◦ · · · ◦ ta2g−1
◦ ta2g

)4g+2 ∈ Γ bF ,
whereF̂ denotes the closed surface obtained by capping off the surface F by gluing a
2-disk along∂F . This latter relation says that identity can be expressed asa product of
right-handed Dehn twists in the mapping class group of a closed surface. It is not possible,
however, to express the identity as a product of right-handed Dehn twists in the mapping
class group of a surface with non-empty boundary (cf. [OzSt-04]).
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